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Multimodal deep learning models 
for early detection of Alzheimer’s 
disease stage
Janani Venugopalan  1, Li Tong1, Hamid Reza Hassanzadeh2 & May D. Wang1,3,4*

Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data 
modality to make predictions such as AD stages. The fusion of multiple data modalities can provide 
a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging 
(magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical 
test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders 
to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) 
for imaging data. We also develop a novel data interpretation method to identify top-performing 
features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s 
disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform 
shallow models, including support vector machines, decision trees, random forests, and k-nearest 
neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single 
modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have 
identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as 
top distinguished features, which are consistent with the known AD literature.

Deep-learning (DL) has shown tremendous potential for clinical decision support for a variety of diseases, 
including diabetic retinopathy1,2, cancers3,4, and Alzheimer’s disease (for imaging analysis)5–7. The major strength 
of DL over other shallow learning models is their ability to learn the most predictive features directly from the 
raw data given a dataset of labeled examples. DL has shown improvement over shallow learning for single data 
modality such as images8,9, electronic health records (EHRs)10, and SNPs11. DL techniques also facilitate the 
training and prediction in the presence of partial data12. In this study, we develop a novel DL architecture for 
clinical decision support that predicts the Alzheimer’s disease (AD) stage using multi-modality data (images, 
clinical data, and genetic information).

AD is the most common neurodegenerative disorder and the 6th leading cause of death in the United 
States13,14. The world-wide disease burden of AD is projected to reach $2 trillion by 203015, which necessitates 
early detection. Despite extensive research and advances in clinical practice, less than 50% of the AD patients are 
diagnosed accurately for their pathology and disease progression based on their clinical symptoms13. The most 
conclusive evidences for AD are the presence of amyloid plaques and neurofibrillary tangles in histopathology. 
However, the early onset of AD is not correlated with the presence of plaque but with synaptic and neuronal loss16.

Research on data and data mining strategies from AD initiative17–19 are ongoing to improve our understanding 
of the underlying disease processes. AD biomarkers including clinical symptoms20 (such as dementia, memory 
loss), neurological tests and scores such as MMSE scores are augmented with imaging, genetic, and protein 
biomarkers21–26. Most of these studies identify biomarkers using a single-modality data, which restricts a holistic 
assessment of AD disease progression. There have been AD multi-modal analyses that combine various imag-
ing modalities27–32 such as structural MRI (T1 weighted, T2 weighted), fMRI, positron emission tomography 
(PET)33,34, and imaging genetics35. In addition, genetics have been used with clinical data to augment data labels 
and phenotypes. Besides shallow learners, DL models such as auto-encoders8 and deep-belief networks36 (Sup-
plementary Table A1) have been used for PET and MRI image data fusion with improved prediction.
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In this study, we further the multi-modal AD data fusion to advance AD stage prediction by using DL to 
combine imaging, EHR, and genomic SNP data for the classification of patients into control (CN), MCI, and 
AD groups. We use stacked de-noising auto-encoders for EHR and SNP data respectively, and novel 3D convo-
lutional neural networks (CNNs) to train MRI imaging data. After the networks are separately trained for each 
data modality, we combine them using different classification layers, including decision trees, random forests, 
support vectors machines (SVM), and k-nearest neighbors (kNN). We demonstrate the performance of our 
integration models using the ADNI37 dataset that contains SNP (808 patients), MRI imaging (503 patients), and 
clinical and neurological test data (2004 patients).

Despite superior performance in clinical decision support using multiple data types, a major drawback for 
widespread adoption of DL models for clinical decision making is the lack of well-defined methods for inter-
preting the deep models. We address this challenge by developing novel perturbations and a clustering-based 
approach for finding the top features contributing to the decision.

In this article, we report the major contributions for the AD stage prediction as follows:

•	 Novel DL architectures outperform shallow learning models;
•	 Multi-modality data analysis with DL outperforms single-modality DL models; and
•	 Novel interpretable DL methods are capable of extracting top performing features.

