
2168-2194 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2021.3083274, IEEE Journal of
Biomedical and Health Informatics

IEEE JOURNAL ON BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2017 1

Classification of Alzheimer’s disease using
ensemble of deep neural networks trained

through transfer learning
M. Tanveer , A.H. Rashid, M.A. Ganaie , M. Reza, Imran Razzak, Kai-Lung Hua, for the Alzheimer’s

Disease Neuroimaging Initiativea

Abstract— Alzheimer’s disease (AD) is one of the dead-
liest neurodegenerative diseases ailing the elderly popula-
tion all over the world. Many researchers are using deep
learning (DL) techniques to learn highly complicated pat-
terns from MRI scans for the detection of AD. It is also
found that an ensemble of predictions from multiple models
gives better performance as compared to that of a single
model. Two major bottlenecks for developing ensemble of
DL models are their high computational complexity and
requirement of large sample size for better generalization.In
this work, we deal with the aforementioned bottlenecks
and propose a computationally efficient, DL-architecture
agnostic, ensemble of deep neural networks named ‘Deep
Transfer Ensemble (DTE)’ trained using transfer learning
for the classification of AD. The proposed ensemble lever-
ages the diversity introduced by many different locally
optimum solutions reached by individual networks through
the randomization of hyper-parameters. The proposed en-
semble model also introduces further diverse predictions
by exploiting complementary feature views. We also test
the model vigorously by analysing its performance on a
large and a small dataset downloaded from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) archive. The DTE
utilizes the advantages of random search, transfer learning,
and snapshot ensembles in a single ensemble to produce
better generalization performance. DTE achieves an ac-
curacy of 99.05% and 85.27% on two independent splits
of the large dataset for cognitively normal (NC) vs AD
classification task. For the task of mild cognitive impair-
ment (MCI) vs AD classification, DTE achieves 98.71% and
83.11% respectively on the two independent splits. DTE
also performed reasonably well on a small dataset consist-
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a, Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or pro-
vided data but did not participate in analysis or writing of
this report. A complete listing of ADNI investigators can be
found at: http://adni.loni.usc.edu/wp-content/uploads/
how_to_apply/ADNI_Acknowledgement_List.pdf

ing of only 50 samples per class. It achieved a maximum
accuracy of 85% for NC vs AD on the small dataset. DTE
outperformed snapshot ensembles along with several other
existing deep models from similar kind of previous works
by other researchers.

Index Terms— Deep learning, transfer learning, ensemble
learning, Alzheimer’s disease.

I. INTRODUCTION

ALZHEIMER’S disease (AD) is an incurable, progressive
neurodegenerative disease affecting the elderly popula-

tion. It is expected that by the year 2050, 1 in 85 people
worldwide will suffer from AD [1]. The application of ma-
chine learning techniques in AD diagnosis has given promising
results and currently is a hot topic of research [2]–[7], aided
by publicly available data from websites like Alzheimer’s
Disease Neuroimaging Initiative (ADNI), Australian Imaging,
Bio-marker & Lifestyle Flagship Study of Ageing (AIBL)
and Open Access Series of Imaging Studies (OASIS). Before
progressing to the full-blown AD stage, normal control (NC)
subjects experience mild cognitive decline which includes
problems with memory, language, judgment and thinking.
This onset of cognitive decline is termed as Mild Cognitive
Impairment (MCI) [8]. MCI patients have a high chance of
advancing to AD with an estimated annual conversion rate
of rate 15% [9]. A detailed review of latest state-of-the-art
machine learning techniques for the diagnosis of AD can be
found in [4].

A drawback of conventional machine learning techniques is
the requirement of hand-crafted features, which may lead to
sub-optimal performance. Deep learning (DL) techniques, on
the other hand, learn important features automatically from the
data which makes them extremely efficient. It has been found
that the combination of decisions from multiple diverse models
produces better results than the decision from a single model
[10], [11]. This forms the basis of ensemble models wherein
multiple weak learners combine to form a single strong learner.
However, there are two major bottlenecks in developing an
efficient DL ensemble model that we address in this work:
• Deep learning techniques require a huge amount of train-

ing data, sometimes thousands or millions of samples, for
successful training owing to their high model complexity
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[12]. Such a huge amount of neuroimaging data may not
be available in many scenarios.

• High training time is required to train individual DL
models due to which developing an ensemble of many
DL models becomes very inefficient.

In this work, a computationally efficient ensemble of deep
convolutional neural networks (CNNs) trained using transfer
learning is proposed for more accurate classification of AD.
The major contributions of this paper are:
• We propose a DL-architecture agnostic ensemble strategy

leveraging the advantages of random search and snapshot
ensembles. The proposed model can be considered as
a combination of snapshots of models trained using a
random set of hyperparameters.

• Usage of transfer learning helps reduce the computational
training complexity, which helps in creation of more
computationally efficient DL ensemble model.

• Unlike previous methods, the proposed ensemble lever-
ages diversity obtained through combining predictions
from multiple local optimas in the loss surface as well
as the diversity obtained by combining multiple feature
views with complementary features.

• We rigorously test the proposed model in a large (ADNI
baseline) as well as on a small dataset (of only 100
subjects) by using various different experimental settings.

The motivations for the proposed models are as follows:
• Transfer learning computationally aids in faster training

of individual models.
• The highly non-convex nature of loss surfaces of deep

neural networks posses many different local optimas,
that can introduce diverse predictions to make a strong
ensemble model.

