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In this work, we are interested in predicting the diagnostic statuses of potentially neurodegenerated patients
using feature values derived frommulti-modality neuroimaging data and biological data, whichmight be incom-
plete. Collecting the feature values into a matrix, with each row containing a feature vector of a sample, we
propose a framework to predict the corresponding associated multiple target outputs (e.g., diagnosis label and
clinical scores) from this featurematrix by performingmatrix shrinkage followingmatrix completion. Specifically,
we first combine the feature and target output matrices into a large matrix and then partition this large incomplete
matrix into smaller submatrices, each consisting of samples with complete feature values (corresponding to a cer-
tain combination of modalities) and target outputs. Treating each target output as the outcome of a prediction
task, we apply a 2-step multi-task learning algorithm to select the most discriminative features and samples in each
submatrix. Features and samples that are not selected in any of the submatrices are discarded, resulting in a
shrunk version of the original large matrix. The missing feature values and unknown target outputs of the shrunk
matrix is then completed simultaneously. Experimental results using the ADNI dataset indicate that our proposed
framework achieves higher classification accuracy at a greater speed when compared with conventional
imputation-based classification methods and also yields competitive performance when compared with the
state-of-the-art methods.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Alzheimer’s Disease (AD) is the most prevalent form of dementia. It
is ultimately fatal and is ranked as the sixth leading cause of death in the
United States in year 2012 (Alzheimer's Association, 2013). Neurode-
generation associated with AD is progressive and the symptoms usually
begin with gradual memory decline followed by a gradual loss of cogni-
tive and motor abilities that will cause difficulties in the daily lives of
the patients. Eventually, the patients will lose the ability to take care
of themselves and will need to rely on the intensive care provided by
others. This has posed significantmedical and socioeconomic challenges
to the community (Alzheimer's Association, 2013).

Owing to the criticality of this issue, it is vital to diagnose AD accu-
rately, especially at its prodormal stage, i.e., amnestic mild-cognitive
g), dgshen@med.unc.edu

ed from theAlzheimer's Disease
edu). As such, the investigators
tation of ADNI and/or provided
his report. A complete listing of
edu/wp-content/uploads/how_
impairment (MCI), so that an early treatment can be provided to possi-
bly stop or slow down the progression of the disease. MCI, which is
defined as a condition where the patient has noticeable cognitive
decline, but without difficulty in carrying out daily activities, has high
probability to develop into AD.With the help of emergingneuroimaging
technology, the progress and severity of the neurodegeneration associ-
ated with AD or MCI can now be diagnosed and monitored in different
ways (modalities). Magnetic resonance imaging (MRI) scans, for
instance, provide 3D structural information about the brain, where fea-
tures such as region-of-interest (ROI)-based volumetric measure and
the cortical thickness can be extracted from theMRI to quantify brain at-
rophy that is usually associatedwith the diseases (Cuingnet et al., 2011;
Desikan et al., 2009; Du et al., 2007; Fan et al., 2007b; Gerardin et al.,
2009; Klöppel et al., 2008; Oliveira et al., 2010). Flourodeoxyglucose
positron emission tomography (FDG-PET), on the other hand, can be
used to detect abnormality in term of glucose metabolic rate at brain
regions preferentially affected by AD (Chételat et al., 2003, 2005;
Foster et al., 2007; Herholz et al., 2002; Higdon et al., 2004). Besides
neuroimaging techniques, another line of research uses biological and
genetic data to develop potential biomarkers for AD diagnosis. The
important measurements in biological and genetic data that are closely
related to cognitive decline in AD patients include the increase of cere-
brospinal fluid (CSF) total-tau (t-tau) and CSF tau hyperphosphorylated
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at threonine 181 (p-tau), the decrease of CSF amyloid β (Aβ), and the
presence of gene apolipoprotein E (APOE) ϵ4 allele (Fagan et al., 2007;
Fjell et al., 2010; Morris et al., 2009).

Although it is common to use information from only one modality
such as structural MRI for diagnosis of AD/MCI, complementary infor-
mation from multiple modalities (Fjell et al., 2010; Walhovd et al.,
2010; Landau et al., 2010; Zhang et al., 2011; Liu et al., 2014; Verma et
al., 2005; Fan et al., 2007a; Wee et al., 2011, 2012; Li et al., 2012; Zhou
et al., 2011) can be combined for more accurate diagnosis. This is sup-
ported by the results reported in recent studies (De Leon et al., 2006;
Fan et al., 2008; Ye et al., 2008; Hinrichs et al., 2009, 2011; Davatzikos
et al., 2011; Zhang and Shen, 2012; Zhang et al., 2011; Liu et al., 2012;
Zhang et al., 2012). To support AD research using multi-modality data,
Alzheimer's Disease Neuroimaging Initiative (ADNI) has been actively
collecting data from multiple modalities (e.g., MRI, FDG-PET and CSF
data) from AD, MCI and normal control (NC) subjects yearly or half-
yearly. Unfortunately, not all the samples in ADNI dataset are completed
with the data from all different modalities. For example, while all the
samples in the ADNI baseline dataset contain MRI data, only about half
of the samples contain FDG-PET data (which is referred to as PET
throughout the manuscript) and another different half of the samples
contain CSF data. The “missing” data in the ADNI dataset is due to sev-
eral reasons, such as, high measurement cost (i.e., PET scans), poor
data quality and unwillingness of the patients to receive invasive
tests (i.e., collection of CSF samples through lumbar puncture).

There are basically two approaches to deal with missing data in a
dataset, i.e., we can either 1) discard the samples with missing data, or
2) impute the missing data. Most existing approaches discard samples
with at least one missing modality and perform disease identification
based on the remainder of the dataset. However, this approach discards
a lot of information that is potentially useful. In fact, in following this
approach for multi-modality analysis using MRI, PET and CSF data,
about 2/3 of the total samples at ADNI baseline dataset will have to be
removed.

The data imputation approach, on the other hand, is more preferable
as it provides the possibility to use as many samples as possible in analy-
sis. In fact, incomplete dataset is ubiquitous inmany applications and thus
various imputation methods have been developed to estimate the miss-
ing values based on the available data (Schneider, 2001; Troyanskaya
et al., 2001; Zhu et al., 2011). However, these methods work well only
when a small portion of the data is missing, but become less effective
when a large portion of the data is missing (e.g., PET data in ADNI). Re-
cently, low rank matrix completion (Candès and Recht, 2009) has been
proposed to impute missing values in a large matrix through trace norm
minimization. This algorithm can effectively recover a large portion of
the missing data if the ground truthmatrix is low rank and if the missing
data are distributed randomly and uniformly (Candès and Recht, 2009).
Unfortunately, the latter assumption does not hold in our case since, for
each subject, the data fromone ormore of themodalitiesmight be entire-
ly missing, i.e., the data is missing in blocks.

