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Abstract

Background: Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease impacting an estimated
44 million adults worldwide. The causal pathology of AD (accumulation of amyloid-beta and tau), precedes
hallmark symptoms of dementia by more than a decade, necessitating development of early diagnostic markers of
disease onset, particularly for new drugs that aim to modify disease processes. To evaluate differentially methylated
positions (DMPs) as novel blood-based biomarkers of AD, we used a subset of 653 individuals with peripheral blood
(PB) samples in the Alzheimer’s disease Neuroimaging Initiative (ADNI) consortium. The selected cohort of AD, mild
cognitive impairment (MCI), and age-matched healthy controls (CN) all had imaging, genetics, transcriptomics,
cerebrospinal protein markers, and comprehensive clinical records, providing a rich resource of concurrent multi-
omics and phenotypic information on a well-phenotyped subset of ADNI participants.
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Results: In this manuscript, we report cross-diagnosis differential peripheral DNA methylation in a cohort of AD,
MCI, and age-matched CN individuals with longitudinal DNA methylation measurements. Epigenome-wide
association studies (EWAS) were performed using a mixed model with repeated measures over time with a P value
cutoff of 1 × 10−5 to test contrasts of pairwise differential peripheral methylation in AD vs CN, AD vs MCI, and MCI
vs CN. The most highly significant differentially methylated loci also tracked with Mini Mental State Examination
(MMSE) scores. Differentially methylated loci were enriched near brain and neurodegeneration-related genes (e.g.,
BDNF, BIN1, APOC1) validated using the genotype tissue expression project portal (GTex).

Conclusions: Our work shows that peripheral differential methylation between age-matched subjects with AD
relative to healthy controls will provide opportunities to further investigate and validate differential methylation as a
surrogate of disease. Given the inaccessibility of brain tissue, the PB-associated methylation marks may help identify
the stage of disease and progression phenotype, information that would be central to bringing forward successful
drugs for AD.
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Background
Nearly 44 million people worldwide have Alzheimer’s
disease (AD) or a related dementia, with global costs of
the disease estimated to be approximately $600 billion in
2016 and steadily increasing as the population ages,
making it a major public health issue [1, 2]. The hall-
mark symptoms of AD include memory impairment and
cognitive decline, both of which largely drive clinical
diagnosis. Existing therapies do not treat the underlying
cause of the disease, and only temporarily help relieve
memory and cognitive problems. There are several drugs
currently under development which aim to modify the
disease process; however, there still exists a lack of
understanding regarding the molecular mechanisms
underlying the disease, thus making it challenging to
identify new targets for therapy. Accurate diagnosis of
prodromal AD is essential to starting treatments at the
right time, and in treating the disease more effectively
[3]. The identification of a robust, prodromal, and easily
accessible biomarker has been of major interest in the
field.
The Alzheimer’s Disease Neuroimaging Initiative

(ADNI) was launched in 2003 with the goal to establish
an optimal panel of clinical assessments: imaging mea-
sures (MRI, PET) and biomarkers from blood and cere-
brospinal fluid (CSF) to direct clinical trial design for
AD drugs [4, 5]. We sought to use this resource to
determine if epigenetic markers in PB could serve as
biomarkers of AD.
Epigenetic modifications are inheritable and dynamic,

and may lead to the regulation of gene expression via
modifications to the cytosine residues and/or proteins
associated with nucleosome assembly and function [6].
Methylation of the DNA cytosine bases has been studied
for several decades and studies have associated methyla-
tion at promoter regions with repression of gene

expression [7]. DNA methylation changes as a result of
mutations in the DNA methyltransferase-1-enzyme have
been shown to be associated with several neuronal dis-
eases including hereditary sensory and autonomic
neuropathy-1, in which patients display disrupted
methylation patterns potentially contributing to neuro-
degeneration [8]. De novo mutations of MeCP2, a me-
thyl CpG-binding protein, are linked to Rett syndrome, a
progressive neurodevelopmental disorder [9]. Other epi-
genetic mechanisms link exposures during the course of
life such as nutrition, chemical and emotional environ-
ments, pregnancy conditions, drug intake, and social
status to long-term health of the individual [10, 11].
These observations and others support the significance
of DNA methylation and associated machinery in the
temporal control of neural stem cell differentiation,
neurodevelopment, and neurodegeneration.
Several studies have observed widespread alterations

