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Selecting a set of relevant markers to predict conversion from mild cognitive impairment (MCI) to Alzheimer3s
disease (AD) has become a challenging task given the wealth of regional pathologic information that can be ex-
tracted from multimodal imaging data.
Here, we used regularized regression approaches with an elastic net penalty for best subset selection of multire-
gional information fromAV45-PET, FDG-PET and volumetric MRI data to predict conversion fromMCI to AD. The
study sample consisted of 127MCI subjects from ADNI-2who had a clinical follow-up between 6 and 31months.
Additional analyses assessed the effect of partial volume correction on predictive performance of AV45- and FDG-
PET data.
Predictor variables were highly collinear within and across imaging modalities. Penalized Cox regression yielded
more parsimonious prediction models compared to unpenalized Cox regression. Within single modalities, time
to conversion was best predicted by increased AV45-PET signal in posterior medial and lateral cortical regions,
decreased FDG-PET signal inmedial temporal and temporobasal regions, and reduced graymatter volume inme-
dial, basal, and lateral temporal regions. Logistic regression models reached up to 72% cross-validated accuracy
for prediction of conversion status, whichwas comparable to cross-validated accuracy of non-linear support vec-
tor machine classification. Regularized regression outperformed unpenalized stepwise regression when number
of parameters approached or exceeded the number of training cases. Partial volume correction had a negative ef-
fect on the predictive performance of AV45-PET, but slightly improved the predictive value of FDG-PET data.
Penalized regression yielded more parsimonious models than unpenalized stepwise regression for the integra-
tion of multiregional and multimodal imaging information. The advantage of penalized regression was particu-
larly strong with a high number of collinear predictors.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Predicting the conversion frommild cognitive impairment (MCI) into
Alzheimer3s disease (AD) dementia is among the clinically most relevant
diagnostic tasks in the field of AD (Jack, 2012). Several imaging measures
have demonstrated promising accuracy of prediction, including cortical
amyloid load based on 11C- and 18F-PET tracers (Chen et al., 2014), region-
al cerebral hypometabolism based on 18F-fluorodeoxyglucose (FDG)-PET
(for a recent review see (Cohen and Klunk, 2014)), and regional grey
matter volume derived from volumetric MRI (for review see (Teipel
et al., 2013)). In addition toprediction accuracy, researchers are interested
in the interpretation of a prediction model. In general, a more parsimoni-
ousmodelwill providemore insight into the relationship between the re-
sponse and the predictor variables than amore complexmodel including
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all available covariates ((Hastie et al., 2009), page 57). Efficient selection
of the subset of the most relevant predictor variables from a rich set of
available data modalities and parameters is therefore an important step
in identifying clinically relevant prognostic markers.

An approach typically used for this selection process is multiple lin-
ear regression with stepwise selection. With highly collinear predictor
variables, however, thesemodels tend to inflate the variance of estimat-
ed regression coefficients so that coefficient estimatesmay change in re-
sponse to small differences in themodel. In the words from the seminal
paper of Farrar and Glauber: “Themathematics, in its brute and tactless
way, tells us that explained variance can be allocated completely arbi-
trarily between linearly dependent members of a completely singular
set of variables, and almost arbitrarily between members of an almost
singular set” (page 7 (Farrar and Glauber, 1967)).

Non-linear approaches based on machine learning can partly over-
come this problem, butmay over-fit data in thepresence of a large num-
ber of features relative to the available number of cases ((Hastie et al.,
2009), page 431f, (Duda et al., 2001), page 221 (Dormann et al.,
2013)). In addition, they do not easily lend themselves to the analysis
of survival data with censoring effects, and do not offer an easily inter-
pretable prediction model. Penalized regression models provide an at-
tractive alternative when the number of predictive features is high
relative to the number of observed cases (Zou and Hastie, 2005; Zou
and Zhang, 2009) and features are collinear (Hoerl and Kennard,
1970; Tibshirani, 1996). Penalization shrinks the regression coefficients
by imposing a penalty on the size of the correlation strength, eventually,
depending on the penalization term used, setting some of them to zero.
In recent years thesemodels have extended to covermodels for survival
analysis (Friedman et al., 2010), including proportional hazardsmodels,
such as Cox regression (Cox and Oakes, 1984), to take censoring of ob-
servations into account. The latter point is important for the prediction
of conversion into dementia within a time frame that is relevant for a
clinical trial, i.e. between 6 months and 3 years, where the likelihood
of censored observations is relatively high in an MCI population (22%–
34% conversion rate between 2 to 3 years of follow-up (Duara et al.,
2011)).

In the present study, we determined the isolated and combined ac-
curacy of structural MRI, FDG-PET and amyloid-sensitive AV45-PET to
predict rapid to moderately fast conversion into dementia in 127 MCI
subjects retrieved from the ADNI database. We further determined pre-
diction accuracies before and after partial volume correction of PET data.
We hypothesized that amyloid and FDG-PET measures would be more
sensitive to conversion of MCI individuals into AD dementia than mea-
sures of atrophy and that correction for partial volume effects would
alter the predictive accuracy of both PET modalities. Since the number
of features used for prediction in the combined models was almost as
high as the number of available cases and the regional measures were
expected to be collinearwithin and across modalities, we compared pe-
nalized regression analysis, extending the Cox and logistic regression
approach in an elastic net framework (Friedman et al., 2010), with
more classical unregularized regression models in respect to prediction
accuracy as well as parsimony of subset selection.