In this paper, we attempt to identify AD and MCI from the NCs by
using incomplete multi-modality dataset from the ADNI database.
Denoting the incomplete dataset as amatrix with each row representing
a feature vector derived from multi-modality data of a sample, conven-
tional approach for solving this problem is to impute the missing data
and build a classifier based on the completed matrix. However, it is too
time consuming (as matrix size is large) (Jollois and Nadif, 2007;
Xu and Jordan, 1996) and inaccurate (as there are too many missing
values) to apply the current imputation methods directly. In addition,
the errors introduced during the imputation process may affect the
performance of the classifier. In this paper, we largely avert the
problems of the conventional approach by proposing a framework
(Thung et al., 2013) that 1) shrinks the large incomplete matrix through
feature and sample selections, and 2) predicts the output labels directly
through matrix completion on the shrunk matrix (i.e., without building
another classifier on the completed matrix).
Specifically, we first partition the incomplete dataset into two
portions – training set and testing set. Each set is represented by an in-
complete featurematrix (each row contains feature vector of a sample),
and a corresponding target output matrix (i.e., diagnostic status and
clinical scores). Our first goal is to remove redundant/noisy features
and samples from the feature matrix so that the imputation problem
can be simplified. However, due to the missing values in the feature
matrix, feature and sample selections cannot be performed directly.
We thus partition the feature matrix, together with the target output
matrix, into submatrices with only complete data (Ghannad-Rezaie
et al., 2010), so that a 2-step multi-task learning algorithm (Obozinski
et al., 2006; Zhang and Shen, 2012) can be applied to these submatrices
to obtain a set of discriminative features and samples. The selected
features and samples then form a shrunk, but still incomplete, matrix
which is more “friendly” to imputation algorithms, as redundant/noisy
features and samples have been removed and there are now a smaller
number of missing values that need to be imputed. We propose to im-
pute the missing feature data and target outputs simultaneously using
a matrix completion approach. Two matrix completion algorithms are
explored: low rank matrix completion and expectation maximization
(EM). Experimental results demonstrate that our framework yields
faster imputation and more accurate prediction of diagnostic labels
than the conventional imputation-based classification approach.

In brief, we propose a framework for a solution for this problem –

classification using incomplete multi-modality data with large block of
missing data. The contributions of our framework are summarized
below:

∙ Feature selection using incomplete matrix (i.e., matrix with missing
values) through data grouping and multi-task learning.

∙ Sample selection using incomplete matrix through data grouping
and multi-task learning.

∙ Improve imputation effectiveness by focusing only on the imputa-
tion of important data.

∙ Improve classification performance by label imputation.

Data

ADNI background

Data used in the preparation of this article were obtained from the
ADNI database (adni.loni.ucla.edu). ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-
profit organizations, as a $60 million, 5-year public–private partnership.
The primary goal of ADNI has been to testwhether serialMRI, PET, other
biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early AD. Determi-
nation of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of
clinical trials.

The Principal Investigator of this initiative isMichaelW.Weiner,MD,
VA Medical Center and University of California - San Francisco. ADNI
is the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been followed by
ADNI-GO andADNI-2. To date, these three protocols have recruited over
1500 adults, ages 55 to 90, to participate in the research, consisting of
cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow up duration of each group is spec-
ified in the protocols for ADNI-1, ADNI-2and ADNI-GO. Subjects origi-
nally recruited for ADNI-1 and ADNI-GO had the option to be followed
in ADNI-2. For up-to-date information, see www.adni-info.org.
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Table 1
Information about ADNI dataset used in this study (Edu.: Education, std: standard deviation).

Gender Age (years) Edu. (years) MMSE CDR

Subjects Male Female Mean ± std. Mean ± std. Mean ± std. Mean ± std.

AD 99 87 75.4 ± 7.6 14.7 ± 3.1 23.3 ± 2.0 0.75 ± 0.25
MCI 254 141 74.9 ± 7.3 15.7 ± 3.0 27.0 ± 1.8 0.50 ± 0.03
NC 118 108 76.0 ± 5.0 16.0 ± 2.9 29.1 ± 1.0 0.00 ± 0.00

Table 2
Number of subjects (ADNI database at baseline) and number of features used in this study.

Modalities

MRI PET CSF All

Number of features 93 93 5 191
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Subjects

We only used the baseline data in this study, amounting to a total of
807 subjects (186 AD, 395 MCI and 226 NC). All 807 subjects have MRI
scanned,while only 397 subjects have FDG-PET scanned and 406 subjects
have CSF sampled. The general inclusion/exclusion criteria used by ADNI
are summarized as follow: 1) Normal subjects: Mini-Mental State Exam-
ination (MMSE) scores between 24 and 30 (inclusive), a Clinical Demen-
tia Rating (CDR) of 0, non-depressed, non-MCI, andnondemented; 2)MCI
subjects: MMSE scores between 24 and 30 (inclusive), a memory com-
plaint, have objective memory loss measured by education adjusted
scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, ab-
sence of significant levels of impairment in other cognitive domains, es-
sentially preserved activities of daily living, and an absence of dementia;
3) mild AD: MMSE scores between 20 and 26 (inclusive), CDR of 0.5 or
1.0, and meets NINCDS/ADRDA criteria for probable AD.

Since MMSE and CDR were used as parts of the criteria in categoriz-
ing subjects to different disease groups in ADNI dataset, theymight pro-
vide complementary information in the data imputation process. Thus,
in this study, three clinical scores were also included (CDR global,
CDR-SB2 and MMSE) as target outputs in addition to target label. The
information of the subjects (i.e., gender, age and education) and clinical
scores (i.e., MMSE and CDR global) used in this study are summarized in
Table 1.

Data processing

The MRI and PET images were pre-processed to extract ROI-based
features. For the processing of MRI images, anterior commissure (AC)–
posterior commissure (PC) correctionwas first applied to all the images
using MIPAV software.3 We then resampled the images to 256 × 256 ×
256 resolution and used N3 algorithm (Sled et al., 1998) to correct the
intensity inhomogeneity. Next, the skull was stripped using themethod
described in (Wang et al., 2011, 2014), followed by manual editing and
cerebellum removal. We then used FAST (Zhang et al., 2001) in the FSL
package4 to segment the human brain into three different types of tis-
sues: gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF). After registration using HAMMER (Shen and Davatzikos, 2002;
Jia et al., 2010; Shen et al., 1999; Shen and Davatzikos, 2004; Tang et al.,
2009; Wu et al., 2006; Xue et al., 2006b,a; Yang et al., 2008; Yap et al.,
2009; Zacharaki et al., 2008), we obtained the subject-labeled image
based on a template with 93 manually labeled region-of-interests
(ROIs) (Kabani, 1998). For each subject, we used the volumes of GM tissue
of the 93 ROIs, which were normalized by the total intracranial volume
(which is estimated by the summation of GM, WM and CSF volumes
from all ROIs), as features. For PET image, we first aligned it to its corre-
sponding MRI image of the same subject through affine transformation,
and then computed the average intensity of each ROI in the PET image as
feature. In addition,five CSF biomarkerswere also used in this study, name-
ly amyloid β (Aβ42), CSF total tau (t-tau) and tau hyperphosphorylated at
threonine 181 (p-tau) and two tau ratios with respective to Aβ42 (i.e., t-
tau/Aβ42 andp-tau/Aβ42). As a result, there are a total of 93 features derived
from the MRI images, 93 features derived from the PET images and 5
features derived from the CSF biomarkers used in this study. Table 2
summarizes the number of samples and the number of features used in
this study for eachmodality. Thenumbersunder the column “All” represent
the number of samples with all the three modalities available.