in DNA cytosine methylation patterns both at the global
level as well as at the individual loci in AD brains
(reviewed in [12–15]). In 2014, two seminal papers iden-
tified DNA methylation patterns that characterize AD
brains and correlate with progression as defined by their
Braak stages [16, 17]. Given that observed differences in
DNA methylation levels across tissues are stable in a
healthy individual, and may be exploited to determine
early changes associated with disease processes [18, 19],
we sought to understand patterns of peripheral blood
DNA methylation in the ADNI cohort. Our objectives
from this study were to (1) generate a public resource
for peripheral DNA methylation marks in a cohort of
cognitively normal, MCI, and AD patients; (2) to identify
cross-sectional differences in peripheral blood DNA
methylation associated with mild cognitive impairment
(MCI) and AD patients relative to cognitively normal
controls (CN); and (3) identify novel non-invasive

Vasanthakumar et al. Clinical Epigenetics           (2020) 12:84 Page 2 of 11



disease biomarkers. This information would also help
identify subjects who are more susceptible to disease
progression. Our goal is to gain a broader understanding
of how peripheral DNA methylation differences correlate
with the diagnosis of and progression of Alzheimer’s dis-
ease and to enable the research and clinical community
to leverage these results to assess the potential for use of
methylation changes as pharmacodynamic or disease
modifying biomarkers.

Results
Making available a robust resource for DNA methylation
differences in the peripheral blood of Alzheimer’s disease
patients
A total of 1920 samples from 653 individual subjects
(CN, MCI, AD) were analyzed using the Illumina EPIC
arrays (Table 1). Two experimental factors were consid-
ered for patient selection: (1) time- our ability to capture
the longitudinal aspect of the study (patients with sam-
ples at two or more visits), and (2) diagnosis and its
time-varying nature (patients converting from CN to
MCI, CN to AD, or MCI to AD). Details of patient se-
lection are included in the “Methods” section. The
current study focuses on differential methylation analysis
of subjects based on diagnosis. One hundred and ninety-
nine duplicates and a single triplicate were included
amongst the samples that were run on the EPIC arrays
for technical replication but are not used in the final
analysis here.

Distribution of differentially methylated positions (DMPs)
is consistent across each cross-diagnosis comparison
After extensive quality control evaluation to filter poor
probes and low-quality samples, the data were normal-
ized and M-values (i.e., the logit of the beta values) were
used for all further analyses. We analyzed differential
DNA methylation across diagnosis groups using a mixed
model with a random effect to account for within-
subject dependency as detailed in the methods section.

This allowed us to include all available time points for
all subjects. The model included covariates to adjust for
age at diagnosis, sex, educational attainment, and per-
ipheral blood cell composition, and this yielded 260, 91,
and 137 DMPs, respectively, for the three clinical pheno-
typic comparisons: AD vs. CN, AD vs. MCI, and MCI
vs. CN, with a p value threshold of 1 × 10−5 (Table S2).
The majority of the DMPs were clustered within the
open seas (genomic loci that fall outside of the CpG
islands), and the adjacent shores (regions 0–2 kb from
CpG islands), and shelves (regions 2–4 kb from CpG
islands) (Fig. 1a–c). The relative levels of enrichment of
specific genomic regions (e.g., gene body, 5′-UTR)
within the DMP list from three comparisons were simi-
lar and did not show significant differences (Fig. 1d).

DMPs from each pairwise comparisons are enriched for
brain-related pathways
There were 42 DMPs that cleared the p-value of 1 ×
10−5 in the AD vs CN comparison (Fig. 2a). The DMP
that was most significantly associated with AD relative
to CN was annotated to FAM8A1, which encodes a
protein that is associated with endoplasmic reticulum-
associated degradation of proteins with roles in Alzhei-
mer’s disease pathogenesis (Fig. 2b). Additionally, when
we interrogated the genes located closest to the top
DMPs using Tissue Specific Expression Analysis (TSEA),
a web-based tool designed to look for tissue-specific
expression patterns across 25 different tissue types via
GTex Data [20, 21], we observed enrichment for brain-
specific genes (Padj-val = 9 × 10−4) (Figure S3A, Table
S3). Other tissues that showed enrichment for the AD
vs. CN comparison included: pituitary (Padj.-value =
0.016) and uterus (Padj.-value = 9 × 10−4). We measured
the correlation of observed differential DNA methylation
with a cognitive score, MMSE (the mini-mental status
examination) and found a significant (p value = 3.8 ×
10−5) correlation of MMSE, with DNA methylation dif-
ferences at this locus (Fig. 2c). We tested the enrichment

