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ABSTRACT

BACKGROUND AND PURPOSE: Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy
patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined
regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild
cognitive impairment to Alzheimer disease.

MATERIALS AND METHODS: Data were obtained through the Alzheimer’s Disease Neuroimaging Initiative. One hundred ninety-two subjects
(mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences
at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves
assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain
volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes.

RESULTS: On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under
the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different (P � .05) between
packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest
NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader).

CONCLUSIONS: Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal
volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining
volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such
tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker.

ABBREVIATIONS: AD � Alzheimer disease; ADAS-13 � 13-item Alzheimer’s Disease Assessment Scale; ADNI � Alzheimer’s Disease Neuroimaging Initiative;
ADNI-GO � Alzheimer’s Disease Neuroimaging Initiative–Grand Opportunities; AUC � area under the curve; HOC � Hippocampal Occupancy Score; MCI � mild
cognitive impairment; NQ � NeuroQuant; NR � Neuroreader; ROC � receiver operating characteristic

Alzheimer disease (AD) is a progressive neurodegenerative

disease leading to synaptic dysfunction, neuronal death, and

brain atrophy. Atrophy of specific medial temporal lobe struc-

tures, such as the hippocampus, amygdala, and parahippocampal

gyrus, has been associated with the future development of AD in

numerous research studies.1-9 However, use of this information
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in the clinical care of patients with memory impairment for prog-

nosis remains challenging.10,11 Medial temporal lobe volume as-

sessments of MR images with visual ratings or manual or semi-

manual volumetric processing have been difficult to implement in

a busy clinical environment due to the high interobserver variabil-

ity of raters and/or the time-consuming nature of obtaining these

measurements.12 These problems have been addressed through

the use of fully automated segmentation algorithms available in

commercial software programs, providing the user with immedi-

ate, detailed volumetric analysis of the hippocampus and other

brain regions, which is more sensitive than visual analysis.13

Because the atrophy pattern in prodromal AD is spatially dis-

tributed, including regions beyond the hippocampus, such as the

lateral and inferior temporal lobe, parietal lobe, and cingulate

gyrus,14 incorporation of such information may enhance the

prognostic capability of these currently available tools. Indeed,

pattern-analysis techniques, incorporating whole-brain morpho-

logic information,15-19 have been harnessed for this purpose and

have shown a high prognostic value in individual patients. Such

techniques, however, have not yet been implemented in commer-

cially available products. The purpose of this study was to assess

the prognostic efficacy of using the complete set of raw volumetric

measures available in 2 fully automated, commercially available

brain volumetric software packages. Such tools have been FDA

510(k) cleared for clinical use but have not yet been validated for

specific diagnostic or prognostic purposes in AD. We sought to

determine whether combining volumetrics by using multivari-

able approaches, including machine learning,20-22 would add to

the prognostic efficacy of individual measures alone, such as hip-

pocampal volume, in predicting conversion from mild cognitive

impairment (MCI) to AD. We hypothesized that the multivari-

able approach would enhance the prognostic value of already ex-

isting individual measures available in commercial volumetric

software.

MATERIALS AND METHODS
Subjects
All subject data were available through the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), a multicenter trial with a pub-

licly available data base (adni.loni.usc.edu).15 The ADNI was

launched in 2003 as a public-private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of the

ADNI has been to test whether MR imaging, PET, other biologic

markers, and clinical and neuropsychological assessment can be

combined to measure the progression of MCI and early AD. For

up-to-date information, see www.adni-info.org.

All subjects classified as having MCI under ADNI-1 or late

MCI under Alzheimer’s Disease Neuroimaging Initiative–Grand

Opportunities (ADNI-GO), with baseline MR imaging and a

baseline and 3-year clinical assessment available on or before No-

vember 11, 2013, were selected.

Conversion of MCI to AD was based on the National Institute

of Neurological Disorders and Stroke and the Alzheimer’s Disease

and Related Disorders Association criteria for probable or possi-

ble AD, determined by review from a committee according to

protocol guidelines. Those subjects who did not fulfill these crite-

ria for conversion were defined as nonconverters, including sub-

jects with MCI and those who reverted to a normal state.

