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The desire to train complex machine learning algorithms and to increase the statistical power in associ- 

ation studies drives neuroimaging research to use ever-larger datasets. The most obvious way to increase 

sample size is by pooling scans from independent studies. However, simple pooling is often ill-advised 

as selection, measurement, and confounding biases may creep in and yield spurious correlations. In this 

work, we combine 35,320 magnetic resonance images of the brain from 17 studies to examine bias in 

neuroimaging. In the first experiment, Name That Dataset , we provide empirical evidence for the pres- 

ence of bias by showing that scans can be correctly assigned to their respective dataset with 71.5% accu- 

racy. Given such evidence, we take a closer look at confounding bias, which is often viewed as the main 

shortcoming in observational studies. In practice, we neither know all potential confounders nor do we 

have data on them. Hence, we model confounders as unknown, latent variables. Kolmogorov complexity 

is then used to decide whether the confounded or the causal model provides the simplest factorization of 

the graphical model. Finally, we present methods for dataset harmonization and study their ability to re- 

move bias in imaging features. In particular, we propose an extension of the recently introduced ComBat 

algorithm to control for global variation across image features, inspired by adjusting for unknown pop- 

ulation stratification in genetics. Our results demonstrate that harmonization can reduce dataset-specific 

information in image features. Further, confounding bias can be reduced and even turned into a causal re- 

lationship. However, harmonization also requires caution as it can easily remove relevant subject-specific 

information. Code is available at https://github.com/ai- med/Dataset- Bias . 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Is it possible to predict the dataset that a brain scan is coming 

rom based on image-derived measures like volume or thickness? 

nitially, we may guess that it should be impossible. On second 

hought, we may notice that it depends on the datasets we are 
� Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 

ata used in the preparation of this article was obtained from the Australian Imag- 

ng Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Com- 

onwealth Scientific and Industrial Research Organisation (CSIRO) which was made 

vailable at the ADNI database ( www.loni.usc.edu/ADNI ). The AIBL researchers con- 

ributed data but did not participate in analysis or writing of this report. AIBL re- 

earchers are listed at www.aibl.csiro.au . 
∗ Corresponding author at: Nußbaumstr. 5a, 80337 München. 

E-mail address: christian.wachinger@med.uni-muenchen.de (C. Wachinger). 
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omparing. If one dataset only contains adolescent subjects and 

nother one only elderly subjects, it should be possible to dis- 

inguish them due to the association of image-derived measures 

ith age. But next to demographics, are there unique signatures 

n each dataset that would facilitate identifying the source of 

n image? We will demonstrate that the source dataset can 

ndeed be identified with much higher accuracy than would be 

xpected from basic demographics of the participants. Hence, not 

nly subject-specific, but also imaging site-specific information is 

mplicitly encoded. This is insofar surprising as we are working 

ith image-derived measures, which should only relate to the 

nderlying neuroanatomy of the subject and not to the imaging 

ite, where the scan was acquired. 

Colloquially, this phenomenon is referred to as dataset bias . In 

tatistics, bias refers to a systematic deviation from the true, pos- 

ibly unknown, underlying quantitative parameter that is being es- 

imated. In a typical neuroimaging study, various types of bias can 

e present that can alter the conclusions one deduces from this 

tudy. In the first step, individuals have to be enrolled into the 

https://doi.org/10.1016/j.media.2020.101879
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101879&domain=pdf
https://github.com/ai-med/Dataset-Bias
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.loni.usc.edu/ADNI
http://www.aibl.csiro.au
mailto:christian.wachinger@med.uni-muenchen.de
https://doi.org/10.1016/j.media.2020.101879
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1 http://brain- development.org/ixi- dataset/ . 
tudy. If subjects do not faithfully represent the overall population 

ne wants to study, i.e., one obtains a non-random sample of a 

opulation, conclusions will be biased. This is referred to as selec- 

ion bias . For instance, selection bias is present if the study recruits 

articular target groups, e.g., young adults or patients with a par- 

icular disease. While such a selection may be related to the study 

bjective and therefore done on purpose, there are also hidden, 

nintended factors like the over-representation of more educated 

articipants ( Smith and Nichols, 2018 ) that would yield biased es- 

imates with respect to the overall population. 

After enrollment, subjects will undergo magnetic resonance 

maging. Prior studies on inter-scanner variability have already 

oted that there is a strong dependence of the acquired image on 

agnetic field strength, manufacturer, gradients, pulse sequences, 

nd head positioning ( Jovicich et al., 2009 ). While standardiza- 

ion effort s are undert aken, f or inst ance by the ADNI ( Jack et al.,

008 ), variations related to the scanner remain ( Kruggel et al., 

010 ), and it is even questionable if a further standardization is in 

he manufacturer’s interest. Even when assuming a faithful image 

econstruction, scans often undergo various image analysis steps 

o derive summary statistics that depend on the algorithm being 

sed. The choice of segmentation and registration algorithms can 

ause varying results, also subject to the input, potentially affected 

y motion artifacts, voxel sizes, and image noise. Therefore, neu- 

oimaging data is unavoidably subject to various types of measure- 

ent biases . 

Once data has been collected and processed, usually image- 

erived measures are related to disease status or outcomes of a 

eurocognitive test to determine which brain structures are re- 

ponsible for the observed outcome. It is important to remember 

hat, in general, regression analysis can only establish correlation, 

ut not causation. Association, unlike causation, is a symmetric 

elationship: two variables X and Y are associated, regardless of 

hether X causes Y, or Y causes X . Only under exchangeability, 

orrelation implies causation ( Hernan and Robins, 2020 ). A com- 

on violation of exchangeability is the presence of confounding. 

or example, consider you want to study causes of Alzheimer’s dis- 

ase (AD). Analysis of the data shows a high correlation between 

ray hair and AD, which may naïvely lead to the conclusion that 

ray hair causes AD. However, the observed correlation between 

ray hair and AD is only due to a person’s age. Therefore, the as- 

ociation between gray hair and AD is confounded by the common 

ause age. This form of bias is known as confounding bias . 

