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Background: Accurately predicting whether and when mild cognitive impairment (MCI) will progress to Alzheimer’s dis-
ease (AD) is of vital importance to help developing individualized treatment plans to defer the occurrence of irreversible
dementia.
Purpose: To develop and validate radiomics models and multipredictor nomogram for predicting the time to progression
(TTP) from MCI to AD.
Study Type: Retrospective.
Population: One hundred sixty-two MCI patients (96 men and 66 women [median age, 72; age range, 56–88 years]) were
included from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Field Strength/Sequence: T1-weighted imaging and T2-weighted fluid-attenuation inversion recovery imaging acquired
at 3.0 T.
Assessment: During the 5-year follow-up, 68 patients converted to AD and 94 remained stable. Patients were randomly
divided into the training (n = 112) and validation datasets (n = 50). Radiomic features were extracted from the whole cere-
bral cortex and subcortical nucleus of MR images. A radiomics model was established using least absolute shrinkage and
selection operator (LASSO) Cox regression. The clinical-laboratory model and radiomics-clinical-laboratory model were
developed by multivariate Cox proportional hazard model. The performance of each model was assessed by the concor-
dance index (C-index). A multipredictor nomogram derived from the radiomics-clinical-laboratory model was constructed
for individualized TTP estimation.
Statistical Tests: LASSO cox regression, univariate and multivariate Cox regression, Kaplan–Meier analysis and Student’s
t test were performed.
Results: The C-index of the radiomics, clinical-laboratory and radiomics-clinical-laboratory models were 0.924 (95% confi-
dence interval [CI]: 0.894–0.952), 0.903 (0.868–0.938), 0.950 (0.929–0.971) in the training cohort and 0.811 (0.707–0.914),
0.901 (0824–0.977), 0.907 (0.836–0.979) in the validation cohort, respectively. A multipredictor nomogram with 15 predic-
tors was established, which had high accuracy for individual TTP prediction with the C-index of 0.950 (0.929–0.971).
Data Conclusion: The prediction of individual TTP from MCI to AD could be accurately conducted using the radiomics-
clinical-laboratory model and multipredictor nomogram.
Evidence Level: 3
Technical Efficacy: 2
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Alzheimer’s disease (AD) is characterized by cognitive and
behavioral deficits and is regarded as one of the most

common progressive and irreversible neurodegenerative dis-
eases.1 In 2018, approximately 50 million people worldwide
suffered from dementia, which will triple by 2050.2 AD not
only has an impact on a patient’s daily life but also has a seri-
ous impact on the psychological and economic status of their
family.1 Until now, no breakthrough in the direct treatment
of AD has been achieved. However, studies have shown that
intervention in the early stage of AD may delay the occur-
rence of irreversible dementia.3 Mild cognitive impairment
(MCI) is generally defined as a transition stage between nor-
mal cognition and AD,4 with approximately 10%–20% of
patients converting to dementia annually.5 Therefore, it is
of vital importance to accurately predict whether and when
MCI will progress to AD, then develop personalized follow-
up plans, and perform a timely intervention to delay the pro-
gression of AD.

Many of the previous studies considered the prediction
of AD by MCI as a binary classification task.6–8 In accor-
dance with the results of follow-up, MCI subjects were
divided into progressive MCI (pMCI) and stable MCI
(sMCI) subjects.9 Binary classifiers could be trained on a basis
of baseline data to distinguish between patient groups. This
prediction method is unable to provide specific information
regarding when MCI patients would cross the threshold and
enter AD. Recent studies have shifted the focus to predict the
progression of AD during follow-up using time-to-event anal-
ysis techniques.10–12 However, most existing studies have
used relatively simple and large-scale imaging indicators,
including cerebral volume, cortical thickness, and geometric
features of the hippocampus and temporal lobe cortex.10–12