Table 1 ADNI patient cohort selected for DNA methylation analysis and used for final analysis after normalization and quality
control

Starting Patient Cohort (N=653; 1720 DNA samples)

Diagnosis Groups Age in years Mean (SD) Number of Males (%) Number APOE e4 positive (%)

Cognitively Normal (n=223) 76.23 (6.7) 112 (50.2%) 58 (26%)

Mild Cognitive Impairment (n=336) 72.58 (7.82) 189 (56.3%) 153 (46%)

Alzheimer's Disease (n=94) 77.19 (7.69) 60 (63.8%) 64 (68%)

After Normalization , Quality Control and Removal of Replicates (total 1707)

Diagnosis at 1st Visit Number at Visit 1 Number at Visit 2 Number at Visit 3 Number at Visit 4 Number at Visit 5

Cognitively Normal 220 200 162 15 4

Mild Cognitive Impairment 333 312 235 23 4

Alzheimer’s Disease 94 53 51 - -
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of neural gene expression in parallel using gene ontology
analysis, which identified neurogenesis and neuronal dif-
ferentiation as some of the most highly enriched path-
ways in the AD vs. CN annotated DMPs (Table 2).
In a similar way, we identified differential methylation

from the MCI vs CN comparison, which yielded 25
DMPs at a p value threshold of 1 × 10−5 (Fig. 3a). The
DMP that had the strongest association with MCI vs CN
was annotated to CLIP4 (Fig. 3b). The clustering of the
methylation signal correlates with the presence of a SNP
at the CpG or within the probe that appears to differen-
tially correlate with disease status. CLIP4 is a member of
the CAP-Gly Domain Containing Linker Protein Family,
an important paralog of which, CLIP3, is associated with
microtubule binding. Again, TSEA analysis identified en-
richment of the brain-specific signals (Padj.-value =
0.0007). There was also a significant (p value = 2.0 ×
10−5) correlation of MMSE score with DNA methylation
differences at this locus (Fig. 3c). We also found neuro-
genesis, cell projection, and brain-specific high CpG-rich

promoters as some of the most highly enriched path-
ways/components when the MCI vs. CN DMPs were an-
notated (Table 2).
Differential methylation analysis of the AD vs MCI

comparison yielded 13 DMPs that were significant (Fig.
4a). The strongest associated DMP was annotated to
NUCB2 (nucleobindin 2), a calcium ion binding protein
that regulates intracellular calcium levels. Given the
small number of hits, TSEA showed no enrichment of
brain-specific pathways, but a slight enrichment of lung-
related pathways (Figure S3C, Table S3). There was a
significant (p value = 4 × 10−4) correlation of MMSE
score with DNA methylation differences at this locus
(Fig. 4c). Interestingly, parallel testing in gene ontology
analysis showed enrichment of genes that are downregu-
lated in Alzheimer’s disease as well as cell projections,
and neuronal pathways (Table 2). In addition, BIN1,
BDNF, and APOC1 while not the top most differentially
methylated hits, were among the significant DMP hits
(Figure S4A–C).