Dataset bias is becoming pivotal as neuroimaging is joining the 

anks of a “big data” science with more and larger datasets be- 

oming available ( Smith and Nichols, 2018 ). Large sample sizes are 

equired for a number of applications in neuroimaging, such as 

ssociation studies in imaging-genetics, or training complex ma- 

hine learning models – in particular in deep learning. As outlined 

bove, sources of bias are plentiful and depend on the research 

uestion and the data that is used to answer it. For this reason, 

euroimaging data is usually collected with a particular research 

uestion in mind, and inclusion criteria are tailored to answering 

his particular question as unbiased as possible, e.g., by randomiza- 

ion or collecting information on possible confounders. Therefore, 

ooling data from studies that have been designed with different 

esearch questions in mind, will likely lead to bias in a machine 

earning model trained on this data. In contrast, if a model would 

e truly unbiased on a population level, it would naturally gener- 

lize to other datasets. 

In this article, we study bias in neuroimaging data. To this 

nd, we combine data from 17 large-scale studies, presented in 

ection 2 . First, we propose Name That Dataset , i.e., the prediction 

f the dataset that a scan is part of, as an experiment to detect 

nter-dataset bias in Section 3 . Second, we take a closer look at 

onfounding bias in Section 4 and present a method for distin- 
2 
uishing between causal and confounded statistical relationships 

n a single dataset using causal inference. As we do not know all 

otential confounders, we work with a model that assumes an 

nobserved confounding variable. Third, we discuss methods for 

ataset harmonization as a means of reducing bias in the data, 

nd present an extension that accounts for global variation across 

eatures in Section 5 . Finally, we present results for dataset pre- 

iction on harmonized data, brain age prediction with harmoniza- 

ion, and the impact of harmonization on two causal models in 

ection 6 . An earlier version of this work has been presented at 

 conference ( Wachinger et al., 2019 ) and is extended in this ar- 

icle with more datasets, details, experiments, and the addition of 

armonization. 

. Neuroimaging data 

We work on MRI T1 brain scans from 17 large-scale public 

atasets: 

1. Adolescent Brain Cognitive Development (ABCD) ( Casey et al., 

2018 ), 

2. Autism Brain Imaging Data Exchange (ABIDE) I ( Di Mar- 

tino et al., 2014 ), 

3. Autism Brain Imaging Data Exchange (ABIDE) II ( Di Mar- 

tino et al., 2017 ), 

4. Attention Deficit Hyperactivity Disorder 

(ADHD200) ( Milham et al., 2012 ), 

5. Alzheimer’s Disease Neurimaging Initiatie (ADNI) ( Jack et al., 

2008 ) (for up-to-date information, see www.adni-info.org ), 

6. Australian Imaging Biomarkers and Lifestyle Study of Ageing 

(AIBL) ( Ellis et al., 2009 ), 

7. Center for Biomedical Research Excellence (CO- 

BRE) ( Mayer et al., 2013 ), 

8. Consortium for Reliability and Reproducibility 

(CORR) ( Zuo et al., 2014 ), 

9. Genomic Superstruct Project (GSP) ( Buckner et al., 2012 ), 

0. Healthy Brain Network (HBN) ( Alexander et al., 2017 ), 

1. Human Connectome Project (HCP) ( Van Essen et al., 2013 ), 

2. IXI Dataset, 1 

3. Open Access Series of Imaging Studies (OASIS) cross-sectional 

sample ( Marcus et al., 2007 ), 

4. MIND Clinical Imaging Consortium (MCIC) schizophrenia sam- 

ple ( Gollub et al., 2013 ), 

5. Nathan Kline Institute – Rockland Sample (NKI) ( Nooner et al., 

2012 ), 

6. Parkinson Progression Marker Initiative (PPMI) ( Marek et al., 

2011 ), 

7. UK Biobank Imaging (UKB) ( Miller et al., 2016 ). 

All datasets were processed with FreeSurfer ( Fischl et al., 2002 ) 

ersion 5.3. We keep only one scan per subject from longitudi- 

al or test-retest datasets. After exclusion of scans with processing 

rrors and incomplete meta-data, scans from 35,320 subjects re- 

ained. Fig. 1 illustrates the age distribution per dataset together 

ith the number of sites. Table 1 presents an overview of demo- 

raphics per dataset. The ABCD and UKB datasets stand out as the 

argest datasets, which introduces a severe class imbalance for the 

ataset prediction experiment in Section 3 . Hence, we downsam- 

led ACBD and UKB data to obtain a sample size close to the next 

argest datasets. We preserved the heterogeneity of the datasets by 

nsuring that all imaging sites are included in the subset. For UKB, 

e marked subjects with psychiatric diseases and cancer in the 

ead as diseased. For ABCD, the diagnostic information is highly 

omplex as mental health of adolescents is investigated in general, 

o that we have not encoded it for this study. 

http://www.adni-info.org
http://brain-development.org/ixi-dataset/
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Table 1 

Overview of neuroimaging datasets used in this study. 

Dataset Diagnosis N Age (mean) Age (SD) Males % Sites Diseased 

ABCD 8,751 9.9 0.6 51.6 29 - 

ABCD Subset (1,570) 9.9 0.6 51.6 29 - 

ABIDE I Autism 1,095 17.1 8.1 85.2 24 526 

ABIDE II Autism 1,032 15.2 9.4 76.1 17 477 

ADHD200 ADHD 965 12.1 3.3 61.8 8 384 

ADNI Alzheimer’s 1,682 73.6 7.2 55.0 62 1,144 

AIBL Alzheimer’s 262 72.9 7.6 47.3 2 91 

COBRE Schizophrenia 146 37.0 12.8 74.7 1 72 

CORR 1,476 25.9 15.4 50.0 32 0 

GSP 1,563 21.5 2.8 42.3 5 0 

HBN Psychiatric 689 10.7 3.6 59.7 2 497 

HCP 1,113 28.8 3.7 45.6 1 0 

IXI 561 48.6 16.5 44.6 3 0 

MCIC Schizophrenia 194 33.1 11.5 71.6 3 104 

NKI Psychiatric 624 38.4 22.5 39.1 1 268 

OASIS Alzheimer’s 415 52.8 25.1 38.6 1 100 

PPMI Parkinson’s 390 61.2 10.0 62.6 16 284 

UKB Diverse 14,362 62.8 7.5 47.6 2 1,878 

UKB Subset Diverse (1,474) 63.2 7.4 47.4 2 160 

35,320 39.6 25.9 51.6 210 

Fig. 1. Age distribution per dataset. The fill color corresponds to the number of 

imaging sites per dataset. 
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. Name that dataset 

