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ARTICLE INFO ABSTRACT

Keywords: Data-driven disease progression models have provided important insight into the timeline of brain changes in
Disease progression modeling AD phenotypes. However, their utility in predicting the progression of pre-symptomatic AD in a population-

Event-based model based setting has not yet been investigated. In this study, we investigated if the disease timelines constructed

in a case-controlled setting, with subjects stratified according to APOE status, are generalizable to a population-
based cohort, and if progression along these disease timelines is predictive of AD. Seven volumetric biomarkers
derived from structural MRI were considered. We estimated APOE-specific disease timelines of changes in these
biomarkers using a recently proposed method called co-initialized discriminative event-based modeling (co-init
DEBM). This method can also estimate a disease stage for new subjects by calculating their position along the
disease timelines. The model was trained and cross-validated on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, and tested on the population-based Rotterdam Study (RS) cohort. We compared the diagnostic
and prognostic value of the disease stage in the two cohorts. Furthermore, we investigated if the rate of change of
disease stage in RS participants with longitudinal MRI data was predictive of AD. In ADNI, the estimated disease
timeslines for ¢4 non-carriers and carriers were found to be significantly different from one another (p < 0.001).
The estimate disease stage along the respective timelines distinguished AD subjects from controls with an AUC
of 0.83 in both APOE €4 non-carriers and carriers. In the RS cohort, we obtained an AUC of 0.83 and 0.85 in ¢4
non-carriers and carriers, respectively. Progression along the disease timelines as estimated by the rate of change
of disease stage showed a significant difference (p < 0.005) for subjects with pre-symptomatic AD as compared to
the general aging population in RS. It distinguished pre-symptomatic AD subjects with an AUC of 0.81 in APOE
¢4 non-carriers and 0.88 in carriers, which was better than any individual volumetric biomarker, or its rate of
change, could achieve. Our results suggest that co-init DEBM trained on case-controlled data is generalizable to a
population-based cohort setting and that progression along the disease timelines is predictive of the development
of AD in the general population. We expect that this approach can help to identify at-risk individuals from the
general population for targeted clinical trials as well as to provide biomarker based objective assessment in such

Alzheimer’s disease
APOE
Population study

trials.
1. Introduction old) (World Health Organization, 2017). A major genetic risk factor
for AD is the presence of ¢4 allele of APOE (Van Cauwenberghe et al.,
Alzheimer’s disease (AD) is a chronic neurodegenerative disease that 2016). Furthermore, APOE €4 has also been shown to affect the clini-

affects roughly 3% of the world’s elderly population (above 60 years cal (Holmes, 2002; Weintraub et al., 2019) and biological phenotypes

* Corresponding author.

E-mail address: m.vernooij@erasmusmc.nl (M.W. Vernooij).

# Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the de sign and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement List.pdf

1 Denote equal contributions.

2 Denote equal contributions.

https://doi.org/10.1016/j.neuroimage.2021.118233.

Received 31 October 2020; Received in revised form 11 April 2021; Accepted 1 June 2021

Available online 4 June 2021.

1053-8119/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.neuroimage.2021.118233
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.118233&domain=pdf
mailto:m.vernooij@erasmusmc.nl
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.neuroimage.2021.118233
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Venkatraghavan, E.J. Vinke, E.E. Bron et al.

of AD (Ferreira et al., 2020), making it a key factor in understanding
the pathophysiology of AD.

Neuroimaging biomarkers play an important role in disentangling
these phenotypes (Ryan et al., 2018; Young et al., 2018). They could also
play an important role in finding disease modifying treatments (Devi and
Scheltens, 2018). There has been evidence that selection of the study
population at its pre-symptomatic stage is also crucial for the success
of potential modifying treatments for AD (Sevigny et al., 2016; Sperling
etal., 2013). Hence there is a crucial need for a way to objectively assess
the progression of pre-symptomatic AD (or lack thereof).

Biomarkers extracted from neuroimaging data in combination with
machine learning approaches have been shown to objectively assess
the progression of AD in research cohorts (Marinescu et al., 2020) as
well as in clinical cohorts (Kloeppel et al., 2015). However, machine
learning approaches are not explainable by default and the lack of
transparency in such approaches could hinder clinical decision mak-
ing (Wachter et al., 2018).

Disease progression models are data-driven approaches that are
interpretable by design and can thus aid not only in predicting AD
but also in explaining the decision and facilitating transparency and
trust (Holzinger et al., 2017). In recent years, many disease progres-
sion models have emerged to provide insight into neurodegenerative
diseases such as AD (Donohue et al., 2014; Fonteijn et al., 2012). Such
insights have also been shown to aid in objective assessment of AD pro-
gression (Koval et al., 2018). An example of such a model is the dis-
criminative event-based model (DEBM) (Venkatraghavan et al., 2019),
which estimates a timeline of AD related biomarker abnormality events
in a data-driven way. This model was recently extended further to iden-
tify APOE genotype-specific differences in AD biomarker progression,
where the biomarkers, including volumetric measures obtained from
MRI, were found to progress along different timelines depending on
APOE status (Venkatraghavan et al., 2021). However, the generalizabil-
ity of such models to population-based cohorts and their utility in pre-
dicting the progression of pre-symptomatic AD in a population-based
setting have not yet been investigated.