Data description
This article uses Alzheimer’s Disease Neuroimaging Initiative* (ADNI) database (adni.loni.usc.edu)37 data for 
the analysis. ADNI aims to test whether serial MRI, PET, biological markers, and clinical and neuropsychological 
assessments can be combined to measure the progression of MCI and early AD. ADNI data repository contains 
imaging, clinical, and genetic data for over 2220 patients spanning over four studies (ADNI1, ADNI2, ADNI GO, 
and ADNI3). Our study focuses on ADNI1, 2 and GO because ADNI 3 is an ongoing study expected to end in 
2022. The data is currently being released in phases with limited availability for unprocessed imaging data and no 
genetic data yet. The imaging data (ADNI1, 2 and GO) consists of MRI and PET images, of which we use cross-
sectional MRI data corresponding to the baseline screenings from ADNI1 (503 patients). The data publisher has 
standardized the images to eliminate the non-linearities caused by the scanners from different vendors. In this 
study, we used the cross-sectional MRI data, consisting of 9108 voxels per patient distributed over 18 slices, with 
each slice having 22 × 23 voxels. For clinical or EHR data, we use 2004 patients (ADNI1, ADNI2, and ADNI GO) 
data from the clinical tests (e.g., memory tests, balance tests, and cognitive tests), medication data (e.g., usage of 
levodopa), imaging score summaries (e.g., levels of fluorodeoxyglucose (FDG) from PET, brain volumes from 
MRI), patient demographics (e.g., age and gender), and biochemical tests. The genetic data consists of the whole 
genome sequencing (WGS) data from 808 ADNI participants (at the time of sequencing, 128 with AD, 415 with 
MCI, and 267 controls) by Illumina’s non-Clinical Laboratory Improvement Amendments (non-CLIA) labora-
tory at roughly 30–40 × coverage in 2012 and 2013. The resulting variant call files (VCFs) have been generated 
by ADNI using Broad best practices (Burrows-Wheeler Aligner (BWA) and Genome Analysis Toolkit (GATK)-
haplotype caller) in 2014. We use a total of 2004 patients in this study, with all 2004 patients have clinical data, 
503 patients have imaging data, and 808 patients have genetic data (Fig. 1). For participants with multiple visits, 
we use the diagnosis from patient’s last visit. As shown in Fig. 1c, 220 patients have all three data modalities, 588 
patients have SNP and EHR, 283 patients have imaging and EHR, the remaining patients have only EHR data.

Study design for novel DL and multi‑modality data analysis
As mentioned above, we use data from imaging (503 MRI images), SNP (808 patients) and the EHR (2004 
patients) to predict AD stages. For each single data modality, we first demonstrate the superiority of deep models 
over shallow models such as kNN, one-vs-one coding SVM, random forests, and decision trees. The SNP and 
EHR features for shallow models and DL are the same. For imaging, when using DL, we apply multi-slice 3D 
voxels directly, while for shallow learners, we extract expert crafted features derived from the 3D voxels.

Regarding AD staging, only EHR has three-stage classes CN, MCI, and AD. SNP expression does not vary 
between MCI and AD38, and only has CN vs AD/MCI prediction. On images, patients with early MCI were 
structurally similar to CN, and those from patients with late MCI were structurally similar to AD. As such, for 
imaging, only CN and AD (as seen in Ref.39) are used for staging assessment. Thus, combining all three modalities 
can help us significantly improve AD staging prediction accuracy. As shown in Figs. 2 and 3. we have developed 
three data fusion strategies: (i) Feature-level combinations using shallow models, (ii) Intermediate-feature-level 
combinations using deep models, and (iii) Decision-level combinations using shallow models. 

Feature-level combinations are performed through direct concatenation of the data modalities using shallow 
learners (Fig. 2). The intermediate-feature-level combinations are performed by extracting intermediate features 
using DL, followed by concatenating and passing through a classification layer (more details are provided in 
methods and supplement). Decision-level combinations are performed by voting on the single-modalities. We 
test shallow models such as kNN, one-vs-one coding SVM, random forests, and decision trees for decision-level 
combinations and present the best performing model. For the intermediate-feature-level models (Fig. 3), we 
evaluate four combinations, (i) EHR + imaging + SNP, (ii) EHR + imaging, (iii) EHR + SNP, and (iv) imaging + SNP. 
For all combinations except imaging + SNP, we perform three-stage classification (CN, AD, and MCI). For imag-
ing + SNP we perform classification into AD vs CN.