In order to detect the impact of dataset bias, we play the game 

ame That Dataset on neuroimaging data that was originally pro- 

osed by Torralba and Efros (2011) on natural images. The task 

s to predict the dataset D an MRI scan is coming from solely 

ased on image-derived measures �, where we use volume and 

hickness. 2 A random forest classifier is trained for the predic- 

ion � �→ D, where we use default settings from the R package 

y Liaw et al. (2002) . 3 If dataset bias would be absent, we would

xpect a prediction accuracy close to random chance, which would 
2 We used 55 volume measures from FreeSurfer as listed in aseg.stats and 

0 mean thickness measures of cortical parcels as listed in lh.aparc.stats and 

h.aparc.stats. 
3 500 trees, mtry is square root of number of variables. 

t

n

w

s

3 
e 5.9% for 17 datasets; taking unequal dataset sizes into account, 

t would be 7.8%. As additional reference, we report the results of 

 classifier trained on age and sex alone, which can achieve higher 

ccuracy than random chance as datasets focus on specific parts of 

he population. In the experiments, we split data into training and 

esting sets with stratified sampling by dataset. This ensures that 

lso the small datasets are represented in the training set for low 

ampling rates. 

Fig. 2 illustrates the performance for classifying images into 

ne of 17 datasets from volume and thickness measures, and their 

ombination. We mainly report results on healthy controls to ex- 

lude disease-specific effects that could potentially ease classifica- 

ion; for the combination of volume and thickness we also show 

esults for including diseased subjects, indicated as ‘(w/ Disease)’. 

n this experiment, we vary the amount of training data from 0.1% 

o 70%. The classification accuracy widely improves as the train- 

ng set increases, particularly for the image features. The highest 

ccuracy of 71.5% is achieved by the combination of volume and 

hickness measures, which perform better than each of them alone. 

xcept for the 0.1% training set size, volumes have a higher accu- 

acy than thickness measures; for 70% training, the difference in 

ccuracy is 7.9%. The accuracy after the inclusion of diseased pa- 

ients is slightly lower compared to healthy subjects, as shown for 

he combination of volume and thickness. The classifier with age 

nd sex reaches 37.9% accuracy, which is well above random and 

herefore hints at selection bias. Yet, compared to over 70% accu- 

acy for image features, there must be another source of bias that 

annot be explained by basic demographics, such as measurement 

nd confounding bias. 

From the confusion matrix in Fig. 2 , the high classification ac- 

uracy (diagonal elements) indicates that datasets possess unique, 

dentifiable characteristics. In addition, we can see that datasets 

ith a similar population result in higher confusion, e.g., between 

BCD, ABIDE I+II, and ADHD200. Single-site datasets, like HCP, that 

ave strict inclusion criteria and imaging protocols show almost 

o confusion with any of the other datasets. In contrast, multi-site 

atasets like CORR that also cover a wide age range, show high 

onfusion with other datasets. Also for UKB, with its large size 

nd age distribution, we observe confusion with other datasets, al- 

hough scans were only acquired at two sites with the same scan- 

er. 

The lesson learned from this experiment is that even when 

orking with image-derived values that represent physical mea- 

ures (volume, thickness), substantial bias in datasets remains, 
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Fig. 2. Left: Dataset classification accuracy for age and sex, volume, thickness, and their combination. The percentage of the data used for training is shown in log-scale. 

Lines show the average score over 50 repetitions, error bars show the standard deviation. Right: Confusion matrix for volume and thickness with 70% training data. 
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Fig. 3. Probabilistic graphical models for observed variables X ,Y and unobserved 

confounders Z . The statistical relationship between X and Y is due to confounder Z 

and due to the influence of X on Y (left). Limiting cases are pure confounding (mid- 

dle) and pure causality (right). 
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espite techniques like atlas renormalization ( Han and Fis- 

hl, 2007 ) were employed to improve consistency across scanners. 

f course, much of the bias can be attributed to the different 

oals of the studies, like the inclusion of subjects from different 

ge groups. However, even when focusing on datasets that cover 

 similar age range, we observe a high accuracy, e.g., ABIDE I 

nd II. While we are not aware of previous attempts to Name 

hat Dataset , our results echo concerns raised in previous stud- 

es. In an ENIGMA study with over 15,0 0 0 subjects on brain 

symmetry ( Guadalupe et al., 2017 ), it was reported that dataset 

eterogeneity explained over 10% of the total observed variance 

er structure. In ADNI, which has an optimized MPRAGE imag- 

ng protocol across all sites ( Jack et al., 2008 ), the intra-subject 

ariability of compartment volumes for scans on different scan- 

ers was roughly 10 times higher than repeated scans on the 

ame scanner ( Kruggel et al., 2010 ). Similarly, Wachinger and 

euter (2016) reported a drop in accuracy for Alzheimer’s disease 

rediction when training and testing on different datasets. 

. Telling causal from confounded with causal inference 

In the previous section, we have established that there is corre- 

ation between a feature vector ψ, derived from MRI scans, and 

he dataset D the scan belongs to, by estimating the probabil- 

ty P (D = d | � = ψ) via a random forest classifier. While this has

ielded useful insights, it only provides a measure of statistical de- 

endence, which alone is insufficient to determine causal struc- 

ures of confounding bias. 

.1. Confounding bias in causal inference 

Here, we want to study bias in a more principled manner by 

ooking at confounding bias in a causal inference framework. Gen- 

rally, it is challenging to infer cause and effect from observa- 

ional data, as this normally requires randomized controlled tri- 

ls ( Pearl, 20 0 0 ). The problem is that it is difficult to determine

hether a variable X causes Y or whether both variables have a 

ommon cause Z. If X and Y share the cause Z, then confounding is 

resent and Z is referred to as confounder, as illustrated in Fig. 3 . 

ecause there is an open backdoor path between X and Y, it is 

nclear if an association between X and Y results from the causal 
4 
ffect X → Y or from the path with the common cause X ← Z → Y .

he extreme cases would be the purely causal setting without con- 

ounding X → Y, illustrated in Fig. 3 (right) and the purely con- 

ounded setting, where the correlation between X and Y is entirely 

ue to common cause Z, illustrated in Fig. 3 (middle). 

For inferring causality, one of the core assumptions is causal 

ufficiency , i.e., we know all potential confounders. This assump- 

ion is often violated in practice, since we do not know all po- 

entially relevant factors nor do we have data on them, yielding 

purious inferences. Even if they would be known, they would not 

e available in all publicly available neuroimaging datasets. Con- 

equently, we consider a recently proposed approach for causal 

nference by Kaltenpoth and Vreeken (2019) that assumes an un- 

bserved confounding variable. The method explicitly models the 

idden confounder with probabilistic PCA, which allows compar- 

ng the causal X → Y and confounded model X ← Z → Y to con-

lude whether the relationship is causal or confounded. Next, we 

ill present the details of the approach. 