Image Acquisition and Image Analysis
All subjects underwent brain MR imaging at 1.5T or 3T with sag-

ittal 3D T1-weighted (MPRAGE) scans. Further details on the MR

imaging scanner protocol and MR image acquisition are available

elsewhere (http://adni.loni.usc.edu/methods/documents/mri-

protocols/). Because we selected only subjects with late MCI from

the ADNI-GO, all subjects were therefore previous members of

ADNI-1 and had their original scan with the ADNI-1 protocol.

The MPRAGE sequence was processed with NeuroQuant (NQ;

CorTechs Labs, San Diego, California) (Original Version 1.0),

which is a commercially available automated image-analysis soft-

ware program (http://www.cortechslabs.com/neuroquant/). Sep-

arate left and right volumes, available in the generated morphometry

report, were combined into a total volume for the following 11 brain

regions (features): amygdala, caudate, cerebellum, cortical gray mat-

ter, forebrain parenchyma, hippocampus, inferior lateral ventricle,

lateral ventricle, pallidum, putamen, and thalamus.

In addition, the MPRAGE sequence was also processed with

Neuroreader (NR; Brainreader Aps, Horsens, Denmark), another

commercially available software program for volumetric segmen-

tation (http://brainreader.net/).23 Both NQ and NR are FDA

510(k) cleared and “intended for automatic labeling, visualization

and volumetric quantification of segmentable brain structures

from a set of MR images” (http://www.accessdata.fda.gov/

cdrh_docs/pdf6/K061855.pdf and https://www.accessdata.fda.

gov/cdrh_docs/pdf14/K140828.pdf). Because the NR volumetric

report yielded many more regions compared with NQ, 11 regions

yielding the best individual predictions were chosen from the NR

morphometry report to keep the models equally parsimonious.

Combined bilateral volumes were obtained for the following 11

brain regions (features): amygdala, cerebellum, frontal lobe, hip-

pocampus, lateral ventricle, occipital lobe, parietal lobe, putamen,

temporal lobe, thalamus, and ventral diencephalon. Technical as-

pects of these commercial software packages have been previously

described in detail.24,25

Of note, all ADNI studies included 2 echo-spoiled gradient echo/

MPRAGE sequences performed back-to-back, the original and a re-

peat sequence accelerated by parallel imaging. In cases in which the

original MPRAGE sequence could not be processed by the NR or NQ

programs, the repeat MPRAGE sequence was used instead. If pro-

cessing also failed on the repeat sequence, with either NR or NQ, the

case was excluded from all further analysis. All image processing and

analyses were performed by 2 authors (T.P.T. and J.I.). Sample seg-

mentations from NQ and NR are shown in Fig 1A.

Statistical Analysis
We compared demographics between the MCI converter and

nonconverter groups by using a 2-sample Student t test, assuming

equal variance when appropriate. To assess the prognostic perfor-

mance of individual features and multivariable models combin-

ing the features, we used the receiver operating characteristic

(ROC) curve methodology. Area under the curve (AUC) was used

to summarize the performance. Comparison of AUCs was per-

formed by using the method of Delong et al.26
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To test whether a combination of the features would outper-

form models based on a single brain region, we constructed 2

multivariable models: a classic multivariable logistic regression

model and a more novel machine-learning method called the

Random Forest Classifier.27 For the Random Forest Classifier,

2000 trees were used. The leave-one-out cross-validation method

was used for training and testing of the multivariable models. In

addition to the data-driven multivariable models, we also tested

one a priori multivariable model, known as the Hippocampal

Occupancy (HOC) score, defined as the ratio of hippocampal

volume to the sum of hippocampal and inferior lateral ventricle

volumes. This measure is thought to differentiate individuals with

congenitally small hippocampi from those with degeneration.28

The HOC score for each separate hemisphere was averaged to

provide a single composite measurement. Because inferior lateral

ventricle (temporal horn) volume was

not available for NR, this measure was

calculated only with NQ.