Classification through matrix shrinkage and completion

Fig. 1 illustrates our framework,which consisted of three components:
1) feature selection, 2) sample selection, and 3) matrix completion.
2 CDR-SB: CDR Sum of Box, summation of six CDR subscores.
3 http://mipav.cit.nih.gov/index.php.
4 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
Let X ∈ ℝn × d (n samples, d features) and Y ∈ ℝn × t (n samples,
t targets) denote the feature matrix (that contains features derived
from MRI, PET and CSF data) and target matrix (that contains label
[−1 1] and clinical scores), respectively. As shown in the leftmost
diagram in Fig. 1, X is incomplete, and about half of the subjects do
not have PET and CSF data. The dataset is divided into two parts,
one for training and one for testing. The target outputs for all the
training samples are known, but the target outputs for the testing
samples are set to unknown for testing purposes. The input features
X and clinical scores of Y are first z-normalized across all the samples,
by using mean and scale obtained only from the training data. All the
missing data are ignored during the normalization process. Then, two
stages of multi-task sparse regression are used to remove noisy or re-
dundant features and samples in the training set. The remainingmatrix
is a matrix with the most discriminative features and samples from the
training set. The same set of features selected in the training set are also
selected for the testing set. The shrunk training feature matrix together
with the testing feature matrix forms a shrunk feature matrix Xs. We
then stack Xs with the corresponding target outputs Ys (where the
values is unknown for the testing set) to form an incomplete matrix Z.
Finally, a matrix completion algorithm (Goldberg et al., 2010; Ma
et al., 2011; Schneider, 2001) is applied to Z, so that missing features
and the unknown testing target outputs can be predicted simultaneously.
The signs of the imputed target labels are then used as the classification
output for the testing samples. The following subsections describe the
three main components of the framework in more details.

Feature selection

Not all the features are useful in classification. In fact, noisy features
may decrease imputation and classification accuracy. In this step, the
noisy or redundant features in the incomplete dataset are identified
and removed throughmulti-task sparse regression (with details provid-
ed later). However, due to the missing values in the dataset, we cannot
apply sparse regression directly to the dataset.We first group the incom-
plete training set into several overlapping submatrices that comprised
sampleswith complete feature data for differentmodality combinations,
to which sparse regression algorithm can be applied. Some parts of the
submatrices are overlapping as we use a grouping strategy that uses
the maximum possible numbers of samples and features for each
submatrix, so that as much information as possible is used for sparse
regression. For example, Table 3 shows the seven possible types of
modality combination, denoted as “combination pattern” (CP), for a
dataset of 3 modalities, possibly with incomplete data. As shown in
Table 3, a sample with lower CP is a “subset” of some higher CPs,
where these higher CPs contain modality data that can be grouped
AD subjects 186 93 102 51
MCI subjects 395 203 192 99
NC subjects 226 101 112 52
Total subjects 807 397 406 202

http://mipav.cit.nih.gov/index.php)
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)


Fig. 1.Classification viamatrix shrinkage andmatrix completion. There are threemain parts in this framework: feature selection, sample selection andmatrix completion.Note that feature
selection only involves training set. (Xs, Ys: Shrunk version of X and Y; Zc: Completed version of Z.)
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with the lower CP to form a submatrix. For instance, the first row of
Table 3 indicates that CP1 is “subset” of CP3, CP5 and CP7, as CP1 contains
only “Modality 1” data, which is also part of CP3, CP5 and CP7's data.
Thus, we can combine “Modality 1” data from CP3, CP5 and CP7 with
CP1 to form a submatrix that contains the maximum availability of sam-
ples with “Modality 1” data.

For the ADNI dataset used in this study, Modality 1, 2 and 3 are used
to denote MRI, PET and CSF, respectively. At ADNI baseline, MRI data
is complete while PET and CSF data is incomplete, resulting in four
possible types of data combination, i.e., CP1, CP3, CP5 and CP7. Each
CP can borrow data from the higher CPs as indicated in the last column
of Table 3 to form a submatrix. The graphical illustration of the
submatrices is shown in Fig. 2. The red blocks in Fig. 2 mark the four
submatrices and their corresponding target outputs. Each submatrix
has four interrelated target outputs (i.e. 1 label and 3 clinical scores),
which can be learned together using a multi-task learning algorithm,
by treating the prediction of each output target as a task. Let Xi∈ℝni�di

and Yi∈ℝni�ti denote the input submatrix and its corresponding output
matrix for the i-th multi-task learning in the training set, respectively.
Then the multi-task sparse regression of each submatrix is given as

min
αi

1
2

Xiαi−Yik k22 þ λ f αik k2;1; ð1Þ

where ni, di, ti andαi∈ℝdi�ti denote the number of samples, the number
of features, the number of target outputs and the weight matrix for the
i-th multi-task learning, respectively. ‖.‖2,1 in Eq. (1) is the l2,1-norm
Table 3
Grouping of data according to maximum availability of samples for each combination
pattern (CP) of modalities. The availability of modalities is represented by binary
number at the center column of the Table (‘0’ denotes ‘missing’, ‘1’denotes ‘available’),
while its decimal equivalent is represented by the CP number on the leftmost column
of the Table. Samples with lower CP number can be grouped with the samples with
higher CP numbers at the last column of the Table to form a submatrix. In this study, the
“Modality 1”, “Modality 2” and “Modality 3” represent “MRI”, “PET” and “CSF”, respectively.

Combination pattern
(CP)

Availability of data Subset of CP

Modality 1 Modality 2 Modality 3

1 1 0 0 3, 5, 7
2 0 1 0 3, 6, 7
3 1 1 0 7
4 0 0 1 5, 6, 7
5 1 0 1 7
6 0 1 1 7
7 1 1 1 –
(group-lasso (Liu et al., 2009; Yuan et al., 2012)) operator which is de-

fined as ∑di
k¼1 α kð Þ

i

���
���
2
, where αi

(k) denotes the k-th row of αi. The use

of l2-norm for αi
(k) forces the weights corresponding to the k-th

feature (of Xi) across multiple tasks to be grouped together, while the
subsequent use of l1-norm for αi

(k) forces certain rows of αi to be all
zero. In other words, Eq. (1) tends to select only common features
(corresponding to non-zero-valued rows of αi) for all the prediction
tasks. Thus, αi is a sparse matrix with a significant number of zero-
valued rows that correspond to redundant and irrelevant features in
each submatrix. In Fig. 2, we arrange αi according to the feature indices
in X, so that the shaded rows in αi are corresponding to the columns in
Xi (illustrated by red block in the Figure), while the empty rows inαi are
corresponding to the features not included inXi. In thisway, each rowof
αi is corresponding to the same feature index in X. The features that are
selected for at least one of the submatrices (i.e., rows with at least one
non-zero value in [α1 α2 α3 α4]) are finally used for the training and
the testing sets. In this study, we determined αi for each multi-task
learning by using 5-fold cross-validation test based on the accuracy of
the label (i.e., first column of Yi) prediction of the training samples.
The training and the testing sets with the selected features are then
used in sample selection as described in the following subsection.

Sample selection

In this step, another multi-task learning is used to select representa-
tive samples from the training set that are closely related to the samples
in the testing set. This is similar to sparse representation reported by
other literatures (Huang and Aviyente, 2006;Wright et al., 2010), a sub-
set of samples is selected to represent a test sample. The only difference
here is that we perform sparse representation for a group of testing
samples, instead of one testing sample, to 1) select common samples
from the training set that well represent the samples in the testing set,
and 2) remove unrelated or redundant samples from the training set.
The procedure of sample selection is similar to feature selection de-
scribed previously, with some modifications on the input and output
matrices of the multi-task learning.