.2. Assumptions for inferring causality with unknown confounders 

We consider samples from the joint distribution P (X , Y ) over 

wo statistically dependent continuous-valued random variables, 

here X can be multivariate and Y is univariate. The aim is to 

etermine whether it is more likely that X causes Y, or that there 

xists an unobserved random variable Z that is the cause of both 

 and Y . Z can be multivariate. Inferring causal relations from 

bservational data is only attainable under specific model assump- 

ions. A general assumption in causal inference is that the data 

istribution can be represented as a causal directed acyclic graph 

hat satisfies the Markov factorization property: conditioned on its 
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t

arents (direct causes), each variable is independent of its non- 

escendants ( Pearl, 20 0 0 ). In addition, faithfulness and the pre- 

iously mentioned assumption of causal sufficiency are required. 

aithfulness implies that if X is independent of Y, there is no direct 

nfluence between the two in the underlying graph ( Pearl, 20 0 0 ).

hile faithfulness is a strong condition, it is generally reasonable. 

stablishing causal sufficiency is more problematic in practice. 

Our approach incorporates the algorithmic Markov condition 

AMC) ( Janzing and Scholkopf, 2010 ), which states that if X causes 

, the factorization of the joint distribution P (X , Y ) in the true

ausal direction has a lower Kolmogorov complexity than in the 

nti-causal direction. Together with causal sufficiency, this al- 

ows to identify the true causal network as the least complex 

ne. Although the AMC generally relies on causal sufficiency, 

altenpoth and Vreeken (2019) proposed to incorporate the con- 

ounder as a latent variable Z . This approach can determine 

hether confounding is present, without explicitly knowing the 

onfounder or having data on it, which is very relevant in practice. 

A remaining challenge for estimating the AMC is the evaluation 

f the Kolmogorov complexity as it is not directly computable. To 

his end, the minimum description length (MDL) principle provides 

 statistically well-founded approach to approximate Kolmogorov 

omplexity ( Grünwald, 2007 ). Considering model class M and a 

ully Bayesian formulation, the code length function L is computed 

s 

 (X |M ) = − log 

∫ 
M∈M 

P (X | M)d P (M) , (1) 

here P (M) is a prior on the model class M . 

.3. Causal and confounded models 

Now that we established the theoretical foundation of our 

ork, we need to define two factorizations of P (X , Y ) – one for the

ausal and one for the confounded scenario – to decide whether 

he relationship between X and Y is indeed causal or not. Fig. 3 il-

ustrates the two factorizations we consider here: 

1. Causal: P (X , Y ) = P (Y | X ) P (X | Z ) P (Z ) , which is represented by a

linear regression model, 

2. Confounded: P (X , Y ) = P (Y | Z ) P (X | Z ) P (Z ) , which is estimated

by probabilistic PCA ( Tipping and Bishop, 1999 ). 

The complexity under the causal model can be estimated by 

inimum description length L ca (X , Y ) via 

 ca (X , Y ) = − log P (X ) 

∫ 
P (Y | X , w ) P (w )d w , 

X ∼ N (0 , σ 2 
x I) , 

w ∼ N (0 , σ 2 
w 

I) , 

Y | X , w ∼ N (w 

� X , σ 2 
y I) . (2) 

he complexity of the confounded model is estimated by 

 co (X , Y ) = − log 

∫ 
P (X , Y | Z , W ) P (Z ) P (W )d W d Z , 

Z ∼ N (0 , σ 2 
z I) , 

[ W , w y ] ∼ N (0 , σ 2 
w 

I) , 

X | Z , W ∼ N (W 

� Z , σ 2 
x I) , 

Y | Z , W ∼ N (w 

� 
y Z , σ 2 

y ) , (3) 

here the confounders Z and the principal axes W , w y are esti- 

ated using probabilistic PCA by appending Y as an extra column 

o X ( Tipping and Bishop, 1999 ). 

Note that we do not require that the confounders are known or 

easured; since we marginalize over Z , we only need to specify 
5 
ts dimensionality k . To compare the causal ( X → Y ) and the con-

ounded model ( X ← Z → Y ), we compute 

(X , Y ) = L co (X , Y ) − L ca (X , Y ) . (4)

f the causal model better describes the data than the confounded 

odel, we obtain �(X , Y ) > 0 – the more positive, the more con-

dent we are. If instead �(X , Y ) < 0 , the roles are reversed. As �

s dependent on the size of the dataset, we also consider the nor- 

alized version 

1 
N �, with N denoting the number of subjects. 

We first estimate the posterior distribution of the model param- 

ters σx , σy , w y , W , Z via Markov chain Monte Carlo using a no-U-

urn sampler ( Hoffman and Gelman, 2014 ) with four chains and 

,0 0 0 samples each (of which 1,500 are used for burn-in) as im- 

lemented in RStan 2.19.3 ( Carpenter et al., 2017; Stan Develop- 

ent Team, 2020 ). We experienced instability estimating the pos- 

erior using variational inference as proposed by Kaltenpoth and 

reeken (2019) . The integral over the model parameters in the 

arginal likelihood in Eqs. (2) and (3) is analytically intractable 

nd we need to approximate it via Monte Carlo sampling. Instead 

f using the naïve Monte Carlo estimator of the marginal likeli- 

ood, we estimate it via bridge sampling, which has lower vari- 

nce ( Frühwirth-Schnatter, 2004; Gronau et al., 2020 ). We repeated 

his process ten times to obtain an interval of possible values for 

 ca and L co . 

. Data harmonization 

In the previous sections, we described methods for identify- 

ng confounding bias. Here, we want to study whether methods 

or harmonizing neuroimaging datasets can effectively reduce bias, 

nd therefore can enable identification of causal effects. Harmo- 

ization of multi-site data aims to remove unwanted variability as- 

ociated with scanner and site when pooling data. We refer to such 

nwanted variation as non-biological variation to distinguish it from 

iological variation about the subject, which we want to retain. Cur- 

ent methods for harmonization focus on adjusting for known con- 

ounders, but as argued in Section 4 , neither do we know all con- 

ounding factors nor do we have data on them. We avoid this issue 

y introducing a novel harmonization approach that can be used 

n the presence of unknown confounders by computing substitute 

onfounders. 