To assess correlations between as-

sessment of the same volume by the

NQ and NR software, we used the

Pearson correlation. Statistical analy-

ses were performed with Matlab, Ver-

sion 8.1.0.604 R2013a (MathWorks,

Natick, Massachusetts); R statistical

and computing software, Version 3.1.3

(http://www.r-project.org); and JMP,

Version 11.0 (SAS Institute, Cary,

North Carolina) software packages.

RESULTS
Initially 281 subjects were identified in

the ADNI databases who met the inclu-

sion criteria. Eighty-four (29.9%) sub-

jects were excluded due to failure to gen-

erate an NQ morphometry report. Five

(1.8%) subjects were excluded for other

reasons, including failure to generate an

NR morphometry report. A total of 192

remaining subjects met the inclusion

and exclusion criteria. All subjects had a

3-year clinical follow-up visit recorded.

Mean follow-up was 3.05 � 0.14 years

(range, 2.47–3.63 years). All 192 in-

cluded subjects were diagnosed as hav-

ing MCI at baseline, and all started un-

der the ADNI-1 protocol. At the end of

the 3-year follow-up, 186/192 subjects

had their 3-year evaluation under the

ADNI-1 protocol and 6/192 subjects

had their 3-year evaluation under the

ADNI-GO protocol. For the 192 sub-

jects, at the 3-year follow-up, the final

diagnosis was AD in 85/192 (44.3%),

MCI in 99/192 (51.6%), and healthy in

8/192 (4.2%).

Characteristics of the study popula-

tions are listed in Table 1. Two subjects

did not have the 13-item Alzheimer’s Disease Assessment Scale

(ADAS-13) scores at baseline. There were no significant differ-

ences (P � .05) between the MCI (nonconverter) and AD (con-

verter) groups in terms of age, sex, or education. There was a

significant difference (P � .0001) in the ADAS-13 score at base-

line and the Mini-Mental State Examination score at baseline be-

tween the 2 groups. The AUC for predicting conversion at base-

line was 0.76 and 0.68 for the ADAS-13 and Mini-Mental State

Examination, respectively.

AUC values for NQ and NR are listed in Table 2. With NQ, the

most predictive feature for conversion of MCI to AD was hip-

pocampal volume, with an AUC of 0.69. The most predictive fea-

ture for NR was also hippocampal volume, with an AUC of 0.68.

The multivariable analysis did not improve on either of these.

FIG 1. Example of NeuroQuant (A, left) and Neuroreader (A, right) color segmentations in the same
subject and hippocampal scatter (B, left) and Bland-Altman plots (B, right). Note the high correlation
(r � 0.79, P � .05) of hippocampal volumetrics between software packages across all subjects and the
small underestimation bias (�0.12 mL, P � .05) of NR with respect to NQ.

Table 1: Characteristics of study populationsa

Characteristic All Patients
MCI

(Nonconverter)
MCI to AD
(Converter) P Value

No. 192 107 85
Age (yr) 74.8 � 7.3 74.7 � 7.6 75.0 � 6.9 .7604
Sex .3262

Female 75 (39) 38 (36) 37 (44)
Male 117 (61) 69 (64) 48 (56)

Education (yr) 15.7 � 2.9 15.7 � 3.0 15.6 � 2.8 .7637
ADAS-13 (baseline) 17.7 � 6.4 15.2 � 6.1 20.9 � 5.3 �.0001
MMSE (baseline) 27.1 � 1.7 27.6 � 1.7 26.5 � 1.6 �.0001

Note:—MMSE indicates Mini-Mental State Examination.
a MCI or AD status was determined at 3-year follow-up by the ADNI criteria. Data are means. Percentages listed in
parentheses are rounded to the nearest percentage.
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Intracranial volume normalization did not result in improve-

ment of the performance of hippocampal volume in the linear

model (AUC � 0.65 for NQ, and 0.61 for NR), and adding age as

a covariate to the normalized intracranial hippocampal volumes

did not result in improvement (AUC � 0.66 for NQ and 0.62 for

NR).