All above-mentioned cases are evaluated using an internal cross-validation and an external test set. We first 
remove 10% of the data as an external test set. On the remaining 90%, we perform tenfold cross-validation, with 
81% of the total data being used for training and 9% for internal cross-validation. The internal cross-validation 
data set is used to optimize the model.
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Results for novel DL and multi‑modality data analysis
We report the ADNI results for both the internal cross-validation partition and the external test dataset. For 
each of the DL models, or the baseline shallow models, we use mean values of accuracy, precision, recall, and 
meanF1 scores as metrics to show the superiority of deep models for single-modalities and the improvements 
gained from data integration.

3D convolutional neural network (DL) is superior to shallow models on imaging MRI data.  One 
patient’s imaging data consists of 9108 3D voxels of dimension 22 × 23 × 18, corresponding to each of the five 
selected brain areas.

Figure 1.   (a) Description of ADNI data. Clinical data consists of demographics, neurological exams and 
assessments, medications, imaging volumes, and biomarkers. (b) Number of patients by modality and disease 
stage. (CN controls, MCI mild cognitive disorder, and AD Alzheimer’s disease). 220 patients have all the three 
data modalities, 588 patients have SNP and EHR, 283 patients have imaging and EHR, the remaining patients 
have only EHR data.
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The number of nodes in DL models for the first-level fully connected layers = 5 × 20 = 100, and the number of 
nodes for the second level fully connected layer is 20. The results (Fig. 4a) indicate that the CNN based imaging 
models outperform shallow models and give the best precision and meanF1 scores.

Deep autoencoder model is comparable to shallow models on EHR data.  EHR data consists of 
2004 patients with 1680 normalized features per patient, which we use to classify the patients into AD, MCI, and 
CN (three class). We use a three-layer auto-encoder with 200, 100 and 50 nodes each. The deep networks are 
trained using Adam with a max epoch count (repetition of DL network training on the entire dataset to allow 

Figure 2.   Deep model for data integration compared with shallow models of data integration. (a) Feature 
level integration on shallow models, where the features are concatenated before passing into shallow models. 
(b) Deep intermediate feature level integration where the original features are transformed separatelyusing 
deep models prior to integration and prediction. (c) Decision level integration where voting is performed 
using decisions of individual classifiers. In this study, we comparee the performance of deep intermediate level 
integration against shallow feature and decision levels integrations for the prediction of Alzheimer’s stages.

Figure 3.   Intermediate-feature-level combination deep models for multimodality data integration for 
clinical decision support. Data from diverse sources, imaging, EHR and SNP are combined using novel 
deep architectures. 3D convolutional neural network architectures used on 3D MR image regions to obtain 
intermediate imaging features. Deep stacked denoising autoencoders are used to obtain intermediate EHR 
features. Deep stacked denoising autoencoders are used obtain intermediate SNP features. The 3 types of 
intermediate features are passed into a classification layer for classification into Alzheimer’s stages (CN, MCI 
and AD).
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adequate training) of 25. After hyperparameter optimization, the regularization coefficients for initial training is 
fixed at 0.03 and those for fine tuning at 0.03. The dropout probability is set to 0.6 for all the layers. The results 
(Fig. 4b) indicate that the autoencoders outperform shallow models such as kNN and SVM, and they are com-
parable to decision trees and random forests.

Deep autoencoder model is superior to shallow models for SNP data.  Processed SNP data con-
sists of 808 patients with 500 features (each with levels 1, 2, 3), which we use to classify the patients into AD/
MCI vs CN (two class). The auto-encoder network consists of three hidden layers with 200, 100 and 50 nodes 
each. Using Adam optimization and a max epoch count of 30, the best performing models have regularization 
coefficients for initial training as 0.03 and those for fine tuning at 0.06. The corruption (dropouts) is 0.6 for each 
layer. The results (Fig. 4c) indicate that the auto-encoder models outperform all the baselines models.