The roles of white matter and subcortical nucleus have been
mostly ignored. In fact, structural changes in the basal ganglia
and thalamus have been identified as risk factors for MCI
transformation.13–15 Compared with sMCI, pMCI showed
more severe amygdala atrophy.14 The severity of white matter
lesions is also associated with cognitive decline.16 On the
other hand, unlike large-scale indicators of brain atrophy,
subtle changes caused by the accumulation of amyloid β (Aβ)
and tau proteins before atrophy are more early changes,
which cannot be detected by conventional MRI techniques
and naked eye observation.17 Radiomics is a new technology
that can be used to extract a large number of quantitative fea-
tures from medical images with automatic high throughput,
with subsequent data mining.18 And radiomic features usually
could be divided into four categories: intensity, shape, texture
(gray-level co-occurrence matrix [GLCM], gray-level run-
length matrix [GLRLM], and gray-level size zone matrix
[GLSZM]), and wavelet texture. It has been successfully
applied to provide accurate diagnosis and evaluation of
tumors,19 psychiatric disorders,20 and neurodegenerative
diseases.21

The risk of MCI progression increased rapidly with the
extension of follow-up time. About 60% of MCI patients
conversion could be detected at 3-year follow-up, and this
proportion would increase to 80% at 4-year follow-up.22,23

Previous studies usually focused on the progression of MCI
within 12–36 months,24–26 which might ignore the trans-
formed patients after the third year. It is of necessity to
extend the follow-up time to improve the stability and accu-
racy of the prognosis. Therefore, this study aimed to establish
and validate a radiomics model, which extracted features from
the whole brain microstructure and combined with clinical
and laboratory characteristics to accurately predict the pro-
gression time of MCI patients in 5 years.

Materials and Methods
Participants
Data used in the preparation of this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI study was approved by an ethics standards
committee on human experimentation at each institution. Written
informed consent was obtained from all participants. In total, data
from 162 MCI patients were obtained from the ADNI database,
including the ADNI-GO and ADNI-2. All patients had T1-weighted
imaging (T1WI), T2-weighted fluid-attenuated inversion recovery
(T2-FLAIR) imaging and complete clinical and laboratory character-
istics at the baseline of data collection. Among them, 68 pMCI
patients were diagnosed with AD in a period of time (range 6–
60 months, the follow-up interval was 6–12 months during the first
3 years, and 12 months during the 3–5 year), 94 sMCI patients were
not converted to AD during the 5-year follow-up. The diagnosis of
AD was made according to the criteria made by the National Insti-
tute of Neurological and Communicative Disorders and Stroke and
Alzheimer’s disease and Related Disorders Association. Participants
who were diagnosed with bidirectional changes (MCI to AD, and
back to MCI) during the follow-up period were excluded. All MCI
patients were randomly divided into the training cohort (n = 112)
and validation cohort (n = 50) with a rate of 7:3. Figure 1 shows
the working flow of this study.

Clinical and Laboratory Characteristics
Clinical and laboratory characteristics were directly collected from
the ADNI website. The demographic information included age, sex,
education level, body mass index (BMI), and alcohol use. Twelve
neuropsychological scales were used to characterize the cognitive
function at baseline, containing the Montreal Cognitive Assessment
(MOCA), the Alzheimer’s Disease Assessment Scale (ADAS, both
13 and 11 questionnaires), the Clinical Dementia Rating (CDR),
the Functional Activities Questionnaire (FAQ), the Geriatric
Depression Scale (GDS), the Mini-Mental State Examination
(MMSE), the Rey Auditory-Verbal Learning Test (RAVLT: RAVLT
immediate, RAVLT learning, RAVLT forgetting, RAVLT percent
forgetting), and the Animal Fluency Test (AFT).9,12,22,23,27,28 Labo-
ratory characteristics included the cerebrospinal fluid (CSF) amyloid-
beta peptides (Aβ, both Aβ1-42, Aβ1-40, and Aβ1-38),
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phosphorylated tau (P-tau), total tau (T-tau), and APOE ε4. Clinical
variables and laboratory characteristics are summarized in Table 1.

MRI Acquisition and Radiomics Features Extraction
For all subjects, standard T1-weighted anatomical imaging was per-
formed by volumetric three-dimensional magnetization-prepared
rapid gradient-echo (3D-MPRAGE) or equivalent scheme with
slightly different resolutions among patients. Detailed imaging
parameters were provided at ADNI website. The MR images
acquired using scanner 1 (Siemens Medical Solutions) were scanned
with the parameters as follows: (repetition time [TR]/echo time
[TE] = 2300.0/3.0 msec, matrix = 240 � 256 � 176). The MR
images acquired using scanner 2 (General Electric Healthcare) were
scanned with the parameters as follows: TR/TE = 7.7–7.0/3.1–
2.8 msec, matrix = 256 � 256 � 196. The MR images acquired
using scanner 3 (Philips Medical Systems) were scanned with the
parameters as follows: TR/TE = 6.8/3.1 msec,
matrix = 256 � 256 � 170. More detailed information about the
image acquisition procedures is available on the ADNI website.
(http://adni.loni.usc.edu/methods/documents/).