Harmonization can be performed at multiple stages: by speci- 

ying a strict acquisition protocol, by normalization in image pro- 

essing, or by adjusting image-derived features before data anal- 

sis. Here, we will focus on harmonization at the feature stage, 

s we cannot influence the acquisition anymore, and we are us- 

ng FreeSurfer for the image analysis, which already has a sophis- 

icated normalization pipeline. 

We will discuss several existing methods for harmonization, 

nd propose our novel extension to account for unknown con- 

ounders below. Table 2 summarizes the different harmonization 

odels and the corresponding variable updates. First, we need to 

pecify on which level we want to harmonize features. For multi- 

ite datasets, the obvious choice is to harmonize scans with re- 

pect to imaging site. Based on your initial motivation for Name 

hat Dataset , an alternative would be to harmonize with respect to 

mage source (dataset). We will evaluate both in our experiments, 

ut focus on imaging site in the following description. 

.1. Harmonization only based on imaging sites 

A naïve approach for harmonizing across imaging sites is Z- 

core normalization . Consider an image-derived measurement Y i j f 

or imaging site i, subject j, and feature type f . After computing 

he mean ˆ μi f and standard deviation ˆ σi f for each imaging site and 
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Table 2 

Summary of harmonization models for image features Y with the corresponding update equations for obtaining the harmonized value Y . 

The indices are imaging site i, subject j, and feature type f . We consider linear regression and ComBat, together with different types 

for variables. Site is represented by γ . For biological variation that we would like to keep k , we consider age and sex. For non-biological 

variation that we would like to remove r , we consider manufacturer, field strength, and principal components. Estimated model parameters 

are denoted with hat. 

Variables Model Update 

Site 
Linear Y i j f = α f + γi f + ε i j f Y i j f = Y i j f − ˆ γi f 

ComBat Y i j f = α f + γi f + δi ε i j f Y i j f = 

Y i j f − ˆ α f − ˆ γi f 

ˆ δi 

+ ̂  α f 

Site & Keep 
Linear Y i j f = α f + γi f + β

� 
f k j + ε i j f Y i j f = Y i j f − ˆ γi f 

ComBat Y i j f = α f + γi f + β
� 
f k j + δi ε i j f Y i j f = 

Y i j f − ˆ α f − ˆ β
� 
f k j − ˆ γi f 

ˆ δi f 

+ ̂  α f + ̂

 β
� 
f k j 

Site & Keep & Remove 
Linear Y i j f = α f + γi f + β

� 
f k j + ζ� 

f r j + ε i j f Y i j f = Y i j f − ˆ γi f − ˆ ζ
� 
f r j 

ComBat Y i j f = α f + γi f + β
� 
f k j + ζ� 

f r j + δi ε i j f Y i j f = 

Y i j f − ˆ α f − ˆ β
� 
f k j − ˆ ζ

� 
f r j − ˆ γi f 

ˆ δi f 

+ ̂  α f + ̂

 β
� 
f k j 
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4 The extension is available as ComBat++ in our repository https://github.com/ 
eature, the feature’s harmonized value Y i j f is 

 i j f = 

Y i j f − ˆ μi f 

ˆ σi f 

, (5) 

here subject j was scanned at site i . Z-score normalization is a 

tandard procedure in statistics, simple to compute, but might re- 

ove information that is required for downstream tasks, such as 

isease prediction. Consider one imaging site with only young sub- 

ects and another one with only elderly subjects, both sites will 

ave the same mean after the normalization, which for structures 

ike the ventricles is inadequate ( Scahill et al., 2003 ). 

As second harmonization approach controls for site-specific ef- 

ects by computing residuals. To this end, site becomes a regressor 

n a linear regression and the feature’s harmonized value is the 

esidual: 

 i j f = α f + γi f + ε i j f , (6) 

 i j f = Y i j f − ˆ γi f , (7) 

here α f is the average measure for the reference site, γi f is an 

dditive imaging site effect, and ε i j f is the variance. The parame- 

ers can be estimated by solving the corresponding ordinary least 

quares problem. 

.2. ComBat harmonization 

As an extension of the previous model, Fortin et al. (2018) pro- 

osed harmonization of cortical thickness measures based on Com- 

ining Batches (ComBat) ( Johnson et al., 2007 ) from gene expres- 

ion analysis. ComBat adds a site-specific scaling factor δ, yielding 

 model that adjusts for additive and multiplicative effects. In addi- 

ion, ComBat uses empirical Bayes for inferring model parameters, 

hich assumes that model parameters across features are drawn 

rom the same distribution. Hence, model parameters are not es- 

imated independently per feature anymore, which can be helpful 

ith small sample sizes, but also assumes that parameters across 

eatures are homogeneous. 

Accounting for imaging site can help in removing unwanted 

ariation in the data, but at the same time it may have the detri- 

ental effect of removing relevant information. For instance, we 

ould like to keep subject-specific information due to biological 

ariability. We add the vector k to the model to indicate variables, 

hose influence we would like to keep after harmonization. In our 

xperiments, we use sex and a linear and quadratic age term to ac- 

ount for non-linear aging effects ( Walhovd et al., 2011 ). The model 

s 

 i j f = α f + γi f + β
� 
f k j + δi f ε i j f (8) 
a

6 
ith the multiplicative imaging site effect δi f and vector of regres- 

ion coefficients β f . The harmonized value is computed as 

 i j f = 

Y i j f − ˆ α f − ˆ β
� 
f k j − ˆ γi f 

ˆ δi f 

+ ˆ α f + 

ˆ β
� 
f k j . (9) 

he linear model can also be adapted to accommodate variables to 

eep k , as shown in Table 2 . 