Results for multi‑modality classification.  The intermediate features generated from the single-modal-
ity deep-models are concatenated and passed to an additional classification layer for integration.

Figure 4.   Internal cross validation results for individual data modality to predict Alzheimer’s stage (a) Imaging 
results: deep learning prediction performs better than shallow learning predictions (b) EHR results: deep 
learning outperforms shallow models kNN and SVM and is comparable to decision trees and random forests 
(c) SNP results: deep learning outperforms shallow models. The kNN, SVM, RF and decision trees are shallow 
models. (kNN k-Nearest Neighbors, SVM support vector machines, and RF random forests).
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Combination of all 3 modalities: (imaging + EHR + SNP): deep model outperforms shallow models.  When a par-
ticular modality is not available, we mask it as zeros when using DL. The intermediate features from the three 
modalities are passed to the classification layer. We test kNN, decision trees, random forests, and support vectors 
machines as alternatives for the classification layer. Internal cross-validation (CV) accuracy (Fig. 5a) using deep 
models followed by random forests as the classification layer are the best. Deep models for the combination of 
the three modalities outperform single-modalities DL. In addition, during combination deep model outper-
forms shallow models such as feature-level and decision-level for both CV and external test sets (Table 1).

Combination of SNP and EHR modalities: deep model outperforms shallow models.  Internal CV accuracy of 
0.78 ± 0 using deep models followed by random forests as the classification layer (Fig. 5b.) are the best. The deep 
models for EHR + SNP combinations outperform single-modalities DL. During combination, deep model out-
performs shallow models such as feature-level combination models for both CV and external test sets (Table 1).

Combination of imaging and EHR modalities: deep model outperforms shallow models.  Internal CV accuracy 
of 0.79 ± 0 using deep models followed by random forests and SVM as the classification layers (Fig. 5c) are the 
best. The deep models for EHR+ imaging combinations outperform single-modalities DL. In addition, during 
combination, DL model outperforms shallow models such as feature decision-level combination models for 
both CV and external test sets (Table 1). Random forests as the classification layer give the best performance on 
the external set.

Combination of imaging and SNP modalities: shallow model outperforms deep models.  We perform two-class 
classification using a combination of SNP and imaging intermediate features (CN vs. AD/MCI). Internal CV 
accuracy of 0.75 ± 0.11, using feature-level combination models (Fig. 5d) is the best. However, the results on 
the external data are poor. The poor external validation can be attributed to having only 220 patients with both 
modalities of data.

Discussion for novel DL and multi‑modality data analysis
Our results suggest that the deep models outperform traditional shallow models for single-modalities. The 
shallow models typically require handcrafted features by experts. On the contrary, deep models can find the 
optimal set of features during training. In addition, deep models such as auto-encoders and CNNs can be used 
to perform unsupervised feature generation, and then to combine with a more sophisticated decision layer. This 
architecture enables the modeling of complex decision boundaries for multiclass classification problems40. Due 
to this property, deep models are particularly effective for the identification of MCI, which has been a clinical 
challenge in Alzheimer’s research due to small differences between the three groups. Because shallow models 
(except random forests) do not tolerate noisy and missing data or missing modalities well, for noisy data, DL 
gives the best performance for single-modalities.

The integration of multiple modalities improves the prediction accuracy (three of four scenarios). The deep 
models for integration also show improved performance over traditional feature-level and decision-level integra-
tions. The DL’s superior performance is due to its ability to extract relationships amongst features from different 
modalities. When the dataset is very small (e.g., the combination of imaging and SNP), deep models do not 
perform well. The degraded performance could be caused by the lack of training data for networks. Overall, our 
investigations show that:

•	 For single-modality data (clinical, and imaging), the performances of DL models are always better than those 
of shallow models; and

•	 When using DL models, predictions by multi-modality data is better than those by single-modality data. The 
three best fusion set ups are: EHR + SNP, EHR + Imaging + SNP, and EHR + Imaging.