FreeSurfer (v6.0.0) (https://surfer.nmr.mgh.harvard.edu/) was
used for feature extraction of the cortex. Preprocessing involved the
following steps: motion correction, skull stripping, coordinate trans-
formation, gray–white matter segmentation, reconstruction of corti-
cal surface models, region labeling, registration, and statistical
analysis. The whole cortex was divided by the Destrieux atlas.29 The
cortex indicators, including surface area, average thickness, standard
deviation of thickness, integrated rectified Gaussian curvature, inte-
grated rectified mean curvature, intrinsic curvature index, folding
index, and gray matter volume, were obtained from each of the brain
regions.

The Statistical parametric mapping 12 (Wellcome Department
of Cognitive Neurology, UCL, London, UK) and Brainnetome
fMRI Toolkit (http://brant.brainnetome.org) were used for the sub-
cortical brain region segmentation. First, the T1-weighted images
were converted to Neuroimaging Informatics Technology Initiative
(NIFTI) data. Then, images were normalized to the Montreal

Neurological Institute (MNI) standard T1 template (standard space
181 � 217 � 181 with a resolution of 1 mm � 1 mm � 1 mm).
Meanwhile, this study resliced the Brainnetome Atlas to the standard
MNI space with a resolution of 1 mm � 1 mm � 1 mm. Bilateral
hippocampus and 12 subcortical nuclei including the thalamus,
putamen, globus pallidus, caudate nucleus, nucleus accumbens, and
amygdala were further extracted as masks. Finally, for each subject,
the volumes of interests (VOIs) were collected by point multiplica-
tion of these masks and the normalized T1 images. Radiomic fea-
tures of the subcortical brain region were extracted by an in-house
MATLAB script from each subject.19,30

Evaluation of White Matter Lesions
White matter hyperintensities (WMH) volume and Fazekas scale rat-
ing were used to evaluate WML. The volume of WMH was
obtained from the T1WI and T2-FLAIR images. Three radiologists
(W.Z., CM.L., and D.J.G., with 15, 20, and 28 years of experience
in neuroimaging, respectively) who were blinded to the clinical
information visually rated WML severity on T2-FLAIR sequences by
using the modified Fazekas scale.31 The scoring criteria were as fol-
lows: 0 = absence, 1 = punctate foci, 2 = beginning confluence of
foci, 3 = large confluent areas. After the review by each radiologist,
the interobserver agreement was obtained. The consistency of the
results was tested among the three radiologists.

Radiomics Model Building and Evaluation
Spearman rank correlation was used to calculate feature redundancy
by calculating the correlation coefficient between features to remove
the highly correlated features with correlation coefficient greater than
0.9, and univariate cox analysis was used to select the features with
significant differences (P < 0.05). The least absolute shrinkage and
selection operator (LASSO) Cox regression algorithm with 10-fold
cross validation was used to select the features that were mostly rele-
vant to the TTP. The radiomics score (rad-score) of each patient was
calculated by a linear combination of the chosen features multiplied
by their respective coefficients. The performance of the radiomics

FIGURE 1: The working flow chart of this study.
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TABLE 1. Baseline Characteristics of the MCI Patients in the Training Cohort and Testing Cohort

Variable Training Cohort Testing Cohort Statistics P-value

Fazekas scale

0 6 (5.36%) 0 (0.00%) - 0.115

1 87 (77.68%) 45 (90.00%)

2 18 (16.07%) 4 (8.00%)

3 1 (0.89%) 1 (2.00%)

Sex

Male 61 (54.46%) 35 (70.00%) 3.456 0.063

Female 51 (45.54%) 15 (30.00%)

Alcohol abuse

No 108 (96.43%) 49 (98.00%) 0.002 0.966

Yes 4 (3.57%) 1 (2.00%)