• Different feature views convey different information and
can further introduce diversity in the model to improve
the generalization of the ensemble.

The remaining sections of this work are organized as
follows:

The section II describes the materials and methods used in
this paper. The section III gives details of experiments like
the details about train, validation and test splits of the data,
hyperparameter tuning and model selection also about the way
ensemble of models was performed. The section IV discusses
about the results obtained and finally, section V gives the
conclusions and mentions some future works.

II. MATERIALS AND METHODS

A. Data acquisition
The experiments were performed on the data acquired

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). ADNI was launched in the year
2003 with the aim of analysing the efficacy of biological
markers, clinical neuropsychological tests and neuroimaging
techniques like MRI and PET for diagnosis of AD in early
stages. For further details on ADNI, visit www.adni-info.
org.

In this paper, we use two different datasets : (a) Large
dataset (b) Small dataset. In (a), we use the ADNI baseline

dataset consisting of 813 3D-MRI scans (187 AD, 228 NC,
398 MCI). In (b), we use a sample dataset for NC vs
AD classification on extremely low number of images. We
acquired 50 T1-weighted structural MRI (sMRI) scans from
the ADNI repository for each of NC and AD categories. Age
range of the subjects was between 60 − 90 with a mean of
75.83 and a standard deviation 6.07. The range of the Mini-
mental state examination (MMSE) score was between 17−30
with a mean of 26.51 and a standard deviation of 2.88.

B. Image acquisition
For the small dataset, we acquired images of the following

specifications: Manufacturer: GE medical systems; Acquisi-
tion plane: Sagittal; Angle: 8 degrees; Slice thickness: 1.5
Tesla; Pulse sequence: RM; Acquisition: 3D; Description: MP-
RAGE.

C. Image preprocessing
For the large dataset, the 3D-MRI scans were pre-processed

using the recon-all pipeline from the FreeSurfer software.
For the small dataset, we used the open source toolbox

Statistical Parametric Mapping (SPM-version 12) to prepro-
cess the MRI scans. The preprocessed MRI scans were used
for NC vs AD classification. Origin of the raw scans was
set manually to Anterior Commissure (AC) before manually
registering them with SPM’s canonical T1 template image.
The registered scans were then passed on to SPM’s unified
segmentation routine which generated the segmented GM,
WM and CSF images. Along with native segmented images,
DARTEL [13] imported segmented images were also gener-
ated. The DARTEL imported segmented images were used
to create a template image that was used to normalize the
native segmented images into the MNI space. The DARTEL
template is created through a repetitive procedure wherein
the parameters required to warp each subject into a standard
coordinate space are refined gradually. During creation of
the template, a flow field is generated for each image that
characterizes the transformation from native image to the
template image. Modulation was also performed to preserve
the total tissue volume present in native images. Gaussian full
width at half maximum (FWHM) 8mm kernel was used for
smoothing during the normalization process for noise removal.
After normalization, the images of dimension 121×145×121
and voxel size of 1.5mm3 were obtained.

D. Transfer learning
Classical machine learning algorithms assume that the train-

ing and testing data are generated by the same probability
distribution. This assumption might not hold in scenarios
where the size of training data available is very small. Thus, we
may be interested in reusing a model already trained on some
other (related) data. Transfer learning typically deals with the
scenarios wherein we have to transfer the knowledge learned
from a source task in a source domain to a target task in a tar-
get domain. In this work, we use the VGG16 pre-trained model
[14] as the backbone architecture for transferring knowledge

Authorized licensed use limited to: University of Southern California. Downloaded on June 06,2021 at 22:37:27 UTC from IEEE Xplore.  Restrictions apply. 

www.adni-info.org
www.adni-info.org
https://www.fil.ion.ucl.ac.uk/spm/


2168-2194 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2021.3083274, IEEE Journal of
Biomedical and Health Informatics

TANVEER et al.: DEEP TRANSFER LEARNING ENSEMBLE FOR CLASSIFICATION OF AD 3

to the ADNI dataset. Any other network architecture can also
be used as the backbone architecture, since, the proposed
ensemble is agnostic to the backbone architecture in use.
E. Random search

Every learning algorithm A has its own “nuts and bolts”,
called hyper-parameters (δ), that often control the efficacy
with which it learns. For deep neural networks, δ can be
very high dimensional due to the presence of a large number
of hyper-parameters. Moreover, the dimension of the hyper-
parameter space also increases with increase in depth of
the network. Using grid search for optimizing (tuning) such
high dimensional hyper-parameter spaces usually is extremely
inefficient and computationally intractable. Moreover, grid
search suffers from the curse of dimensionality as the number
of points in the grid to be evaluated rises exponentially in high
dimensional spaces. In such cases, the hyper-parameters can
be tuned using manual search but reproducing results becomes
a bottleneck. To tackle these problems, random search can be
used for hyper-parameter tuning [15].
F. Snapshot ensemble

Snapshot ensemble is an efficient ensemble technique for
deep neural networks that utilizes multiple locally minimum
solutions to boost the model performance. A snapshot of the
model is taken after certain number of epochs by using a cyclic
annealing cosine learning rate schedule. The predictions from
snapshots are then averaged during the test time to generate
the final prediction [16].
G. Proposed model

In this paper, we propose a DL-architecture agnostic en-
semble strategy for deep neural networks trained through
transfer learning. Although we use pretrained models in this
paper, an ensemble deep neural networks trained from scratch
can also be constructed using our proposed method. Our
proposed method combines the advantages of the random
search hyperparameter search strategy along with the snapshot
ensemble strategy. This combination renders our proposed
method more efficient than true snapshot ensembles as it give
more robust results within less training time as compared to
snapshot ensembles. Our proposed method also avoids the
large training time required for conventional ensembles of
deep neural networks.

