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Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses (dementia) among the elderly. Recently,
researchers have developed a new method for the instinctive analysis of AD based on machine learning and its subfield, deep
learning. Recent state-of-the-art techniques consider multimodal diagnosis, which has been shown to achieve high accuracy
compared to a unimodal prognosis. Furthermore, many studies have used structural magnetic resonance imaging (MRI) to
measure brain volumes and the volume of subregions, as well as to search for diffuse changes in white/gray matter in the brain. In
this study, T1-weighted structural MRI was used for the early classification of AD. MRI results in high-intensity visible features,
making preprocessing and segmentation easy. To use this image modality, we acquired four types of datasets from each dataset’s
server. In this work, we downloaded 326 subjects from the National Research Center for Dementia homepage, 123 subjects from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) homepage, 121 subjects from the Alzheimer’s Disease Repository
Without Borders homepage, and 131 subjects from the National Alzheimer’s Coordinating Center homepage. In our experiment,
we used the multiatlas label propagation with expectation–maximization-based refinement segmentation method. We segmented
the images into 138 anatomical morphometry images (in which 40 features belonged to subcortical volumes and the remaining 98
features belonged to cortical thickness). .e entire dataset was split into a 70 : 30 (training and testing) ratio before classifying the
data. A principal component analysis was used for dimensionality reduction. .en, the support vector machine radial basis
function classifier was used for classification between two groups—AD versus health control (HC) and early mild cognitive
impairment (MCI) (EMCI) versus late MCI (LMCI). .e proposed method performed very well for all four types of dataset. For
instance, for the AD versus HC group, the classifier achieved an area under curve (AUC) of more than 89% for each dataset. For
the EMCI versus LMCI group, the classifier achieved an AUC of more than 80% for every dataset. Moreover, we also calculated
Cohen kappa and Jaccard index statistical values for all datasets to evaluate the classification reliability. Finally, we compared our
results with those of recently published state-of-the-art methods.
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1. Introduction

.e occurrence of the most serious and common neuro-
degenerative disease, Alzheimer’s disease (AD), is dramat-
ically increasing among the elderly. Among people of ages
ranging from 60 to 84, 24.3 million are suffering from AD
[1]. .e early diagnosis of AD and the best prognosis of mild
impairment are possible because of an increasing list of
possible biomarkers (from genetics, cognition, proteomics,
and neuroimaging) [2]. Mild cognitive impairment (MCI) is
the level between the predictable cognitive deterioration of
regular aging and the more serious decline of dementia. At
the beginning of the MCI stage, there might be difficulties
with thinking, language, and memory that are more than
ordinary age-related changes. A reason for differentiating
the above patients from those with prodromal AD at the
MCI level is that intervention early in the course of the
illness may help postpone the onset and reduce the risk of
AD [3]. Such intervention later in the progression of the
illness might limit the disease, but it might not be possible to
shift the pathology-induced neurological damage after it has
already occurred. .erefore, analysis and identification of
presymptomatic AD at the MCI point are highly important.
Such treatment will be much more central and compelling as
improved treatment becomes available.

In neuroimaging, the main task is labeling anatomical
structures in magnetic resonance imaging (MRI) brain
scans with accuracy. For clinical decision-making, re-
gional volume measurement is important, as well as
accurate segmentation [4]. Currently, there is no treat-
ment method for AD, but many drugs are under devel-
opment, and it is predicted that a cure will be found soon.
.erefore, neuroimaging makes an optimistic prognosis
more likely, and assessments by structural MRI (sMRI)
can be used to check medial temporal lobe (MTL) and
positron emission tomography (PET) fluorodeoxyglucose
(FDG) or amyloid results. Medial temporal lobe frame-
works are essential for producing new memories and for
the improvement of AD [5]. Medial temporal lobe at-
rophy (MTA) degeneration and the associated episodic
memory impairment are label features of AD, and both
impair over the method of illness [5, 6]. Moreover, MTA
is determined by utilizing region of interest- (ROI-) based
[7], voxel-based [8], and vertex-based [5] approaches. In
this research, the focus is on binary arrangement among
AD, health control (HC), early MCI (EMCI), and late
MCI (LMCI) utilizing sMRI. According to the atrophy
assessment from MRI scans, the level of neuro-
degeneration and intensity can be determined. Studies
have used morphometric approaches, such as the volume
of interest (VOI) and ROI voxels for automatic seg-
mentation of sMRI images. .e sMRI volume involves
measurement of the medial progressive lobe and hip-
pocampus [9]. Numerous machine-learning methods
have been implemented to differentiate the binary clas-
sifications of AD, HC, and MCI due to AD (mAD) and
asymptomatic AD (aAD). Only using unique modalities,
such as the hippocampus or amyloid imaging biomarkers,
could be less sensitive in analyzing AD progression,

mostly at the symptomatic level. Currently, the relevance
of biomarkers for neurodegeneration, which is an ana-
lytical component of AD pathophysiology in prodromal
and early-stage dementia, is widely acknowledged [10].
.e most-important biomarkers for early detection of AD
are the volumetric measurement of cortical thickness and
subcortical volume. Studying the cortical thickness is an
extensively recognized method for investigating the size
of gray matter atrophy and is at the cutting edge of AD
research. Cortical thinning has been found in MCI and
AD [11]. However, for subcortical neurofibrillary tangle
and amyloid construction in AD, MRI investigation has
recently drawn attention to AD-correlated subcortical
complex changes. New segmentation methods can assess
subcortical volumes and provide a basis for subcortical
shape analysis [11]. Many classification algorithms and
approaches are based on machine learning, such as
support vector machine (SVM), k-nearest neighbor
(KNN), random forest (RF), and other ensemble classi-
fiers. Among these, the SVM algorithm is commonly
utilized because of its good accuracy and sensitivity that
can deal with high-dimensional data. .e SVM classifi-
cation method provides a first step for recognizing data
from the training dataset included in well-characterized
subjects with known states, for which labels are given for
the subjects [12]. .e margin of the training data is
maximized by composing the optimal splitting hyper-
plane or regular hyperplanes in a solitary or higher-di-
mensional plane with proposed classifier. At the testing
stage, a test dataset is based on the hyperplane learned in
the classification [13]. It is common for T1-weighted MRI
images of each subject to be separated automatically into
ROIs according to three anatomical views (sagittal,
coronal, and axial), as shown in Figure 1. .ey are used as
features for classification.