In this work, we investigate if i) APOE-specific disease timelines con-
structed in a case-controlled setting are generalizable to a population-
based cohort, and ii) if progression along these disease timelines is
predictive of AD. For constucting the APOE-specific disease timelines,
we use a recently developed approach called co-initialized (co-init)
DEBM (Venkatraghavan et al., 2021) meant for obtaining disease time-
lines in stratified cross-sectional datasets. We demonstrate the potential
of the method’s fine-grained disease stage estimation in predicting the
subjects with pre-symptomatic AD in the general population.

2. Methods

We first describe the inclusion criteria for participants and the
method for obtaining the volumetric biomarkers in the case-controlled
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and the
population-based Rotterdam study (RS) dataset. This is followed by the
description of co-init DEBM used to construct APOE-specific disease
timelines of volumetric biomarkes from baseline scans of the partici-
pants in the ADNI. We validated the disease timelines constructed on
ADNI by assessing their generalizability to the population-based RS co-
hort, and by predicting the participants at-risk of becoming symptomatic
in the RS cohort.

2.1. Participants

2.1.1. ADNI

We considered the baseline measurements of 335 cognitively normal
(CN), 565 non-AD, 167 incident-AD and 223 AD participants (prevalent-
AD) who had imaging data available in ADNI1, ADNIGO and ADNI2
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studies® The non-AD cases were defined as ADNI participants who were
either mild cognitively impaired (MCI) or had subjective memory com-
plaints at the time of the baseline MRI scan, and did not develop AD
within 3 years of follow-up. The incident-AD cases presented with MCI
at baseline but developed AD within 3 years. The prevalent-AD and
incident-AD subjects were defined by their clinical diagnosis of AD ac-
cording to NINCDS-ADRDA’s criteria for AD (Dubois et al., 2007; Pe-
tersen et al., 2010). Characteristics of the subjects and their volumet-
ric measures in the ADNI dataset included in our study are shown in
Table 1(a).

2.1.2. Rotterdam study

We considered participants from the population-based RS cohort,
a prospective longitudinal study among community-dwelling subjects
aged 45 years and over (Ikram et al., 2020). Participants were screened
for dementia at baseline and at follow-up examinations with the Mini-
Mental State Examination and the Geriatric Mental Schedule organic
level. Those with a Mini-Mental State Examination score < 26 or Geri-
atric Mental Schedule score > 0 underwent further investigation and
informant interview, including the Cambridge Examination for Mental
Disorders of the Elderly. In addition, the entire cohort was continuously
under surveillance for dementia through electronic linkage of the study
database with medical records from general practitioners and the re-
gional institute for outpatient mental health care. Available information
on cognitive testing and clinical neuroimaging was used when required
for diagnosis of dementia subtype. A consensus panel led by a consultant
neurologist established the final diagnosis of AD according to NINCDS-
ADRDA criteria for AD.

In this work, we included participants from the RS who had at least
one MRI scan, who completed cognitive testing, and were interviewed
for the presence of subjective cognitive complaints at the time of the
MRI. The included participants were categorized into 4 groups: par-
ticipants that were cognitively normal at the time of the scan (CN),
participants that had subjective memory complaints and/or objective
cognitive impairment (de Bruijn et al., 2014), but who did not develop
AD at follow-up (non-AD), participants with AD at the time of the scan
(prevalent-AD) and participants who developed AD after the MRI scan
(incident-AD). Unlike in ADNI, we did not set a threshold of conversion
within 3 years to be included as an incident-AD participant, since we
wanted to assess the utility of our method in monitoring the progres-
sion of both pre-clinical and prodromal AD subjects. Participants with
clinical stroke were excluded.

In our experiments, we used two subsets of the RS cohort: the general-
izibility set and the prediction set. The generalizibility set consisted of the
last MRI scan available for each partipant in the RS cohort. This subset
consisted of 998 CN, 2710 non-AD, 97 incident-AD, and 25 prevalent-
AD cases and were used for experiments validating the generalizability
of the APOE-specific disease timelines constructed using co-init DEBM.
The characteristics of the subjects in this subset are shown in Table 1(b).
The prediction set consisted of the last two MRI scans available for each
participant, which were used to assess the progression (or lack thereof)
of pre-symptomatic AD in the participants. This subset consisted of 183
CN, 852 non-AD and 31 incident-AD cases. For the incident-AD cases,
both the included scans were performed before the AD diagnosis. Partic-
ipants with prevalent-AD were excluded in this subset. The characteris-
tics of the subjects in this subset are shown in Table 1(c). A scatter plot
illustrating the longitudinal sampling in this prediction set is shown in
Figure 1.

3 ADNI was launched in 2003 as a public-private partnership, led by Princi-
pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive im-
pairment (MCI) and early Alzheimers disease (AD). For up-to-date information,
see www.adni-info.org.
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Characteristics of the ADNI dataset (a), the generalizability set of the RS dataset (b), and the prediction set of the
RS dataset (c). * indicates values at last scan.