APOE ε4 alleles

No 58 (51.79%) 24 (48.00%) 0.198 0.656

Yes 54 (48.21%) 26 (52.00%)

Age (years) 71.74 � 7.34 72.05 � 6.10 0.282 0.778

Education (years) 16.00 (14.00, 18.00) 16.00 (14.00, 18.00) �0.743 0.457

BMI (kg/m2) 27.18 (24.50, 30.07) 26.44 (24.76, 31.35) 0.098 0.922

MoCA 23.00 (21.00, 25.00) 23.50 (21.00, 25.00) 1.245 0.213

ADAS-Cog11 10.00 (7.00, 13.00) 9.00 (5.95, 11.05) �1.679 0.093

ADAS-Cog13 16.00 (12.00, 21.00) 14.00 (10.95, 20.00) �1.22 0.222

CDR 0.50 (0.50, 0.50) 0.50 (0.50, 0.50) �0.203 0.839

FAQ 2.00 (0.00, 5.00) 2.00 (0.00, 6.00) 0.923 0.356

GDS 2.00 (1.00, 3.00) 1.00 (0.00, 3.00) �0.983 0.326

MMSE 28.00 (27.00, 29.00) 28.00 (27.00, 29.00) 0.227 0.821

RAVLT immediate 34.00 (28.00, 41.00) 35.50 (26.00, 39.10) �0.176 0.86

RAVLT learning 4.00 (2.00, 7.00) 4.00 (2.00, 6.00) 0.241 0.809

RAVLT forgetting 5.00 (4.00, 7.00) 5.00 (3.00, 6.05) �0.803 0.422

RAVLT percent forgetting 66.67 (43.57, 100.00) 70.71 (33.33, 88.12) �1.053 0.292

AFT 16.92 � 4.50 18.04 � 5.91 1.194 0.236

Aβ1-42 (pg/mL) 990.00 (740.75, 1377.20) 880.50 (675.90, 1483.85) �0.702 0.483

Aβ1-40 (pg/mL) 8740.00 (6650.45, 10297.45) 8734.50 (7219.85, 9687.30) �0.105 0.916

Aβ1-38 (pg/mL) 1964.50 (1553.90, 2401.60) 1992.50 (1686.85, 2289.05) 0.344 0.731

T-tau (pg/mL) 253.25 (202.35, 349.11) 281.95 (213.29, 400.60) 1.001 0.317

P-tau (pg/mL) 24.29 (17.65, 34.84) 26.27 (18.94, 39.67) 0.943 0.346

WMH Volume (cm3) 4.57 (1.45, 13.08) 4.88 (2.28, 12.03) 0.558 0.577

MCI = mild cognitive impairment; BMI = body mass index; ADAS-Cog = Alzheimer’s Disease Assessment Scale-Cognitive subscale;
CDR = Clinical Dementia Rating; FAQ = Functional Assessment Questionnaire; GDS = Geriatric Depression Scale; MMSE = Mini–
Mental State Examination; RAVLT = Rey Auditory Verbal Learning Test; AFT = Animal Fluency Test; Aβ = amyloid-β;
T-tau = Total tau; P-tau = Phosphorylated tau; WMH = white matter hyperintensities.
A chi square test or Fisher’s exact test was used for the nominal variable. A Mann–Whitney test was used for the continuous variable
with abnormal distribution.
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model was evaluated by the concordance index (C-index) in the
training cohort and independently verified in the validation cohort.

Clinical-Laboratory Model Building and Evaluation
The potential predictors among the clinical, laboratory, and WML’s
parameters were identified by using a univariate Cox proportional
hazards regression model in the training cohort. These factors
(P < 0.05) from the univariate analysis were used to established clini-
cal, laboratory, and clinical-laboratory models by multivariate Cox
proportional hazard model. The models were independently verified
in the validation dataset.