Recently, Liu et al. [14] proposed deep learning based on
multiclass classification among normal control (NC), MCI
not converted (ncMCI), MCI transformers converted
(cMCI), and AD patients grounded on 83 ROI of MRI
images and the conforming disclosed PET images. Stacked
autoencoders were utilized as unsupervised learning to gain
high-level features, and softmax logistic regression was
adopted as a classifier. Nozadi et al. [15] researched an
approach for a pipeline utilizing learned features from se-
mantically labeled PET images to show group classification.
In that research, the ADNI dataset was used, and the results
were validated. In classification, they used SVM classifier
with radical basis function (RBF) kernel and random forest
(RF) with FDG and AV-45 biomarkers of PET image mo-
dality for AD, NC, EMCI, and LMCI groups. .e FDG-PET
shows good accuracy such as 91.7% for AD versus NC with
RBF-SVM classifier compared to AV-45-PET. Moreover,
FDG-PET demonstrates better results for EMCI versus
LMCI with RBF-SVM than AV-45-PET. Gupta et al. [16]
proposed a machine-learning-based framework to distin-
guish subjects with AD from those with MCI by using four
different biomarkers: sMRI, the apolipoprotein E (APOE)
genotype, cerebrospinal fluid (CSF) protein level, and FDG-
PET from the ADNI dataset. According to binary
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classification, the combined method showed area under the
receiver operating characteristic curves of 98.33%, 93.59%,
96.83%, 94.64%, 96.43, and 95.24% for AD versus HC, MCI
stable (MCIs) versus cMCI, AD versus MCIs, AD versus
cMCI, HC versus cMCI, and HC versus MCIs, respectively.
Gorji and Naima [17] have employed a convolutional neural
network (CNN) based deep learning approach for dis-
criminating healthy people from patients with EMCI and
LMCI. In their research, the ADNI dataset was used, and
their proposed method has gained 94.54% accuracy, 91.70%
sensitivity, and 97.96% specificity with the sagittal part of
MRI for CN versus LMCI. Chyzhyk et al. [18] utilized lattice-
independent component analysis to combine the kernel
transformation of data with the feature section stage. .e
generalization of the dendritic computing classifiers was
developed by that approach. For classification of NC versus
AD patients, they also used the OASIS dataset and method
with an accuracy of 74.75%, sensitivity of 96%, and speci-
ficity of 52.5%. Zang et al. [19] utilized operative feature
consequent from functional brain network of three fre-
quency bands during resting states for the efficiency of the
classification context to classify subjects with EMCI versus
LMCI. .eir approached method demonstrates that the
functional network features chosen by the minimal re-
dundancy maximal relevance (mRMR) algorithm improve
the distinguishing between EMCI versus LMCI compared
with others chosen by stationary selection (SS-LR) and
Fisher score (FS) algorithms. .e chosen slow-5 band shows
better accuracy compared with other bands such as 83.87%
accuracy, 86.21% sensitivity, and 81.21% specification for
EMCI versus LMCI. Cuingnet et al. [20] employed 10 ap-
proaches for clinically abnormal subject versus healthy
groups by using an sMRI-based feature extraction technique.
.is approach included three methods based on cortical
thickness, and five voxel-based and two other methods for
the hippocampus. When the technique was used, AD versus
HC achieved 81% sensitivity and 95% specificity; stable MCI
and progressive MCI (P-MCI) had a sensitivity of 70% and
specificity of 61%; and HC versus P-MCI had 73% and 85%
sensitivity and specificity, respectively. Farhan et al. [21]
utilized the right and left areas of the hippocampus, as well as

the volume of gray matter, white matter, and CSF extracted
from sMRI brain images. .en, four types of classification
were evaluated to achieve good accuracy: SVM, multilayer
perceptron, j48, and an ensemble classifier. .e ensemble
classifier had a high accuracy of 93.75%. Cho et al. [22]
studied the incremental learning process based on the
longitudinal frequency, which is represented by cortical
thickness implemented on 131 ncMCI and 72 cMCI subjects.
When the method was used for cMCI versus ncMCI, the
sensitivity and specificity were 63% and 76%, respectively,
which is a better result than that reported previously [21].
Wolz et al. [23] employed four kinds of automatic feature
extraction methods (manifold-based learning, cortical
thickness, tensor-based morphometry, and hippocampal
volume) based on sMRI for 834 subjects from the ADNI
dataset AD versus MCI and AD versus HC groups. .e
linear discriminant analysis (LDA) and SVM classification
techniques were compared by manipulating MCI prediction
and AD classification. In AD versus HC classification, LDA
achieved 89% accuracy, and the sensitivity and specificity
were 93% and 85%, respectively. Specifically, fusion features
and the LDA classifier showed the best result for the clas-
sification of MCI-converted and MCI-stable subjects (68%
accuracy, 67% sensitivity, and 69% specification). Recently,
Gupta et al. [5] proposed four classifier methods—SVM, k-
nearest neighbors, softmax, and näıve Bayes (NB)—for bi-
nary classification of AD versus HC, HC versus mAD, and
mAD versus aAD and for tertiary classification of AD versus
HC versus mAD and AD versus HC versus aAD utilizing
subcortical and cortical features based on 326 subjects
downloaded from the Gwangju Alzheimer’s disease and
Related Dementia (GARD) dataset website. .e segmented
dataset was parceled into a 70 : 30 ratio, and 70% was used as
a training set. .e remainder was used to obtain unbiased
estimation performance as a test set. PCA was manipulated
for dimensionality reduction purposes and obtained a
99.06% F1 score by the softmax classifier for AD versus HC
binary classification. .e SVM classifier achieved for HC
versus mAD, AD versus aAD binary, and AD versus HC
versus mAD tertiary classification F1 scores of 99.51%,
97.5%, and 99.99%, respectively. NB performed well for AD

(a) (b) (c)

Figure 1: Cross-sectional segmentation results for T1-weighted MRI images: (a) axial, (b) coronal and sagittal, and (c) view planes.
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versus HC versus aAD tertiary classification with an F1 score
of 95.88%. Moreover, to confirm the efficiency of the model,
the OASIS dataset was employed.