ADNI dataset CN non-AD incident-AD prevalent-AD
Number of subjects 335 565 167 223
Number of women, % 174, 51.9 268, 47.4 68, 40.7 104, 46.6
Age (years) 743 £ 5.6 7182 + 7.2 731+ 7.1 740 + 7.9
Number of APOEe4 carriers, % 92,275 238, 42.1 121, 72.5 151, 67.7
Intracranial volume (ml) 1504.0 + 155.8 1520.9 + 152.8 1546.2 + 180.2 1524.2 + 1839
Total brain volume (ml) 1030.7 + 98.7 1043.3 + 100.0 1017.7 = 111.7 991.8 + 114.1
Ventricle volume (ml) 38.4 + 18.1 41.0 + 21.3 49.1 + 239 514 + 219
Hippocampus volume (ml) 73 +£09 71+ 1.0 63 + 1.0 6.0 + 1.0
Precuneus volume (ml) 16.7 + 2.2 174 + 2.4 16.2 + 2.6 154 £ 25
Middle temporal gyrus volume (ml) 204 + 2.7 204 + 2.7 185+ 29 17.6 £ 3.0
Fusiform gyrus volume (ml) 175 £ 2.1 17.6 £ 2.2 163 + 2.4 155 + 24
Entorhinal cortex volume (ml) 4.0 + 0.7 39+08 34+08 32+08
Time before AD diagnosis (years)* 14 + 0.7

(a)
RS dataset - generalizability set CN non-AD incident-AD prevalent-AD
Number of subjects 998 2710 97 25
Number of women, % 500, 50.1 1200, 44.3 39, 40.2 10, 40.0
Age (years) 67.4 + 83 709 + 9.3 79.6 £ 5.7 80.2 £+ 6.3
Number of APOEe4 carriers, % 255, 25.6 745, 27.5 45, 46.4 11, 44.0
Intracranial volume (ml) 1512.3 £ 157.6 1475.8 + 155.3 1437.5 + 156.6 1403.0 + 163.9
Total brain volume (ml) 1050.3 + 107.5 1012.6 + 105.6  936.6 + 94.9 884.5 + 105.0
Ventricle volume (ml) 337+ 173 36.5 + 193 49.1 + 21.1 59.9 + 283
Hippocampus volume (ml) 79 + 0.8 7.6 £ 038 6.7 + 0.9 6.0 + 1.0
Precuneus volume (ml) 18.2 + 2.1 17.6 + 2.0 16.8 + 1.9 154 + 2.2
Middle temporal gyrus volume (ml) 20.6 + 2.7 199 + 2.7 17.6 £ 2.5 16.2 = 2.7
Fusiform gyrus volume (ml) 17.7 £ 2.2 17.2 + 2.1 15.8 + 2.0 145 + 2.7
Entorhinal cortex volume (ml) 3.7 £ 0.6 3.6 +0.7 3.1+£08 2.6 + 0.7
Time before AD diagnosis (years)* 28 +23

(b)
RS dataset - prediction set CN non-AD incident-AD
Number of subjects 183 852 31
Number of women, % 95, 51.9 412, 48.4 10, 32.3
Age (years)* 733 £ 5.5 75.5 + 6.4 784 + 6.8
Follow-up time (years) 35+ 13 35+ 14 29+ 09
Number of APOEe4 carriers, % 39,213 225, 26.4 13, 41.9
Intracranial volume (ml)* 1522.8 + 156.6 1478.9 + 156 14194 + 126.9
Total brain volume (ml)* 1038.7 + 100.7 998.4 + 98.3 926.6 + 91.4
Ventricle volume (ml)* 39.7 + 20.2 41.1 + 21.6 449 + 17
Hippocampus volume (ml)* 7.8 £0.8 7.4 + 0.8 6.7 + 0.9
Precuneus volume (ml)* 18.0 + 2.0 175 £ 1.9 16.5 + 1.8
Middle temporal gyrus volume (ml)*  20.3 + 2.6 195 + 24 175 + 2.4
Fusiform gyrus volume (ml)* 175 £ 2.1 17.0 + 2.1 15.6 = 2.1
Entorhinal cortex volume (ml)* 3.7+ 0.7 3.6 +0.7 3.0 +0.6
Time before AD diagnosis (years)* 24+ 18

2.2. MRI Acquisition and imaging biomarker extraction

The imaging biomarkers used in this study were estimated from
T1-weighted (T1w) MRI scans. ADNI participants were scanned on
a 1.5T (N =497) or a 3T (N =793) MRI system from GE, Philips,
or Siemens, using magnetization prepared - rapid gradient echo (MP-
RAGE) sequence (voxel size: 1.0 x 1.0 x 1.0 mm3). RS participants were
scanned on a single 1.5T MRI system from GE, using gradient re-
called echo (GRE) sequence (voxel size: 0.49 x0.49 x 1.6 mm?). De-
tails of the MRI acquisition protocol can be found in Jack et al.
(2015, 2008) (ADNI) and Ikram et al., 2015 (RS). The MRI scans
were analyzed with FreeSurfer software v6.0 cross-sectional stream
(http://surfer.nmr.mgh.harvard.edu). Outputs were visually checked
for the ADNI dataset. In the RS dataset, an automated quality metric
was used to exclude scans with insufficient quality, which was visu-
ally verified in a randomly selected subset of both selected and rejected
scans (Lamballais et al., 2020).

The selected imaging markers were the same markers as that
of Archetti et al., 2019, namely volumetric measures of: total brain,
ventricles, hippocampus, precuneus, middle temporal gyrus, fusiform

gyrus and entorhinal cortex. The volumes were defined as the summed
volumes of the structure in the left and right hemisphere. To take into
account the confounding effects of age, sex, and intracranial volume,
linear regressions were performed before constructing the disease time-
lines. The volumetric measures of CN subjects in ADNI were used to
regress against age, sex and intracranial volume to estimate their con-
founding effects parameterized by their respective slopes and intercepts.
These estimates were used for confounding factor correction in the re-
maining subjects in ADNI as well as in the RS cohort. The resultant
volumetric measures will be referred to as biomarkers in the remainder
of the manuscript.