Combined Models Building and Evaluation
The potential predictors among the clinical, laboratory and WML’s
parameters were identified by using a univariate Cox proportional
hazards regression model in the training cohort. Using the same fea-
tures as the radiomics models and clinical-laboratory model, a multi-
variate Cox proportional hazard model was adopted to establish a
radiomics-clinical model by the radiomics and clinical measures, and
another was also created combining radiomics, clinical, and labora-
tory features in a model. The two combined models were indepen-
dently validated in the validation dataset, and the performance was
evaluated by C-index with a 95% confidence interval (95% CI).
Patients were divided into high-risk group and low-risk group
according to the median value in the radiomics-clinical-laboratory
model to predict the risk of AD progression in the next 5 years. KM
survival curve analyses were utilized to explore the potential associa-
tions between the radiomics-clinical-laboratory model and TTP. The
log-rank tests were used for the comparisons of the KM analysis.

Multipredictor Nomogram Construction
A multipredictor nomogram, which incorporated clinical, laboratory
and radiomics risk factors, was constructed based on the multivariate
Cox analysis. The calibration of the multipredictor nomogram was
assessed by calibration curves, which were used for the comparison
of the consistency between the clinical results and the TTP predicted
by the multipredictor nomogram.

Statistical Analysis
The R software (v. 3.6.0; http://www.Rproject.org) was used for the
data analyses and all variables were expressed as the mean � standard
deviation (SD) or median (interquartile range [IQR]). The Shapiro–
Wilk test and the Bartlett test were applied to test the distribution of
the clinical, laboratory characteristics and image features. And then
the Student’s t-test, Mann–Whitney U-test, or the Chi-squared test
were used to compare between-group differences base on the distri-
butions. The discriminant performance of each model was quantified
by C-index with 95%CI both in the training and in the validation
dataset. The Akaike information criterion (AIC) was calculated to
assess the risk of overfitting. The interobserver reproducibility was
assessed with the intraclass correlation coefficient (ICC). A two tailed
P < 0.05 was regarded statistically significant.

Results
Patients Characteristics
There was no significant difference (P = 0.063–0.966) in
both the clinical and laboratory characteristics between the
training group and validation group (Table 1). A total of
68 (68/162, 41.9%) patients progressed to AD within
5 years. The overall 1-, 3-, and 5-year cumulative progression
rates were 16.6% (27/162), 34.5% (56/162), and 41.9%
(68/162), respectively.

Radiomics Features Selection and Radiomics
Signature Construction
Totally 4864 features (1198 features from the cortex and
3666 features from the subcortical region) were obtained
from brain. First, Spearman correlation analysis was used to
reduce the redundancy by calculating the correlation coeffi-
cient between features. A total of 2298 features remained
after the highly correlated features with correlation coefficient
greater than 0.9 were removed. Second, univariate cox analy-
sis was used to select the features with significant differences
(P < 0.05) and 325 features were remained. Third, the
LASSO Cox regression algorithm with 10-fold cross valida-
tion was used to select the features that were mostly relevant
to the TTP. After the above steps, totally 33 radiomics fea-
tures were finally selected (Fig. 2), with 20 features belonging
to morphology, 6 features were image intensity related, and
7 belonged to textural features. Totally 13 features were from
the bilateral hippocampus and temporal cortex. The feature
coefficients were shown in Fig. 2.