As explained earlier, random search drastically reduces
the time in hyperparameter tuning for large hyperparameter
spaces, as in case of deep neural networks which have a
huge number of hyperparameters. Snapshot ensemble [16]
produces a very efficient method for creating ensembles of
deep neural networks with the training time of a single model.
However, the time required to perform the hyperparameter
search is not included when calculating the training time of
a snapshot ensemble model. Considering the hyperparameter
tuning time, the entire training time of the snapshot ensemble
technique also increases by a significant amount. Moreover,
using techniques like grid search and manual search is also
highly efficient as the former takes exponential amount of
time, whereas, the latter is not reproducible and may produce
biased results. As mentioned in [15], depending upon the
data, the subset of hyperparameters that have a significant

impact on network performance differs. Searching for such a
set of hyperparameters through grid search or manual search is
highly inefficient as the problem may become computationally
intractable when the hyperparameter space to be searched is
of high dimensions like in the case of deep neural networks.
In such a scenario, random search is a default choice. The
proposed model combines the advantages of the snapshot
ensemble technique along with the random search hyperpa-
rameter tuning technique to achieve a more robust and more
generalizable ensemble of deep networks.

Contrary to snapshot ensembles, in this paper, we have
chosen the ADAM algorithm as the optimizer for the network
as it has performed better than SGD for deep networks in
many cases [17]. We have also not used the cyclic annealing
learning rate (LR) schedule. Further analysis needs to be done
to incorporate the cyclic annealing LR schedule and is left as
future work. In this work, the hyperparameters we consider
for random search hyperparameter tuning are:
• Number of nodes in each fully connected layer.
• Number of fully connected layers.
• Mini-batch size.
• Learning rate.
• Number of epochs.

H. Analysis of the proposed model
The importance of hyperparameters differs with the dataset,

as different sets of hyperparameters can be more important
for the model performance for different datasets [15]. Let N
be the number of random trials to be performed for random
search. Let M be the number of models chosen for the
ensemble. As we choose the best M models through cross
validation, we end up with M models having the lowest
expected generalization error among N trails. As each of the
M models consist of a randomly chosen set of hyperparameter,
it approximates a diverse function as compared to the others.
Thus, the individual models satisfy the criteria of (a) low
generalization error and (b) diversity for creating a robust
ensemble model [16].

On the other hand, to create an ensemble of M models,
the snapshot ensemble creates M snapshots of models after
a certain number of iterations with a cyclic learning rate
schedule. This helps to leverage the predictions of multiple
local minima in the final ensemble. However, without an
appropriate set of hyperparameters, snapshots with worse
generalization error will be created. This will produce a final
ensemble with higher generalization error as compared to the
proposed model. Algorithm 1 gives the detailed algorithm
for the proposed ensemble model. Ensemble of deep neural
networks is not popular because of the high training time
required to train individual networks. In our case, we do not
need to train very deep networks from scratch. Thus, the
proposed ensemble strategy is also computationally feasible.
Moreover, we use batch normalization [18] and random search
[15] during training, both of which further reduce the training
time. We term the proposed model as ‘Deep Transfer Ensemble
(DTE)’.

In DTE, we transfer the convolution layers of VGG16 and
only train the fully connected (FC) layers from scratch. The
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convolution layers act as generic image feature extractors.
Whereas, training only the FC layers from scratch ensures
the model learns specifically from the given training datasets.
Thus, DTE combines the advantages of transfer learning and
ensemble learning.

In DTE, we propose two different ensemble strategies
- ‘Within dataset ensemble’ (DTE-W) and ‘Across dataset
ensemble’ (DTE-AC). In DTE-W, we make an ensemble of
models trained on a homogeneous set of images. We do an
ensemble of n models with randomly chosen hyper-parameter
settings (found using cross validation). That is, we do an
ensemble of n VGG16 models with randomly chosen hyper-
parameter settings trained on GM dataset to get the final
classification for a GM image.

A similar procedure is repeated for WM and CSF datasets.
The models in DTE-W have a diverse range of hyperparame-
ters which allow them to model seeming distinct predictive
functions. DTE-W aims to leverage this diversity to boost
the classification performance. It is known that the learning
rate is not the only defining factor in learning an accurate
predictive function, as depending upon the dataset, different
hyperparameters will be of different importance [15]. Thus,
we go for model ensemble with many randomly chosen
hyperparameters in DTE-W. This ensemble strategy serves two
purposes - (1) It reduces the model training time [15] and (2)
introduces diversity in the model which can boost the model
performance [19].

In DTE-AC, we make an ensemble of n top models (found
using cross validation) from each of GM, WM and CSF
datasets. That is, we select the n best performing models
(found using cross validation) from GM, WM and CSF,
respectively and ensemble them to get the final classification
result. AD is characterized by atrophy in GM as well as WM
and an increase in CSF in many cases [20]. To confirm this
hypothesis, we conducted statistical testing on the normalized
GM, WM and CSF scans for NC and AD groups. The test
was performed using SPM wherein subject age, gender and
total intracranial volume (TIV) were added as covariates of
no interest. A family-wise error (FWE) corrected p-value of
0.05 was used with an extent threshold of 0 voxels. Table I
mentions the contrasts specified and the hypotheses tested for
each of GM, WM and CSF images. Figures 1 - 3 shows the
results obtained after statistical testing.