2.3. Construction of APOE-specific disease timelines using co-init DEBM

The co-init DEBM model introduced in (Venkatraghavan et al., 2021)
constructs genotype-specific AD related disease timelines of biomarker
changes, based on cross-sectional datasets. Such an estimation from cross-
sectional data is feasible because, in a cohort consisting of subjects en-
compassing a wide spectrum of severity, early biomarkers have a higher
prevalence of abnormal biomarker values as compared to biomarkers
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Fig. 1. Longitudinal sampling in the prediction set of the RS dataset. The x-axis represents the age of the participant at baseline and the y-axis represents time
difference between the baseline and follow-up scan. The plot on the top of the figure shows the kernel density estimates of the age of the participants for the different
diagnostic classes and the one on the right shows the kernel density estimates of the follow-up time.

that become abnormal later in the disease timeline. The co-init DEBM
model estimates this timeline without strictly considering the diagnos-
tic labels of the subjects. The model uses a coupled mixture model to
jointly fit normal and abnormal distributions in the dataset stratified by
(APOE) genotypes. The model assumes that the normal and abnormal
biomarker distributions in the different genotypes can be approximately
represented by Gaussians. It also assumes that the different genotypes’
abnormal (and normal) biomarker distributions are close to each other.

After the estimation of the normal and abnormal biomarker distri-
butions, the model computes the probability of abnormality of each
biomarker for each subject in the training dataset. Based on the assump-
tion that a biomarker that becomes abnormal earlier in the disease time-
line would be more abnormal than the biomarker that becomes abnor-
mal later, it estimates a subject-specific ordering of biomarker changes
in each subject of the dataset. A generalized Mallows model is used
to average the subject-specific biomarker ordering over the subjects
within each genotypic group of the training set, to construct average
disease timeline for APOE €4 non-carriers and carriers. Along with the
sequence of the biomarker abnormality events, the model also estimates
the relative positioning of such events with respect to each other (event-
centers). Absolute magnitudes for these event-centers are irrelevant as
they only convey relative (temporal) distances and in this study, they
were normalized such that the first event and the last event coincided
at a value of 0.1 and 0.9 respectively.

To construct the disease timelines, the co-init DEBM was trained on
CN, incident-AD, and prevalent-AD subjects from ADNI. The non-AD
subjects in ADNI were excluded for training the model, to reduce the
chances of disorders unrelated to AD affecting the estimated timelines.
The variance in the estimated disease timeline was computed using 100
independent bootstrap samples. In order to evaluate if the estimated
orderings in APOE ¢4 non-carriers and carriers were significantly differ-
ent from one another, we used permutation testing and estimated the
distribution of the Kendall’s Tau distance under the null hypothesis. To
compute this distribution, we generated 1,000 random permutations of

the two groups. We then computed the one-sided p-values for the actual
Kendall’s Tau distances between the orderings of the two groups, cal-
culated as the proportion of sampled permutations where the distance
was greater than or equal to the actual distance.

2.4. Estimating APOE-specific disease stages

After training the co-init DEBM model, the constructed APOE-specific
disease timelines were used to estimate the disease stage at multiple
timepoints for subjects of the RS cohort. For estimating the disease
stages of ADNI subjects, we used a 10-fold cross validation. The training
set was used for constructing the disease timelines and the disease stages
were estimated in the test set, including the non-AD subjects excluded
in the training phase. Disease stage quantifies the severity of the disease
in a subject by positioning them along the pre-constructed disease time-
lines and is normalized between 0 and 1. The estimated disease stages
were used in two sets of experiments.

Experiment 1: Assessing the generalizability of co-init DEBM from
ADNI to RS

In this experiment, we tested the generalizability of the co-init DEBM
model trained on ADNI by evaluating the diagnostic and prognostic
value of its predicted disease stages in the RS cohort. First we performed
a visual assessment by constructing normalized histograms of the esti-
mated APOE-specific disease stages for the different diagnostic classes
in ADNI and the generalizability set of the RS cohort.

Complementing this visual analysis, for assessing the diagnostic
value we used the estimated disease stages to distinguish prevalent-AD
from two different reference groups in ADNI and in the generalizability
set of the RS cohort. First, only the CN subjects were included in the
reference group. To emulate a reference group of participants more rep-
resentative of the general aging population than the CN group, we used a
combined set of CN and non-AD subjects as the second reference group.
We computed the area under the receiver operating curve (AUC) for dis-
tinguishing the diagnostic classes, and compared the AUCs obtained in
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Generalizability assessment: The AUCs for distinguishing the different diagnostic classes using the estimated disease stages and their corre-
sponding 95% confidence intervals. The confidence intervals of the AUCs were determined using bootstrap resampling while stratifying the
diagnostic classes to maintain their relative proportions. Co-init DEBM AUC represents the AUCs obtained when separate disease timelines
were estimated for APOE e4 non-carriers and carriers, whereas DEBM AUC represents the AUCs obtained when a combined disease timeline
was estimated. N and N represent the number of subjects in the reference group and number of cases respectively.