Compared to related early works, this research ad-
dresses improving the accuracy and constancy of binary
classification by comparing it with three kinds of geo-
graphical sMRI dataset. Moreover, all related works used
different types of automated feature extraction method
and segmentation toolbox. .is work focused on the best
accurate and clear segmentation method, which is mul-
tiatlas label propagation (MALP) with expect-
ation–maximization- (EM-) based refinement
(MALPEM) [24]. .e best classifier, RBF-SVM, was
utilized with the proposed classifier method. .e GARD
dataset was employed to classify the AD versus NC and
EMCI versus LMCI binary classifications based on sub-
cortical volume and cortical thickness from the sMRI
brain images. Finally, the segmented features were passed
through the RBF-SVM classifier and compared to the
other three sMRI datasets.

2. Materials and Methods

2.1. Subjects. .e data used in this study were collected from
the NRCD, National Alzheimer’s Coordinating Center
(NACC), Alzheimer’s Disease Repository Without Borders
(ARWIBO), and ADNI. All preprocessed brain images were
selected. .e GARD consists of 81 AD subjects (39 males, 42
females; age± SD= 71.86± 7.09 years, education
level = 7.34± 4.88, range = 0–18), 171 cognitively normal HC
subjects (83 males, 88 females; age± SD= 71.66± 5.43 years,
education level = 9.16± 5.54, range = 0–22), 39 patients with
mAD (25 males, 14 females; age± SD= 73.23± 7.09 years,
education level = 8.20± 5.19, range = 0–18), and 35 patients
with aAD (15 males, 20 females; age± SD= 72.74± 4.82
years, education level = 7.88± 6.30, range = 0–18). .e
NACC includes 26 AD subjects (11 males, 15 females;
age± SD= 73.33± 9.43 years, education level = 14.44± 3.58,
range = 0–18), 42 cognitively normal HC subjects (22 males,
20 females; age± SD= 65.98± 11.91 years, education
level = 15.89± 2.96, range = 0–22), 30 patients with mAD (10
males, 20 females; age± SD= 75.52± 8.62 years, education
level = 14.91± 3.45, range = 0–18), and 33 patients with aAD
(16 males, 17 females; age± SD= 73.12± 8.92 years, educa-
tion level = 14.39± 4.08, range = 0–18). .e ARWIBO con-
sists of 29 AD subjects (10 males, 19 females;
age± SD= 71.2± 4.14 years, education level = 8.37± 9.31,
range = 0–18), 33 cognitively normal HC subjects (16 males,
17 females; age± SD= 65.5± 9.09 years, education
level = 10.0± 6.82, range = 0–22), 34 patients with mAD (14
males, 20 females; age± SD= 69.7± 7.11 years, education
level = 7.67± 4.21, range = 0–18), and 25 patients with aAD
(10 males, 15 females; age± SD= 69.45± 3.22 years, educa-
tion level = 7.97± 5.21, range = 0–18). .e ADNI consists of
32 AD subjects (17 males, 15 females; age± SD= 72.14± 4.21
years, education level = 9.41± 3.78, range = 0–18), 28 cog-
nitively normal HC subjects (18 males, 10 females;
age± SD= 64.02± 6.45 years, education level = 11.41± 6.56,
range = 0–22), 25 patients with mAD (12 males, 13 females;

age± SD= 69.14± 8.35 years, education level = 7.99± 4.20,
range = 0–18), and 38 patients with aAD (22 males, 16 fe-
males; age±SD=67.11±5.81 years, education level=8.02±7.10,
range=0–18).

Tables 1–4 demonstrate the demographics of the 326
subjects from the GARD, 121 subjects from the ARWIBO,
131 subjects from the NACC, and 123 subjects from the
ADNI for this study. .e clinical variables and dis-
tinguishing statistics in demographics among the research
groups were determined using the Welch independent
samples t-test. In this research, the significance level was
0.05, which is a normal alpha value. In the GARD data case,
the rate for females was greater than that of other groups
except for the EMCI group. .e levels of education were
completely disparate in the pairwise comparisons among
study groups. According to the comparison among the
groups, the AD groups had the lowest level of education. In
this study, to gain unbiased estimated performance, every
dataset was randomly split into two parts with a 70 : 30 ratio
for training and testing..e approach involved training with
a training algorithm code. We tested the remaining dataset
using the trained algorithm. Moreover, the analysis of the
group performance was classified in terms of accuracy,
specificity, sensitivity, precision, and F1 score utilizing a
unique test set.

2.2.MRIAcquisition. A brain image occupies space in three-
dimensional (3D) images, so we could use volume data to fill
this space. .e volume data are measured voxels, which look
like the pixels utilized to display images only in 3D.

Standard 3T T1-weighted images were obtained utilizing
the volumetric 3D MPRAGE protocol with a resolution
1× 1× 1mm (voxel size). All images were N4 bias corrected.

2.3. Feature Selection. Segmented MRI brain images have
been used mostly for classification with machine learning
and the subfield of machine-learning techniques. According
to many types of studies, the subcortical part of the brain is
easily affected by dementia and AD compared to the cortical
part, but cortical thickness is an outstanding candidate for
the treatment of AD. In this research, subcortical/cortical
features were extracted by using MALPEM, and 138 features
were achieved from 3D sMRI T1-weighted images. MAL-
PEM is a collection of tools for distinguishing and visual-
ization of cortical/subcortical parts of the brain based on the
sagittal, axial, and coronal views in Figure 1. MALPEM was
constructed using an automatic workflow consisting of
several standard image-processing techniques, dividing 138
ROIs. In recent years, multiatlas segmentation has developed
into one of the most accurate methods for the segmentation
of T1-weighted images, mostly focusing on graph-cut or EM
optimization. MALPEM [24] was evaluated as a top 3
method in a Grand Challenge on whole-brain segmentation
at MICCAI 2012 (http://www.christianledig.com). .e sMR
images of all 701 subjects were segmented individually
utilizing MALPEM as designated in previous research [3]. It
consumed between 8 and 10 h for each subject. For this
segmentation, the automatically explained