2. Material and methods

Data used in the preparation of this article were obtained from
the Alzheimer3s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organiza-
tions, as a $60million, 5-year public–private partnership. The prima-
ry goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer3s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments andmonitor their ef-
fectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative isMichaelW.Weiner,MD,
VA Medical Center and University of California – San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been followed by
ADNI-GO and ADNI-2. To date these three protocols have recruited over
1500 adults, ages 55–90, to participate in the research, consisting of
cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow-up duration of each group is
specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects
originally recruited for ADNI-1 and ADNI-GO had the option to be
followed in ADNI-2. For up-to-date information, see http://www.adni-
info.org.
2.1. Participants

AV45-PET, FDG-PET and structural MRI scans were retrieved from
the ADNI-2 extension of the ADNI project and included imaging data
of 127 subjects in a late stage of MCI (LMCI) who had a clinical
follow-up after at least 6 months. Status of conversion (MCIc) or
non-conversion (MCInc) was determined at follow-up (average follow-
up time was 17.3 (SD 6.6) months, ranging between 6 and 31 months).

Detailed inclusion criteria for LMCI can be found at theADNIweb site
(http://adni.loni.usc.edu/methods/). Briefly, LMCI subjects have MMSE
scores between 24–30 (inclusive), a subjectivememory concern report-
ed by subject, informant, or clinician, objective memory loss measured
by education adjusted scores on delayed recall (one paragraph from
Wechsler Memory Scale Logical Memory II; education adjusted scores:
≥16 years: ≤8; 8–15 years: ≤4; 0–7 years: ≤2), a CDR = 0.5, absence of
significant levels of impairment in other cognitive domains, essentially
preserved activities of daily living, and an absence of dementia.
2.2. Imaging data acquisition

ADNI-GO/-2 MRI data were acquired on multiple 3 T MRI scanners
using scanner-specific T1-weighted sagittal 3D MPRAGE sequences. In
order to increase signal uniformity across the multicentre scanner plat-
forms, original MPRAGE acquisitions in ADNI undergo standardized
image pre-processing correction steps.

AV45- and FDG-PET data were acquired on multiple instruments of
varying resolution and following different platform-specific acquisition
protocols. Similar to the MRI data, PET data in ADNI undergo standard-
ized image pre-processing correction steps aimed at increasing data
uniformity across the multicentre acquisitions.

More detailed information on the different imaging protocols
employed across ADNI sites and standardized image pre-processing
steps for MRI and PET acquisitions can be found on the ADNI web site
((http://adni.loni.usc.edu/methods/)).

The average acquisition delays between corresponding AV45-PET,
FDG-PET andMRI scans used in this studywere 35 (SD 32) days between
MRI and FDG-PET, 11 (SD 20) days between FDG-PET and AV45-PET, and
41 (SD 36) days between MRI and AV45-PET.
2.3. Imaging data processing

Imaging data were processed by using statistical parametric mapping
(SPM8,Wellcome Trust Center for Neuroimaging) and the VBM8-toolbox
(http://dbm.neuro.uni-jena.de/vbm/) implemented in Matlab R2013b
(MathWorks, Natick, MA).

http://www.adni-info.org
http://www.adni-info.org
http://adni.loni.usc.edu/methods/
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2.3.1. MRI processing
First, MRI scans were automatically segmented into GM, white mat-

ter (WM) and cerebrospinal fluid (CSF) partitions of 1.5 mm isotropic
voxel-size using the tissue prior-free segmentation routine of the
VBM8-toolbox. The resulting GM and WM partitions of each subject in
native space were then high-dimensionally registered to an aging/AD-
specific reference template from a previous study (Grothe et al., 2013)
using DARTEL (Ashburner, 2007). Structural brain characteristics
change considerably in advanced age and AD and spatial registration
accuracy worsens with deviance from the template characteristics,
rendering the MNI standard space template inappropriate for high-
dimensional image normalization of aged and demented populations.
Therefore, the reference template in this study was derived by
DARTEL—aligning 50 healthy elderly subjects and 50 subjects with
verymild,mild andmoderate AD retrieved from anopen accessMRI da-
tabase (http://www.oasis-brains.org), and thus reflects unbiased aging/
AD-specific structural characteristics. Individual flow-fields resulting
from the DARTEL registration to the reference template were used to
warp the GM segments, and voxel-values weremodulated for volumet-
ric changes introduced by the high-dimensional normalization, such
that the total amount of GM volume present before warping was pre-
served. Finally, for voxel-based analyses modulated warped GM seg-
ments were smoothed with a Gaussian smoothing kernel of 8 mm
full-width at half maximum (FWHM). All preprocessed GM maps
passed a visual inspection for overall segmentation and registration
accuracy.