Reference Cases No. of Subjects Co-init DEBM AUC DEBM AUC
group ADNI (N, No) RS (Ng No)  ADNI RS ADNI RS
APOE ¢4 non-carriers
CN prevalent-AD 243, 72 743, 14 0.86 (0.81-0.91)  0.85(0.71-0.98)  0.85 (0.80-0.90)  0.79 (0.64-0.94)
CN + non-AD  prevalent-AD 570, 72 2708, 14 0.83 (0.78-0.88)  0.83 (0.70-0.97)  0.81 (0.76-0.86)  0.79 (0.64-0.94)
CN incident-AD 243, 46 743, 52 0.83 (0.77-0.90)  0.70 (0.62-0.78)  0.83 (0.77-0.89)  0.63 (0.55-0.72)
CN + non-AD  incident-AD 570, 46 2708, 52 0.81 (0.74-0.88)  0.68 (0.60-0.75)  0.80 (0.73-0.86)  0.64 (0.55-0.72)
APOE ¢4 carriers

CN prevalent-AD 92, 151 255, 11 0.89 (0.85-0.94)  0.85(0.74-0.96) 0.92 (0.87-0.96)  0.84 (0.71-0.97)
CN + non-AD  prevalent-AD 330, 151 1000, 11 0.83 (0.79-0.86)  0.85(0.74-0.95)  0.83 (0.80-0.87)  0.85 (0.72-0.98)
CN incident-AD 92, 121 255, 45 0.87 (0.82-0.92)  0.63 (0.54-0.72)  0.88 (0.83-0.93)  0.62 (0.52-0.72)
CN + non-AD  incident-AD 330, 121 1000, 45 0.79 (0.74-0.83)  0.62 (0.54-0.71)  0.79 (0.74-0.83)  0.62 (0.52-0.72)

ADNI and RS. The confidence intervals of these AUCs were measured
using bootstrap resampling while stratifying the diagnostic classes to
maintain their relative proportions. For assessing the prognostic value,
we used the estimated disease stages to distinguish incident-AD from
the aforementioned two reference groups in ADNI and in the general-
izability set of RS cohort. We computed the AUCs and their confidence
intervals for distinguishing these diagnostic classes and compared val-
ues obtained in ADNI and RS.

To compare the generalizability of a model that stratifies based on
APOE carriership, with that of a model that does not, we repeated the
experiment described above using disease timeline estimated in ADNI
subjects, without stratifying for APOE. Furthermore, we computed the
correlation of the estimated disease stages with time to dementia di-
agnosis for incident-AD subjects in ADNI as well as in RS. Lastly, we
computed the Spearman correlation of the estimated disease stages with
MMSE for subjects in ADNI as well as in RS.

Experiment 2: Predicting AD based on longitudinal data in the RS co-
hort

In this experiment, we assess if the evolution of the disease stages
derived from longitudinal neuroimaging data is predictive of AD in the
prediction set of the RS cohort. This experiment is further divided into
three parts. In the first part, we build longitudinal trajectories of the
disease stages and observe the differences in CN, non-AD and incident-
AD subjects. In the second part, we assess the prognostic value of the
rate of change of disease stages. Lastly, we assess the marginal utility of
the follow-up scans in AD prognostication.

Exp. 2.1: We used the disease stages obtained in the prediction set
of the RS cohort for building the trajectories of disease stages in the
two APOE €4 based groups. The trajectories were estimated using linear
mixed models with random intercepts and slopes. The time variable in
these linear mixed models was follow-up time in years since the first MRI
of the subject. To allow different slopes for different diagnostic classes,
an interaction between follow-up time and the diagnosis was integrated
in the model. Covariates that were accounted for in the model were sex,
age at the time of the first MRI, and the interaction of age and follow-up
time to allow slope differences for different ages.

Exp. 2.2: We used the rate of change of disease stages (delta disease
stage) in the prediction set of the RS cohort to distinguish incident-AD
from two different reference groups. As in Experiment 1, the two ref-
erence groups selected were CN, and a combined set of CN and non-
AD subjects. We computed the AUCs and their confidence intervals for
distinguishing these diagnostic classes. For comparison, the AUCs while
using the rate of change of the volumetric measures (normalized to their
respective intracranial volumes) for distinguishing the same two classes
were computed.

Exp. 2.3: Lastly, to evaluate the marginal utility of the follow-up
scans for identifying incident-AD subjects, we used the estimated dis-

ease stage at the last MRI scan of the subjects in the prediction set of
the RS cohort to distinguish incident-AD from the aforementioned two
different reference groups. We computed the AUCs and their confidence
intervals for distinguishing these diagnostic classes. As a comparison,
the AUCs based on participants’ age as well as of each individual volu-
metric imaging biomarker were also computed.

3. Results

Figure 2 shows the APOE-specific disease timelines constructed for
the ¢4 non-carriers and carriers in the ADNI dataset. It shows the cen-
ters of the biomarker abnormality events along the timeline representing
their relative positioning with respect to each other. It can be seen that
the disease timelines of APOE ¢4 non-carriers and carriers were quite
different. The permutation testing further confirmed that the disease
timelines of ¢4 non-carriers and carriers were indeed significantly dif-
ferent (p < 0.001). Most noticeably, ventricular volume and total brain
volume were estimated as early biomarkers for APOE ¢4 non-carriers,
whereas hippocampal volume and volume of the entorhinal cortex were
estimated as early biomarkers for APOE €4 carriers. It can also be seen
in Fig. 2 that the uncertainty estimates in APOE ¢4 non-carriers were
greater than in APOE ¢4 carriers.

Experiment 1: Assessing the generalizability of co-init DEBM from
ADNI to RS

The normalized histograms of the estimated APOE-specific disease
stages for the different diagnostic classes in ADNI and the generalizabil-
ity set of RS are shown in Fig. 3. It can be seen that the distributions
of the disease stages of the four diagnostic classes in ADNI were largely
similar to those in the generalizability set of RS. The CN and non-AD sub-
jects were positioned towards the left side of the spectrum, whereas the
prevalent-AD were positioned predominantly towards the right. It can
also be seen that for a proportion of prevalent-AD subjects in the APOE
€4 non-carrier group, the model had estimated a low disease stage in
both ADNI and RS cohorts. A noticeable difference between ADNI and
RS was that a substantial proportion of incident-AD subjects in RS was
positioned towards the left side of the histograms in both APOE ¢4 non-
carriers and carriers.