.3. Harmonization for non-biological variability with ComBat 

As a novel extension, we propose to add the vector r to the 

odel that contains variables that relate to non-biological variabil- 

ty, which we would like to explicitly remove from the features. 

he updated ComBat model 4 is 

 i j f = α f + γi f + β
� 
f k j + ζ� 

f r j + δi f ε i j f , (10) 

ith the vector of regression coefficients ζ f . The harmonized val- 

es are 

 i j f = 

Y i j f − ˆ α f − ˆ β
� 
f k j − ˆ ζ

� 
f r j − ˆ γi f 

ˆ δi f 

+ ˆ α f + 

ˆ β
� 
f k j . (11) 

nown effects about non-biological variability that we would like 

o remove are, for instance, the scanner manufacturer (MF) or 

he magnetic field strength (MFS). However, we believe that there 

re also unknown effects that increase variability among sites, 

hich we did not collect explicitly. Hence, we propose to adapt 

n approach that is common in genome-wide association studies 

GWAS). A major concern in GWAS is population stratification, i.e., 

he existence of unobserved subpopulations in the sample. To ac- 

ount for population stratification in the analysis, the addition of 

rincipal components (PC) to the regression model has been pro- 

osed in EIGENSTRAT ( Price et al., 2006 ). Principal components 

re computed on all genetic markers and therefore capture over- 

ll variation. Following this idea, we compute principal compo- 

ents across all image features on the whole dataset to capture 

eneric variation that is not specific to a single brain feature. Re- 

ently, Wang and Blei (2019) proposed the deconfounder method 

hat allows inferring multiple causal effects in the presence of un- 

nown confounders. Our model is a non-probabilistic version of 

he deconfounder, which supports the theoretical connection be- 

ween our approach and causal inference. We note that such an 

pproach only helps to identify causal effects if the neurological 
i- med/Dataset- Bias . 

https://github.com/ai-med/Dataset-Bias
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Fig. 4. A: Bars show mean dataset classification accuracy with lines indicating standard deviation for the raw measures and the different harmonization techniques. B: 

Spearman’s rank correlation of lateral ventricles volume with age. C: Spearman’s rank correlation of hippocampus volume with age. For the linear and ComBat models, the 

variables to remove r and to keep k are listed above the plots. Variables that we intend on removing are imaging site, manufacturer (MF), magnetic field strength (MFS), 

principal component (PC). 
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rocess we are studying is believed to only affect a few brain 

tructures. As variables for the remove vector r , we are therefore 

onsidering manufacturer and magnetic field strength, together 

ith the principal component. 

. Results 

We first present results for Name That Dataset on harmonized 

eatures, brain age prediction, and a comparison of causal and con- 

ounded models with and without harmonization. 

.1. Name that dataset with harmonization 

Fig. 4 shows the results of Name That Dataset , when the dif- 

erent harmonization techniques were applied. We use volume 

easures, healthy subjects and 70% training data for these ex- 

eriments. Imaging site is used in all linear and ComBat models, 

urther augmented with biological variables age and sex. Next, we 

dd non-biological variables that we would like to remove, namely 

anufacturer (MF), magnetic field strength (MFS), and principal 

omponent (PC). As noted above, all models that include age have 

 linear and quadratic aging term. 

While we want to lower the accuracy for predicting the dataset, 

e also want to keep relevant information. As a measure for the 

atter, we use the fact that ventricles grow with age while atrophy 

f the hippocampus increases. We compute the Spearman’s rank 

orrelation of lateral ventricles and hippocampus volumes with 
7 
ge, to account for the non-linear relationship between the volume 

f brain structures and age. The objective of this experiment is 

o validate whether relevant information is retained in the image- 

erived measurements after harmonization. If biologically relevant 

nformation is retained, we should get a positive correlation for lat- 

ral ventricles and a negative correlation for hippocampus volume. 

oth volumes are considered relative to the intracranial volume. 

 trivial solution that would impede predicting the dataset would 

e to set all variables to constant values, however, this would also 

emove all relevant information. Classification accuracies of a ran- 

om forest are depicted in Fig. 4 A for the original brain measures, 

-Score normalized, and five different variable combinations for 

he linear and ComBat model. 

Overall, we observe that ComBat is superior to the linear model 

n this experiment, which indicates the benefit of not only hav- 

ng an additive but also a multiplicative imaging site effect in the 

odel. Z-Score normalization leads to a steep decrease in classi- 

cation accuracy from 69% to 43%, but also the correlation with 

ge is almost entirely removed ( Fig. 4 B and C). Hence, not only 

ataset-specific information, but also relevant biological informa- 

ion, is removed. We observe a similar result for harmonization 

y residuals based only on imaging site, where ComBat yields a 

ower classification accuracy than the linear model (42% vs. 54%). 

dding age and sex increases the classification accuracy, which 

s expected when adding these variables to the residuals compu- 

ation. The corresponding ComBat model is closest to the model 

sed by Fortin et al. (2018) and results in an accuracy of 50% 
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Fig. 5. Dataset classification accuracy and Spearman’s rank correlation of lateral ventricles and hippocampus with age. In contrast to Fig. 4 , the dataset is used as grouping 

variable and not the imaging site. 
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Fig. 6. Boxplot of the mean absolute error (MAE) in age prediction for the raw mea- 

surements and the harmonization with ComBat and ComBat with PC. Center lines 

indicate the median, the boxes extend to the 25th and 75th percentiles, and the 

whiskers reach to the most extreme values. 
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nd a change in the correlation with age of 0.04. With our ex- 

ension of including additional variables to remove (MF, MFS, PC), 

he accuracy decreases to 45% for ComBat, while at the same time 

trengthening the correlation with age (0.62 and −0.38). However, 

hether the effect of MF and MFS is removed does not change the 

esults for neither the linear model nor ComBat. Finally, we note 

hat all classification accuracies are well above 37.9%, which we re- 

orted earlier for the dataset classification task with age and sex, 

ndicating that the features retain dataset-specific information af- 

er harmonization. 

Fig. 5 shows harmonization results for using dataset instead of 

maging site as grouping variable. Since Name the Dataset tries to 

dentify the dataset a scan is part of, it seems natural to harmonize 

ith respect to dataset. The figure shows the results for Z-Score 

ormalization, together with the linear and ComBat models that 

nclude all variables (age, sex, MF, MFS, PC). With a classification 

ccuracy of about 50% for ComBat, this is well above the results 

or using imaging site. Z-Score normalization and the linear model 

ield accuracies of about 60%, where the former again removes al- 

ost all correlation with age. We can therefore conclude that op- 

rating on the level of imaging site is leading to better results than 

perating on the dataset level. This indicates a high heterogeneity 

ithin the included multi-site datasets and the necessity for mod- 

ling site-specific variations. 