One bottleneck for our proposed DL-based data integration model is the small sample size of the ADNI data-
set. To mitigate the small sample size challenge, we can utilize strategies such as transfer learning and domain 
adaptation41. For each data modality, we can adopt neural networks pre-trained on other similar datasets (e.g., 
CNN-based MRI/CT brain imaging classification model trained for other conditions). By composing our model 
with these pre-trained networks and their parameters, we can perform domain adaptation or fine-tune the 
network parameters using our labeled ADNI data. On the other hand, we can also perform an unsupervised 
feature representation learning for each data modality using publicly available data (e.g., The Cancer Genome 
Atlas (TCGA) dataset for SNPs).Our feature extraction step is performed independently for each modality in 
the current DL model, which is not trained end-to-end with the integration and classification step. One future 
direction is to enable end-to-end training and combine auto-encoders with other integration strategies besides 
feature concatenation42,43.

Study design of novel feature extraction to assist in DL model interpretation
Model interpretation is a major challenge for DL and is often considered as a barrier for real-world biomedical 
applications. Research has shown that the weights of deep models affect the results through several layers of 
combinations, hence do not yield clinically meaningful interpretation44. In this study, we develop a novel inter-
pretation method where we mask one feature at a time and measure the drop-in accuracy (Fig. 6). The features 
that give the maximum drop in accuracy are ranked higher for feature extraction.
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Figure 5.   Internal cross validation results for integration of data modalities to predict Alzheimer’s stage 
(a) Imaging + EHR + SNP. Deep learning prediction performs better than shallow learning predictions (b) 
EHR + SNP Deep learning prediction performs better than shallow learning predictions (c) Imaging + EHR 
deep learning prediction performs better than shallow learning predictions (d) Imaging + SNP results. Shallow 
learning gave a better prediction than deep learning due to small sample sizes. (kNN k-Nearest Neighbors, SVM 
support vector machines, RF random forests, SM shallow models, and DL deep learning).
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Results and discussion of novel feature extraction to assist in DL model 
interpretation
The top EHR features (Table 1) include memory tests, imaging summary scores, and brain volumes. Changes 
to memory and brain volumes have been reported as AD biomarkers. Imaging markers such as involvement of 
limbic and cortical regions45, and changes in hippocampus volume and structure46,47 are known biomarkers in 
PET and MRI studies. SNP features picked chromosome 10, 4, 19, 1, and 5.

SNP + Imaging + EHR and SNP + EHR pick more EHR features (memory tests, metabolic markers and brain 
volume) which are known AD related features. EHR + Imaging pick EHR features including brain volumes, 
clinical dementia ratings, and metabolite markers. Imaging + SNP pick brain areas such as the hippocampus, 
and amygdala higher than SNP features.

In addition, we also cluster the intermediate features from EHR and SNP data using kmeans (Supplementary 
Information) to show associations in intermediate features. On plotting the clusters for intermediate and raw 
features, we find that the intermediate features generate better separation as compared to the original features. 
This indicates subtle relationships in intermediate features, which are picked by deep models (Supplementary 
Figs. A5, A6).

Table 1.   Features extraction from deep models and comparison of internal validation results with external 
test result. Autoencoder models are preferred for EHR and SNP data and CNN for imaging data. For multi-
modality models, the three modality models and two modality models (EHR + SNP, EHR + imaging gave the 
best prediction performance). For the multi-modality models, 3 or 4 combinations deep models outperformed 
shallow models.

Models Biomarkers extracted
Internal cross validation 
performance External test performance

EHR (deep models)
(CN, MCI, AD)

Regularization coefficients (0.03, 
0.03)
Dropouts (0.6, 0.6, 0.6)
Layer sizes (200, 100, 75)

Memory summary score
RAVLT memory test (learning)
RAVLT memory test (learning) 
baseline
Neurophysiological battery 
(AVTOT 6 trials)
Metabolomics marker (pe.P.16.0 
22.6)

Accuracy: 0.78 ± 0.03
Precision: 0.78 ± 0.04
Recall: 0.78 ± 0.05
F1 Scores: 0.77 ± 0.04

Accuracy: 0.76
Precision: 0.76
Recall: 0.77
F1 Scores: 0.76

Imaging (deep models)
Prediction (CN, AD)