Selection of Clinical and Laboratory Characteristics
Table 2 showed the univariate analysis of the clinical and lab-
oratory characteristics in the training dataset. The results indi-
cated that the Montreal Cognitive Assessment (MoCA)
(hazard ratio [HR], 0.798; 95% confidence interval [CI],
0.734–0.869), the Alzheimer’s Disease Assessment Scale
(ADAS, both 13 and 11 questionnaires), ADAS-Cog11
(HR, 1.257; 95% CI, 1.174–1.346), ADAS-Cog13
(HR, 1.162; 95% CI, 1.111–1.215), the Functional
Activities Questionnaire (FAQ) (HR, 1.186; 95% CI, 1.133–
1.241), the Mini-Mental State Examination (MMSE)
(HR, 0.750; 95% CI, 0.647–0.869), the Rey Auditory-
Verbal Learning Test (RAVLT), RAVLT immediate (HR,
0.915; 95% CI, 0.879–0.952), RAVLT learning (HR, 0.851;
95% CI, 0.758–0.954), RAVLT forgetting (HR, 1.123; 95%
CI, 1.007–1.251), RAVLT percent forgetting (HR, 1.024;
95% CI, 1.012–1.036), the Animal Fluency Test (AFT)
(HR, 0.894; 95% CI, 0.836–0.956), APOE ε4 (HR, 2.627;
95% CI, 1.435–4.811), Aβ 1–42 (HR, 0.998; 95% CI,
0.997–0.999), T-tau (HR, 1.004; 95% CI, 1.002–1.006),
and P-tau (HR, 1.037; 95% CI, 1.022–1.053) were risk fac-
tors associated with the TTP from MCI to AD.
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Estimation of the Performance of Different Models
and Verification
In the training cohort, the C-index of the models built with
radiomics, clinical, laboratory, clinical-laboratory, radiomics-
clinical and radiomics-clinical-laboratory features were 0.924
(95% CI: 0.894–0.952), 0.863 (95% CI: 0.812–0.913),
0.763 (95% CI: 0.690–0.835), 0.903 (95% CI: 0.868–
0.938), 0.943 (95% CI: 0.921–0.964), and 0.950 (95% CI:
0.929–0.971). In the validation cohort, the C-index of the
radiomics, clinical, laboratory, clinical-laboratory, radiomics-
clinical and radiomics-clinical-laboratory models were 0.811
(95% CI: 0.707–0.914), 0.865 (95% CI: 0.775–0.955),
0.748 (95% CI: 0.650–0.846), 0.901 (95% CI: 0824–
0.977), 0.881 (95% CI: 0.796–0.965) and 0.907 (95% CI:
0.836–0.979), respectively. Among these models, the
radiomics-clinical-laboratory model showed the highest

performance (P < 0.05) (Table 3). KM survival curve analyses
based on the radiomics-clinical-laboratory model was shown
in Fig. 3. The cutoff value of the radiomics-clinical-laboratory
model was �4.68986, which was regarded as the median
value used for risk stratification. There were significant TTP
differences between the low- and high-risk subgroups.

Multipredictor Nomogram Construction and
Validation
A multipredictor nomogram based on the radiomics-clinical-
laboratory model was made consisting of 15 predictors,
including the MoCA, ADAS-Cog11, ADAS-Cog13, FAQ,
MMSE, RAVLT immediate, RAVLT learning, RAVLT for-
getting, RAVLT percent forgetting, APOE ε4, Aβ 1–42,
T-tau, P-tau, and rad-score for the individualized estimation
of the TTP (Fig. 4). The calibration curves indicated that the

FIGURE 2: Radiomics feature selection using the LASSO Cox regression with a 10-fold crossvalidation. Tuning parameter selection in
the LASSO Cox regression model (a). LASSO coefficient analysis of the radiomics features (b). Using 10-fold crossvalidation,
33 nonzero coefficients were selected (c).
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clinical results were in good agreement with the 1, 3, 5-year
TTP predicted by the multi-predictor nomogram (Fig. 4).

Discussion
Early prediction of when a patient with MCI will progress to
AD has always been a difficult and challenging task for AD
prevention and targeted treatment. This study is the first time

to establish and verify a radiomics model, which extracted fea-
tures from the whole brain microstructure and combined
with clinical and laboratory characteristics to accurately pre-
dict the progression time of MCI patients in 5 years. In
accordance with the radiomics, clinical and biological infor-
mation of the baseline, six prediction models were con-
structed and compared. We found that these models all
achieved good results in terms of TTP prediction. The

TABLE 2. Factors Related to the Prediction of Conversion Time in the Training Cohort