.2. Results on brain age prediction 

In a further experiment, we evaluate brain age predic- 

ion ( Franke et al., 2010; Cole and Franke, 2017; Becker et al., 2018 ),

.e., the prediction of a person’s age from a brain MRI scan, across 

atasets. The prediction of the brain age is of interest as it was 

emonstrated that brain age relates to cognitive aging and that the 

ifference to the chronological age is associated to neurodegenera- 

ive diseases. A prerequisite for age prediction is sufficient data to 

over the full age range of interest, which often requires combining 

ata from multiple datasets. However, site-specific characteristics 

ay cause unwanted variation between training and testing sets, 

s well as heterogeneity in the training set, which can deteriorate 

rediction results. Hence, we examine whether harmonization of 

he image features can decrease the error. 

Age prediction is a multivariate regression task, for which we 

se random forest regression on brain volumes. We only select 

ealthy subjects for this experiment. We use a leave-one-dataset- 

ut scheme for the evaluation, i.e., one dataset is selected as test 

et and the remaining 16 datasets are used for training. Fig. 6 

hows a boxplot of the mean absolute error in age prediction 

or the raw measurements, and the harmonized measurements 

ith ComBat and ComBat with PC, respectively. We compute the 

ilcoxon signed-rank test between the three approaches yielding 

p = 0 . 0064 between raw and ComBat, p = 0 . 0197 between raw and

omBatPC, and p = 0 . 5171 between ComBat and ComBatPC; the 
8 
ifferences between the two harmonization techniques are not sta- 

istically significant, but the reduction in age prediction errors with 

espect to raw measures are significant. 

.3. Results on causality with harmonization 

We estimate the causal inference model in two experiments. 

n the first one, we select the ADNI dataset and set Y to 

he Alzheimer’s Disease Assessment Scale Cognitive Subscale 13 

ADAS) score. ADAS is one of the most widely used cognitive 

cales and assesses the severity of cognitive symptoms of demen- 

ia ( Kueper et al., 2018 ). Instead of directly working with diagno- 

is, ADAS is a continuous variable and can therefore directly be 

sed in our causal inference framework. For the variable X , we use 

ge, age squared, sex, and the following brain volumes that have 

reviously been associated with dementia: hippocampus, amyg- 

ala, lateral ventricles, inferior lateral ventricles, and third ventri- 

le ( Apostolova et al., 2012 ). The model complexities for causal and 

onfounded models, together with the difference � for the raw 

olume measurements is reported in Table 3 . Next, we evaluate 

ifferent harmonization methods for the volume measures, where 

e focus on ComBat. When only using site, or site in combination 

ith age and sex, the intervals for � overlap, which is evidence for 

oth working equally well. The inclusion of PC yields a higher me- 

ian � and its interval is cleary seperated from the results above, 

hich indicates a less confounded model. Adding ADAS in the har- 

onization to the variables to keep ( k ), further reduces confound- 

ng bias significantly, as is evident from non-overlapping intervals 

or �. 

In the second experiment, we want to include all datasets in the 

tudy. To this end, we set Y to age and X to the following brain

olumes: hippocampus, lateral ventricles, amygdala, inferior lat- 

ral ventricles, third ventricle, putamen, pallidum, caudate, thala- 

us proper, cerebellum cortex, cerebellum white matter, and brain 

tem, together with sex. The results per dataset are shown in Fig. 7 ,
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Table 3 

Results from the causal inference model with the variable Y set to ADAS for the raw im- 

age measurements and the application of harmonization with different variables. Median 

values are reported for L ca ,L co , and �, and the minimum and maximum for �. 

L ca L co � �

(Median) (Median) (Median) (Range) 

Raw 20,238 18,782 −1,456 [ −1,451; −1,461] 

Site 20,221 18,789 −1,432 [ −1,428; −1,435] 

Site, Age, Sex 20,203 18,772 −1,430 [ −1,429; −1,437] 

Site, Age, Sex, PC 20,283 19,097 −1,186 [ −1,184; −1,187] 

Site, Age, Sex, PC, ADAS 20,185 19,362 −823 [ −821; −827] 

Fig. 7. Results from the causal inference model across all datasets, where the median normalized � is plotted. Results are shown for the raw image measurements and the 

ComBat harmonization with different variable combinations. The inset plots L ca for NKI and OASIS. Minimum and maximum normalized � values across 10 repetitions are 

available in Table A.4 . 
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here we present the normalized � for better comparison across 

atasets. Next to the median values displayed in Fig. 7 , we list the

ange in Table A.4 . We report results for raw image measures and 

he harmonization with ComBat. As variables, we use (i) site, age, 

ex, (ii) site, age, sex, PC, and (iii) site, age, sex, MF, MFS, PC. For (i),

hich corresponds to the original version of ComBat, we observe 

imilar values to the raw measures. After including PC, we observe 

 substantial increase in � for almost all datasets. Notably, for NKI 

nd OASIS, the difference gets positive, which indicates a causal re- 

ationship. To investigate this further, we plot L ca for NKI and OASIS 

n the inset in Fig. 7 , which shows the large drop in complexity for

he causal model after harmonization with PC. With the complex- 

ty of the confounded model changing only little, it is the change 

f the causal model that yields the positive � and therefore evi- 

ence for a causal relationship. 

. Discussion 

.1. Name that dataset 

In one of the largest studies to date, we have examined bias 

cross 17 neuroimaging datasets. Our experiments for Name That 

ataset demonstrated that the dataset can be predicted with more 

han 70% accuracy. In comparison, a classifier that operates on age 

nd sex stays below 38%. This is evidence that image features con- 

ain, next to subject-specific information, also rich dataset-specific 
9 
nformation. While we are not aware of previous work on pre- 

icting the dataset from neuroimaging data, prior studies have re- 

orted the high intra-subject variability across scanners, no matter 

hether FreeSurfer ( Jovicich et al., 2009 ), FSL ( Nugent et al., 2013;

uckling et al., 2012 ), or BrainVisa ( Shokouhi et al., 2011 ) were

sed for segmentation, which is also pointing to scanner-specific 

nformation in the data. 