With the NR, the AUC value for the hippocampus was signif-

icantly greater (P � .05) than the AUC value for the cerebellum,

lateral ventricle, and the thalamus. With the NQ, the AUC value

for the hippocampus was significantly greater (P � .05) than the

AUC value for the caudate, cerebellum, lateral ventricle, palli-

dum, putamen, and thalamus.

There was no statistically significant difference in AUC values

by using hippocampal volumes obtained by NR versus NQ (P �

.657).

Pearson correlation coefficients are listed in Table 3. There was

a statistically significant correlation between NQ and NR absolute

volumes in all compatible regions tested: thalamus, lateral ventri-

cle, hippocampus, cerebellum, putamen, and amygdala (P � .05).

The scatterplot and Bland-Altman plot for hippocampal volume

are shown in Fig 1B. There was a small bias for NR with respect to

NQ of �0.12 mL (95% CI, �0.02 to �0.22 mL).

The AUC for the HOC score was 0.64 (95% CI, 0.56 – 0.72).

There was no statistically significant difference in AUC values by

using the NQ HOC score versus NQ hippocampal volume (P �

.1827).

DISCUSSION
Our study, with the complete set of raw volumetric measures

available in 2 fully automated, commercially available brain vol-

umetric software packages, confirms previous studies document-

ing the prognostic utility of hippocampal volume in patients with

MCI. Indeed, hippocampal volumes provided the highest prog-

nostic value of all individual regions available in both the NQ and

NR volumetric reports. Multivariable analysis, including the use

of a cross-validated machine-based learning classifier algorithm,

which incorporated other brain regions available in these software

packages, did not provide additional predictive value compared

with a model based on just hippocampal volumes. The results of

our study are in agreement with previous studies that have found

hippocampal volumes to be most predictive of conversion of MCI

to AD, with little added benefit from additional brain regions. For

example, a large study of patients in the ADNI using semiauto-

mated methods reported that hippocampal volumes were the

most predictive of conversion compared with other regional and

whole-brain measures.29 Automated volumetric measurements

of the hippocampus also had high predictive values for conver-

sion.2 A 2-year clinical follow-up study of patients with MCI with

manual methods demonstrated that baseline hippocampal vol-

umes had high predictive value.5 Despite the differences in seg-

mentation techniques (manual, semiautomated, and automated)

among the 3 studies, all these studies reported that hippocampal

volumes were the most predictive of MCI conversion.

On the other hand, a number of previous studies have impli-

cated brain regions other than the hippocampus as either adding

to the prognostic value of hippocampal volume or having prog-

nostic value in their own right, though direct comparison with

our study is limited due to differences in methodologies and pri-

mary outcomes. In one study using manual methods, a bivariate

model of hippocampal volumes and follow-up changes to either

ventricular volume or whole-brain volume was shown to have

prognostic value in predicting conversion of MCI to AD.7 An-

other study with automated methods found that amygdala and

caudate nucleus volumes were predictive of MCI conversion,

whereas hippocampal volumes were not.12 A separate study with

automated methods reported that deep gray matter structures,

including the amygdala, thalamus, putamen, and nucleus accum-

bens, were predictive of conversion of MCI to AD, in addition to

the hippocampus.30 Temporal horn volumes were shown to be

more predictive than hippocampal volumes in one study using

semiautomated methods,31 whereas the left lateral temporal lobe

and left parietal cortex were the most predictive factors in another

study using automated methods.32

A likely reason for discrepancies with these studies is that vol-

ume loss in AD-affected regions is correlated with that of the

hippocampus, and these collinear effects are therefore lost in the

multivariable model when one accounts for hippocampal vol-

ume. For example, in our study, volume of the hippocampus was

highly correlated with that of the amygdala (r � 0.71) and cortical

gray matter (r � 0.52) for NQ, and amygdala (r � 0.75) and

temporal lobe (r � 0.57) for NR. Another explanation for the

differences in results, compared with our study, could be the use

of different segmentation methods. In our study, we used an au-

tomated segmentation method with NQ and NR, which may be

Table 2: AUC values for different brain regions separated by
software package (NQ, NR) and method of analysis (univariable-
multivariable)