2.3.2. PET data processing
Each subject3s AV45- and FDG-PET scanswere rigidly coregistered to

a skull-stripped version of the corresponding structural MRI scan and
corrected for partial volume effects (PVE). PVE correction followed the
algorithm proposed by Müller-Gärtner (Müller-Gärtneret al., 1992)
and was implemented using in-house written Matlab scripts based on
SPM83s image processing routines. Briefly, the PET signal within WM
and CSF compartmentswas assumed to be homogeneous andwasmea-
sured as average signal within the individual WM and CSF partitions,
thresholded at 99% tissue probability. Subsequently, WM and CSF tissue
maps were multiplied by the PET activity estimate for the respective
compartment and convolved by the point spread function of the PET
scan. Spill-in effects of WM and CSF signal into the GM compartment
were corrected by subtracting the convolved maps of WM and CSF
PET activity form the original PET scan. Spill-out effects of GMPET signal
intoWM and CSF compartments were corrected by dividing the spill-in
corrected PET scan by a convolved version of the GM probability map.
Tissue segments were determined using used smoothed probability
maps of GMandWM, respectively. Finally, only regionswith aGMprob-
ability of at least 50% were retained in the PVE corrected AV45- and
FDG-PET scans. GM-specific PVE corrected PET scans in subject space
were warped to the aging/AD-specific reference space (without modu-
lation of voxel-values) using the DARTEL flow-fields derived from the
registration of the corresponding MRI scans. For voxel-based analyses
the warped PET scans were smoothed with a Gaussian smoothing ker-
nel of 8 mm full-width at half maximum (FWHM).

2.3.3. Extraction of regional imaging features
For regional analysis, we used regions of interest (ROIs) derived

from the Hammers Maximum Probability atlas (Hammers et al.,
2003). From the 83 regions of the atlas, we disregarded regions that
are known to be not prominently involved in AD, such as the cerebel-
lum, not assessable with PET, such as the ventricles, or belonging to
white matter regions, such as the corpus callosum. This left us with a
total of 42 bilateral cortical and subcortical brain regions. The corre-
sponding atlas labels were high-dimensionally warped into the refer-
ence space of this study based on a DARTEL registration of the MNI152
template (the template space of the Hammers Maximum Probability
atlas) to the aging/AD-specific reference template. The warped atlas
labels were then multiplied with a binary GM mask of the reference
template, thresholded at 50% GM probability. Fig. 1 provides an illustra-
tion of the full set of ROIs in the reference space.

Individual GM volumes of the ROIs were extracted automatically
from the warped GM segments (before smoothing) by summing up
the modulated GM voxel values within the respective ROI masks in
the reference space. For further analyses, the extracted regional GM vol-
umeswere scaled by the total intracranial volume, calculated as the sum
of total volumes of the GM, white matter and cerebrospinal fluid
partitions.

Individual AV45- and FDG-PET uptake values within the ROIs were
extracted from the warped PET maps (before smoothing) by averaging
the voxel values within the respective ROI masks in the reference space.
Regional FDG- and AV45-PET uptakemeanswere converted to standard
uptake value ratios (SUVRs) by scaling to themean uptake valuewithin
a mask of cerebellar GM, also derived from the Hammers Maximum
Probability atlas (Hammers et al., 2003).

2.4. Statistical analysis

2.4.1. Demographic characteristics
Baseline demographic characteristics were compared betweenMCIc

and MCInc using parametric and non-parametric tests as required: age
and years of education were compared between groups using Student3s
t test, gender distribution using Chi2 test, and neuropsychological test
results using non-parametric Mann–Whitney U test.

2.4.2. Voxel-based analyses
Amyloid load as determined using AV45-PET, cortical metabolism as

determined using FDG-PET, and regional reductions of grey matter vol-
umes were compared between MCIc and MCInc using a linear model
within each modality based on proportionally scaled voxel based data
(relative to cerebellar greymatter values for the PET data and to total in-
tracranial volume for the grey matter maps, respectively). Clusters of at
least 50 contiguous voxels passing an FDR corrected p-value of 0.05
were considered significant. Analyses were conducted using SPM8.

2.4.3. Models to predict time to conversion
To check for multicollinearity, we determined the variance inflation

factor (VIF) (Belsley, 1991) for each dependent variable on the set of the
remaining dependent variables using the Matlab function colldiag.m,
available at (http://www.subcortex.net/research/code/collinearity-
diagnostics-matlab-code).

Penalized regression models were calculated using the package
glmnet (available at http://cran.r-project.org/web/packages/glmnet/
index.html) in R version 3.1.0 (The R Foundation for Statistical Comput-
ing). Elastic net regression is controlled by two parameters, (i) alpha,
which sets the degree of mixing between two extremes of regularized
regression, namely ridge regression (alpha = 0) and the Lasso (Least
Absolute Shrinkage and Selection Operator; alpha=1), and (ii) lambda,
defining the strength of regularization (Friedman et al., 2010). After
alpha had been selected according to the minimization of the partial
likelihood deviance of themodel (see Supplementary Fig. 1 for an exam-
ple), lambda was determined using grid search with 10-fold cross-
validation. The optimal lambda was determined as the mean across
100 iteratively determined lambda values minimizing the deviance of
the model.

2.4.3.1. Singlemodality prediction of time to conversion. For eachmodality,
we selected the predictor variables that contributed to prediction of
time to conversion within a penalized Cox regression framework
among 42 regional values together with episodicmemory performance,
MMSE score, sex, age, handedness, and education. Since statistical infer-
ence tests are not yet developed for elastic net regression, we used two
complementary approaches to assess the relevance of the estimated co-
efficients. First, we used bootstrapping with 1000 repeated random

http://www.oasis-brains.org
http://www.subcortex.net/research/code/collinearity-diagnostics-matlab-code
http://www.subcortex.net/research/code/collinearity-diagnostics-matlab-code
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http://cran.r-project.org/web/packages/glmnet/index.html


Fig. 1. Selected regions. Regions from the HammersMaximum Probability atlas (Hammers et al., 2003) that were selected for the classification models projected onto the reference tem-
plate in standard space. Upper row: surface view and midsagittal view. Lower row: Coronar, sagittal and axial sections focusing on subregions in temporal lobe.
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selections from 63.2% of the data to determine the frequency of the se-
lection of each single variable. In addition, we used permutation sam-
pling of the data to determine the frequency distribution of the elastic
net coefficients across 100 iterations to determine z-scores for coeffi-
cient estimates. Only variables with a selection frequency of at least
50% and a z-score larger than 1.96 in absolute value, corresponding to
a two-tailed error rate of p b 0.05, are being reported.