Let Xtr and Xte respectively denote the shrunk training and testing
feature matrices from the previous step that contain only the selected
features. Xtr and Xte are first transposed (or rotated by 90°) so that
each column of Xtr

T and Xte
T contains features of a sample. Then Xtr

T

and Xte
T are used as the input and output to the multi-task learning,

where the task is now defined as the prediction of each testing sample
from the training samples. If there are no missing values in Xtr

T and
Xte

T , this multi-task learning will select a set of common samples



Fig. 2. Feature selection for incompletemulti-modal datamatrixwithmultiple related target outputs by first grouping thedata into submatrices and then usingmulti-task learning on each
submatrix to extract common discriminative features. The red boxes come in pairs, whichmark the submatrices that are comprised of largest possible number of samples for each pattern
of modality combination and their corresponding target outputs.
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(analogous to common features in feature selection) in the training
set for all the prediction tasks. However, due to the missing values
inXtr

T andXte
T, we cannot perform sample selection directly. Instead,

similar to feature selection, we group the input matrix Xtr
T

� �
into

submatrices that contains complete data for the maximum possible
number of samples and features. For each submatrix in Xtr

T , all the
samples in Xte

T that contain the same set of input features are iden-
tified. Each pair of input submatrix and output submatrix with the
same features set forms a multi-task learning problem, with its opti-
mization equation given as

min
βi

1
2

Xtr
T
i
βi−Xte

T
i

���
���2
2
þ λs βik k2;1; ð2Þ

where Xtr
T
i ∈ℝdi

′�ntr i , Xte
T
i ∈Rdi

′�ntei , βi∈ℝntri � ntei , di
′ , ntri and ntei

denote the input submatrix, output submatrix, weight matrix, length
of the selected features, number of training samples, and number of
testing samples of the i-th multi-task learning, respectively.

Fig. 3 summarizes the illustration of the sample selection. Note that
the target matrix is incomplete like the input matrix. This causes differ-
ent number of targets for eachmulti-task learning, which is reflected by
different width of the weight matrix βi. Due to the use of ‖.‖2,1 term in
Eq. (2), βi learned is a sparse matrix with some all-zero rows. Training
subjects corresponding to all-zero rows of [β1 olβ2 β3 β4] are removed
as noisy/irrelevant samples. We assume that removal of noisy or
unrelated samples from the training set can consequently improve the
accuracy of the missing values imputation, and thus the classification
performance. To justify this assumption, we have included a simulation
test on our proposed sample selection algorithm using synthetic data in
Appendix A.
Matrix completion as classification

The original incomplete matrix is shrunk significantly after the fea-
ture and sample selection steps. LetXs andYs denote the shrunk version
of matrix X and Y, respectively, while ns and ds denote the number of
remaining samples and data features, respectively. The stacked
matrix Z ¼ XsYs½ �∈ℝns� dsþtð Þ still contains some missing values, in-
cluding the target outputs of the test set which are to be estimated.
The objective of this step is to impute the missing input features,
missing target labels, and missing clinical scores simultaneously.
Two imputation methods are tested for this step, namely the modi-
fied Fixed-point Continuation (FPC) algorithm (Goldberg et al.,
2010; Ma et al., 2011) and the regularized expectation maximization
(EM) algorithm (Schneider, 2001).

Modified FPC (mFPC)
The multi-task regressions used in the features and samples selec-

tion steps have selected the most discriminative input features for the
(training) target outputs and the most representative training samples
for the testing samples, respectively. As a consequence, the columns of
target outputs (Ys) of the stackedmatrix Z could be linearly represented
by the columns of data features (Xs); while the rows of the testing
samples in Z could be linearlyrepresented by the rows of the training
samples. The matrix Z is thus probably low rank (as some rows could
be represented by other rows, etc.). However, in practice, measure-
ments in Xs and Ys could contain certain level of noises. Therefore, the
incomplete Z can be completed using trace norm minimization (low
trace norm is often used to approximate low rank assumption), together
with two regularization terms (i.e., the second and third term in Eq. (3))
to penalize the noises in Xs and Ys labels (P), and 2) the rest of the data
(Q). The regularization terms are changed accordingly to have one logistic



Fig. 3. Sample selection. In this study, sample selection is realized bymodifying the input and outputmatrices in feature selection illustrated in Fig. 2. Specifically,we transpose the training
and testing feature matrices, and use the transposed training and testing feature matrices as the input and target output of the multi-task learning, respectively.
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loss function (Lp(u,v) = log(1+ exp(−uv))) for the output labels (as the
output labels can only take value 1 or−1), and one square loss function
(Lq(u,v) = 1/2(u − v)2) for the rest of the data (as other data can take
any value). The imputation optimization problem is thus given as:

arg min
Z

μ Zk k� þ
λm

ΩPj j
X

i; jð Þ∈ΩP

Lp zij; pij
� �

þ 1

ΩQ

���
���

X
i; jð Þ∈ΩQ

Lq zij; qij
� �

; ð3Þ

whereΩP andΩQ denote the set of observed (i.e., non-missing) labels in
Ys and the set of observed values for the rest of the data, respectively; |.|
denotes an operator for the number of elements; ‖.‖∗ denotes an operator
for the trace norm; and zij, pij and qij are the predicted observed values, ob-
served target labels and other observed data, respectively. λm and μ are
the positive parameters used to control the focus of the minimization
problem in Eq. (3). If λm is high, Eq. (3) will focus on minimizing the Lp
term (second term); if μ is high, Eq. (3) will focus on minimizing the
trace norm term (i.e., stronger low rank assumption), and vice versa.

This optimization problem is solved by using the modified FPC algo-
rithm (Goldberg et al., 2010), which consists of two alternating steps for
each iteration k:

1. Gradient step:

Ak ¼ Zk−τg Zk
� �

ð4Þ

where τ is the step size and g(Zk) is the matrix gradient which is
defined as:

g zij
� �

¼

λm

ΩPj j
−pij

1þ exp pijzij
� � ; i; jð Þ∈ΩP

1

ΩQ

���
���

zij−qij
� �

; i; jð Þ∈ΩQ

0; otherwise

8>>>>>><
>>>>>>:

ð5Þ
2. Shrinkage step:

Zkþ1 ¼ Sτμ Ak
� �

ð6Þ

where S(⋅) is the matrix shrinkage operator. If SVD of Ak is given as
UΛVT, then the shrinkage operator is given as:

Sτμ Ak
� �

¼ Umax Λ−τμ;0ð ÞVT ð7Þ

where max(·) is the elementwise maximum operator.

These two steps are iterated until convergence where the objective
function in Eq. (3) at k-th iteration is stable.