Fig. 1 Distribution of cross-diagnosis differential DNA methylation marks across the genome. a–c Distribution of differential DNA methylation
marks relative to the CpG island. Islands are denoted by yellow, shelves (regions 2–4 kb from CpG Islands) by purple, shores (regions 0–2 kb from
CpG Islands) by blue and the open seas (genomic loci that fall outside of the islands, shelves, and shores) by orange. Percentages are calculated
as percent total number of hits. d Distribution of differential DNA methylation marks across different genomic loci. Annotations of the locations
are obtained from Illumina EPIC manifests: TSS1500 = within 1500 bp of transcription start site (TSS); TSS200 = within 200 bp of TSS
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Deriving genetic information from differential DNA
methylation signals
Several studies have found an association of genetic vari-
ants with the DNA methylation signals at specific probes
[22, 23]. To further evaluate the likelihood of DMPs
correlating with AD, we also queried all the DMP-
associated genes within the GWAS catalog for AD,
(https://ebi.ac.uk/gwas/) which includes 72 individual
GWAS studies and found overlaps between the GWAS
hits and the DMPs from AD vs. CN, AD vs. MCI, and
MCI vs. CN comparisons (Figure S5A). Some of the
overlaps included BIN1 (Figure S5C), KCNN2 (Figure
S5B), DIP2C (Figure S5C), PAK2 (Figure S5D), C3orf67
(Figure S5E), and WNT3 (Figure S5F). We were also able
to utilize the methylation data to identify disease-specific
associations with some novel SNPs previously linked to
neurodevelopmental and neuropsychiatric disorders. For
example, ANK3 has been associated with mental retard-
ation, SLC45A1 with intellectual developmental disorder,
and CHI3L1 with schizophrenia (Table S4), suggesting

that differential methylation data may help reveal novel
genetic variations that associate with AD. These associa-
tions could be interesting hypotheses requiring further
testing.

Replication of differential methylation signals across
multiple datasets
Finally, we queried a second dataset for differential
methylation at the loci identified in our study. A com-
prehensive study of about 1628 samples assessed
human samples across several different types of tissues,
including leukocytes, brain regions, and several cancer
tissues [24]. Comparison of differential methylation in
leukocytes from 65 healthy control subjects that were
age 65 years or older with 35 AD subjects within the
aforementioned study identified several DMPs. In an ef-
fort to replicate our findings from ADNI peripheral
blood, we tested for overlaps across our study and the
output from the above and observed overlaps across 11
CpGs (Table 3).

Fig. 2 Comparison of DNA methylation in AD (Alzheimer’s disease) vs CN (cognitively normal). a Manhattan plot showing the top hits in the AD
vs CN comparison. The blue line indicates p value threshold of 1 × 10−5 and the red line indicates p value threshold of 1 × 10−7. b Distribution of
unadjusted M values in FAM8A1, the top DMP across CN (green), MCI (blue), and AD (red). Violin plots outline the spread of the data. c
Correlation of MMSE scores with differential methylation at the FAM8A1 locus
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Discussion
We have successfully assayed peripheral blood samples
from ADNI to investigate differential DNA methylation
in mild cognitively impaired and Alzheimer’s disease pa-
tients across serial visits using the Illumina EPIC chip.
The success rate for the experiment was 99.7%, with
only 15 samples out of the total 1920 that failed the run
and/or quality control thresholds. Our work establishes
the robustness of DNA methylation as a peripheral
marker and demonstrates the consistency and reprodu-
cibility of its detection at > 99% concordance across
replicates.

The cross-diagnosis analysis demonstrates that a
common set genomic loci in the periphery are differen-
tially methylated in individuals with AD compared to
normal healthy individuals. Several of these differential
methylation marks were also replicated in a second per-
ipheral DNA methylation dataset. Additionally, PB DNA
methylation differences were found to be enriched near
or within genes previously shown to associate with
brain-associated pathways. The differential methylation
at these sites correlates with cognitive scores, suggesting
a relationship between the differential methylation with
endophenotypes of disease progression.

Table 2 Gene ontology analysis of genes within 50 kb of differentially methylated positions from each cross-diagnosis comparison