For comparison we also calculated bidirectional (backward and for-
ward) stepwise unpenalized Cox regressions using the function step in
R. The functionweights the choices via the AIC criterion,which takes ac-
count of the total number of fitted parameters.

2.4.3.2. Effect of partial volume correction of PET data.Given the heteroge-
neous use of PVE correction across PET imaging studies and the largely
unknown effect of PVE correction on the predictive value of AV45-
and FDG-PET data, voxel-wise analyses of group differences and predic-
tive regression models were also performed using the AV45- and FDG-
PET data without PVE correction.

2.4.3.3.Multiplemodality prediction of time to conversion.Variableswith a
selection frequency of at least 50% and a z-score larger than 1.96 in ab-
solute value, corresponding to a two-tailed error rate of p b 0.05, were
included into a cross-modality penalized Cox regressionmodel to deter-
mine the relative importance of each modality to predict conversion
from MCI to AD dementia.

2.4.3.4. Prediction accuracy for conversion status. Cross-validated predic-
tion sensitivity, specificity, overall accuracy, and area under receiver op-
erating characteristics curve (AUC) for multiple modality models were
compared between bidirectional stepwise unpenalized logistic regres-
sion and logistic regression with an elastic net penalty (optimal alpha
was 0.5, and lambda minimizing the misclassification error). Random
samples of 63.2% of the data were drawn 100 times to train the predic-
tion models, the prediction accuracy of the resulting models was deter-
mined using the remaining 37.8% as test data. The set of variables
eligible for the models came from two different selection pathways:
(i) combination of all variables that were identified as relevant predic-
tors in single modality penalized Cox regression, and (ii) combination
of all variables that were identified as relevant predictors in single mo-
dality unpenalized bidirectional stepwise Cox regression.

As a non-linear comparison approach we used a support vector ma-
chine with a radial kernel and cross-validation with optimization of
gamma and cost function parameter in the training sample trough a
grid search and application of the resulting support vector machine
model to the test sample consisting of a random selection of one third
of the cases. The cross-validation was iterated 100 times and levels of
accuracy were determined and averaged across iterations. The support
vector machine was implemented using function “svm” and related
functions in package “e1071” in R (available at http://cran.r-project.
org/web/packages/e1071/index.html) (Karatzoglou et al., 2006).

3. Results

3.1. Demographic characteristics

At follow-up, 39 individuals wereMCI converters (MCIc), and 88 indi-
viduals were MCI non-converters (MCInc). Four of the 88 nonconverters
reverted to the status normal cognitive control, 84 remainedMCI. Groups

http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/e1071/index.html
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did not differ with regard to sex distribution, age, years of education, time
of follow up, overall cognitive performance as determined using theMini
Mental Status Examination (MMSE) (Folstein et al., 1975) score and
episodic memory performance as determined using the delayed recall
of the logical memory subtest of the Wechsler Memory Scale—Revised
(Wechsler, 1987) and the Auditory Verbal Learning Test (Query and
Berger, 1980) (Table 1).

3.2. Voxel based analysis

Voxel based analysis for AV45-PET data revealed higher amyloid
load inMCIc compared toMCInc in lateral temporal, prefrontal and pari-
etal association cortex, with sparing of primary sensorymotor and visu-
al cortex aswell asmedial temporal lobes. The effects of AV45-PETwith
PVE correction were spatially much more restricted than the effects for
PVE uncorrected AV45-PET data (Fig. 2a). We used family wise error
correctionwith these data, because at FDR corrected level of significance
almost the entire cortex was involved in the effects in the PVE uncor-
rected AV45-PET data. FDG-PET data showed a significant reduction of
glucose consumption bilaterally in parietotemporal association cortex,
posterior cingulate and precuneus as well as medial temporal lobe
areas in MCIc compared to MCInc (Fig. 2b) at an FDR corrected level of
significance of p b 0.05,withmore extended effects in the PVE corrected
compared to the PVE uncorrected data. Cortical grey matter volume re-
ductions inMCIc compared toMCInc showed significant reductions in bi-
lateral hippocampus and adjacentmedio-temporal lobe areas, aswell as
left predominant parietotemporal lobe association cortex (Fig. 2c) at an
FDR corrected level of significance of p b 0.05.

The coefficient of variation (CV) across all 42 grey matter regions
was 0.50 for PVE corrected amyloid PET data, but only 0.22 for uncor-
rected PET data. In contrast, coefficients of variation were very similar
in FDG-PET across the 42 grey matter regions before and after PVE cor-
rection (0.19 and 0.21, respectively).

Before PVE correction, voxel-wise mean CV was 0.11 for AV45-PET,
but 0.21 for FDG-PET data across the entire white matter, and 0.27 for
AV45-PET and 0.21 for FDG-PET across the entire grey matter.