4 Journal of Healthcare Engineering

http://www.christianledig.com/


neuromorphometrics brain atlas (n� 30; provided by
Neuromorphometrics, Inc., under academic subscription,
http://Neuromorphometric/, last accessed 15 March 2018)
was used. .is atlas automatically distinguishes the whole-
brain images into 40 noncortical and 98 cortical parts.
MALP was utilized to acquire the specific probability of a
brain atlas for sMRI brain images as K, which should be
segmented [3]. .is probability is integrated into the EM
framework as a spatial anatomical task. n is indicated as a
voxel of K by j� 1, . . .n; therefore, the intensities of the voxel
Zi ∈ D; image should be described as K � Z1, Z2 . . . Zn􏼈 􏼉.
.e probabilistic priors are produced through the trans-
formation of manually generated L atlases into the coor-
dinate space of the unseen image. For the propagation of the
tag, the L transformations were measured using a nonrigid
registering technique based on free-form deformation,
which follows a previous rigid technique and some align-
ment. By using a locally weighted multiatlas fusion strategy,
the probabilistic atlas was designed for image intensity
normalization and rescaling by the Gaussian weighted sum
of squared differentiation. .e estimated hidden segmen-
tation employing the observed intensities j followed the
approach of Van Leemput et al. [25]. It was considered that

the observed log-transformed intensities of the voxels refer
to a spatial class N and are dispensed with mean φN and
standard deviation ρN:

ψ � φ1, ρ1( 􏼁, φ2, ρ2( 􏼁, . . . . . . , φN, ρN( 􏼁􏼈 􏼉. (1)

.e global Markov random fields approach was used for
applying the regularization of the resulting segmentation.
.e EM algorithm makes segmentations with very low-in-
tensity variance within the region (intraclass variance)
compared to the “gold-standard” segmentations. .erefore,
normalized intraclass variance was determined for each
region (ρNGold,k) by averaging the normalized standard
deviations (ρN /φN) of every group over the training
subjects. Moreover, the averaged (averaged over all training
subjects segmented with a leave-one-out strategy) distrib-
uted standard deviation was measured within every region
assembled by the EM algorithm (ρEM,k). By determining
ΔN � (pNGold,k − pEM,k)2, it was evaluated by which value
the intraclass variance of the spatial group might be en-
hanced on average to match the gold-standard innates better
[26]. .e final segmentation was created by fusing the re-
fined labels for this subset with the labels from the MALP

Table 1: Demographic characteristics of the studied population (from the GARD database).

Group Subject number Age
Gender

Education
M F

AD 81 71.86± 7.09 [56–83] 39 42 7.34± 4.88 [0–18]
EMCI 39 73.23± 7.34 [49–87] 25 14 8.20± 5.19 [0–18]
LMCI 35 72.74± 4.82 [61–83] 15 20 7.88± 6.30 [0–18]
HC 171 71.66± 5.43 [60–85] 83 88 9.16± 5.54 [0–22]

Table 3: Demographic characteristics of studied population (from the NACC dataset).

Group Subject number Age
Gender

Education
M F

AD 26 73.33± 9.43 [50–78] 11 15 14.44± 3.58 [0–18]
EMCI 30 75.52± 8.62 [47–85] 10 20 14.91± 3.45 [0–18]
LMCI 33 73.12± 8.92 [58–80] 16 17 14.39± 4.08 [0–18]
HC 42 65.98± 11.91 [59–83] 22 20 15.89± 2.96 [0–22]

Table 4: Demographic characteristics of studied population (from the ADNI dataset).

Group Subjects number Age
Gender

Education
M F

AD 32 72.14± 4.21 [54–79] 17 15 9.41± 3.78 [0–18]
EMCI 25 69.14± 8.35 [48–83] 12 13 7.99± 4.20 [0–18]
LMCI 38 67.11± 5.81 [60–81] 22 16 8.02± 7.10 [0–18]
HC 28 64.02± 6.45 [63–84] 18 10 11.41± 6.56 [0–22]

Table 2: Demographic characteristics of studied population (from the ARWIBO dataset).

Group Subject number Age
Gender

Education
M F

AD 29 71.24± 14.09 [59–80] 10 19 8.37± 3.78 [0–18]
EMCI 34 69.7± 7.11 [51–82] 14 20 7.67± 4.21 [0–18]
LMCI 25 69.45± 3.22 [59–79] 10 15 7.97± 5.21 [0–18]
HC 33 65.59± 9.12 [58–83] 16 17 10.06± 3.43 [0–22]
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approach for enduring parts. After completion of segmen-
tation, all the segmented data were normalized to zero mean
and component variance for every feature, as demonstrated
in Figure 2, utilizing the ordinary scalar function of the
scikit-learn library. According to normalization, ξ is a given
data matrix where the subjects are in rows, and the features
of subjects are in columns. .e elements of normalized
matrix illustrate ξ (m, n), and the equation is given by

ξ norm,(m,n) �
ξ (m,n) − mean ξ n( 􏼁

std ξ n( 􏼁
. (2)

.en, for reduction of dimensionality, PCA was exe-
cuted [27], with all features designed into a lower-dimen-
sional space. PCA map features in a new N-dimensional
subspace should be less than those in the initial L-dimen-
sional space..e newN variance is the principal component,
and every principal component eliminates the maximum
variance that is accounted for in all accomplishing com-
ponents. .e principal components can be illustrated by the
following equation:

PCj � m1k1 + m2k2 + · · · · · · + mzkz, (3)

where PCj is a principal component in j, yz is an original
feature in z, and mz is a numerical coefficient of yz. .e
observed original features are greater than or equal to the
number of principal components. .e achieved principal
components for AD versus HC are illustrated in Figure 3.
.e component number was regulated by controlling the
features greater than 96%. .e first principal component
gained 96% among all the other 83 features received after
passing all 138 features. Hence, the first component was
utilized for the classification of EMCI versus LMCI as well.

2.4. Classification Method. Previously, the cortical and
subcortical region features were extracted by using an au-
tomatic toolbox (MALP-EM) based on sMRI T1-weighted
images. .e feature vectors covering mean-centered voxel
intensities were constructed by fusing all features. .e
classification method used here is designed to fuse two
resources of features: subcortical volume and cortical
thickness. .e above features are utilized for a framework
decision to distinguish AD from other subjects. Moreover,
when comparing the classification for two-part brain
images—cortical and subcortical—by RBF-SVM machine-
learning classifiers, in some dataset cases, the cortical
thickness was determined with good accuracy; in another
case, the subcortical provided better results.