Variables Hazard Ratio 95% CI P-value

Age (years) 0.9935 0.955–1.033 0.745

Sex (M/F) 1.21 0.683–2.145 0.513

Education (years) 0.956 0.861–1.061 0.397

Alcohol use 2.446 0.758–7.895 0.135

BMI (kg/m2) 0.945 0.883–1.012 0.105

MOCA 0.798 0.734–0.869 <0.05*

ADAS-Cog.11 1.257 1.174–1.346 <0.05*

ADAS-Cog.13 1.162 1.111–1.215 <0.05*

CDR NA NA NA

FAQ 1.186 1.133–1.241 <0.05*

GDS 1.078 0.92–1.264 0.352

MMSE 0.750 0.647–0.869 <0.05*

RAVLT immediate 0.915 0.879–0.952 <0.05*

RAVLT learning 0.851 0.758–0.954 <0.05*

RAVLT forgetting 1.123 1.007–1.251 <0.05*

RAVLT percent forgetting 1.024 1.012–1.036 <0.05*

AFT 0.894 0.836–0.956 <0.05*

APOE ε4 alleles 2.627 1.435–4.811 <0.05*

Aβ1-42 (pg/mL) 0.998 0.997–0.999 <0.05*

Aβ1-40 (pg/mL) 0.999 0.999–1 0.149

Aβ1-38 (pg/mL) 0.999 0.999–1 0.088

T-tau (pg/mL) 1.004 1.002–1.006 <0.05*

P-tau (pg/mL) 1.037 1.022–1.053 <0.05*

WMH Volume (cm3) 1.002 0.974–1.03 0.908

Fazekas Scale 1.289 0.731–2.27 0.38

BMI = body mass index; ADAS-Cog = Alzheimer’s Disease Assessment Scale-Cognitive subscale; CDR = Clinical Dementia Rating;
FAQ = Functional Assessment Questionnaire; GDS = Geriatric Depression Scale; MMSE = Mini–Mental State Examination;
RAVLT = Rey Auditory Verbal Learning Test; AFT = Animal Fluency Test; Aβ = amyloid-β; T-tau = total tau;
P-tau = phosphorylated tau; WHM = white matter hyperintensities.
*P values less than 0.05 were identified statistically significant. Significant variables with P < 0.05 in the univariate analysis were consid-
ered as risk factors for TTP and included in the multivariate Cox analysis, and the HR value is the Cox regression coefficient.
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radiomics model showed strong prognostic capability. After
adding clinical and laboratory features, the prediction accu-
racy was further improved. The prognostic model established
by the combination of radiomics, laboratory and clinical mea-
sures showed the best performance compared with other
models (P < 0.05). We provided a direct calculation method
for clinicians to estimate the possibility of progression of
MCI patients in a specific time frame. This method is simple,
noninvasive, and without the disadvantages of radiation used
in Positron emission computed tomography (PET) imaging.
Previously, many studies on the prediction of the MCI pro-
gression to AD solely focused on the imaging characteristics

of the hippocampus and temporal cortex.10–12,32 For exam-
ple, a deep learning method based on hippocampal MRI has
been developed, with a C-index of 0.864.9 In another study,
a 3-year conversion rate was predicted based on the thickness
of the middle temporal cortex, hippocampal volume and
some psychological scales, with a c-index of 0.78.10 In com-
parison with the literature, our results provided higher accu-
racy. Our study included the whole cerebral cortex, white
matter and subcortical nucleus, comprehensively analyzing a
large number of microstructural features, including morpho-
logical features, signal intensity features, texture features and
high-order features, and verified the results using independent

TABLE 3. Prediction Performance of the Models

Training Set Testing Set

Models C-index inininindex Lower Upper C-index Lower Upper

Radiomics 0.924 0.894 0.952 0.811 0.707 0.914

Clinical 0.863 0.812 0.913 0.865 0.775 0.955

Laboratory 0.763 0.690 0.835 0.748 0.65 0.846

Clin-lab 0.903 0.868 0.938 0.901 0.824 0.977

Rad-clin 0.943 0.921 0.964 0.881 0.796 0.965

Rad-clin-lab 0.950 0.929 0.971 0.907 0.836 0.979

Clin-lab, Clinical-laboratory; Rad-clin, Radiomics-clinical; Rad-clin-lab, Radiomics-clinical-laboratory.
The performance of these models was evaluated by the C-index in the training cohort and independently verified in the validation
cohort.

FIGURE 3: KM analyses of the TTP based on the radiomics-clinical-laboratory model with cutoff values as the median of the training
cohort (a) and the validation cohort (b). There were significant differences between the low- and high-risk subgroups (log-rank test,
P < 0.05, respectively).
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verification set. On the other hand, the duration of follow-up
is important to identify very early markers and to reduce false
negative cases. Previous studies mostly underlined a short-
term follow-up of 1 to 3 years.24–26 In this study, however,
all MCI subjects were followed up for 5 years.