3.3. Prediction models

The VIF was N14 for the PVE corrected and uncorrected AV45-PET,
N8 for the uncorrected FDG-PET data, N5 for the PVE corrected FDG-
PET data, and N2 for the regional grey matter volumes, suggesting that
multicollinearity was a relevant issue with most of the data. As an
example, Supplementary Fig. 2 shows the cross-correlation matrix and
the vector of VIF values for the AV45-PET regional values with PVE
correction.

All models showed minimal partial likelihood deviance at an alpha
of 0.3 (Supplementary Fig. 1), suggesting that the penalty of the regres-
sion models was close to an elastic-net penalty (alpha = 0.5). For each
Table 1
Subjects3 characteristics.

Gender
(F/M)a

Age
(SD)[years]b

Education (SD)
[years]c

Follow-up (SD)
[months]d

MMSEMedia
percentile)e

MCInc 47/41 72.4 (8.3) 16.6 (2.7) 17.9 (6.2) 29 (24.5, 29
MCIc 22/17 72.6 (8.1) 16.4 (2.8) 15.8 (7.3) 28 (25, 29)

MCIc—MCI converter,MCInc—MCI non-converter, F— female,M—male,MMSE—mini-mental
Memory Scale−Revised, AVLT — delayed recall from the Auditory Verbal Learning Test.

a Not significantly different between groups, Chi2 = 0.10, 1 df, p = 0.75.
b Not significantly different between groups, Student3s T = −0.15, 125 df, p = 0.88.
c Not significantly different between groups, Student3s T = 0.43, 125 df, p = 0.67.
d Not significantly different between groups, Student3s T = 1.67, 125 df, p = 0.10.
e Not significantly different between groups, Mann–Whitney U test, p = 0.72.
f Not significantly different between groups, Mann–Whitney U test, p = 0.11.
g Not significantly different between groups, Mann–Whitney U test, p = 0.29.
single modality and the combined model, we determined the mean of
the bootstrapped lambda values yielding minimum cross-validated
error.
3.3.1. Single modality prediction of time to conversion
We determined frequency of selection, z-scores and cross-validated

prediction accuracy across 42 regional values togetherwith age, sex, ed-
ucation, and cognitive measures within each single modality. Results
are summarized in Fig. 3. Coefficients were in the expected direction
for all predictors in the AV45-PET data (higher amyloid load in the con-
verters), FDG-PET data (smaller metabolism in the converters), and
grey matter volumes (smaller volumes in converters).

For comparison, we used unpenalized Cox-regression with stepwise
selection of predictors. These models obviously overfitted the data. For
example, with PVE corrected AV45-PET data, the unpenalized Cox-
regression model selected 23 predictor variables, including sex and
education aswell as 21 regional amyloid values (Fig. 4). Eleven of 21 re-
gional amyloid predictors carried a negative sign, ten carried a positive
sign (for example left and right amygdala carried opposite signs).
3.3.2. Multimodality prediction of time to conversion
In a subsequent analysis, we entered the relevant predictors of the

single modality analyses into a combined model across modalities. Re-
sults are summarized in Fig. 3. Coefficients with significant z-scores
came fromPVE uncorrectedAV45-PET data (z-score up to 7.5), followed
by grey matter volumes (z-score up 4.3), PVE corrected AV45-PET data
(z-score up to 3.6) and corrected FDG-PET (z-score up to 3.0). Uncor-
rected FDG-PET did not contribute a significant region.
3.3.3. Prediction accuracy for conversion status
Results for penalized and unpenalized binary logistic regression

models are shown in Fig. 5. For the combined relevant predictors from
penalized single modality Cox regressions, prediction accuracy was
higher in the test set with penalized compared to the unpenalized
logistic regression model, with overall classification accuracy of 72%
(SD 7) compared to 66% (SD 8), respectively.

For the more extensive set of combined relevant predictors from
unpenalized single modality stepwise Cox regression, prediction accu-
racy was 70% (SD 6) for penalized logistic regression in the test set,
but only 60% (SD 6) with unpenalized stepwise logistic regression.

For comparison, cross-validated support vector machine classifica-
tion with a radial kernel yielded accuracy of 70% (SD 0.07), equal for
both subsets of pre-selected predictor variables.

For the training data (i.e. no cross-validation), the unpenalized re-
gression reached 100% accuracy, indicating an overfit of the training
data that was, however, not present in the penalized regression (last
row of panel in Fig. 5).
n (25th and 75th LM-DRMedian (25th and 75th
percentile)f

AVLTMedian (25th and 75th
percentile)g

) 6 (1, 9) 2.5 (0, 8.5)
8 (3.11) 3 (1, 10)

status examination, LM-DR— delayed recall of the logicalmemory subtest of theWechsler



Fig. 2. Regional pattern of amyloid load, hypometabolism and greymatter atrophy inMCIc vs. MCInc. Clusters of significant increase in AV45 uptake (Fig. 2a), significant decrease in 18FDG
uptake (Fig. 2b) or significant decrease in greymatter volume (Fig. 2c) inMCIc vs. MCInc projected onto the reference template in standard space. For PET data, red represents PVE uncor-
rected PET data, green represents PVE corrected PET data, and yellow indicates overlap. Please note that clusters are shown with at least 50 voxels passing the significance threshold of
p b 0.05, FDR corrected, for FDG-PET and grey matter volume data, but with at least 50 voxels passing the significance threshold of p b 0.05, FWE corrected, for AV45-PET data, because
at p b 0.05, FDR corrected, almost the entire supratentorial grey matter showed significant effects for AV45-PET uptake.