The idea for DTE-AC stems from the above mentioned
hypothesis about atrophy in GM and WM and increase in
CSF. Thus, we use all of GM, WM and CSF images for
final classification. The proposed model leverages the diverse
information provided by the GM, WM and CSF images by
doing an ensemble of models trained on GM, WM and CSF
data sets separately.

For the large dataset results, we report slice wise accuracy as
done in Hon et al. [21]. However, classifying a subject based
on a single slice might provide us with an overly optimistic
or an overly pessimistic result. Thus, on the small dataset, we
classify a subject to NC or AD by taking maximum voting
of predictions of all the slices of a particular subject. Figure
4 gives a detailed view of the proposed ensemble model
on the small dataset. Many previous works [22]–[24] only

used GM and WM images for classification and outplayed
the proficiency of additional information provided by CSF
images. Moreover, researchers using DL techniques mostly
used unsegmented brain images for AD classification [21],
[25]–[28]. To the best of our knowledge, none have ensembled
models trained on all three (GM, WM and CSF) tissue images
for classification using deep CNNs.

Algorithm 1 Proposed ensemble strategy

1: Inputs:
2: Hyperparameter search space
3: H = [h1, h2, ..., ht].
4: Number of random trials (N ).
5: Number of models to be used in the ensemble (M ).
6: Training data
7: X = [x1, x2, ..., xl].
8: Training class labels
9: Y = [y1, y2, ..., yl].

10: Testing data
11: X ′ = [x′1, x

′
2, ..., x

′
p].

12: Training process:
13: Generate the set of N random hyperparameter combina-

tions from H .
14: Create N different networks pertaining to N combinations

found in step 13.
15: Train each network on X from step 14 using k-fold

crossvalidation.
16: Choose best-M networks from step 15.
17: Perform the final training for the best-M networks se-

lected from step 16 using entire training dataset.
18: Testing process:
19: Input a testing image x′ from the X ′.
20: Generate output predictions from each of the best-M

networks from step 17.
21: Perform the final classification by doing an ensemble of

predictions from step 20.
22: Output:
23: Final classification label for a testing image from X ′.

Experiment Tissue Contrast Hypothesis

NC vs AD
GM [1 -1] NC >AD
WM [1 -1] NC >AD
CSF [-1 1] NC <AD

TABLE I: Specified SPM contrasts

(a) (b) (c)

Fig. 1: Significant regions obtained from GM images
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(a) (b) (c)

Fig. 2: Significant regions obtained from WM images

(a) (b) (c)

Fig. 3: Significant regions obtained from CSF images

III. EXPERIMENTS

For the ADNI baseline data, we perform two binary classi-
fication tasks: NC vs AD and MCI vs AD. Whereas, for the
small dataset, we only perform the NC vs AD classification
task. For the large dataset, we choose the ‘brain.finalsurfs.mgz’
file from each of the subject and extract 32 2-D slices based
on top 32 highest image entropy values of the slices. That is,
image entropy is calculated for each slice of the 3D scan and
were then arranged in descending order of their image entropy
values. Then, we choose the top 32 slices from the ordered
array of slices [21]. The total number of 2D slices are then
considered for classification. We divide the total number of 2D
slices into training and testing sets in the ratio 80−20. That is,
we use 80% of the total 2D slices as training set and rest 20%
as testing set. The training set is again further divided into
80% − 20% datasets wherein 80% of the training set images
are used for training the model during cross validation and the
rest 20% of the training set images are used as the validation
set during the 5-fold cross validation.

Whereas, for the small dataset, the scans from each of the
subject groups (NC and AD) were randomly divided to form
a training set of size 80 and a testing set of size 20. That
is, from each subject group, 40 MRI scans were selected for
training and MRI 10 scans were selected for testing. Then,
32 2-D slices were extracted from each 3-D scan based on
highest entropy values and used for the training and testing
purposes.
A. Hyper-parameter tuning and model selection

The convolution layers of the VGG-16 pre-trained deep
neural network, which is openly available in the Keras library,
were used as feature extractors from the MRI scans whereas
the fully connected (FC) layers were trained from scratch. A
random search of 20 independent trials for each of GM, WM
and CSF data was performed for hyper-parameter tuning. We
used 5-fold cross validation to obtain an unbiased estimate of
the model performance. For each subject, 32 axial slices were
extracted for each modality (GM, WM, CSF), based on their
entropy values as mentioned in [21].

Thus, the training data for each of GM, WM and CSF
images consisted of 2560 2-D slices and the testing data

consisted of 640 2-D slices. Each individual slice of an
MRI scan was converted to three channels before feeding
it to the network. Separate models were trained on each of
the GM, WM and CSF datasets independent of each other.
The following hyper-parameters were considered for random
search:

1) We chose 1, 2, 3 or 4 FC hidden layers with uniform
probability.

2) The number of neurons in first hidden layer was chosen
uniformly in the range [128, 256].

3) The number of neurons in the second hidden layer was
chosen uniformly in the range [64, 128].

4) The number of neurons in the third hidden layer was
chosen uniformly in the range [32, 64].

5) The number of neurons in the fourth hidden layer was
chosen uniformly in the range [10, 32].

6) The learning rate was sampled log-uniformly between
10−6 to 10−1.