The AUG:s for distinguishing the different diagnostic classes using the
estimated disease stages are shown in Table 2, along with their confi-
dence intervals. It can be observed that the performance of the disease
stages obtained using co-init DEBM in distinguishing prevalent-AD from
the set of CN and non-AD subjects in ADNI (AUC = 0.83 for both APOE
€4 non-carriers and carriers) was comparable to that in RS (AUC = 0.83
for APOE ¢4 non-carriers and AUC = 0.85 for ¢4 carriers). It should how-
ever be noted that the confidence intervals were larger in the RS cohort.
It can also be observed that incident-AD subjects were harder to distin-
guish than prevalent-AD in the RS cohort (Co-init DEBM: AUC = 0.68
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Fig. 2. Disease timelines of APOE ¢4 non-carriers
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for €4 non-carriers and AUC = 0.62 for ¢4 carriers), but not in ADNI
(Co-init DEBM: AUC = 0.81 for €4 non-carriers and AUC = 0.79 for ¢4
carriers). It can also be seen in Table 2 that, while AUCs in ADNI are
comparable for both DEBM and Co-init DEBM and in APOE e4 carriers
in RS, the AUCs for distinguishing the different groups in RS APOE ¢4
non-carriers is higher for co-init DEBM.

Furthermore, the estimated disease stages showed a significant Pear-
son correlation with time to diagnosis for APOE €4 carrier incident-
AD subjects in both ADNI (R = 0.31, p = 0.0006) and RS cohorts (R =
0.29, p = 0.04). However, the correlation was found to be insignificant
for APOE €4 non-carrier incident-AD subjects in both ADNI (R = 0.04,
p=0.8) and RS cohorts (R = 0.1, p = 0.4). Lastly, the obtained disease

stages had a significant Spearman correlation with MMSE in both ADNI
non-carriers (R = —0.41, p < 0.001) and carriers (R = —0.48, p < 0.001) as
well as in RS non-carriers (R = —0.08, p < 0.001) and carriers (R = —0.06,
p=0.05).

Experiment 2: Predicting AD based on longitudinal data in the RS co-
hort

Exp. 2.1: In Fig. 4, the trajectories of disease stage over time as
estimated by linear mixed models are shown for the CN, non-AD and
incident-AD groups of the prediction set of RS. The interaction between
the incident-AD diagnosis and follow-up time was statistically signifi-
cant in both APOE ¢4 non-carriers and carriers (CN vs. incident-AD p =
0.0032 and p = 0.0041 respectively; non-AD vs. incident-AD p = 0.0039
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Fig. 3. Normalized histograms of the estimated APOE-specific disease stages for the different diagnostic classes in ADNI and the generalizability set of RS. The
normalized histograms of disease stages are shown for (a) APOE ¢4 non-carriers in ADNI, (b) APOE ¢4 carriers in ADNI (c) APOE ¢4 non-carriers of the generalizability
set in RS, and (d) APOE ¢4 carriers of the generalizability set in RS. The x-axis represents the disease stage based on the APOE-specific disease timeline by the co-init
DEBM model, and the y-axis represents the relative percentage of subjects in each diagnostic class, meaning that the relative percentages of all disease stages of one
diagnostic category add up to one. Estimated disease stage is a continuous variable and was discretized (binned) for visualization purposes only.

and p = 0.0032 respectively), meaning that incident-AD subjects showed
a significant increase in disease stage compared to CN and non-AD sub-
jects.

Exp. 2.2: In the left column of Fig. 5, the AUCs and the correspond-
ing 95% confidence intervals for distinguishing incident-AD using two
MRI scans based on longitudinal follow-up of participants are shown
for APOE €4 non-carriers and carriers. It can be observed that for dis-
tinguishing incident-AD from the reference group, delta disease stage
consistently performed the best for both the genotypes. It outperformed
the rates of changes of volumetric measures, with respect to the obtained
AUC. It can also be observed that distinguishing incident-AD from CN
and non-AD subjects in the reference group was harder than distinguish-
ing incident-AD from CN alone, as reflected by the lower AUCs for al-
most all the measures used.

Exp. 2.3: The right column of Fig. 5 shows that age was an impor-
tant predictor for incident-AD. Age distinguished incident-AD well from
CN subjects (AUC of 0.73 for both €4 non-carriers and carriers), but
the performance of age as a predictor dropped substantially when dis-
tinguishing incident-AD from CN and non-AD subjects (AUC of 0.64
for ¢4 non-carriers and 0.65 for e4 carriers). When only the last MRI
scan was used for incident-AD prediction from a reference group of CN
and non-AD subjects, volumes of hippocampus and entorhinal cortex
were good indicators in APOE €4 carriers (AUC of 0.79 and 0.81 re-
spectively) but not for APOE ¢4 non-carriers (AUC of 0.64 and 0.63
respectively). Similarly, total brain volume and ventricle volume were
good indicators of incident-AD in APOE ¢4 non-carriers (AUC of 0.73
and 0.68 respectively), but not for €4 carriers (AUC of 0.64 and 0.59
respectively). Disease stage estimated using the APOE-specific disease
timeline performed well consistently in both the APOE genotypes (AUC
of 0.74 for ¢4 non-carriers and 0.76 carriers). The marginal utility of
an additional MRI scan can be observed by comparing the left column
of Fig. 5 with the right column of Fig. 5. It can be seen that delta dis-
ease stage was much better for incident-AD prediction from a reference
group of CN and non-AD subjects (AUC of 0.81 for ¢4 non-carriers and
0.88 for carriers) than any measure obtained using only the last MRI
scan.