2.5. SVM. .is machine-learning classifier is being used
widely to investigate sMRI data [5, 12, 20]. RBF-SVM is
suitable for binary classification for separable and non-
separable data. In the past decade, it has been employed as
the most popular machine-learning tool in neuroimaging
and neuroscience. .is approach depends on selecting a
critical point for the classification work. Support vectors are

elements that are distinguished into two groups. RBF-SVM
is a supervised learning classification algorithm and deter-
mines the optimal hyperplane that discriminates both
modules with an extreme margin from support vectors
during the training phase. .e estimated hyperplane de-
termines the classifier for the testing of a new data point. In
some cases, such as linear ones, SVM might not guarantee a
good result, so linear SVM is expanded by utilizing a kernel
trick. .e central idea of kernel methods is that the input
data are designed into a higher-dimensional plane
employing linear and nonlinear functions for known ker-
nels. SVM kernels exploit nonlinear and linear RBF.
Moreover, the linear kernel is a superior case of RBF. .e
linear kernel with a penalty parameter Ĉ has the same
presentation as the RBF kernel with the parameters (c, y).
.e RBF has two parameters, c and y, that are good for an
assumed problem. .e main goal of analyzing good (c, y) is
to enable the classification method to predict testing data
accurately.

3. Results and Discussion

3.1. Background. In this experiment, the proposed method
utilized the RBF-SVM classification algorithm. .en, all
extracted features were split into the cortical thickness and
subcortical volume in the MALPEM toolbox to distinguish
between the AD versus HC and EMCI versus LMCI groups.
.is classification was performed to recognize how well the
approach performs on the sMRI 3D images. In the beginning
stage, normalization was designed for every subject. Fur-
thermore, the PCA reduction of dimensionality method was
employed to select the optimal number of principal com-
ponents for every binary classification. In a different binary
classification group, different numbers of principal com-
ponents were gained. Moreover, to confirm the robustness of
the classification result, 10-fold stratified K-fold (SKF) cross-
validation (CV) was utilized.

3.2. Evaluation. .e set of subjects was randomly split into
two groups in a 70 : 30 ratio for training and testing to obtain
unbiased estimates of the performance. .e training set was
used for analyzing the optimal hyperparameters of every
technique and classifier. Furthermore, the testing set was
utilized for classification achievement. For optimal hyper-
parameter estimation, SKF-CV was used based on the
training set. Following the LIBSVM library, the linear SVM
Ĉ kernel value and c, y parameters of the kernel were
regulated. While choosing the default parameter features,
SVM performed poorly on the preliminary data. Hence, to
regulate the optimal parameters for c and y, the grid search
method was used before c and y were utilized for training.
For c and y, CV accuracy was selected as the best parameter.
In this work, two parameters were set—c� 1 to 10 and
y� (1e−4, 1e−2, 0.0001)—for every classification group. .en,
to analyze the classifier for the training groups, the obtained
optimized values were regulated. .e assessment of binary
classifiers was determined by using confusionmetrics, which
is a precise test covering binary classification tasks. .e
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diagonal elements of the metric demonstrate the corrected
predictions created by the classifier. .en, elements could be
split into two groups that express the controls of correctly
identified true positive (TP) and true negative (TN).
However, the subjects classified incorrectly can be defined as
false positive (FP) and false negative (FN). .e determi-
nation of accuracy in equation (4) is the number of samples
in which the classifiers regulated correctly.

Acc �
TP + TN

TP + TN + FP + FN
. (4)

Moreover, considering only accurate measurement was
not sufficient for the unstable class dataset and resulted in
misleading estimation. Hence, the additional four assess-
ment metrics should be adjusted: sensitivity, specificity,
precision, and F1 score. .ey are designated as follows:

Sen �
TP

TP + FN
, (5)

Spec �
TN

TN + FP
, (6)

Ppv �
TP

TP + FP
. (7)

F1 score �
2TP

2TP + FP + FN
. (8)

Sensitivity, given in equation (5), illustrates the accuracy
of the predicted group. Specificity, given in equation (6),
illustrates the accuracy of the predicted absence group.
Sensitivity, which is also called “recall” or “probability of
detection,” is the proportion of actual positives that are
correctly determined. Similarly, specificity investigates the
proportion of actual negatives that is not included in the

class. Precision, given in equation (7) (positive predictive
value), is the element of appropriate incidences between the
repossessed incidences. F1 score, given in equation (8),
determines the accuracy of a test. To assess that each method
performs significantly better than a random classifier, the
Cohen kappa and Jaccard distance were utilized. Cohen
kappa determination is usually utilized to analyze interrater
reliability. Rater reliability demonstrates the degree to which
the data represented in the research are appropriate illus-
trations of the variables evaluated. .e Cohen [28] is a
statistic helpful for an interrater accuracy testing. .e de-
termination of the Cohen kappa can be executed based on
the following equation:

k �
Pr(a) − Pr(e)

1 − Pr(e)
. (9)

Here, Pr (a) demonstrates the observed agreement and
Pr (e) illustrates chance agreement. .e kappa can range
between −1 and + 1, and the kappa result is explained as
follows: if the values are ≤0, there is no agreement; between
0.01 and 0.20, there is minor arrangement; between 0.21 and
0.40, there is known fair agreement; between 0.41 and 0.60,
there is moderate agreement, between 0.61 and 0.80, there is
substantial agreement; and from 0.81 to 1.00, there is nearly
perfect agreement [29]. .e Jaccard index determines how
close the commonality of the two datasets can be a measured
[30]. .e Jaccard coefficient is given in the following
equation:

J(M, N) �
M∩​ N| |

M∪​ N| |
. (10)

.e Jaccard index is a statistic utilized for measuring the
diversity and similarity of sample sets.

Image preprocessing MALPEM toolbox

Normalization

Principle component analysis

Radial basic function-SVM

Testing RF modelTraining RF model

Label

3D image

10-fold stratified K-fold
cross-validation (SK-CV)

Diagnosis of
AD/EMCI/LMCI/

HC

138 segmented ROI
images

Figure 2: Proposed technique workflow.
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.e range of Jaccard coefficient measures from 0% to
100% is as follows:

Jaccard index� (the amount in equal sets)/(the amount
in either set)× 100.

.e process of calculating the Jaccard index is as follows:
(1) calculate the number of both members that are pro-
portional for both sets, (2) calculate the entire number of
members (proportional and nonproportional), and split the
number of common members (1) by the entire number of
members (2), and (3) multiply by 100 [31].

3.3. Classification Results. .e binary classification was
utilized to analyze subcortical volume and cortical thickness
volume of AD versus HC and EMCI versus LMCI subject
groups. .e results of classification are demonstrated in
Table 5, and all results are illustrated in Figures 4(a) and 4(b).
Kappa and Jaccard are shown in Figures 4(c) and 4(d). All
processes were performed in a 64-bit Python 3.6 environ-
ment on Intel Core i7-8700 at 3.20Hz and 16GB of RAM
running Ubuntu 16.04.