Regularized EM (rEM)
We also use the regularized EM (rEM) algorithm developed in

(Schneider, 2001) to impute missing values. Symbols defined in this
subsection should not be confused with the symbols used in other sec-
tions. Let X∈ℝn × d be an incompletematrix with n number of samples
and d number of variables, its mean vector μ ∈ ℝ1 × d and covariance
matrix Σ ∈ ℝd × d are to be estimated. For a given sample x ∈ ℝ1 × d

with missing values, let xm∈ℝ1�dm and xa∈ℝ1�da denote the parts
of vector x containing variables with missing values and available
values, respectively. Then xm can be estimated through linear regression
model below

xm ¼ μm þ xa−μað ÞBþ e ð8Þ

where μm∈ℝ1�dm and μa∈ℝ1�da represent the portions of μ that corre-
sponding to xm and xa, respectively, while B∈ℝda�dm and e∈ℝ1�dm are
the regression coefficient matrix and random residual vector (with
zero mean and unknown covariance matrix C∈ℝdm�dm ), respectively.
We are now ready to describe the imputation using EM algorithm,
which is an iterative process that consists of three steps, 1) expectation
step: themean μ and covariancematrix Σ is estimated, 2)maximization
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step: the conditional maximum likelihood estimate (MLE) of the
parameters of the regression model (i.e., B and C) is computed, based
on the expected value of μ and Σ, and, 3) imputation step: the missing
values is estimated using Eq. (8) based on the computed parameters.
After missing values are imputed, it will iterate back to step 1, where
a new set of μ and Σ is estimated based on the completed x, and
the whole process is repeated until a convergence condition is met
(i.e., the estimated μ and Σ become stable). Regularized EM algorithm
consists of the same steps as EM algorithm, with a modification on the
maximization step, where the regression coefficients in B are computed
through ridge regression method (Hoerl and Kennard, 1970). For more
detailed information about rEM algorithm, interested reader may refer
to (Schneider, 2001). In our framework, rEM is used to estimate un-
known target outputs andmissing input features in the matrix comple-
tion step.

Results and discussions

The proposed framework was tested by using the ADNI multi-
modality dataset, which includes MRI, PET and CSF data. In this section,
the proposed framework is first comparedwith the baseline frameworks
which will be defined in the following subsection. Then, the proposed
framework is compared with two state-of-the-art methods (i.e., incom-
plete Multi-Source Feature (iMSF) learning method and Ingalhalikar's
algorithm for classification based on incomplete dataset) and also a
unimodal classifier using only MRI features. In addition, we evaluate
the effect of parameters selection (i.e., λs, λm and μ) of the proposed
framework on the classification performance. Finally, we also identify
the features that are always being selected in this study.

The classification performance of all the compared methods is eval-
uated by using a 10-fold cross-validation scheme. For each fold, another
5-fold cross-validation scheme is applied on the training dataset to
select the best parameters for multi-task learning in feature selection
and also for sparse regression based classifier in the baseline methods.
Themulti-task learning in feature selection and sample selection is real-
ized by using matlab function mcLeastR from SLEP.5 SLEP is a powerful
sparse learning package where it achieves fast convergence in com-
putation by using Nesterov's method (Liu et al., 2009; Nesterov,
1983) to solve smooth reformulation of the problem and accelerated
gradient method (Liu and Ye, 2010; Nesterov, 2007) to solve regular-
ized non-smooth optimization problem. There are infinite choices for
λf (i.e., multi-task learning parameter in feature selection). Fortunately
for the solver mcLeastR that we used, it automatically computes the
maximum λmax value for our problem. Thus, each λf value that we
input to this solver is treated as a fraction to λmax, e.g., the true regular-
ization parameter used for λf =0.1 is actually 0.1 × λmax. Therefore, we
choose parameter λf from these candidate values: {0.001, 0.005, 0.01,
0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, which roughly cover
the whole range of possible λf values. The λf value used for each fold
of experiment is determined based on the highest accuracy of regressed
Y label of the training data through 5-fold cross-validation test on the
training data. As a result, λf is different for each fold of experiment,
i.e., different data sparsity for each fold of experiment is assumed. For
sample selection, we fix a small value for λs, aiming to only remove
unrelated samples from the training set. For mFPC matrix completion
algorithm, we use grid search to select values of its parameters (i.e., μ
and λm), i.e., fixed value of μ and λm are used for all the folds based on
the best classification result in grid search.

Four classification performance measures are used in this study,
namely 1) accuracy: the number of correctly classified samples divided
by the total number of samples; 2) sensitivity: the number of correctly
classified positive samples divided by the total number of positive sam-
ples; 3) specificity: the number of correctly classified negative samples
5 http://www.public.asu.edu/jye02/Software/SLEP/index.htm.
divided by the total number of negative samples; and 4) area under re-
ceiver operating characteristic (ROC) curve (AUC). The positive samples
are referred to AD in AD/NC classification and MCI in MCI/NC classifica-
tion, respectively.

Comparison with baseline frameworks

Four imputationmethods are included in the baseline framework for
comparison in this study:

1. Zero imputation. In this method, themissing portion of the input data
matrix is filled with zero. Since all the features were z-normalized
(i.e., with zero mean and unit standard deviation) before the imputa-
tion process, “zero imputation” is equivalent to fill themissing feature
values with the average observed feature values (i.e., all the missing
values in a column of data matrix are filled with the mean of the ob-
served values in the same column).

2. k-nearest neighbor (KNN) imputation (Speed, 2003; Troyanskaya
et al., 2001). The missing values are filled with a weighted mean of
the k nearest-neighbor rows. The weights are inversely proportional
to the Euclidean distances from the neighboring rows.We set k=20
after some empirical tests.

3. Regularized expectation maximization (rEM) (Schneider, 2001).
Details are as described in the previous section. We used the default
parameter values for the rEM code downloaded from http://www.

clidyn.ethz.ch/imputation/index.html.
4. Fixed-point continuation (FPC) (Ma et al., 2011). FPC is one of the

low rank matrix completion method that uses the fixed point and
Bregman iterative algorithms. It is the original version of Eq. (3)
with the regularization terms Lp and Lq replaced by a square loss
function for all the observed data. Thematlab code for FPC is included
in the singular value thresholding (SVT) package.6 The parameter
value of FPC, i.e., μ, is determined empirically.

These imputation methods are used in two baseline frameworks for
comparisons:

1. Baseline 1: Conventionalmethod. Impute the incomplete datamatrix
and then train a classifier using the completed training set data.

2. Baseline 2: Use the proposed feature and sample selectionmethod to
shrink the incomplete dataset, impute the missing features in the
shrunk incomplete feature matrix, and then train a classifier based
on the completed shrunk training set data.

The only difference between the two baseline frameworks above, is
that thefirst baseline framework imputesmissing values on the original
feature matrix, while the second baseline framework imputes missing
values on the shrunk feature matrix.We use sparse regression classifier
for the two baseline frameworks, its formulation is given as:

min
α

1
2

Xα−Yk k22 þ λ αk k2;1; ð9Þ

where X, Y, and α are defined as the input feature matrix, the output
target matrix (including class labels and clinical scores), and the weight
matrix, respectively. We obtain α based on the completed training set
and multiply it with the completed feature matrix from the testing set
to produce regressed outputs. The sign of the regressed output of a test-
ing sample that corresponds to the class label is used as the predicted
class label. There is one regularization parameter in Eq. (9), i.e., λ,
which is always positive and is primarily used to control features
sparsity in X. We determine the value of λ by performing a 5-fold
cross-validation test based on the completed training dataset.

Table 4 summarizes the AD/NC classification performance of all
the frameworks in comparison. Results reported are the average
6 http://svt.stanford.edu/code.html.
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Table 4
AD/NC classification performance for all the frameworks in comparison. Total of 412
samples used. The best value for each performance measure is highlighted in bold
(Acc: Accuracy, Sen: Sensitivity, Spe: Specificity, AUC: area under ROC curve, time: the
average imputation time for each fold, rEM: Regularized EM, mFPC: modified FPC).