4. Discussion

In this work, we constructed APOE-specific disease timelines in
a case-controlled setting and validated their generalizability to a
population-based setting. We assessed that progression along these time-
lines is predictive of AD in the general population. In this section, we
discuss the insights we obtained from our results.

4.1. Generalizability of the APOE-specific disease timelines

The disease timelines estimated for APOE ¢4 non-carriers and car-
riers were significantly different from one another and highlighted the
APOE-genotype-specific differences in the loss of structural integrity as
AD progresses. Ventricular volume and total brain volume were early
biomarkers for €4 non-carriers, and hippocampal volume and volume of
the entorhinal cortex were early biomarkers for €4 carriers. We observed
in the normalized histograms that for a proportion of prevalent-AD sub-
jects in the €4 non-carriers group, the model had estimated a low disease
stage. This observation, in combination with the greater uncertainty of
the event-centers in that group suggests that there is intra-genotype het-
erogeneity among the €4 non-carriers.

The disease timelines were estimated after correcting for the con-
founding effect of age, assuming a linear relationship of volumetric
biomarkers with respect to age. Non-linear biomarker relationship with
age such as the one observed in Vinke et al. (2018), could have an ad-
verse effect in the generalizability of the model to the RS cohort, particu-
larly due to the observed differences in the mean age of the participants
in the reference group and the groups of incident-AD and prevalent-AD.
In spite of these differences, we observed that the normalized histograms
of disease stages in the different diagnostic classes were visually largely
similar for ADNI and RS. An important difference between the two co-
horts was that the model estimated a low disease stage for a substantial
proportion of incident-AD subjects in RS, but not in ADNIL. Complement-
ing the qualitative analysis, we also observed that the disease stages
obtained using co-init DEBM could distinguish prevalent-AD subjects
from CN and non-AD subjects almost equally well in both ADNI and
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Fig. 4. Average disease stage trajectories of participants within the prediction
set of RS. The trajectories are shown separately for CN, non-AD and incident-
AD subjects within the APOE ¢4 non-carriers group (a) and the APOE ¢4 carriers
group (b). 95% confidence intervals are shown as shaded regions around the
trajectories.

(a) Performance measure with two MRIs
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RS cohorts. However, we noticed a lower performance in distinguishing
incident-AD from CN and non-AD subjects in RS as compared to ADNI.
Three possible explanations for these differences between ADNI and RS
are given below.

First, the incident-AD group in ADNI only consisted of prodromal
AD subjects with the mean time to AD diagnosis of 1.4 years, whereas
the incident-AD group in RS consisted of prodromal and preclinical AD
subjects with the mean time to AD diagnosis of 2.8 years. We observed
in Experiment 1 that the obtained disease stages of incident-AD subjects
correlated with time to AD diagnosis for APOE €4 carriers, making AD
harder to detect in the preclinical phase than in the prodromal phase.
Hence the difference in the mean time to diagnosis in the two datasets is
expected to be a factor contributing to the observed lower performance
in the RS cohort.

Secondly, the prodromal AD subjects in ADNI were clinically defined
amnestic MCI subjects who have a much higher a priori chance of de-
veloping AD symptoms than in the general population, making the pre-
diction in the latter cohort a more difficult problem.

Thirdly, a factor contributing to the performance difference could
be that ADNI excluded subjects with severe cardiovascular risk factors
whereas the RS did not. Hence the probability of co-morbidity of vas-
cular pathology was higher in the RS incident-AD subjects than in the
corresponding ADNI set, which could have led to the drop in perfor-
mance.

In spite of these factors, biologically, one could expect a Normal dis-
tribution of AD severity among incident-AD subjects in a population,
whereas the observed distribution in Fig. 3 is not. A possible explanation
for this apparent anomaly is that, although the biological progression of
AD is heterogeneous with differences between subjects even within each
genotype, the staging is performed on the basis of a mean disease time-
line per genotype. Progression of subjects that is not along the estimated
mean disease timeline is not accounted for in our approach, and the cor-
responding stages are usually an under-estimation of the true biological
staging.

We observed that the correlation of MMSE with the obtained disease
stages in RS was substantially lower than that in ADNL One of the rea-
sons for this lower correlation in RS could be that MMSE is a measure of
general cognition, not specific to AD and there could be numerous other

(b) Performance measure with only the last MRI
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Fig. 5. Predicting incident-AD subjects in the RS cohort. Figure (a) shows the AUCs for distinguishing incident-AD while using data from two MRI scans based on
longitudinal follow-up of the participants. Figure (b) shows the AUCs for distinguishing incident-AD using only the last MRI scan available for each participant.
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factors affecting its value in a population-based cohort. Furthermore, in
AD the MMSE range is expected to be much broader than in the general
population. This in combination with less prevalent-AD cases within RS
compared to that of ADNI, could explain the lower correlation as well.
Moreover, the correlation of MMSE with the obtained disease stage was
similar for non-carriers and carriers as measured along their respective
disease timelines.