Highest on validation (Dropout-0.5, 
Batch size 5 , Layer size(20), # 
areas = 5)
Highest on external test (SVM 
kernel = linear)

Left hippocampus
Right hippocampus
Right superior temporal
Right amygdala
Left amygdala

Accuracy: 0.86 ± 0.04
Precision: 0.86 ± 0.04
Recall: 0.87 ± 0.04
F1 Scores: 0.86 ± 0.04

Accuracy: 0.84
Precision: 0.83
Recall: 0.83
F1 Scores: 0.83

SNP (deep models)
Prediction (CN, MCI/AD)

Regularization coefficients (0.03, 
0.03), Dropouts (0.6, 0.6, 0.6)
Layer sizes (200, 100, 50)

Gene1 location 207782707
Gene1 location 55342929
Gene10 location 106979076
Gene10 location 50858045
Gene11 location 121493001

Accuracy: 0.89 ± 0.03
Precision: 0.9 ± 0.04
Recall: 0.84 ± 0.03
F1 Scores: 0.86 ± 0.04

Accuracy: 0.66
Precision: 0.66
Recall: 0.57
F1 Scores: 0.53

EHR + SNP + Imaging (deep 
models)
Prediction (CN, MCI, AD)

Regularization coefficients (0.03, 
0.03)
Dropouts (0.6, 0.6, 0.6)
Layer sizes (200, 100, 50)
Random Forest Trees = 31

Voxel based morphometry Angular 
left
Biomarker (PtdCho 16:0/18:1)
MR volumes posterior limb of 
internal capsule including cerebral 
peduncle right
Biomarker (PC ae C40:5)
Biomarker (PC ae C42:4)

Accuracy: 0.79 ± 0
Precision: 0.79 ± 0.07
Recall: 0.79 ± 0.07
F1 Scores: 0.79 ± 0.07

Accuracy: 0.78
Precision: 0.77
Recall: 0.78
F1 Scores: 0.78

EHR + SNP (deep models)
Prediction (CN, MCI, AD)

Regularization coefficients (0.03, 
0.03)
Dropouts (0.6, 0.6, 0.6)
Layer sizes (200, 100, 50)
Random Forest Trees = 31

Biomarker (Asymmetric dimethy-
larginine)
Neuropsychological Battery 
(AVERR total intrusions)
Neuropsychological Battery (Audi-
tory Verbal Learning Test Trial1)
Memory Score
Voxel based morphometry Amyg-
dala left

Accuracy: 0.78 ± 0
Precision: 0.79 ± 0.07
Recall: 0.79 ± 0.09
F1 Scores: 0.79 ± 0.07

Accuracy: 0.78
Precision: 0.78
Recall: 0.79
F1 Scores: 0.78

EHR + Imaging (deep models)
Prediction (CN, MCI, AD)

Regularization coefficients (0.03, 
0.03)
Dropouts (0.6, 0.6, 0.6)
Layer sizes (200, 100, 50)
Random Forest Trees = 31;

Biomarker (Asymmetric dimethy-
larginine)
Neuropsychological Battery 
(AVERR total intrusions)
Cortical Thickness Average of Right 
Pericalcarine
Memory Score
Voxel based morphometry Amyg-
dala left

Accuracy: 0.79 ± 0
Precision: 0.79 ± 0.08
Recall: 0.79 ± 0.08
F1 Scores: 0.79 ± 0.07

Accuracy: 0.77
Precision: 0.76
Recall: 0.77
F1 Scores: 0.77

SNP + Imaging (shallow models)
Prediction (CN, MCI/AD) Random Forest Trees = 20

Mean GLCM 3 right superior 
temporal
Sum GLCM 5 left amygdala
Median GLCM 2 right hippocam-
pus
Gene10 location 108777098
Entropy intensity left hippocampus

Accuracy: 0.75 ± 0.11
Precision: 0.72 ± 0.16
Recall: 0.65 ± 0.09
F1 Scores: 0.65 ± 0.12

Accuracy: 0.63
Precision: 0.62
Recall: 0.57
F1 Scores: 0.56
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Conclusions
Diagnosing patients with AD is challenging, and the prediction accuracy remains low for staging assessment. In 
this study, we report the potential of DL for multi-modal data fusion, including:

•	 Deep-models outperform shallow models for single-modality Alzheimer’s stage prediction.
•	 Novel DL framework for multi-modality data fusion outperforms single-modality DL.
•	 Novel perturbation and clustering-based feature extraction assisting DL model interpretations are capable 

of AD stage prediction.
•	 Application of 3D convolutional neural network architecture for MRI image data benefits the AD analysis.