Gene Set Name # Genes in Gene Set (K) # Genes in overlap (k) k/K FDR q-value

Cross-Diagnosis Comparison of AD vs CN at All Visits

BENPORATH_SUZ12_TARGETS 1038 37 0.0356 1.98E-22

BENPORATH_ES_WITH_H3K27ME3 1118 38 0.034 2.60E-22

BENPORATH_EED_TARGETS 1062 37 0.0348 4.29E-22

GO_NEURON_DIFFERENTIATION 874 29 0.0332 6.78E-17

GO_NEUROGENESIS 1402 35 0.025 2.00E-16

BENPORATH_PRC2_TARGETS 652 25 0.0383 4.04E-16

GO_CELL_DEVELOPMENT 1426 33 0.0231 1.36E-14

MIKKELSEN_NPC_HCP_WITH_H3K27ME3 341 18 0.0528 2.97E-14

MEISSNER_BRAIN_HCP_WITH_H3K4ME3_AND_H3K27ME3 1069 28 0.0262 8.47E-14

MIKKELSEN_MEF_HCP_WITH_H3K27ME3 590 20 0.0339 3.87E-12

Cross-Diagnosis Comparison of MCI vs CN at All Visits

GO_NEUROGENESIS 1402 18 0.0128 1.35E-09

GO_CELL_PROJECTION 1786 20 0.0112 1.52E-09

MEISSNER_NPC_HCP_WITH_H3_UNMETHYLATED 536 12 0.0224 2.32E-09

BENPORATH_SUZ12_TARGETS 1038 15 0.0145 7.80E-09

MEISSNER_BRAIN_HCP_WITH_H3K4ME3_AND_H3K27ME3 1069 15 0.014 1.15E-08

BENPORATH_ES_WITH_H3K27ME3 1118 15 0.0134 2.08E-08

GO_CELL_DEVELOPMENT 1426 16 0.0112 7.88E-08

BENPORATH_EED_TARGETS 1062 14 0.0132 7.96E-08

GO_CELL_PROJECTION_PART 946 13 0.0137 1.50E-07

GSE40443_INDUCED_VS_TOTAL_TREG_UP 200 7 0.035 3.03E-07

Cross-Diagnosis Comparison of AD vs MCI at All Visits

GO_INTRINSIC_COMPONENT_OF_PLASMA_MEMBRANE 1649 15 0.0091 7.16E-08

GO_CELL_SURFACE 757 10 0.0132 4.97E-07

GRYDER_PAX3FOXO1_ENHANCERS_IN_TADS 975 11 0.0113 6.04E-07

GO_CELL_PROJECTION 1786 14 0.0078 1.22E-06

BIOCARTA_LAIR_PATHWAY 17 3 0.1765 2.91E-06

GO_ALPHA_ACTININ_BINDING 21 3 0.1429 5.66E-06

BLALOCK_ALZHEIMERS_DISEASE_DN 1237 11 0.0089 5.94E-06

GO_NEURON_PART 1265 11 0.0087 7.34E-06

GO_REGULATION_OF_TRANSPORT 1804 13 0.0072 7.65E-06
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When assessing the overlap in DNA methylation pat-
terns in the periphery and the brain, previous studies
have demonstrated that genome-wide DNA methylation
profiles are specific to the tissue being studie d[16, 25–
27]. These studies have suggested that even though
many of the DMPs were associated with differentially
expressed transcripts, blood-based epigenome-wide asso-
ciation studies from methylation arrays may not correl-
ate with disease etiology [25]. In contrast, some other
studies have shown conservation of DNA methylation
patterns across blood and brain [18, 28, 29], specifically
at promoter regions [18], or via co-expression modules
that correlate the brain and the blood to age [29]. Our
study picks up some signals in the periphery that are
enriched for brain-specific loci; however, this warrants
additional studies to detect the blood-brain overlap in
DNA methylation. Interestingly, a recent article based
on the ENIGMA studies (MRI readouts from 3337 indi-
viduals) demonstrated an association of blood DNA

methylation with volumes of the hippocampus, thal-
amus, and nucleus accumbens (NAcc) [30].
The ADNI participant cohort has previously been used

to identify novel biomarkers of disease development and
progression [31–33], and is uniquely suited to measure
and validate these changes. Ongoing work includes the
integration of the methylation data with the rich pheno-
typic (e.g., cognitive, memory, neuroimaging) and multi-
omic data (e.g., genotypic, expression, metabolomics)
from the ADNI dataset. This will allow for the use of
peripheral DNA methylation marks to function as a dy-
namic biomarker of disease progression and response to
drug treatment.
Peripheral differential methylation has been used as

a biomarker of disease occurrence and progression
across several therapeutic areas including autoimmune
diseases, cancers, and heart disease [34–36]. Previous
methylation studies undertaken with PB or peripheral
blood mononuclear cell (PBMC) samples mostly