3.3.1. Binary Classification: AD versus HC and EMCI versus
LMCI. According to the four datasets, two binary group-
s—AD versus HC and EMCI versus LMCI—were classified
with subcortical volume and cortical thickness features by
utilizing the RBF-SVM classification algorithm, and the
result is illustrated in Table 5.

(1). AD versus HC. .e result of classification for AD
versus HC is given in Table 5 and Figures 4(a) and 4(c). In
every classification situation, the database was divided into
two separations in a 70 : 30 ratio. Each dataset shows better
results for kappa and Jaccard statistics in the RBF-SVM
classification technique. In the kappa statistics case, the
GARD dataset cortical thickness feature gives the highest
interrater reliability of 0.9342, and the ARWIBO dataset

subcortical volume feature has 0.8939. In the Jaccard sta-
tistics case, the GARDdataset cortical thickness is 0.9091, the
highest, and the ARWIBO dataset subcortical volume fea-
ture is 0.8889. Moreover, the GARD cortical thickness has a
good F1 score, precision, specificity, and sensitivity (98.18%,
96.87%, 95.24%, and 98.18%, respectively).

(2). EMCI versus LMCI. .e classification performance
for EMCI versus LMCI is shown in Table 5 and Figures 4(b)
and 4(d). Similarly, the kappa statistics for the GARD dataset
subcortical volume feature shows the highest
result—0.9043—and the ARWIBO dataset cortical feature is
0.8979. .e Jaccard statistic for the GARD dataset subcor-
tical volume feature had the highest result—0.9186. .e
NACC dataset subcortical volume feature is 0.9167. Fur-
thermore, the GARD dataset subcortical volume feature has
better results, with an F1 score, precision, specificity, and
sensitivity of 96.45%, 100%, 100%, and 92.75%, respectively,
compared to the cortical thickness.

3.3.2. Comparison with Related Recently Published Methods.
As mentioned above, in the proposed method, four datasets
were used: GARD, NACC, ARWIBO, and ADNI. Except for
the GARD dataset, all are available for the public, and
anyone can download them. .e websites available are
NACC (https://www.alz.washington.edu/), ARWIBO
(https://www.gaaindata.org/partner/ARWIBO), and ADNI
(http://adni.loni.usc.edu/).

.ere are 701 subjects: 326 (GARD), 131 (NACC), 121
(ARWIBO), and 123 (ADNI). .e ages of all subjects are
more than 47, and converting of mild cognitive stage to AD
between 0 and 18 months. For segmentation, the T1-
weighted sMRI imaging modality was utilized from each
dataset. Moreover, the results of the proposed method were
compared to recently published results, as shown in Tables 6
and 7.
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Figure 3: Number of principal components for AD versus HC.

8 Journal of Healthcare Engineering

https://www.alz.washington.edu/
https://www.gaaindata.org/partner/ARWIBO
http://adni.loni.usc.edu/


70

75

80

85

90

95

100

A
D

N
I-

C

A
D

N
I-

S

A
RW

IB
O

-C

A
RW

IB
O

-S

N
RC

D
-C

N
RC

D
-S

N
AC

C-
C

N
AC

C-
S

AD vs. HC

AUC
ACC
SEN

SPEC
PRE
F1

(a)

AUC
ACC
SEN

SPEC
PRE
F1

70

75

80

85

90

95

100
EMCI vs. LMCI

A
D

N
I-

C

A
D

N
I-

S

A
RW

IB
O

-C

A
RW

IB
O

-S

N
RC

D
-C

N
RC

D
-S

N
AC

C-
C

N
AC

C-
S

(b)

0.78

0.83

0.88

0.93

0.98
AD vs. HC

Kappa
Jaccard

A
D

N
I-

C

A
D

N
I-

S

A
RW

IB
O

-C

A
RW

IB
O

-S

N
RC

D
-C

N
RC

D
-S

N
AC

C-
C

N
AC

C-
S

(c)

Kappa
Jaccard

0.7

0.75

0.8

0.85

0.9

0.95
EMCI vs. LMCI

A
D

N
I-

C

A
D

N
I-

S

A
RW

IB
O

-C

A
RW

IB
O

-S

N
RC

D
-C

N
RC

D
-S

N
AC

C-
C

N
AC

C-
S

(d)

Figure 4: Classification reports of four datasets—ADNI-C (cortical), ADNI-S (subcortical), ARWIBO-C (cortical), ARWIBO-S (sub-
cortical), NRCD-C (cortical), NRCD-S (subcortical), NACC-C (cortical), and NACC-S (subcortical)—with measurement performance
(AUC, accuracy, sensitivity, specificity, precision, and F1 score): (a) AD versus HC, (b) EMCI versus LMCI, classification reports of four
datasets with measurements of kappa and Jaccard, (c) AD versus HC, and (d) EMCI versus LMCI.

Table 5: Result of four datasets for the subcortical and cortical parts for AD versus HC and EMCI versus LMCI.

AD vs. HC Classifier AUC ACC SEN SPEC PRE F1 Kappa Jaccard
ADNI cortical

SVM-RBF

91.67 91.57 81.82 100 100 90 0.8108 0.8333
ADNI subcortical 90.45 90.48 90.91 90 90.91 90.91 0.8091 0.8182
ARWIBO cortical 89.44 89.47 90 88.89 90 90 0.7889 0.8
ARWIBO subcortical 95.45 94.74 100 88.89 90.91 95.24 0.8939 0.8889
NRCD cortical 97.5 97.37 98.18 95.24 96.87 98.18 0.9342 0.9091
NRCD subcortical 95.71 93.42 96.3 86.36 94.55 95.41 0.8379 0.7917
NACC cortical 96.88 95.24 100 83.33 93.75 96.77 0.8772 0.8333
NACC subcortical 92.86 94.56 93.33 100 100 96.55 0.8889 0.8571
EMCI vs. LMCI Classifier AUC ACC SEN SPEC PRE F1 Kappa Jaccard
ADNI cortical