7) A mini-batch size of 8, 16, 32 or 64 was chosen uni-
formly for the small dataset. Whereas, a mini-batch size
of 8, 16, 32, 64, 128, 256 was chosen uniformly for the
large dataset.

8) Number of epochs between [30, 100] was chosen uni-
formly.

9) We chose batch normalization for every FC hidden layer
before applying the activation function. Bias values were
not used in the FC hidden layers due to the use of batch
normalization.

10) As batch normalization (BN) also produces a regu-
larization effect, we first experimented without using
other regularization techniques like dropout and l1/l2-
regularization [18].

The range of hyperparameters 1) through 8) were fixed through
manual testing on the validation set.

The following hyper-parameters of the model were fixed:
1) Optimizer - Adaptive Moment Estimation (Adam) with

default values for β1, β2 and ε.
2) Activation function - ReLU activation function for hid-

den FC layers and the Sigmoid activation function for
the output layer.

3) Loss function - Binary cross entropy.
4) Weight initializer of neurons - the default Glorot-

uniform initializer.

B. Ensemble strategies
For the small dataset, we experimented with two different

ensemble methods for the slice-wise ensemble - (a) slice-wise
averaging and (b) slice-wise max-voting. In (a), we averaged
over the predicted output probabilities for all the 32 slices.
Then, the average value was rounded off to two decimal places.
Then, the subject was classified as ‘AD’ if the final value was
> 0.5 or as ‘NC’ if the final value was ≤ 0.5. In (b), we
round off the predicted probability value for a slice to two
decimal places and assign a slice to the class ‘AD’ if the final
value is > 0.5 or to the class ‘NC’ if the final values is ≤ 0.5.
Then, we take a maximum voting of classes ‘AD’ and ‘NC’
from all the 32 slices. The subject is then finally classified
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Fig. 4: Proposed model for NC vs AD classification on small dataset

based upon the number of votes received by the classes. It is
of utmost importance to note that certain cases in (b), might
result in equal number of votes for both the classes (16 votes
to ‘NC’ and 16 votes to ‘AD’). The final classification of a
subject in such scenarios may need more data for the model
to train on, or, an external intervention by an expert medical
practitioner. In this work, for such scenarios, we experimented
with assigning the subject to the class ‘NC’ (making the model
more specific) and also with assigning the subject to the class
‘AD’ (making the model more sensitive).

At the meta-level, the proposed ensemble strategies - DTE-
W and DTE-AC are used. We experimented on two different
settings - without dropout and with 50% dropout in all the FC
hidden layers. Ideally, the number of models to be chosen for
the ensemble must be chosen through cross validation. In this
work, we have exhaustively experimented with the number of
models chosen for doing the ensemble.

IV. RESULTS AND DISCUSSIONS

In this section, we present and discuss the results obtained
from the experiments performed. The accuracy shown for the
large dataset is slice wise classification accuracy, as done in
[21]. This however gives a more optimistic result due to data
leakage, as is also the case in many other studies similar to our
work [29]. We reserve further study on this issue as a future
work. In this work, we have experimented using the model
averaging and max voting ensemble schemes.
A. DTE-W

The notation followed in the tables is as follows: Top-n
denotes the ensemble of n top models trained on a particular
dataset (either GM, WM or CSF). We experimented with n =
3, 5, 7 and 9 for DTE-W, as can be seen in the aforementioned
tables.

1) Large Dataset: Table II shows the results obtained from
the proposed ensemble technique on the large ADNI dataset.
We can clearly see the efficiency of the proposed ensemble
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Model averaging Max voting
NC vs AD MCI vs AD NC vs AD MCI vs AD

Acc Sen Spec Acc Sen Spec Acc Sen Spec Acc Sen Spec
Top-3 98.98 98.57 99.31 98.61 96.57 99.56 99.05 98.66 99.38 90.09 69.92 99.56
Top-5 98.87 98.41 99.24 98.58 96.90 99.37 99.05 98.74 99.31 90.01 70.34 99.48
Top-7 98.79 98.32 99.17 98.58 96.99 99.33 98.84 98.66 99.17 90.01 70.34 99.25
Top-9 98.79 98.24 99.24 98.71 97.32 99.37 98.83 98.32 99.24 90.03 70.34 99.29

TABLE II: Results of DTE-W on ADNI baseline dataset

Model averaging Max voting
NC vs AD MCI vs AD NC vs AD MCI vs AD

Acc Sen Spec Acc Sen Spec Acc Sen Spec Acc Sen Spec
Top-3 85.05 87.32 82.28 82.39 90.89 64.32 84.75 86.36 82.79 63.80 56.38 79.61
Top-5 85.27 87.32 82.79 82.13 89.24 67.00 84.14 85.60 82.37 62.76 54.84 79.61
Top-7 84.71 87.04 81.81 82.58 90.73 65.24 85.05 86.77 82.87 63.19 55.55 79.44
Top-9 83.96 90.13 76.44 83.11 91.91 64.41 84.75 87.25 81.70 63.96 57.16 78.44

TABLE III: Results of DTE-W on ADNI baseline data with different train, validation and test split

as it reaches a highest accuracy of 99.05% on NC vs AD
classification task and 98.71% on MCI vs AD classification
task. From the NC vs AD (model averaging) section, we can
observe that the accuracy decreases as we keep adding more
models to the ensemble. Whereas, we get the highest accuracy
for MCI vs AD (in the model averaging case) on top-9 models.
This is mostly due to the fact that the optimal number of
models chosen for the ensemble must be chosen through
cross validation. However, in this work, we have computed
the results on a number of different combinations extensively.
From the max voting section we can observe that the accuracy
of NC vs AD is highest for top-3 and top-5 models. For
MCI vs AD, we get a top accuracy when we combine top-
3 models in the ensemble. We also present results of another
independent set of experiments (with separate train, validation
and test split of the ADNI baseline dataset) performed from
scratch in table III.