Fig. 3 Comparison of DNA methylation in MCI (Mild cognitive impairment) vs CN (cognitively normal). a Manhattan plot showing the top hits in
the MCI vs CN comparison. The blue line indicates p value threshold of 1 × 10−5 and the red line indicates p value threshold of 1 × 10−7. b
Distribution of unadjusted M values in CLIP4, the top DMP across CN (green), MCI (blue), and AD (red). Violin plots outline the spread of the data.
c Correlation of MMSE scores with differential methylation at the CLIP4 locus.
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provided a snapshot of DNA methylation changes in
the periphery that associated with disease status. A
recent study described the identification of PB DNA
methylation changes that associated with normal
brain aging and cognitive decline in the Whitehall im-
aging study [37]. For most biomarkers being studied,

longitudinal measures appear to more sensitively pre-
dict cognitive decline [38, 39]. Our study design in-
cludes longitudinal DNA samples and further analysis
will measure dynamic changes in DNA methylation
that associate with disease progression. The potential
value of DMPs as a surrogate for disease is critically

Fig. 4 Comparison of DNA methylation in AD (Alzheimer’s disease) vs MCI (mild cognitive impairment). a Manhattan plot showing the top hits in
the AD vs MCI comparison. The blue line indicates p value threshold of 1 × 10−5 and the red line indicates p value threshold of 1 × 10−7. b
Distribution of unadjusted M values in NUCB2, the top DMP across CN (green), MCI (blue), and AD (red). Violin plots outline the spread of the
data. c Correlation of MMSE scores with differential methylation at the NUCB2 locus

Table 3 Replication of differential methylation across datasets (using Fernandez et al. Leukocyte data)

Comparison Gene Discovery CpG Discovery P-value Replication CpG locus Replication P-value

AD vs CN ADCYAP1 cg16288125 3.02 × 10-5 chr18:905,549-905,550 3.78E-09

EPHB3 cg22462726 2.57 × 10-6 chr3:184,561,230-184,561,231 1.78E-05

GDF10 cg00414835 2.5 × 10-5 chr10:47,300,094-47,300,095 7.89E-04

PARP1 cg27113848 2.74 × 10-5 chr1:226,408,700-226,408,701 1.25E-01

MCI vs AD DAB2IP cg20416296 8.69 × 10-6 chr9:121,698,699-121,698,700 4.49E-01

MET cg04432493 8.6 × 10-5 chr7:116,672,738-116,672,739 7.05E-03

APOC1 cg07773593 6.06 × 10-5 chr19:44,914,258-44,914,259 9.97E-03

ITGB1 cg05376034 6.42 × 10-5 chr10:32,958,721-32,958,722 6.20E-02

MCI vs CN SOX1 cg07911664 9.5 × 10-6 chr13:112,066,581-112,066,582 1.12E-01

WNT1 cg22376688 1.56 × 10-5 chr12:48,972,583-48,972,584 3.90E-06

DAPK1 cg10240127 3.1 × 10-5 chr9:87,497,927-87,497,928 8.85E-04
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important and can change our approach to clinical
studies. Presentation of these results gives the field an
opportunity to further investigate and validate the
DMPs as surrogates of disease.

Methods
Subjects
ADNI is a longitudinal study with approximately 50 sites
across the USA and Canada that was launched in 2003
with a major goal being to track the AD progression
using clinical and cognitive tests, magnetic resonance
imaging (MRI), fludeoxyglucose PET, amyloid PET, cere-
brospinal fluid, and blood biomarkers. The institutional
review boards of all participating sites reviewed and ap-
proved the data collection protocol provided by ADNI.
Clinical descriptions of the ADNI cohort have been pub-
lished [40]. Six hundred and fifty-three individuals from
two phases of ADNI (ADNI2 and ADNIGO) were se-
lected for performing DNA methylation analysis (Table
1) based on the completeness of their other datasets
(genotyping [APOE, TOMM40], genome wide array,
whole genome sequencing, proteomic and imaging data).
A total of 1720 samples were obtained, and randomized
using a modified incomplete balanced block design,
whereby all samples from a subject were on the same
chip, with remaining chip space occupied by age-
matched samples from a subject of the opposite sex with
a different diagnosis. Unused chip space was leveraged
for technical reproducibility assessment via replicated
DNA samples. A total of 200 samples were replicated
across all the chips (Figure S1), for a total 1920 samples
processed. Among these replicates, we found consistent
DNA methylation signals both within plates and across
plates. The correlation coefficient was 99.63% when the
replicates were on the same plate with the same scan
date, and 99.25% when the replicates were on different
plates with different scan dates (Table S1).