Fig. 3. Frequency of variable selection from penalized Cox regression. Colour coded intensity map for frequency of selection of regional values with the modalities of PVE corrected AV45-
PET (AV45 PVE), non-PVE corrected AV45-PET (AV45 uncorr.), PVE corrected FDG-PET (FDG PVE), non-PVE corrected FDG-PET (FDG uncorr.), and greymatter volume (GM vol.). Squares
with a black margin indicate those parameters that were selected as predictors in a cross-modality prediction model.
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Fig. 4. Results of stepwise Cox regression. Colour coded intensity map for z-scores of selected regional values with the modalities of PVE corrected AV45-PET (AV45 PVE), non-PVE
corrected AV45-PET (AV45 uncorr.), PVE corrected FDG-PET (FDG PVE), non-PVE corrected FDG-PET (FDG uncorr.), and grey matter volume (GM vol.) from stepwise Cox regression.
Z-scores have been thresholded at an absolute value of z N 1.96, corresponding to a two-tailed error of p b 0.05.
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4. Discussion

We compared penalized and unpenalized regression approaches to
identify imaging parameters from amyloid PET, FDG-PET, and structural
MRI that predict rapid tomoderately fast conversion to dementia inMCI
subjects. We had two major expectations: first, penalized regression
would select a more parsimonious set of predictor variables than step-
wise unpenalized regression. Secondly, prediction accuracy would be
at least as high for penalized regression as for unpenalized regression.

Imaging studies on longitudinal follow-up of MCI individuals typi-
cally aim at two different endpoints: (i) maximization of prediction ac-
curacy by a combination of parameters, and (ii) defining a model that
provides insight into the relevance of different predictor variables.

In respect to prediction accuracy, with a large number of predictor
variables it has been shown that by shrinking or setting to 0 some
coefficients, prediction accuracy can be improved (Tibshirani, 2011).
Using stepwise selecting procedures with unpenalized regression is an
established approach to reduce the number of predictor variables.
With a number of predictor variables that was lower than the number
of cases, the prediction accuracy of bidirectional stepwise unpenalized
regression was similar to the prediction accuracy of penalized regres-
sion despite high collinearity of predictors.When the number of predic-
tors was higher than the number of cases used for training, stepwise
regression yielded only 60% accuracy in the test data compared to 70%
for penalized regression; without bootstrapping, the bidirectional step-
wise regression overfitted the outcome if the number of predictors was
close to the number of cases (Fig. 5, left of last row).

For the multiple modalities model, the penalized Cox regression
selected predictors primarily from AV45-PET data, less from FDG-PET
data and grey matter atrophy. One previous study had used penalized
logistic regression to determine the relative contribution of imaging
modalities to prediction accuracy for MCI to AD conversion based on
50 MCI subjects from ADNI-1 (Trzepacz et al., 2014). Due to the low
number of cases this previous study could only use leave one out
cross-validation. In addition, the study did not take censoring of obser-
vations into account. Still, prediction accuracy levels were similar be-
tween our and this previous study, with up to 69% accuracy using
cross-validation and 78% accuracy without cross-validation. Another
study with ADNI-1 data used logistic regression to identify an optimum
prediction model from a set of regressor variables, including structural
MRI values, CSF Abeta and tau levels, and neuropsychological test per-
formance (Ewers et al., 2012). A correlation between predictors below
r = 0.9 was considered sufficient to exclude collinearity between vari-
ables which is very liberal compared to the general recommendations
from the literature (r below 0.7) (Booth et al., 1994; Dormann et al.,
2013). Again, prediction accuracies were similar between this and our
study, reaching up to 69% accuracy with cross-validation. Gaussian
process classification, a machine learning approach, yielded a cross-



Fig. 5. Prediction accuracies without and with elastic net penalty. Bar diagram of sensitivity, specificity and overall accuracy to predict conversion status, MCIc vs. MCInc. Bars on the left
indicate results for unpenalized logistic regression, on the right from penalized logistic regression with an elastic net penalty (EN) of alpha = 0.5. In the first row, predictor variables
have been identified from the within modality penalized Cox regression models and combined across modalities, using bootstrapped cross-validation. In the second row, predictor
variables have been identified from the within modality penalized Cox regression models and combined across modalities without cross-validation (i.e. fit in the training sample). In
the third row, predictor variables have been identified from the within modality unpenalized stepwise (SW) Cox regression models and combined across modalities, using bootstrapped
cross-validation. The stepwise bidirectional selection process is not possible when the number of parameters (p) is larger than the number of cases (n). In the fourth row, predictor var-
iables have been identified from the within modality unpenalized stepwise (SW) Cox regression models and combined across modalities without cross-validation (i.e. fit in the training
sample). AUC — area under the receiver operating characteristics (ROC) curve.

590 S.J. Teipel et al. / NeuroImage: Clinical 8 (2015) 583–593
validated prediction accuracy of up to 69% based on an ADNI-1 sample
with FDG-PET, structuralMRI, and CSF Abeta and tau levels as predictors
(Young et al., 2013). In contrast to our penalized Cox regression, the
Gaussian process classification cannot consider time to conversion as
endpoint. Within our study, unpenalized and penalized logistic regres-
sion analysis yielded similar prediction accuracy when using a smaller
set of preselected predictors and bootstrap-based validation. These
data suggest that penalized regression becomes more efficient than
unpenalized regression when the number of predictor variables ap-
proximates or is larger than the number of cases in the training sample.
The level of accuracy of penalized logistic regression was also compara-
ble with the accuracy of cross-validated support vector machine classi-
fication using a non-linear radial kernel.