Given the high AUCs for all other classification tasks, the comparable
disease stage histograms in ADNI and RS, and the possible explanations
given above for the specific differences related to incident-AD predic-
tion, we conclude that the APOE-specific disease timelines obtained by
co-init DEBM are generalizable from a case-controlled to a population-
based setting. Moreover, in our experiment, we observed that co-init
DEBM was more generalizable to RS cohort than DEBM for APOE ¢4
non-carriers, and equally generalizable for ¢4 carriers. This could be be-
cause ADNI cohort is more enriched for €4 carriers than the population-
based RS cohort and not stratifying based on APOE skewed the estimated
timeline more towards e4 carriers.

However, for precise classification of subjects into either diagnostic
category, a cut-off point for disease stage needs to be defined. We ex-
pect the cut-off point to be different in a case-controlled setting versus
a population-based setting. Estimating this cut-off point in a population
should ideally be estimated using an independent validation set taking
several factors into consideration such as the a-priori prevalence of AD
in the cohort, and the risks associated with false positives and negatives
of this classification.

4.2. Predicting pre-symptomatic AD in the RS cohort

We observed that a participant’s age distinguished incident-AD well
from CN. This is in line with earlier studies that identified age as an
important predictor (Park et al., 2019; Stephan et al., 2015). However,
we also observed that the predictive performance of age deteriorated
when the reference group was less healthy, ie., when distinguishing
incident-AD from a combined reference group also consisting of subjects
with subjective or objective cognitive decline unrelated to AD. This is
in line with the expectation that age is poor in distinguishing cognitive
decline due to AD and cognitive decline due to other causes.

The predictive performance of the volumetric biomarkers from a sin-
gle MRI scan depended on the APOE ¢4 carriership. We observed that
hippocampus and entorhinal cortex were good predictors in APOE €4
carriers. Interestingly, those biomarkers were estimated to be early in
the corresponding disease timeline. Similarly, total brain volume and
ventricle volume were good predictors in APOE €4 non-carriers which
were also the early biomarkers in its disease timeline. These results sug-
gest that for predicting pre-symptomatic AD, early biomarkers play an
important role and that it is important to understand the genotype-
specific differences. However, it must be noted that in this study, the
clinical diagnosis of AD was not confirmed further with the participant’s
amyloid-p status. Hence part of the differences observed in the disease
timelines of APOE €4 non-carriers and carriers could be attributed to
the presence of greater heterogeneity in the non-carriers with respect to
participant’s pathologic diagnosis.

Lastly, we assessed the marginal utility of longitudinal MRI scans
in identifying individuals at-risk of developing AD symptoms. We ob-
served that participants with incident-AD showed a significant increase
(p < 0.005) in disease stage over time as compared to CN and non-AD
participants, in both APOE ¢4 non-carriers and carriers. The rate of
change of disease stage distinguished incident-AD subjects better than
the disease stage at only the last scan, clearly highlighting the added
value of longitudinal MRI scans, particularly in pre-symptomatic sub-
jects. The rate of change of disease stage was also a better predictor
of incident-AD than any other volumetric biomarker used in this study.
This showed that the progression along the APOE-specific disease time-
line can be used to identify subjects in a population at-risk of developing
AD.
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In this study, we only used imaging biomarkers because cere-
brospinal fluid biomarkers in a pre-clinical setting are usually not avail-
able. Recent breakthroughs in blood-based biomarkers (Palmqyvist et al.,
2020) could help in obtaining fluid biomarkers in the pre-clinical phase
of the disease. Previous work on DEBM (Venkatraghavan et al., 2019)
and co-init DEBM (Venkatraghavan et al., 2021) had shown that the
model is capable of incorporating biomarkers from multiple modali-
ties for constructing the disease timelines. We expect that our current
approach of predicting pre-symptomatic AD in the general population
would be applicable also in the presence of fluid biomarkers, should
they become available in the future.

5. Conclusion and future work

We conclude that data-driven disease timelines estimated by co-init
DEBM are generalizable to population-based cohorts and that progres-
sion of individuals along such timelines is predictive of incident AD.
Although the current study only considered volumetric biomarkers as
inputs, it can be extended to fluid-based biomarkers, if these would be-
come available in a population based study. Due to its robustness and
explainability, we expect that our model can help identify at-risk indi-
viduals from the general population for targeted clinical trials as well as
provide biomarker based objective assessment in such trials.

Data and Code Availability

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data and Rot-
terdam Study (RS) data were used in preparation of this arti-
cle. ADNI data is publicly available and can be downloaded from
http://adni.loni.usc.edu/. The source code for the data-driven model
used in this paper is available online under the GPL 3.0 license: https:
//github.com/88vikram/pyebm/ RS data and code the specific exper-
iments in the article can be obtained upon request. Requests should
be directed towards the management team of the Rotterdam Study
(secretariat.epi@erasmusmc.nl), which has a protocol for approving
data requests. Because of restrictions based on privacy regulations
and informed consent of the participants, data cannot be made freely
available in a public repository. The Rotterdam Study has been ap-
proved by the Medical Ethics Committee of the Erasmus MC (regis-
tration number MEC 02.1015) and by the Dutch Ministry of Health,
Welfare and Sport (Population Screening Act WBO, license number
1071272-159521-PG). The Rotterdam Study has been entered into
the Netherlands National Trial Register (NTR; www.trialregister.nl)
and into the WHO International Clinical Trials Registry Platform (IC-
TRP; www.who.int/ictrp/network/primary/en/) under shared cata-
logue number NTR6831. All participants provided written informed
consent to participate in the study and to have their information ob-
tained from treating physicians.
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