EPIC chip runs
Illumina EPIC chips (Illumina, Inc., San Diego, CA,
USA) were used to assay for DNA methylation levels
according to published Illumina protocols. Genomic
DNA samples obtained from NCRAD (National
Centralized Repository for Alzheimer's Disease and
Related Dementias) were bisulfite converted using the
EZ-DNA Methylation kits (Zymo Research, Irvine,
CA, USA) and subsequently analyzed using the
Illumina Infinium HD methylation protocol on the
HiScan (Illumina).

Normalization and quality control methods
The derived beta values were transformed to M values
and used for further analysis. The scan output was run
through Genome Studio software (Illumina) to assay for

initial QC metrics. One sample out of the total 1920
failed the run and had no CpG calls. The remaining
samples had an average of CpG call of 864,640. Four
additional samples failed quality control since ≥ 1% of
CpG sites had a detection p value > 0.05 using water-
melon [41]. All 1915 samples were normalized using the
dasen method in wateRmelon [41].

Sample identity checks
Sample sex was examined by computing the ratio of the
X and Y probe intensities for each subject compared to
their expected value, with > 99% of subjects mapping to
the given sex (Figure S2A). The following R packages
were used to check sample quality and possible sample
mix-ups via sex-mismatches: Cham p[42], minfin [43],
methylumi [44], and watermelon [41]. Additionally, we
used the 59 tracking cpgs on the Illumina EPIC chips
which are proxies for SNP fingerprinting (i.e., probe con-
tains C allele that is a common variant), and compared
those to the ADNI GWAS genotyping array data at the
same positions (Figure S2B) using a clustering algorithm
(k = 3) to convert cpg signal to genotype based on
Hardy-Weinberg equilibrium. The GWAS data were
procured from LONI (http://www.loni.usc.edu/). After
normalization, quality control, and removal of dupli-
cates, 1707 samples were analyzed for differences in
DNA methylation.

Statistical analysis
Since we wanted to include all the samples available for
each subject in our initial analysis to compare across
diagnoses, we fitted a mixed effects model on the M
values to account for repeated measures of DNA methy-
lation for the patients. This was done using the limma
package [45–48] using dupcor estimated at the subject-
level. We evaluated the association between DNA
methylation level and diagnosis in multivariate models
adjusted for age, sex, education, cell composition
changes, and DNA storage/source in the model as
shown in supplementary material. As it is known that
peripheral blood cell composition can substantially affect
methylation differences [41] between individuals, differ-
ential methylation analysis requires that any change in
cell composition be adjusted for. Cell composition esti-
mates were obtained using estimateCellCounts [43] at
default settings such that estimates are made for CD8T,
CD4T, NK, Bcell, Mono, and Gran. Because they lie in
[0,1] and are constrained to sum to 1 within a sample,
including all 6 values as covariates would induce multi-
collinearity. Therefore, only 5 cell type values are used
as covariates. Furthermore, the difference in the storage
of the sample used for DNA isolation (whole blood vs.
buffy coat) had an impact on the cell composition,
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prompting its use as an additional covariate, as detailed
in Supplementary Material.

Functional analysis of top differentially methylated
positions (DMPs)
Tissue specific analysis of differentially methylated
marks was performed using Tissue Specific Expression
Analysis (TSEA) at http://genetics.wustl.edu/jdlab/tsea/
[20]. Gene ontology analysis was performed using the
molecular signature database (MSigDB) at http://soft-
ware.broadinstitute.org/gsea/index.jsp [49, 50]. Curated
gene sets (Biocarta, KEGG, and Reactome), Gene ontol-
ogy gene sets (GO biological process, GO cellular com-
ponent, and GO molecular function), and Immunologic
signatures were included in the pathway analysis, and an
FDR q value of 0.05 was set as the threshold.
Additional details regarding statistical analyses are

included in supplemental information.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-020-00864-y.
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Table S3. Interpretation of TSEA results.
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