We can observe from table II, that the proposed model
shows reduced difference in sensitivity and specificity values.
This pattern can be observed more prominently for the MCI
vs AD case. This conveys that the proposed model reduces the
biased decisions produced by individual models significantly
even on highly imbalanced data.

Table IV shows the comparison between previous studies
that were similar to this work. That is, the studies that extract
more than one 2-D slice from a 3D brain scan and used the
information from the 2D slices for further classification were
chosen for comparison. We can observe that the proposed
model surpassed other models by a large extent. We must also
note that there is a lot of heterogeneity in the datasets as well
as the number of subjects in each study, hence, making a clear
comparison is highly difficult. Table IV also shows the result
of a 3 snapshot ensemble on NC vs AD classification with
the hyperparameters: Initial learning rate = 0.1, momentum
= 0.9, Batch size = 32, number of hidden FC layers = 1,
number of nodes in hidden FC layer = 50, Epochs = 30,
number of snapshots = 3. We can also observe that the
proposed ensemble outperforms the snapshot ensemble by a
large extent.

It is also of importance to note that other existing methods
[16], [21], [30]–[35] do not deal with subject wise classifi-

cation. Thus, they cannot directly be applied on our ADNI
small dataset. However, the DTE can perform subject-wise
classification. This is another advantage that DTE has over
these existing methods.

We also present comparative results in table V, wherein
all the methods are trained, validated and tested on the same
ADNI baseline dataset (processed using freesurfer), which is
the same as mentioned in section III but with a different train,
validation and test split. We can observe that the proposed
method outperforms other methods. We choose to exclude the
methods [30]–[34] from this analysis since unlike deep neural
networks, these do not learn features from the data explicitly.

2) Small dataset: Tables VI, VII and VIII give the results for
DTE-W ensemble for GM, WM and CSF respectively without
dropout regularization. We can observe from the table VI that
the DTE-W ensemble strategy achieves an accuracy (ACC)
of 85%, sensitivity (SEN) of 90% and specificity (SPEC)
of 80% for slice-based averaging for GM dataset. A similar
result can also be observed in the slice-wise max-voting (more
specific) scheme. Most of the individual models trained on
this dataset produced an accuracy less than DTE-W. However,
individual models 1, 5 and 6 produced a result similar to DTE-
W. It is important to notice that these results depict the final
classification performance of individual models, and, knowing
which individual model will perform best beforehand may not
be obvious. Thus, in such scenarios, the DTE-W strategy gives
more robust and unbiased results as it leverages predictions
from multiple diverse models.

One can also see from table VII that the Top-5 and Top-7
accuracy, sensitivity and specificity are 75%, 80% and 70%
respectively for WM dataset. The ensemble of Top-9 models
in this case produces a further enhanced accuracy, sensitivity
and specificity of 80% each.

We compared the results of ensemble of Top-n models in
GM and WM as mentioned in tables VI and VII respectively.
We can see that in case of GM, the ensemble of merely three
Top models produces a classification accuracy of 85%. This
may be due to the fact that GM is significantly atrophied
in AD [36]. This finding is in accordance with previous
findings wherein models trained using GM features achieved
higher performances [4]. On the other hand, for the WM
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Research Number of subjects Database NC vs AD MCI vs AD
Mahmood et al., 2013 [30] 230 (100 NC, 130 AD) OASIS 89.22 -

Chyzyk et al., 2014 [31] 98 (49 NC, 49 AD) OASIS 86 -
Gorji et al., 2014 [32] 500 (148 NC, 172 MCI, 180 AD) ADNI 97.27 94.88
Wang et al., 2015 [33] 255 (35 NC, 220 AD) Harvard medical school 100 -
Jha et al., 2017 [34] 126 (98 NC, 28 AD) OASIS 90.06 ± 0.01 -

Hon and Khan, 2017 [21] 100 (50 NC, 50 AD) ADNI 96 -
Wang et al., 2018 [35] 196 (98 NC, 98 AD) OASIS 98 -
Snapshot ensemble - 3 415 (228 NC, 187 AD) ADNI (baseline) 54.63 -

Proposed 813 (228 NC, 187 AD, 398 MCI) ADNI (baseline) 99.05 98.71
Proposed 100 (50 NC, 50 AD) ADNI (small dataset) 85 -

TABLE IV: Comparison of the proposed method with other related work

Research Number of subjects Database NC vs AD MCI vs AD
Hon and Khan, 2017 [21]

813 (228 NC, 187 AD, 398 MCI) ADNI (Baseline)

84.14 82.26
Wang et al., 2018 [35] 79.93 76.86
Snapshot ensemble - 3 54.93 68.02

Proposed 85.27 83.11

TABLE V: Comparison of the proposed method with other related work on dataset from table
III

GM
Slice Average Max Voting (More Sensitive) Max Voting (More Specific)

ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC
Top-3 85 90 80 80 90 70 85 90 80
Top-5 85 90 80 80 90 70 85 90 80
Top-7 85 90 80 80 90 70 85 90 80
Top-9 80 90 70 80 90 70 80 90 70