Framework Imputation Acc. Sen. Spe. AUC Time(s)

Baseline 1 Zero 0.802 0.802 0.804 0.887 0.00
KNN 0.830 0.801 0.859 0.904 1.76
rEM 0.816 0.792 0.840 0.892 84.36
FPC 0.821 0.812 0.831 0.900 115.35

Baseline 2 Zero 0.853 0.843 0.864 0.922 0.00
KNN 0.868 0.836 0.894 0.927 0.29
rEM 0.857 0.833 0.879 0.922 23.76
FPC 0.858 0.843 0.872 0.923 15.31

Proposed KNN 0.850 0.745 0.936 0.914 0.32
rEM 0.885 0.837 0.927 0.944 24.20
mFPC 0.880 0.852 0.904 0.947 0.39

Table 5
MCI/NC classification performance for all the compared frameworks. Total of 621 samples
used. The best value for each performance measure is highlighted in bold. (Please refer to
Table 4 for the meaning of the abbreviations used in this table.)

Framework Imputation Acc. Sen. Spe. AUC Time(s)

Baseline 1 Zero 0.639 0.598 0.710 0.695 0.00
KNN 0.635 0.623 0.657 0.687 2.72
rEM 0.650 0.636 0.675 0.696 139.14
FPC 0.643 0.602 0.714 0.686 130.20

Baseline 2 Zero 0.669 0.631 0.736 0.732 0.00
KNN 0.666 0.628 0.733 0.724 0.61
rEM 0.673 0.639 0.733 0.734 34.41
FPC 0.670 0.632 0.737 0.736 19.06

Proposed KNN 0.672 0.778 0.486 0.726 0.65
rEM 0.701 0.866 0.414 0.774 36.56
mFPC 0.715 0.753 0.649 0.773 1.21
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measurements of 10 repetitions of 10-fold cross-validation test. As
shown in Table 4, all performance of baseline 1 frameworks are im-
proved in baseline 2 framework (i.e., from 0.80–0.83 to 0.85–0.87).

In fact, all the four performance measures (i.e., accuracy, sensitivity,
specificity and AUC) increase after applying the proposed feature and
sample selection steps before the imputation in baseline 2 framework.
In addition, the average imputation time is significantly reduced, as
shown in the last column of Table 4. For example, FPC and rEM respec-
tively complete the imputation with 8 times and 4 times faster in the
baseline 2 framework, if compared with the baseline 1 framework. We
thus have shown the efficacy of the proposed feature and sample selec-
tion methods in removing the unrelated samples and noisy features,
which is beneficial to the imputation process, both in terms of accuracy
and speed. In addition, the classification performance is further im-
proved to 0.88–0.89 if the target labels are imputed simultaneously
with the incomplete data features using the modified FPC (mFPC) and
rEM methods. Although the classification performances of both mFPC
and rEM are similar, mFPC performs significantly better than rEM in
terms of computation speed. Similar findings are observed for MCI/NC
classification as shown in Table 5.

Comparison with non-imputation state-of-the-art methods

Recently, several algorithms have been proposed to deal with in-
complete dataset where the data is missing in blocks. We compare our
proposed framework with these methods, which are briefly described
in the following:

1. Incomplete Multi-source Feature learning (iMSF)7 (Xiang et al.,
2013; Yuan et al., 2012). The iMSF predicts the target output labels
of the incomplete multiple heterogeneous data without involving
data imputation. This is a multi-task learning algorithm that is able
to deal with missing feature values. The iMSF is available in two ver-
sions for multi-task learning part, i.e., the logistic version and the re-
gression version, along with one regularization parameter. We test
both versions of iMSF with a range of regularization parameters
(i.e., {0.005, 0.01, 0.05, 0.1, 0.2, 0.3 and 0.4}) and finally choose the
one with the highest classification accuracy for comparison.

2. Ingalhalikar's algorithm (Ingalhalikar et al., 2012). This algorithm
uses an ensemble classification technique to fuse decision results
from multiple classifiers constructed from subsets of data. The data
subsets are obtained by applying a grouping strategy similar to
ours. We implemented Ingalhalikar's algorithm and tested it on our
dataset. Specifically, we group the data into subsets, select features
using signal-to-noise ratio coefficient filter (Guyon and Elisseeff,
2003), use linear discriminant analysis (LDA) as classifier, and finally
7 http://www.public.asu.edu/~jye02/Software/MALSAR/.
fuse all the classification results of the subsets into a single result
for each sample. We used two fusion methods for this algorithm,
i.e., 1) weighted average: each classifier is assigned a weight based
on its training classification error, 2) average: all the classifiers are
assigned with equal weight.

Tables 6 and 7 show the comparison of classification performance
between the proposed framework (using rEM and mFPC imputation
methods) and the iMSF and Ingalhalikar's algorithm. Both tables show
that the proposed framework outperforms the Ingalhalikar's algorithm
but performs competitively to iMSF.

iMSF-regression has the highest sensitivity for AD/NC classification
and has the highest specificity for MCI/NC classification. iMSF-logistic
performs well in MCI/NC classification, maybe because there is non-
linear relationship between the features and MCI, which can be better
captured by logistic loss function. However, iMSF-logistic does not per-
form as well in AD/NC classification, if compared with iMSF-regression
and our proposed methods. In addition, both versions of iMSF have
lower AUC for both categories of classification, if compared with our
proposed methods.

Ingalhalikar's algorithm has the lowest performance in this study if
compared with iMSF and our proposed method. The proposed frame-
work, though not involving ensemble procedure, is competitive with
state-of-the-art algorithm.

The proposed framework performs the best in term of classification
accuracy and AUC values. In term of classification accuracy, the pro-
posed framework using rEM performs the best in AD/NC classification
while the proposed framework using mFPC performs the best in MCI/
NC classification. Though the performance difference of the proposed
framework and iMSF is small in term of classification accuracy (about
1%), there is a substantially significant difference in term of AUC,
which is not sensitive to threshold. Both mFPC and rEM imputation al-
gorithms achieve the highest AUC values for both AD/NC and MCI/NC
classifications, which are the most important measure in classification.

We performed additional t-tests to examine the significance of our
results. We picked AUC values for the t-test, as AUC values are not sen-
sitive to threshold. All the AUC values obtained from the 10 repetitions
of the 10-fold cross-validation are used for comparisons, i.e., 100 AUC
values from the proposed methods, versus 100 AUC values from the
methods of comparison. The null hypothesis is that both methods
have no significant difference in term of AUC values, while the alterna-
tive hypothesis is there is significant difference in term of AUC values
obtained by the two methods at 95% confidence level. We show the
p-values of the t-test at the last two columns of Tables 6 and 7. The
p-values that are markedwith * indicates that the differences are sig-
nificant at 95% confidence level.

Table 6 shows that our proposed framework using rEMandmFPCper-
form statistically significantly better than all the methods in comparison
in both the AD/NC and MCI/NC classifications, in term of AUC values.

http://www.public.asu.edu/~jye02/Software/MALSAR/)


Table 6
AD/NC classification comparison with iMSF and Ingalhalikar's algorithm. All the performance measures reported in this table are themeans of the respective 10 repetitions of the 10-fold
cross-validation test. The best value for each performancemeasure is highlighted in bold. The significance of the results is indicated by p-value of the t-test (using 100 pairs of AUC values of
twomethods in comparison) at the last two columns of the Table. p-values that aremarkedwith * indicate that the proposedmethod is statistically better than themethod in comparison
at 95% confidence level (fusion1: weighted average of all the classification outputs from the data subsets, fusion2: average of all the classification outputs from the data subsets).