The aim to identify whichmodality and which regional values with-
in a modality may be relevant predictors is strongly influenced by the
collinearity of predictor variables. For all modalities, the penalized Cox
regression yielded more parsimonious prediction models than the
unpenalized Cox regression with stepwise feature selection. Although
parsimony of a model is an attractive feature in itself, this alone does
not guarantee that the model is neurobiologically more plausible than
a less parsimonious model. The signs of the regression coefficients var-
ied largely between corresponding regions from both hemispheres in
the unpenalized regression, but were homogeneous within the penal-
ized regressionmodel. These findings suggest that penalized regression
analysis provides a neurobiologically plausible set of predictor variables
in the presence of a high number of collinear predictor variables; at the
same time it achieves at least equal levels of prediction accuracy com-
pared to unpenalized regression. However, thefinal test of neurobiolog-
ical plausibility requires replication of findings in independent cohorts
and consistency of findings with neurobiological models of disease
pathogenesis, which needs to be explored in future studies.

When combining prediction variables across modalities, PVE uncor-
rected amyloid PET came out as the single most prominent modality,
both in terms of numbers of contributing regions as well as z-scores,
followed by grey matter volume, with only a minor contribution from
FDG-PET. Previous studies on multimodal prediction of MCI conversion
have investigated different marker combinations, including FDG-PET,
amyloid PET, atrophy, CSF tau and Abeta, as well as neuropsychological
scores. A recent Swedish study showed cognitive performance in the
trail making test (TMT)-B as best single predictor for conversion into
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dementia in MCI (Eckerström et al., 2014). Total tau levels in CSF were
superior to Abeta42 levels in predicting AD dementia. This previous
study, however, used no cross-validation of prediction accuracy, render-
ing the findings uninformative with respect to prediction accuracy in a
test sample. Another study, based on ADNI-1 data, used cross-validation
of the findings and showed hippocampus volume as well as episodic
memory performance as best predictors of time to conversion in a step-
wise Cox regression (Ewers et al., 2012). Also based on ADNI-1 data, a
Gaussian process classification found FDG-PET and structural MRI as su-
perior predictors compared to CSF tau and Abeta levels (Young et al.,
2013), but this study did not take censoring into account. The study by
Trzepacz et al. (Trzepacz et al., 2014), using elastic net logistic regression
with leave one out cross-validation, found that amyloid imaging using
PIB-PET and MRI based volumetry were the most relevant predictors
with only a marginal effect of FDG-PET. This result is similar to our find-
ings in the ADNI-2 sample after taking censoring into account.

The superior effect of amyloid PET compared to the other imaging
modalities agreeswith the role of amyloid positivity for disease progres-
sion inMCI. Particularly, as shown in the high specificity, absence of am-
yloid accumulationwas an accurate predictor forMCI subjects to remain
stable during clinical follow-up. This agrees with previous studies that
showed a very low risk for conversion into ADdementia in amyloid neg-
ative MCI individuals (Grimmer et al., 2013; Hatashita and Yamasaki,
2013; Okello et al., 2009;Wolk et al., 2009). In addition,markers of neu-
ronal injury, such as regional atrophy or CSF tau levels increase accuracy
of prediction of time to conversion in amyloid positive MCI subjects
(van Rossum et al., 2012).

In respect to regional distribution of findings, the penalized regres-
sionmodel retrieved regional amyloid load not only in early affected re-
gions, such as posterior cingulate (Camus et al., 2012), but also in lateral
temporal cortex, fusiform gyrus, superior parietal cortex and occipital
cortex, areas that begin to build up amyloid relatively late in the course
of AD (Braak and Braak, 1991). This agrees with the assumption that
areaswith early build-upof amyloid changes, already reaching a plateau
in theMCI stage, would add little to the discrimination of early from ad-
vanced stages of MCI, whereas areaswith later build-up of amyloid load
such as posterior brain areaswould bemore relevant to detect advanced
stages of MCI with possibly imminent conversion, because the build-up
of amyloid in these regions is only at its beginning before this stage of
disease. In respect to hypometabolism, amongothers, changes inmedial
temporal lobes contributed to the penalized predictionmodel. Thisfind-
ing agrees with a range of previous studies as summarized in a recent
review (Mosconi, 2013). At the same time, however, as pointed out in
the same review, hypometabolism of medial temporal lobe dementia
is less consistently reported than hypometabolism of posterior cingu-
late gyrus in MCI and AD, possibly related to a mixture of biological,
technical and image analysis issues that render this regionmore suscep-
tible to measurement variability than cortical brain areas.

To further explore the influence of partial volume effects on the
predictive value of AV45- and FDG-PET data, we assessed voxel-wise
group differences and predictive regression models separately for PVE
corrected and non-corrected PET data. Although based on theoretical
considerations PVE correction of PET data should significantly increase
the correspondence of the image signal with the true neuronal tracer
uptake, MRI-based PVE correction methods also depend on a range of
model assumptions that may not always hold true or may only be
roughly approximated in the imaging data (Erlandsson et al., 2012;
Thomas et al., 2011). Thus, PVE correction of AV45- and FDG-PET data
is not uniformly being employed across imaging studies, and the effect
of PVE correction on the predictive value of these imaging modalities
has received little attention so far.