Despite the improved performance, our study suffers from short-comings such as limited dataset sizes. In 
the future, we will test our models on a larger and richer dataset.

Methods
In this study, we use DL models to perform multimodal data fusion (Fig. 3) (i.e. imaging, EHR and genomic 
SNP data) for classifying patients into CN, MCI, and AD groups. We use stacked de-noising auto-encoders for 
EHR and SNP, and 3D convolutional neural networks (CNNs) for MRI imaging data. After the networks are 
separately trained for each data modality, we apply decision trees, random forests, support vectors machines, 
and k-nearest neighbors to conduct integrated classification on AD staging.

Data pre‑processing.  As mentioned above, ADNI dataset consists of clinical data, SNP data, and imaging 
data.

MRI imaging data.  We first preprocess the 3D images to filter noise, perform skull stripping, segment different 
types of brain tissue, normalize and co-register the images to MNI space (Fig. 7a)48. Following that, we extract 
3D areas of 21 brain regions (associated with Alzheimer’s disease) including the right amygdala, left and right 
angular, left and right cerebellum, left and right Hippocampus, left and right occipital regions, and left and right 
superior temporal regions (Supplementary Information).

Clinical features.  We extract 1680 common clinical features (quantitative real numbers, binary and categorical) 
from ADNI1, ADNI2, and ADNI GO. We normalize the quantitative data to the range 1–2, convert the categori-
cal data into binary using one hot encoding., and finally, convert the binary data into values 1 or 2 (Fig. 7b).

Genetic data.  Each subject has about ~ 3 million SNPs in the raw VCF file. We apply multiple filtering and 
feature selection steps (Fig. 7c) to eliminate SNPs with (i) low genotype quality, (ii) low minor allele frequency, 
(iii) high per-site missing rate and (iv) significant Hardy–Weinberg equilibrium p-value. After filtering, we apply 
a two-stage feature selection: (i) we retain SNPs that located on known AD-associated genes, (ii) we select 500 
SNP features using minimum redundancy maximum relevance (mRMR)49 We chose mRMR as a feature selec-

Figure 6.   Feature extraction for deep model interpretation. Novel feature interpretation methodology where 
features are masked one at a time and the effect on the classification is observed. The feature which gives the 
highest drop in accuracy is ranked the highest. Once we ranked the features, we checked if the intermediate 
features picked associations different from raw data using cluster analysis. Deep models show associations which 
are different from shallow models, which accounts for superior performance.
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tion method because it works well with categorical data (such the SNP data) and has been previously reported 
with genetic data50. mRMR was chosen over other wrapper-based techniques such as sequential feature selection 
due to computational costs. In the future we will investigate other filter-based feature selection methods such as 
correlation techniques, ANOVA, and relieFF in the future (Supplementary Information).

Intermediate feature generation using single‑modalities.  We first perform feature extraction for 
each modality separately (Fig. 7), then we use DL for the generation of intermediate features. The intermediate 
features from EHR and SNP data are generated using auto-encoders and those of images are generated using 
3D-convolutional neural networks. The intermediate features generated from each single-modality are subse-
quently used for multi-modal analysis. As a data-driven approach, DL’s performance heavily relies on a large 
amount of well-annotated training data. However, the ADNI dataset contains only a few thousand samples in 
total and even fewer samples with all three modalities. Thus, we use DL only for feature representation learning 
instead of end-to-end training.