SVM-RBF

81.75 81.25 75 87.5 85.71 80 0.725 0.7158
ADNI subcortical 88.89 87.5 77.78 100 100 87.5 0.7538 0.7778
ARWIBO cortical 94.44 93.24 90 100 95.66 94.74 0.8979 0.8889
ARWIBO subcortical 95 94.87 88.89 92.75 100 94.12 0.8889 0.9012
NRCD cortical 92.86 90.91 91.45 100 100 88.89 0.8136 0.8271
NRCD subcortical 96.43 95.45 92.75 100 100 96.45 0.9043 0.9186
NACC cortical 91.67 89.47 87.78 89.57 90.24 87.5 0.7989 0.8133
NACC subcortical 95.83 94.74 92.56 100 100 93.33 0.8902 0.9167
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Tripathi et al. [13] proposed a method that used the RBF
and linear SVM classifier for the automated pipeline which
distinguishes subjects between AD, LMCI, EMCI, and HC
with subcortical and hippocampal features gained from
spherical harmonics (SPHARM-PDM) process by utilizing
the ADNI dataset. .e combination of voxel and SPHARM
features shows 88.75% accuracy, 83.10% sensitivity, and
91.58% specificity for an AD versus HC group with a linear
kernel SVM, whereas, for EMCI versus LMCI group, the
same combined features show 70.95% accuracy, 75.56%
sensitivity, and 65.47% specificity with linear SVM. Likewise,
another study by Zhang et al. [19] used an SVM with nested
cross-validation to distinguish the features into two groups
to gain balanced results. .e slow-5 frequency band shows
83.87% accuracy, 86.21% sensitivity, and 81.82% specificity
for EMCI versus LMCI cohort by using the ADNI dataset.
Gorji and Naima [17] have utilized CNN deep learning
algorithms in their pipeline and utilizing it they have ob-
tained a 93% accuracy, 91.48% sensitivity, and 94.82%
specificity for EMCI versus LMCI using sagittal features
from anMRI image. Furthermore, Nozadi and Kadoury [15]
compared the FDG and AV-45 biomarkers of PET image
and then employed RBF-SVM and RF for distinguishing
AD, NC, EMCI, and LMCI with six groups by using ADNI
dataset. .eir approach showed accuracies of 91.7% and
91.2% for AD versus NC, each of RBF-SVM and RF with
FDG-PET image modality. On the other hand, AV45 il-
lustrates accuracies of 90.8% and 87.9% for AD versus NC
with RBF-SVM and RF. For EMCI versus LMCI, FDG-PET
provides better 53.9%, 64.1% accuracies compared with
AV45 results in RBF-SVM and RF classifier. Gupta et al. [5]
proposed a method utilizing the GARD dataset as a known

private dataset, and the OASIS dataset was used for com-
parison. .e four classifiers were utilized for binary and
tertiary classification and achieved better results according
to the classifier. For AD versus HC, the softmax classifier
showed the highest accuracy of 99.34%, 100% specificity, and
a precision of 100%. For the HC versus mAD case, the SVM
classifier had an accuracy of 99.2% and a specificity and
precision of 100%. .e mAD versus aAD SVM provided
good results as well, such as a 97.77% accuracy, 100%
sensitivity, and 97.95% F1 score. In tertiary classification,
SVM had the best accuracy of 99.42%, 99.18% sensitivity,
and 99.99% precision in AD versus HC versus mAD. In AD
versus HC versus aAD, the NB classifier had 96.53% ac-
curacy, 95.88% sensitivity, and 97.64% specificity.

4. Discussion

In this research, the RBF-SVM method was employed for
classification of subjects with AD versus HC and EMCI
versus LMCI based on anatomical T1-weighted sMRI..e
proposed method is shown in Figure 3. .e subjects were
divided into a ratio of 70 : 30 for training and testing
purposes before being passed to the classifier. .en, the
dimensionality reduction method was utilized by using
the PCA function from the scikit-learn library. Subse-
quently, for the SVM classifier, the optimal structure
value was regulated by employing SKF-CV and a grid
search. .en, the above features were utilized to instruct
the SVM classifier using the training dataset, and the
testing dataset was assessed using the training method to
determine the performance. .e proposed method shows
more than 90% accuracy for all datasets based on cortical

Table 7: Comparison of recently published works.

EMCI vs. LMCI
Years Approach Dataset ACC SEN SPEC Classifier
2017 Tripathi et al. [13] ADNI 70.29 73.95 66.01 RBF-SVM
2018 Nozadi and Kadoury [15] ADNI 67.6 70.1 70.7 RBF-SVM
2018 Gupta et al. [5] NRCD 95.55 100 90.9 Softmax
2019 Zhang et al. [19] ADNI 83.87 86.21 81.82 RBF-SVM
2019 Gorji and Naima [17] ADNI 93.00 91.48 94.82 CNN

2019 Proposed method

NRCD 95.45 92.75 100

RBF-SVMNACC 94.74 92.56 100
ARWIBO 94.87 88.89 92.75
ADNI 87.50 77.78 100

Table 6: Comparison of recently published works.

AD vs. HC
Years Approach Dataset ACC SEN SPEC Classifier
2017 Tripathi et al. [13] ADNI 85.98 75.55 90.30 RBF-SVM
2018 Nozadi and Kadoury [15] ADNI 89.3 88.8 85.9 RBF-SVM

2018 Gupta et al. [5] NRCD 99.34 98.14 100 SoftmaxOASIS 98.40 93.75 100

2019 Proposed method

NRCD 97.37 98.18 95.24

RBF-SVMNACC 95.24 100 83.33
ARWIBO 94.74 100 88.89
ADNI 91.57 81.82 100
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and subcortical features in the AD versus HC groups. In
the GARD dataset case, cortical thickness had the best
accuracy, 97.37%, a sensitivity of 98.18%, and an F1 score
of 98.18%. Moreover, kappa and Jaccard statistical ana-
lyses resulted in more than 0.80 for all datasets in AD
versus HC binary classification.

In the EMCI versus LMCI group, GARD subcortical
volumes had the highest accuracy among all data-
sets—95.45% accuracy, 100% precision, and 100% speci-
ficity. .e Cohen kappa and Jaccard statistical volume
produced good results as well. Moreover, GARD had a good
AUC for the subcortical volume and cortical thickness of
both groups, as given in Figure 5. In the ADNI dataset case
(AD versus HC), the cortical thickness showed 100%
specificity, 100% precision, and an accuracy of 91.57%. .e
EMCI versus LMCI subcortical volume had a specificity and
precision of 100%. In the ARWIBO dataset case (AD versus
HC), the subcortical volume had 100% sensitivity, 94.74%

accuracy, and 95.24% F1 score, but for EMCI versus LMCI,
the cortical thickness had a specificity of 100%, precision of
95.66%, and 94.74% F1 score. Furthermore, in the NACC
dataset case (AD versus HC), the subcortical volume was
100%, with 100% specificity and precision and a 96.55% F1
score. Likewise, the EMCI versus LMCI subcortical volume
had a specificity and precision of 100% and an accuracy of
94.74%. In both binary classifications, the proposed method
obtained good results compared to those proposed in other
works. In addition, the Cohen kappa and Jaccard results
demonstrate excellent statistical analysis for ADNI, GARD,
ARWIBO, and NACC.