Non-corrected AV45-PET data showed more precise group separa-
tion between converters and non-converters than PVE corrected
AV45-PET, both in the Cox regression as well as the voxel-based com-
parison. This agrees with a previous study, showing an increase of vari-
ability of amyloid values after PVE correction (Thomas et al., 2011). The
authors of the previous study argued that the observed increase of var-
iability of amyloid values in clinical amyloid PET scans may reflect true
variability of amyloid uptake. In our data, the coefficient of variation
across all 42 regions was twice as high for PVE corrected compared to
uncorrected amyloid PET data. These results suggest that the PVE cor-
rection related increase of variability degrades prediction accuracy of
AV45-PET data. One could speculate that PVE correction-induced in-
creases in variability of amyloid values may be due to the removal of
the relatively high and homogeneous signal of unspecific binding of
the 18F-labelled amyloid tracer in the white matter (Clark et al., 2011)
from themeasured signal, leaving themore variable grey matter signal.
This assumption agrees with our observation that the white matter co-
efficient of variation (CV) was much smaller than the grey matter coef-
ficient of variation (CV 0.11 vs. 0.27) for AV45-PET data, and also much
smaller than the variability of the FDG-PET signal in the white matter
(CV = 0.21). Direct comparisons of PVE corrected and non-corrected
amyloid PET imaging studies are still rare so that our findings warrant
further replication.

In contrast, FDG-PET showed larger between group differences after
PVE correction than before PVE correction. PVE correction of FDG-PET
data has been shown to affect group differences between AD dementia
subjects and healthy elderly controls to a limited degree (Bokde et al.,
2001; Ibanez et al., 1998), but to increase the specificity of regional dis-
tribution of hypometabolism for cognitive deficits (Bokde et al., 2005).
In addition, PVE correction of FDG-PET has been shown to increase the
sensitivity to detect early hippocampal hypometabolism inMCI subjects
(Mevel et al., 2007). Coefficients of variation were very similar before
and after PVE correction (0.19 and 0.21, respectively) in our data. There-
fore, the higher sensitivity for hypometabolism in predementia disease
stages and the specificity for cognitive impairment of PVE corrected
FDG-PETmay contribute to its higher precision to discriminate between
MCI converters and stable MCI compared to non-corrected FDG-PET
data.

There are limitations associatedwith our study. First, as stated in the
Material andmethods section, no statistical testing has been established
for coefficient estimates from penalized regression with exception of a
recently discovered significance test for the Lasso with continuous end-
points (Lockhart et al., 2014). Use of bootstrapping to assess z-scores of
parameter distribution is not taking bias into account which is, howev-
er, higher in penalized regression (providing a trade-off between vari-
ance and bias) than in unpenalized regression. Counting the frequency
of coefficient selection is an ad hoc solution to estimate the generaliz-
ability of the model and serves as an indicator of the relevance of each
parameter. Statistical testing for coefficients from classical stepwise re-
gression approaches, however, is not finally resolved either. Although
software packages for stepwise regression print out tables on standard
errors and p-values of selected variables, these values are not validly de-
fined, since the standard errors are not being adjusted for the search
process ((Hastie et al., 2009), page 60). This leads to too narrow esti-
mates of confidence intervals in stepwise regression (Altman and
Andersen, 1989).

Secondly, the number of converters was only half the number of
non-converters. Therefore, the selection of the classification threshold
(here 50%) for group classification in the logistic regression framework
may influence the achievable levels of accuracy. To control for such an
effect, we estimated areas under the receiver operating characteristic
curves (that consider all possible classification thresholds) that sug-
gested no major effect of threshold selection on accuracy levels.

Thirdly, different to a range of previous studies (Eckerström et al.,
2014; Ewers et al., 2012; Trzepacz et al., 2014) global cognition as mea-
sured using the MMSE score and episodic memory performance were
not different between MCI converters and non-converters in our sam-
ple. The criterion for ‘late MCI’ in the ADNI framework, as used in our
analyses, is a more advanced delayed recall impairment compared
with ‘early MCI3 subjects. This likely leads to a floor effect of delayed re-
call performance in the late MCI subjects. The lack of a difference,
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however, offers the opportunity to assess the contribution of imaging
markers to prediction accuracy independently of baseline differences
in global cognition or episodic memory performance between con-
verters and non-converters.

In summary, we found accurate cross-validated prediction of
conversion status and time to conversion in a relatively large sample
of MCI converters and non-converters between 6 to 31 months of
follow-up. Penalized Cox and logistic regression yielded more parsimo-
niousmodels than unpenalized stepwise regressionwithmaintained or
evenmore precise prediction performance. The advantages of penalized
regression models became particularly strong with a high number of
predictors (relative to the number of cases) and high collinearity be-
tween predictors. PVE correction, a widely discussed but still rarely
used preprocessing approach for PET data, showed detrimental effects
on group discrimination for AV45-PET, but beneficial effects for FDG-
PET both in penalized logistic regression and simple linear models.
From a clinical point of view, the differential effect of PVE correction
on AV45-PET and FDG-PET data should be considered when deciding
about the use of PVE correction in the context of predictive PET studies.
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