Intermediate features for imaging data.  First, we select the regions of interest and put them into a separate 
3-dimensional convolutional neural network (Supplementary Fig. A2 in the supplementary material) with their 
weights shared across the CNN modules. CNN modules can extract higher level features from the abstraction 
of images to form concepts, that often correlate better with the targets. Each 3D CNN in the architecture above 
comprises ten 3D-convolutional kernels of size 5× 5× 5 followed by pooling layers with pooling kernels of 
size 3× 3× 3 . After the pooling layer, we feed the pooled 3D images into Rectified Linear Unit (ReLU) non-
linearities to learn complex features from the input modalities. We use volumetric batch normalization51 that is 
an effective regularizer for convolutional neural networks. Next, the feature maps generated by each 3D CNN are 
flattened and fed into separate fully connected layers with ReLU activation functions, followed by drop-out regu-
larizers. We integrate the features generated from each modality and feed them into the second level fully con-
nected layer and the corresponding drop-out layer. Finally, we use a softmax layer with a negative-log-likelihood 
loss function to train the imaging network.

We use the combined features generated from the first level fully connected layers as the intermediate features 
that are fed into our multi-modality DL models.

Intermediate features for EHR and SNP data using auto‑encoders.  We represent each patient data (EHR and 
SNP inputs to the feature learning algorithm) as a vector of length m(where m is the number of features. Then, 
we pass this data through a two-layer stacked denoising auto-encoder network52 (Supplementary Fig. A3 in sup-
plementary material) to obtain a high level representation of the patient data. Each auto-encoder layer takes an 
input x of dimension n× d , where n is the number of training samples and d is input dimensionality ( d = m for 
first layer). The input for each layer is first passed through an encoder to convert the input into a higher order 
representation of the data (1).

where f  is an activation function such as sigmoidal or tanh, [W , b] are parameters to be trained. We then pass 
the mapped values 

(

y
)

 through a decoder to obtain a representation of the input (x ) (2).

(1)y = f (Wx + b),

Figure 7.   Data pre-processing pipeline for three data modalities: (a) Imaging data is first skull stripped, 
segmented into white matter, grey matter, and cerebrospinal fluid. Then the images are registered to a standard 
space, prior to extracting 21 brain regions using anatomical automatic labeling atlases. (b) Clinical data is 
normalized between 1–2 or encoded as 1–2. Then we discard features with values missing values > 70% to obtain 
1680 features for 204 patients. (c) SNP data is first filtered, error corrected, feature selection using known genes 
and then followed by maximum relevance (maxrel) based methods, to obtain 500 SNPS for 808 patients.
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where b′ needed to be trained, and the weights WT are tied with the encoder weights. We construct the network 
by stacking the trained encoder layers and implement denoising using dropouts, where a portion of the input 
values are masked (set to zero) to allow better generalization of the models in the presence of small and noisy 
training data. We perform training through back propagation by minimizing the average cross-entropy between 
the input and the reconstructed input data (3).

where a is number of dimensions. Optimization is carried out using Adam optimization53 with a batch size of 3.
After the training of auto-encoder layers, we perform the network fine-tuning for each by adding a soft-

max layer that predicts the final class. The intermediate features are the output of the fine-tuned network after 
removing the softmax layer. The hyper-parameters in the model, such as the layer sizes, dropout parameters, and 
regularization coefficients (to prevent overfitting), are optimized using tenfold cross-validation.

Multimodal data integration.  We propose data integration across modalities as a method for bridging the gaps 
in our understanding of disease processes and improve clinical outcome predictions and model performance. 
The data integration from different modalities can be performed at multiple levels (raw feature-level, intermedi-
ate feature-level, and decision-level)54 (Fig. 1). In this study, we integrate the intermediate features generated in 
the previous step using a concatenation layer followed by a classification layer to predict the AD stage (Fig. 3). 
We try k-nearest neighbors (kNN), decision trees, random forests, and support vectors machines  (SVM) as 
alternatives for the classification layer. In the event any modality is missing for a specific patient, we mask the 
modality with zeros. This procedure minimizes the effect of missing values from propagating down the layers 
and hence allows prediction with some missing data. We evaluate our models using feature-level combinations 
and decision-level combinations as the baseline models.
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