Framework Methods Performance measures t-test on AUC (p-value)

Acc Sen Spe AUC with rEM with mFPC

Proposed rEM 0.885 ± 0.050 0.837 0.927 0.944
mFPC 0.880 ± 0.054 0.852 0.904 0.947

iMSF regression 0.873 ± 0.056 0.861 0.883 0.932 b0.0005* b0.0005*
logistic 0.866 ± 0.055 0.809 0.912 0.924 b0.0005* b0.0005*

Ingalhalikar's fusion1 0.843 ± 0.061 0.804 0.877 0.905 b0.0005* b0.0005*
fusion2 0.847 ± 0.058 0.809 0.880 0.913 b0.0005* b0.0005*

Table 7
MCI/NC classification comparison with iMSF and Ingalhalikar's algorithm. (Please refer to Table 6 for detailed descriptions of this Table.)

Framework Methods Performance measures t-test on AUC (p-value)

Acc Sen Spe AUC with rEM with mFPC

Proposed rEM 0.701 ± 0.047 0.866 0.414 0.774
mFPC 0.715 ± 0.056 0.753 0.649 0.773

iMSF Regression 0.692 ± 0.063 0.649 0.768 0.760 0.001 0.001
Logistic 0.706 ± 0.051 0.818 0.509 0.733 b0.0005* b0.0005*

Ingalhalikar's fusion1 0.642 ± 0.062 0.644 0.639 0.664 b0.0005* b0.0005*
fusion2 0.649 ± 0.063 0.651 0.643 0.689 b0.0005* b0.0005*
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Comparison with unimodal classifier using MRI data

We also compare the performance of the proposed framework with
a unimodal classifier using only MRI data, as shown in Table 8. Since all
the samples have MRI data, the number of samples used is the same as
the previous experiment. The same sparse regression classifier in Eq. (9)
is used in this test. Superior performance of the proposed framework
demonstrates the importance of including information from other
modalities to improve disease diagnosis accuracy.
Effect of parameters selection of mFPC

It is important to select a set of robust parameters for matrix com-
pletion, so that the proposed framework works well for most of the
situations. Fig. 4 shows the classification accuracies and AUC of the
proposed mFPC-based framework for a range of λm and μ values. As
shown in the figure, the classification accuracy is consistently high
when small μ and large λm are used. With small μ and large λm, the
objective function in Eq. (3) will focus on theminimization of logistic
function (i.e., target label prediction) instead of the minimization of
the tracenorm (i.e., low rank matrix completion). This implies that
the incomplete matrix Z is completed using higher rank than expected.
This is probably due to the measurement noise in the dataset, which
causes an increase in the rank of Z. Based on the plot in Fig. 4, Eq. (3)
that satisfy μ ≤ 10−3 and λm ≥ 0.05 yield reasonably good label
prediction.
Table 8
Classification comparison with unimodal classifier using onlyMRI features for AD/NC and
MCI/NC classifications. The best value for each performance measure is highlighted in
bold.

Methods AD/NC MCI/NC

Acc Sen Spe AUC Acc Sen Spe AUC

Proposed rEM 0.885 0.837 0.927 0.944 0.701 0.866 0.414 0.774
Proposed mFPC 0.880 0.852 0.904 0.947 0.715 0.753 0.649 0.773
MRI only 0.834 0.821 0.847 0.902 0.625 0.582 0.700 0.693
Effect of λs on sample selection

Fig. 5 shows the effect of λs on sample selection in Eq. (2) to the
average number of samples selected (from the training dataset) and
the average classification accuracy (i.e., accuracy of the label imputation)
of thematrix completion. As shown in Fig. 5, the average number of sam-
ples selected reduces gradually when λs is decreasing, while relatively
consistent in terms of classification accuracy for mFPC. This implies
that there are a lot of redundant samples in the training set, which can
be removed without significantly affecting the accuracy of the label
imputation. To examine the performance of sample selection using syn-
thetic data, please refer to Appendix A.

One of the possible limitations of the proposed sample selection is
that the output space is not considered in the algorithm (as this infor-
mation is not available for the testing samples), which might cause
possible bias in the result if there is measurement noise in the output
space. For example, the feature space for highly coherent samples is
very similar, but due to measurement noise in the output space, they
may have different outputs. In worst case scenario (e.g., using too
large λs value), the l1-regularized algorithms (i.e., the l1-norm part of
the l2,1-norm) may select only one sample and discard the others,
which cause bias in the result. This problem can be ameliorated by
including the additional l2-regularization, such as that done in Elastic
Net (Zou andHastie, 2005). This will help retain some coherent samples
and allow some averaging effect. Another possible solution is to perform
sample selection and output variable estimation iteratively, which we
leave it as our future work.

Most discriminative features

Table 9 shows the statistics of the features selected by the proposed
feature selection method for the incomplete ADNI data, during the AD/
NC and MCI/NC classifications, respectively. On average, more than
60% of the features is removed for both cases. The number of features
selected for each fold varied significantly, e.g., it can go as low as 45 or
as high as 120 for AD/NC classification. This is probably because the reg-
ularization parameter λf in Eq. (1) is chosen from awide range of values
(i.e., {0.001, …, 0.9}).
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Fig. 4. Effect of the parameter changes in mFPC algorithm to AD/NC and MCI/NC classifications in terms of accuracy and AUC.
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In addition, we also include the distribution of the most discrimina-
tive features according to modalities in Table 9. We define the most
discriminative features (MDFs) as the features that were selected for
more than 90% of the times, i.e., more than 90 times in the 10 repetitions
of the 10-fold cross-validation run. Most of theMDFs are located inMRI
modality, for both the AD/NC and MCI/NC classifications. We also
observed that more features were selected for AD/NC thanMCI/NC clas-
sification. This is probably because MCI, which is the early stage of AD,
affects less brain regions (or ROIs) if compared with AD, where its
abnormalities are widely spread across brain regions.

Table 10 shows the names of the MDFs for each modality. The com-
mon MDFs selected for AD/NC and MCI/NC classifications are also
included in Table 10, if exist. The common MDFs for MRI modality in-
clude hippocampal formation, middle temporal gyrus, uncus, and
amygdala. The atrophy at these ROIs has been reported to be associated
with memory and cognitive impairments or closely related to the AD/
MCI pathology (Convit et al., 2000; De Leon et al., 1997; Poulin et al.,
2011; Yang et al., 2012). For AD/NC classification, since there are
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Fig. 5. Effect of the parameterλs on the number of samples selected and the corresponding
classification accuracies for AD/NC and MCI/NC classification using mFPC of the proposed
framework.
many MDFs from MRI, we only list the MDFs that were selected in all
cross-validations and repetitions in Table 10.

On the other hand, the commonMDFs for FDG-PETmodality include
middle frontal gyrus and precuneus, which are similar to the findings
in (Mielke et al., 1998; Scarmeas et al., 2004). For CSF biomarkers, the
selected MDFs were t-tau/Aβ42 for AD/NC classification and Aβ42 and
t-tau for MCI/NC classification.

Figs. 6 and 7 graphically show the locations of the selectedROI-based
features (for MRI and PET modalities) for both the AD/NC and MCI/NC
classifications, respectively.