5. Conclusions

A novel method for automatic classification, AD from MCI
(early or late converted to AD) and an HC, was developed by
utilizing the features of cortical thickness and subcortical

ROC curve for AD vs. NC NRCD_Cortical

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Se
ns

iti
vi

ty
 (t

ru
e p

os
iti

ve
 ra

te
)

1.00.80.4 0.60.0 0.2
1 − specificity (false positive rate)

ROC_curve_APOE (AUC1 = 0.9750)

(a)

ROC curve for AD vs. NC NRCD_Subcortical

0.2 0.4 0.6 0.8 1.00.0
1 − specificity (false positive rate)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Se
ns

iti
vi

ty
 (t

ru
e p

os
iti

ve
 ra

te
)

ROC_curve_APOE (AUC1 = 0.9571)

(b)

ROC curve for EMCI vs. LMCI NRCD_Cortical

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Se
ns

iti
vi

ty
 (t

ru
e p

os
iti

ve
 ra

te
)

0.2 0.4 0.6 0.8 1.00.0
1 − specificity (false positive rate)

ROC_curve_APOE (AUC1 = 0.9286)

(c)

ROC curve for EMCI vs. LMCI NRCD_Subcortical

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Se
ns

iti
vi

ty
 (t

ru
e p

os
iti

ve
 ra

te
)

1.00.0 0.6 0.80.2 0.4
1 − specificity (false positive rate)

ROC_curve_APOE (AUC1 = 0.9643)

(d)

Figure 5: AUC-ROC performance for the GARD dataset: (a) AD versus HC cortical thickness, (b) AD versus HC subcortical, (c) EMCI
versus LMCI cortical, and (d) EMCI versus LMCI subcortical.
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volumes. .e features were extracted from a MALPEM
toolbox, and classification was performed by the RBF-SVM
classifier based on the GARD dataset. .ey were compared
to three datasets. .e results of this research prove that the
proposed approach is efficient for future clinical prediction
between the subcortical view of EMCI versus LMCI and the
cortical view of AD versus HC, which are shown in Table 5.
Based on the subcortical volume and cortical thickness, the
proposed method obtained different accuracies according to
the different databases, such as the GARD and NACC
dataset AD versus HC group cortical thickness accuracies of
97.37% and 95.24%. .e subcortical volumes of ARWIBO
and NACC for the AD versus HC group were 94.74% and
94.56%.

In this research, only the subcortical volume and cortical
thickness features were considered for the classification
procedure. In the future, it is planned to examine classifier
multimodality features of the brain biomarkers and non-
imaging biomarkers for diagnosis of AD. Furthermore, we
are planning a future work to compare state-of-the-art and
recently published methods with different available datasets
for early prediction of AD.
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to develop effective therapies, prevention methods, and a cure
for Alzheimer’ and other neurodegenerative diseases.

References

[1] C. P. Ferri et al., “Global prevalence of dementia: a Delphi
consensus study,” @e Lancet, vol. 366, no. 9503, pp. 2112–
2117, 2005.

[2] B. C. Riedel, M. Daianu, G. Ver Steeg et al., “Uncovering
biologically coherent peripheral signatures of health and risk
for Alzheimer’s disease in the aging brain,” Frontiers in Aging
Neuroscience, vol. 10, p. 390, 2018.

[3] P. B. Rosenberg and C. Lyketsos, “Mild cognitive impairment:
searching for the prodrome of Alzheimer’s disease,” World
Psychiatry, vol. 7, no. 2, pp. 72–78, 2008.

[4] C. Ledig et al., “Multi-class brain segmentation using atlas
propagation and EM-based refinement,” in Proceedings of the
2012 9th IEEE International Symposium On Biomedical Im-
aging (ISBI), pp. 896–899, Barcelona, Spain, May 2012.

[5] Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, and
G.-R. Kwon, “Alzheimer’s disease diagnosis based on cortical
and subcortical features,” Journal of Healthcare Engineering,
vol. 2019, Article ID 2492719, 13 pages, 2019.

[6] Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, and
G. R. Kwon, “Early diagnosis of Alzheimer’s disease using
combined features from voxel-based morphometry and cor-
tical, subcortical, and hippocampus regions of MRI T1 brain
images,” PLoS One, vol. 14, no. 10, Article ID e0222446, 2019.

[7] K. R. Gray, R. Wolz, R. A. Heckemann, P. Aljabar,
A. Hammers, and D. Rueckert, “Multi-region analysis of
longitudinal FDG-PET for the classification of Alzheimer’s
disease,” NeuroImage, vol. 60, no. 1, pp. 221–229, 2012.

[8] H. Hanyu, T. Sato, K. Hirao, H. Kanetaka, T. Iwamoto, and
K. Koizumi, “.e progression of cognitive deterioration and
regional cerebral blood flow patterns in Alzheimer’s disease: a
longitudinal SPECT study,” Journal of the Neurological Sci-
ences, vol. 290, no. 1-2, pp. 96–101, 2010.

[9] J. Barnes, J. W. Bartlett, L. A. van de Pol et al., “A meta-
analysis of hippocampal atrophy rates in Alzheimer’s disease,”
Neurobiology of Aging, vol. 30, no. 11, pp. 1711–1723, 2009.

[10] C. R. Jack, D. A. Bennett, K. Blennow et al., “NIA-AA Re-
search Framework: toward a biological definition of Alz-
heimer’s disease,” Alzheimer’s & Dementia, vol. 14, no. 4,
pp. 535–562, 2018.

[11] E. Braak and H. Braak, “Alzheimer’s disease: transiently
developing dendritic changes in pyramidal cells of sector CA1
of the Ammon’s horn,” Acta Neuropathologica, vol. 93, no. 4,
pp. 323–325, 1997.

[12] B. Magnin, L. Mesrob, S. Kinkingnéhun et al., “Support vector
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