In the current study, 33 radiomic features of morpho-
logical, intensity, and texture associated with the TTP of
MCI were identified. The intensity and texture features could
reflect the texture heterogeneity of different brain structures.
The heterogeneity may originate from the brain microscopic
changes such as Aβ plaques deposition and neurofibrillary
tangles (NFTs), which has strong ability to evaluate the

clinical prognosis. The accumulation of NFTs and Aβ
plaques indicates the early pathological change of AD, which
appears earlier than brain atrophy.17 The 33 radiomic features
were mostly located in the temporal cortex, hippocampus,
and subcortical nuclei. The temporal cortex33 and hippocam-
pus34 are the main brain regions responsible for memory, and
the changes of their function and structure could occur in
the early stage of AD.6,27,33,35 The function of subcortical
nuclei are related to motor, emotion, motivation, association,
and cognition.36 Previously, reports have revealed that the
reduced volume of putamen and amygdala were indepen-
dently associated with cognitive impairment.13,14 Therefore,

FIGURE 4: The multi-predictor nomogram (a) was used to estimate the TTP of MCI subjects individually, along with the assessment
of the model calibration. Calibration plot for the multi-predictor nomogram to the 1-, 3-, 5-year TTP in the training dataset (b) and
the validation dataset (c). The diagonal line indicates the ideal value, and the solid line represents the performance of the
nomogram; the closer the solid line is to the diagonal dashed line, the better the calibration will be.
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the changes of the structure of hippocampus, cortex and sub-
cortical nuclei are the signs of the upcoming transformation
of MCI, which could be taken into consideration to predict
the progression in advance.

In addition to the radiomic features, the clinical and
laboratory information were also essential, that they could sig-
nificantly improve the performance of early prediction of
AD. In clinical aspect, the MoCA, ADAS-Cog11, ADAS-
Cog13, FAQ, MMSE and RAVLT were finally included in
the best model.9,28,37 All of these features are common cogni-
tive scales in nervous system research and are adopted to eval-
uate cognitive ability of memory, attention, and executive
function. In terms of laboratory indicators, the biomarkers of
APOE ε4, Aβ 1–42 and tau protein were risk factors associ-
ated with the TTP of MCI. The APOE ε4 is the most com-
mon susceptible gene for AD.38 Previous studies have
reported that APOE ε4 has predictive value for the transfor-
mation of MCI to AD.10,11 Aβ and tau proteins are the key
neuropathological factors in the pathogenesis of AD, with
misfolding and accumulation leading to progressive neuronal
loss.39 In this study, we found that only Aβ 1–42, among the
three subtypes of Aβ, has a significant correlation with TTP.
The possible reason is that Aβ 1–42 is more likely to accumu-
late than the other two subtypes during the progression of
MCI.40

In this study, a visual multipredictor nomogram was
developed from the radiomics-clinical-laboratory model. This
multipredictor nomogram could estimate the 1-, 3-, and
5-year risk of MCI conversion for each subject, which would
be of great assistance for the clinicians to carry out individual-
ized prediction and early intervention. From the calibration
curve, the 1-, 3-, 5-year TTP estimation demonstrates good
consistency with the actual clinical results. In addition, the
median value of the model provided a good measure to divide
patients into high- and low-risk subgroups. It could provide
important value for clinical early detection and timely treat-
ment by stratified MCI subjects and finding high-risk groups
who are more likely to develop to AD.

Limitations
First, due to our strict inclusion criteria for 5 year following
up, the sample size was relatively small. Second, this study
only focused on the baseline data of MCI subjects, and did
not analyze the dynamic follow-up data. Third, this study
focused on the early detection of AD transformation from
MCI and did not pay attention to the earlier stage before
MCI, such as subjective cognitive impairment (SCD) and
normal people. In the future, larger samples with an external
validation should be considered to track and analyze the
dynamic data of MCI, normal people and patients with SCD
for further enhancing the timeliness and reliability of the
prediction.

Conclusion
This study developed a time-to-event model, including the
radiomic characteristics obtained from MRI imaging, the clin-
ical information and the laboratory measurements, and
established a multipredictor nomogram to accurately estimate
the time and risk of a single MCI converting to AD with
high accuracy. MCI subjects could be stratified into sub-
groups and high-risk individuals could be screened out and
treated timely to delay the progression of AD.
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