Conclusion

In thiswork,we propose a novel classification framework that is able
to deal with datasets with significant amount of missing data (e.g., data
missing in blocks). Conventional imputation-based classification ap-
proach is slow and inaccurate for this type of dataset. We accomplish
accurate label prediction by applying matrix completion on a shrunk
version of the data matrix. The matrix shrinkage operation simplifies
the imputation task since redundant features and samples have been
removed and less missing data needs to be imputed. The experimental
results demonstrate the efficacy of feature selection and sample selec-
tion in improving the classification performance of the conventional
imputation-based classification method, both in terms of speed and
accuracy. The proposed framework also yields competitive perfor-
mance, compared with the state-of-the-art methods such as iMSF
and Ingalhalikar's algorithm. Based on the t-test of their AUC values,
the proposed framework using rEM and mFPC are statistically signifi-
cantly better than iMSF and Ingalhalikar's algorithm in AD/NC and
MCI/NC classifications.
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Table 9
Numbers of features selected for AD/NC andMCI/NC classifications. (std.: standarddeviation;MDFs:Most discriminative features, features thatwere selectedmore than 90% of the time for
10 repetitions of 10-fold cross-validation run.)

Classification Original no.
of features

No. of selected features MDFs

Mean ± std. Min Max MRI PET CSF Total

AD/NC 191 69.9 ± 14.4 45 120 30 5 1 36
MCI/NC 191 63.0 ± 26.7 19 140 10 5 2 17

Table 10
Most discriminative features (MDFs) selected for eachmodality. (Please refer to Table 9 for definition of MDF. ForMRI's MDFs in AD/NC classification, only those that are selected 100% of
the time are listed here.)

Modality AD/NC MCI/NC

MRI Common MDFs: Hippocampal formation right, hippocampal formation left, middle temporal gyrus left, uncus left, amygdala right.
Medial frontal gyrus, Angular gyrus right, precuneus right, superior parietal lobule left, precentral gyrus left,
perirhinal cortex left, lateral occipitotemporal gyrus right, amygdala left, middle temporal gyrus right, corpus
callosum, inferior temporal gyrus right, lateral occipitotemporal gyrus left

Entorhinal cortex left, cuneus left, lingual gyrus left,
temporal pole left, middle occipital gyrus left

PET Common MDFs: Middle frontal gyrus right, precuneus right, precuneus left, Medial front–orbital gyrus right
Insula right Angular gyrus left

CSF t-tau/Aβ42 Aβ42 and t-tau.
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Table A.11
Synthetic data: One homogeneous data matrix and two inhomogeneous data matrices.
Xm,m= {1,2,3} is a simulated two-modality data matrix, e.g., [Xr1 Xr2], with ns m number
of samples and rank (r1, r2), where r1 and r2 are the ranks forXr1 andXr2, respectively. The
inhomogeneous data matrix 1 is simulated by stacking X1 and X2, while the inhomoge-
neous data matrix 2 is simulated by stacking X1, X2 and X3 data.

Data matrices X1 X2 X3

ns1 Rank ns2 Rank ns3 Rank

Homogeneous 100 (60,40) 0 – 0 –

Inhomogeneous 1 100 (60,40) 10 (20,10) 0 –

Inhomogeneous 2 100 (60,40) 10 (20,10) 10 (10,10)
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Appendix A. Test on sample selection algorithmusing synthetic data

Sample selection was used in this work to select samples from the
training set that are closely related to the testing samples before impu-
tation of missing values and class labels. We assume that sample selec-
tion can remove outlier or unrelated samples from inhomogeneous
dataset, and consequently improves the classification performance. To
justify our assumption, we have tested the proposed sample selection
algorithm by using several sets of synthetic data. The synthetic data
with ns number of samples, nf number of variables and σ noise level, is
generated as follows:
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Fig. A.8. Classification result for
1. Generate a rank-r matrix Xr∈ℝns�n f by multiplying a randomly
generated ns × rmatrix with another randomly generated r × nf ma-
trix,where elements of bothmatrices are drawn i.i.d. froma standard
normal distribution.

2. Add Gaussian noise N 0;σ2
� �

to each element of matrix Xr.
3. Generate a weight vector w∈ℝn f�1 where its elements are drawn

i.i.d. from a standard normal distribution.
4. Generate output label Y∈ℝn f�1 from Y = sign(Xr × w + N), where

N is a noise vector with its elements are drawn i.i.d. from N 0;σ2
� �

.

We simulated a multi-modal dataset by generating two different
Xr with the same label Y, and arranging them side by side, e.g., X =
[Xr1Xr2]. We simulated heterogeneous dataset by generating several
X with different rank or W, and stacking them together, e.g., Xhet =

[X1;X2], where X1∈ℝns1 � 2nf and X2∈ℝns2 � 2nf . We simulated
missing data by randomly removing half of the feature data (row
by row) from the second modality of Xhet (i.e., Xr2 part for both X1

and X2).
Table A.11 shows the details of the generated data. One homogeneous

data and two inhomogeneous (heterogeneous) data were generated. The
homogenous data was created by using a single matrix X1,
the inhomogeneous data 1 was created by stacking X1 and X2, while
inhomogeneous data 2 was created by stacking X1, X2 and X3. Each Xm,
m= {1,2,3} is a “two-modality” simulated data, with each modality con-
taining 80 features (i.e.,nf=80), respectively. The rank for eachmodality
data is shown in Table A.11. Each synthesized data with four differ-
ent levels of noise (i.e., σ = {2,1,0.5,0.1}) were used in experiment.

We then tested our framework (specifically the sample selection
algorithm) on the synthetic data by using 10-fold cross-validation
scheme, similar to the scheme used in this manuscript. The simulation
results using homogeneous and 2 types of inhomogeneous data are
shown in Figs. A.8, A.9 and A.10, respectively. The x-axis of these figures
is the λ in sample selection, the higher the λ value, the more the
removed training samples. The average number of samples selected
from the training set for each fold is shown at the bottom right corner
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Fig. A.9. Classification result for inhomogeneous data matrix 1.
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of all the threefigures. The other three plots in thesefigures are the clas-
sification accuracies versus λ, usingmFPC, KNN and EM imputations, re-
spectively. From the Fig. A.8, the classification accuracies for mFPC and
KNN are rather stable for all the λ values, as expected for homogeneous
data. However, we surprisingly notice that the sample selection im-
proves the classification accuracies for EM imputation using incomplete
homogeneous data matrix. This is probably because sample selection
removes some noisy samples from the training samples that improves
the EM imputation. From the Fig. A.9, where the number of “outlier”
samples is about 10% of the total samples, the sample selection
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Fig. A.10. Classification result for in
algorithm slightly improves the classification accuracies for all the
three imputation methods, especially when the noise level in the data
is higher, i.e.,σ= {2,1}. However,we also notice that there are somede-
clines in classification accuracies for low noise curves (σ = {0.1,0.5})
using KNN and EM imputations, when higher λ values are used. When
the number of “outlier” samples is increased to about 20% of the total
samples, the classification accuracies of mFPC and KNN improve signif-
icantly, particularly for data with higher noise level, as shown in
Fig. A.10. The effect of sample selection on EM imputation is not obvious
for both the inhomogeneous data matrices 1 and 2.
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In summary, these simulation results support our assumption that
removing noisy samples (due to Gaussian noise) or unrelated samples
(due to inhomogeneous data) from the training dataset can improve
classification performance. Sample selection improves mFPC and KNN
imputation when the data is more noisy and inhomogeneous, while
improves EM imputation when the data is homogeneous.
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