Feature AUC NQ (95% CI) AUC NR (95% CI)
Univariable analysis

Hippocampus 0.69 (0.61–0.76) 0.68 (0.60–0.76)
Amygdala 0.67 (0.59–0.74) 0.65 (0.57–0.73)
Cerebellum 0.58 (0.49–0.66) 0.57 (0.49–0.66)
Putamen 0.58 (0.50–0.66) 0.62 (0.54–0.70)
Thalamus 0.56 (0.47–0.64) 0.56 (0.48–0.64)
Lateral ventricle 0.54 (0.46–0.62) 0.54 (0.46–0.62)
Pallidum 0.52 (0.43–0.60) NA
Caudate 0.51 (0.42–0.59) NA
Cortical gray matter 0.64 (0.56–0.72) NA
Forebrain parenchyma 0.62 (0.54–0.70) NA
Inferior lateral ventricle 0.60 (0.52–0.68) NA
Temporal lobe NA 0.63 (0.55–0.71)
Parietal lobe NA 0.61 (0.53–0.69)
Frontal lobe NA 0.60 (0.52–0.68)
Occipital lobe NA 0.59 (0.51–0.68)
Ventral diencephalon NA 0.51 (0.43–0.60)

Multivariable analysis
Logistic regression 0.63 (0.55–0.71) 0.65 (0.58–0.73)
Random forest 0.60 (0.52–0.68) 0.62 (0.54–0.71)

Note:—NA indicates not applicable.

Table 3: Pearson correlation coefficients for NQ and NR
volumetrics in regions with the same name

Feature
Pearson

Coefficient (r) 95% CI P Value
Thalamus 0.60 0.51–0.69 �.001
Putamen 0.61 0.51–0.69 �.001
Lateral ventricles 0.99 0.99–0.99 �.001
Hippocampus 0.79 0.72–0.83 �.001
Cerebellum 0.87 0.83–0.90 �.001
Amygdala 0.71 0.64–0.78 �.001
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less accurate in measuring smaller and deeper structures com-

pared with manual or semiautomated segmentation methods.

Also of note in this study, the HOC score, a composite index of

hippocampal and temporal horn volume, did not outperform

hippocampal volume alone. The HOC score has been advocated

as a more accurate measurement of hippocampal tissue loss,

which accounts for individual variations in hippocampal size by

accounting for temporal horn volume. In our study population,

temporal horn volume was somewhat collinear with hippocampal

volume (r � �0.33), and we did not find the HOC to be more

predictive of conversion than hippocampal volume alone, sug-

gesting that the additional variance added by temporal horn vol-

ume might be redundant information and/or noise. Although

temporal horn volume was a significant predictor of conversion

in the univariable logistic regression model, it lost significance

when hippocampal volume was added to the model and negligibly

increased the AUC. Nevertheless, our results do not exclude the

possibility that combining these 2 measures may be helpful in the

preclinical or mild dementia phases of the disease spectrum.

Our study has several limitations. It was theoretically possible

that the ROC area for hippocampal volume might have been

larger if hippocampal volumes were normalized to intracranial

volume and adjusted for age.33 Such corrections might adjust for

bias across subjects since ICV-normalized and age-adjusted val-

ues are already available in the volumetric reports. Nevertheless,

for our primary analysis, we chose to use the raw values, in keep-

ing with our purpose of comparing single-versus-combined mea-

sures within the same subjects, which should not be affected by

normalizing by intracranial volume, a practice that could intro-

duce additional noise into the measures. Although age may dif-

ferentially affect various brain regions, we did not have age-ad-

justed values available for most regions in the NQ volumetric

report and therefore did not include these measures in our pri-

mary analysis. Even so, secondary analyses of hippocampal vol-

ume with intracranial volume normalization, as well as including

age as a covariate in the linear model, did not yield additional

prognostic efficacy. Of note, 1 group, the Coalition Against Major

Diseases, reported higher AUC values for the prediction of

MCI conversion to AD (in 2 years) in their de novo analysis, based

on automated hippocampal volume obtained by several

methods: 0.7565 (LEAP; Learning Embeddings for Atlas Propaga-

tion, http://www.ixico.com/additional-information/leap-analysis),

0.7516 (NeuroQuant), 0.7536 (FreeSurfer; http://surfer.n-

mr.mgh.harvard.edu), and 0.7290 (HMAPS; Hippocampus

Multi-Atlas Propagation and Segmentation).34 However, the

same committee also reported a range of AUC values between

0.60 and 0.77 based on their literature review, and our results are

within this range.