TABLE VI: DTE-W on GM images (without dropout)

WM
Slice Average Max Voting (More Sensitive) Max Voting (More Specific)

ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC
Top-3 70 80 60 70 80 60 75 80 70
Top-5 75 80 70 70 80 60 75 80 70
Top-7 75 80 70 75 80 70 75 80 70
Top-9 80 80 80 80 80 80 80 80 80

TABLE VII: DTE-W on WM images (without dropout)

CSF
Slice Average Max Voting (More Sensitive) Max Voting (More Specific)

ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC
Top-3 60 50 70 60 50 70 60 50 70
Top-5 60 50 70 60 50 70 60 50 70
Top-7 60 50 70 60 50 70 60 50 70
Top-9 60 50 70 60 50 70 60 50 70

TABLE VIII: DTE-W on CSF images (without dropout)

GM + WM + CSF
Slice Average Max Voting (More Sensitive) Max Voting (More Specific)

ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC
3-Top-1 75 70 80 85 70 100 85 70 100
3-Top-3 85 90 80 85 90 80 85 90 80
3-Top-5 80 80 80 80 80 80 80 80 80
3-Top-7 80 80 80 80 80 80 85 80 90
3-Top-9 80 80 80 85 90 80 85 80 90

TABLE IX: DTE-AC (without dropout)
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Subject Group Top-1 Top-2 Top-3 DTE-W Top-1 Top-2 Top-3 DTE-W Top-1 Top-2 Top-3 DTE-W
SA MV (SEN) MV (SPEC)

1 AD 0.8649 0.8685 0.7447 0.826 → 1 1 1 1 1 1 1 1 1
2 NC 0.4991 0.5247 0.3684 0.464 → 0 1 1 0 1 0 1 0 0
3 NC 0.2084 0.1944 0.19 0.1976 → 0 0 0 0 0 0 0 0 0
4 NC 0.0039 0.0001 0.0317 0.0119 → 0 0 0 0 0 0 0 0 0
5 NC 0.2948 0.3443 0.4087 0.3493 → 0 0 0 0 0 0 0 0 0
6 NC 0.2336 0.279 0.0975 0.2033 → 0 0 0 0 0 0 0 0 0
7 NC 0.7658 0.8055 0.901 0.8241 → 1 1 1 1 1 1 1 1 1
8 NC 0.6437 0.6194 0.533 0.5987 → 1 1 1 1 1 1 1 1 1
9 NC 0.3916 0.4734 0.3431 0.4027 → 0 0 0 0 0 0 0 0 0
10 NC 0.0669 0.0973 0.125 0.0964 → 0 0 0 0 0 0 0 0 0
11 NC 0.2164 0.1459 0.264 0.2088 → 0 0 0 0 0 0 0 0 0
12 AD 0.9668 0.884 0.9815 0.9441 → 1 1 1 1 1 1 1 1 1
13 AD 0.2479 0.1697 0.1591 0.1922 → 0 0 0 0 0 0 0 0 0
14 AD 0.9683 0.9969 0.9432 0.9695 → 1 1 1 1 1 1 1 1 1
15 AD 0.7269 0.7189 0.7564 0.7341 → 1 1 1 1 1 1 1 1 1
16 AD 0.9694 0.9751 0.9604 0.9683 → 1 1 1 1 1 1 1 1 1
17 AD 0.7668 0.7775 0.7552 0.7665 → 1 1 1 1 1 1 1 1 1
18 AD 0.5113 0.5724 0.5995 0.5611 → 1 1 1 1 1 1 1 1 1
19 AD 0.7641 0.8092 0.7336 0.769 → 1 1 1 1 1 1 1 1 1
20 AD 0.6221 0.6735 0.5698 0.6218 → 1 1 1 1 1 1 1 1 1

TABLE X: Effect of DTE-W trained on GM images on final classification. SA - Slice Average, MV (SEN) - Max Voting (More
Sensitive), MV (SPEC) Max Voting (More Specific), 0 - NC, 1 - AD.

Subject Group SA MV (more sensitive) MV (more specific)
1 AD 0.5033 → 0 0 0
2 NC 0.367 → 0 0 0
3 NC 0.5424 → 1 0 0
4 NC 0.0762 → 0 0 0
5 NC 0.3342 → 0 0 0
6 NC 0.4099 → 0 0 0
7 NC 0.5583 → 1 0 0
8 NC 0.4186 → 0 0 0
9 NC 0.2648 → 0 0 0
10 NC 0.1184 → 0 0 0
11 NC 0.3464 → 0 0 0
12 AD 0.6304 → 1 1 1
13 AD 0.4719 → 0 0 0
14 AD 0.7663 → 1 1 1
15 AD 0.8067 → 1 1 1
16 AD 0.6275 → 1 1 1
17 AD 0.8212 → 1 1 1
18 AD 0.645 → 1 1 1
19 AD 0.6858 → 1 1 1
20 AD 0.5019 → 0 0 0

TABLE XI: Effect of DTE-AC on final classification. SA - Slice Average, MV - Max Voting, 0 - NC, 1 - AD.

images, increasing the number of models for ensemble leads to
increase in classification performance. This maybe due to the
increase in diversity of the model. However, for GM dataset,
doing an ensemble of models beyond a certain threshold
decreases the accuracy, as can be observed by the results of
ensemble of Top-9 models. This maybe due to the introduction
of highly non-optimal models which degrade the classification
performance. For the case of CSF images, results of DTE-
W can be observed from table VIII. One can observe that
the ensemble strategy produces no effect on the classification
performance. This maybe due to the highly similar nature of
CSF images in both the NC and AD groups.

The table X shows the effect of the DTE-W (without
dropout) ensemble strategy with n = 3 on the final classi-
fication results for each of the twenty test subjects. The actual
class of the subject is represented by the column ‘Group’. The
columns Top-1, Top-2 and Top-3 represent the output after
slice-wise ensemble for each test subject. SA, MV (SEN) and

MV (SPEC) are results for slice averaging, max voting (more
sensitive) and max voting (more specific) schemes. The values
in bold represent the positive effect (correct classification)
produced by the ensemble. The underlined values represent
the negative effect (incorrect classification) produced by the
ensemble. We exclude the results in which all the models result
in similar classification, for example, in table X, all the models
for SA result in values > 0.5 for subject 1. In the SA scheme
for subject 2 (table X), the Top-2 model produces a probability
value of 0.5247 which classifies the subject to the class 1
(AD), since probability values > 0.5 belong to class 1. But,
averaging over the probability values of all the three models
produce a final result of 0.464 which classifies the subject to
class 0 (NC). A similar result can be seen for subject 2 for MV
(SPEC) case. On the contrary, for the MV (SEN) for subject 2
the inclusion of miss-classification of Top-1 and Top-2 models
along with the correct classification of Top-3 models results
in miss-classification of the subject.
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B. DTE-AC

Table IX shows the results of DTE-AC without any dropout
applied on the small dataset. DTE-AC utilizes the complimen-
tary information provided by GM, WM and CSF images. The
notation followed in the tables is as follows: 3-Top-n denotes
the ensemble of Top-n models each from GM, WM and CSF
datasets. In this work, we experimented with n = 1, 3, 5, 7 and
9 for DTE-AC.

We can observe from table IX that for the slice-wise
max-voting schemes, DTE-AC classifies with high accuracy,
sensitivity and specificity of 85%, 90% and 90% in many
cases. One can also notice that ensemble of Top-1 models
achieves a high accuracy rate of 85% in the max-voting
scheme. The individual models trained on WM and CSF
datasets achieved a maximum accuracy of 60%. The individual
models did not perform outstandingly, however, they provided
enough diversity to DTE-AC along with models trained on
GM dataset to boost the classification accuracy up to 85%.

The Table XI shows the effect of the DTE-AC (without
dropout) ensemble strategy with n = 1 . The bold values
shows majority of the values get a correct classification due
to DTE-AC. The underlined values mark the miss-classified
samples.
C. Comparison of DTE-W and DTE-AC

On comparing the results of DTE-W and DTE-AC, one can
see that the simple averaging of models produces better results
in DTE-W than the max-voting scheme. In DTE-W, taking
a max-voting of individual models, which already produce
biased results increases the bias in the ensemble, thereby,
degrading the performance. Contrary to this, the max-voting
scheme produces better results in DTE-AC than the model
averaging scheme. This is due to the fact that GM, WM and
CSF are significantly distinct feature sets and averaging over
models trained on them increases the variance hampering the
model performance.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we presented a novel ensemble model (DTE)
for the classification of Alzheimer’s disease. The DTE utilizes
a combination of deep learning, transfer learning and ensemble
learning. DTE exploits the diversity of individual models with
randomly chosen hyperparameter with low generalization error
to produce more accurate and robust results. For the large
ADNI baseline dataset, the DTE achieved a maximum classifi-
cation accuracy of 99.09% for NC vs AD and 98.71% for MCI
vs AD classification tasks. For the small dataset chosen from
ADNI, the DTE achieved a maximum classification accuracy
of 85% for NC vs AD.

By observing the main results from DTE-W, we can sum-
marize that an ensemble of deep models trained with random
hyperparameters produces better generalization as compared
to that of individual models. This is due to the fact that each
model in the ensemble reaches a different local optima in the
non-convex loss surface. Models with bad local optima can
be avoided through crossvalidation. Similarly, by observing
the main results from DTE-AC, we can summarize that along
with the diverse nature of models in the ensemble, further

diversity can be leveraged by including different feature views
with complementary features.

The DTE currently lacks an optimal strategy for choosing
the models for ensemble. It also lacks a strategy to provide
appropriate weightage to each individual model based on
its usefulness in the ensemble. In the future, we plan to
address these issues. We also plan to investigate the biological
relevance of diverse predictions to further understand their
relation with onset and progression of Alzheimer’s disease.

Another interesting direction of work with DTE would be
to use Bayesian optimization instead of random search. DTE
could also be improved by incorporating different cyclical
learning rate (LR) routines, wherein, even the parameters of
the LR routine could be randomized. Another line of work that
would improve DTE further would be to explicitly measure
the amount of diversity being added to the model instead
of only relying on crossvalidation. This could make DTE
more automated in nature and also avoid adding derogatory
models. The codes are available on https://github.
com/mtanveer1
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1451 and csf t-tau and p-tau as biomarkers in Alzheimer’s disease,”
EMBO Molecular Medicine, vol. 9, no. 9, pp. 1212–1223, 2017.

[21] M. Hon and N. M. Khan, “Towards Alzheimer’s disease classification
through transfer learning,” in 2017 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). IEEE, 2017, pp. 1166–1169.

[22] L. Khedher, J. Ramı́rez, J. M. Górriz, A. Brahim, F. Segovia, and
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