Both the NQ and NR programs provide a large number of

data values (55 for the general morphometry report through

NQ, 140 for the NR report) that we did not fully include in our

machine-based learning classifier program. Increasing the

number of features can hurt the performance of a classifier,

given a limited sample size. Initially, we found that the addi-

tion of the full dataset resulted in a worse predictive value for

MCI conversion, which we speculate was due to overfitting of

the training samples. This is a common phenomenon when the

number of predictor variables is high compared with the num-

ber of subjects in the training set.35 Hence, we decided to limit

our analysis to the most promising features provided in the NQ

and NR volumetric reports.

In some cases, we were not able to process the MR images for

the baseline sequence, which excluded some patients from the

study, all of whom were chosen through the ADNI data base. In

total, 89 of 281 patients were excluded due to inadequate NQ or

NR morphometry data. This was most often due to patient age

and sex missing from the anonymized header information, a re-

quirement of the NQ processing pipeline but a situation unlikely

to occur in clinical practice because these are standard DICOM

data fields. In addition, some patients had inadequate MPRAGE

sequences due to technical factors, including motion, which we

were not able to segment by using the NQ or NR programs; in

these cases, we substituted a repeat MPRAGE sequence. Despite

occasional differences in our ability to process a particular se-

quence, we found a strong linear correlation (r � 0.60) between

NQ and NR for all compatible regions tested. Of interest, for

hippocampal volume, there was a small underestimation bias for

NR with respect to NQ, which may be attributable to different

segmentation algorithms. Two outliers were noted, showing dif-

ferences of approximately �3 mL between software packages,

which were attributable to segmentation differences.

Another limitation is that we did not incorporate biomarkers,

neuropsychological assessments, or longitudinal imaging mea-

sures in our study. Rather, we sought to limit our study to testing

the prognostic efficacy of 2 commercially available brain volumet-

ric software packages in their own right, rather than by using

additional data, which might confound direct comparisons. Of

note, the Mini-Mental State Examination and ADAS-13 AUC

scores were as high as, or higher than, those of hippocampal vol-

ume alone, in agreement with previous studies looking at the

prognostic efficacy of multiple biomarkers in MCI.36 This result is

not surprising given that a dichotomous end point measure, con-

version, was used to assess cognitive decline, and cognitive mea-

sures at baseline would be expected to strongly predict how close

a subject is to the point of conversion. Future effort in evaluating

the prognostic efficacy of these software packages should involve

combining volumetric data with a suite of biomarkers and neu-

ropsychological assessments by using machine-based learning ap-

proaches and continuous, rather than categoric, outcomes of cog-

nitive decline. Subject factors such as financial or socioeconomic

ones also remained unadjusted in the analysis. These factors

would unlikely affect the within-subject design and were omitted

to keep the comparison straightforward between single-versus-

multiple volumetric outputs directly available from the imaging

software packages.

Despite these limitations, our study had several strengths, in-

cluding a large sample size of 192 patients through the ADNI data

base. Indeed, ADNI uses a wide variety of vendor platforms, field

strengths, and harmonized pulse sequences that patients are likely

to encounter in future clinical settings. We also selected patients

with 3-year clinical follow-up, which provided a more accurate

designation of future conversion status, compared with studies

with shorter follow-up duration.
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CONCLUSIONS
Of the multiple regional volume measures available in current

FDA-cleared brain volumetric software, hippocampal volume

remains the best single predictor of MCI conversion to AD at

3-year follow-up. Combining volumetrics, by using multivari-

able approaches including a machine-learning classifier, does

not appear to add additional prognostic efficacy. Therefore,

future prognostic studies in mild cognitive impairment, com-

bining such tools with demographic and other biomarker mea-

sures, are justified in using hippocampal volume as the only

volumetric biomarker.
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