Instead of predicting the dataset, a similar experiment would 

e to predict manufacturer or magnetic field strength of a scan. 

e believe that dataset prediction offers two advantages. First, 

here is a severe class imbalance with almost 80% of scans ac- 

uired on a Siemens scanner and 84% on 3.0T, yielding already 

igh classification accuracies with naïve approaches. Second, there 

re more non-biological effects than just manufacturer and field 

trength that impact a scan; by using the dataset as label, we can 

ump them all together, without explicitly knowing them. However, 

e also need to account for biological variation between datasets, 

hich could be considered as a lower bound for the classification 

ccuracy, as we would like to retain this information. In our exper- 

ments, we used a classification model based on the variables age 

nd sex for this purpose. Another alternative to Name That Dataset 

ould be to Name That Imaging Site . With 210 sites in our data, 

his would substantially increase the complexity of the classifica- 

ion task and complicate the interpretation of results with the con- 

usion matrix. In addition, there is a wide variation in the size of 

ites, ranging from a few subjects per site to more than 1,0 0 0 for
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CP. Hence, Name That Dataset is the most reasonable choice in 

ur experiments, but operating on sites could be an attractive al- 

ernative in other situations. 

.2. Dataset harmonization 

We have investigated several techniques for dataset harmoniza- 

ion and evaluated whether they can reduce the accuracy of pre- 

icting the dataset or whether they can yield a causal relation- 

hip. Harmonization is a trade-off between removing unwanted 

ariation, likely associated to scanner, and keeping relevant infor- 

ation about the research question. Hence, we need to be cau- 

ious when harmonizing image features. As shown in our results 

or Name That Dataset , Z-score normalization and the harmoniza- 

ion with imaging site can only drastically decrease the classifica- 

ion accuracy. However, the low correlation of age with hippocam- 

us and ventricles volumes after harmonization illustrates that all 

he biologically relevant information has been removed too. Adding 

ore supervision to the process is therefore necessary, which we 

chieved by adding variables whose association we want to keep 

n the data (e.g. age and sex). Results from our correlation analyses 

ith age show the effectiveness of such an approach, but also that 

he dataset prediction accuracy increases compared to only using 

ite. 

As a novel contribution to harmonization, we proposed to add 

ariables to the model, whose influence we would like to re- 

ove. In particular, we proposed to compute principal compo- 

ents across all image features, and add them as variables to re- 

ove. This approach is inspired from GWAS, where principal com- 

onents across genetic markers are added to a model of association 

o account for stratification of the population. In contrast, we use 

rincipal components in a regression model to harmonize imag- 

ng data by computing the residuals. Next to PC, our technique can 

lso be used to explicitly remove the effect of measured variables; 

e studied scanner manufacturer and magnetic field strength. 

n combination with imaging site as grouping variable, their re- 

oval had only small impact. This is most likely due to manu- 

acturer and field strength being constant within an imaging site, 

o that the information provided by these variables is already ac- 

ounted for by imaging site. Manufacturer and field strength have a 

tronger influence on the results when dataset is used as grouping 

ariable. 

The prediction of the brain age is a typical example, where the 

ombination of multiple dataset is required to cover a wide age 

ange in the training dataset. The results of our leave-one-dataset- 

ut experiment demonstrated that harmonization yields a signif- 

cant reduction in the age prediction error. As age prediction has 

een proposed as a diagnostic biomarker for many diseases, like 

D, HIV, and schizophrenia ( Cole and Franke, 2017 ), accounting for 

ataset bias may further increase its sensitivity. 

For the computation of residuals in the harmonization, we 

orked with linear regression models and ComBat, where Com- 

at has an additional site-specific scaling factor and uses empir- 

cal Bayes for inference. Throughout all our experiments, we no- 

iced advantages of ComBat in comparison to the linear model. 

his confirms previous results from Fortin et al. (2018) for harmo- 

izing cortical thickness measures with ComBat also for the har- 

onization of volume measurements. We have focused on har- 

onization approaches that operate on image-derived features, 

hile previous approaches harmonized image intensity values to 

ake them comparable across studies, including histogram match- 

ng ( Nyúl et al., 20 0 0 ), WhiteStripe ( Shinohara et al., 2014 ), and

AVEL ( Fortin et al., 2016 ). As an alternative to accounting for 

opulation stratification with PCs added to the model, mixed 

inear models have been proposed for genetic association stud- 

es ( Yang et al., 2014 ), where the random effect accounts for strat-
10 
fication. We could adopt a similar approach to model unknown 

ffects in image features. However, since random effects are not 

xplicitly estimated, correcting the image features in a harmoniza- 

ion step is not directly possible, but rather an integrated model 

ould be required. 

.3. Causal inference for identifying confounding 

Confounding bias can lead to spurious correlations and there- 

ore wrong conclusions about cause and effect. The assumption of 

ausal sufficiency, i.e., knowing all confounding variables, is often 

iolated in practice. Hence, we presented a causal inference frame- 

ork that considers unknown confounders . In contrast, prior work 

n neuroimaging ( Dukart et al., 2011; Linn et al., 2016; Rao et al., 

017 ) mainly considered the known confounders age and sex. We 

elieve that our approach can present an interesting new analysis 

or neuroimaging data, e.g., for evaluating methods for harmoniza- 

ion or bias reduction. 

Our results indicate that most relationships that we investi- 

ated were confounded rather than causal. This is unsurprising, 

iven the inherent complexity of neuroimaging studies related to 

canning, image analysis, and study design. On the positive side, 

echniques for harmonization can reduce confounding and, in some 

ases, even yield causal relationships. For both causal experiments, 

e observed that accounting for unknown confounders in Com- 

at via principal components is preferred. In addition, the experi- 

ent on the ADNI dataset revelead that including the target vari- 

ble (ADAS) as variable to keep, results in an improved harmo- 

ization that reduces confounding significantly. However, the rela- 

ionship remains non-causal ( � < 0 ). We believe that morphology 

lone may be insufficient, and that additional, multi-modal mea- 

ures would be necessary to establish a causal model for ADAS. 

As mentioned earlier, inferring causality from observational 

ata is challenging and only feasible under certain assumptions 

s stated in Section 4 . These assumptions heavily rely on domain 

nowledge and may not hold for other applications. For instance, 

e assumed a linear relationship between continuous-valued vari- 

bles, which suggested the use of linear regression as causal model 

nd probabilistic PCA as confounded model. If non-linearity is re- 

uired, more advanced models such as Gaussian Process regres- 

ion and probabilistic non-linear PCA could be used ( Rasmussen 

nd Williams, 2006; Lawrence, 2005 ). Similarly, if data comprises 

iscrete variables, appropriate models need to be selected, such 

s Poisson regression as casual model and Gamma-Poisson factor- 

zation as confounded model ( Canny, 2004 ). All of these models 

ould fit the setting depicted in Fig. 3 and allow estimation of �

s described in Section 4 . In addition to relying on untestable as- 

umptions, causal inference from observational data is challenging, 

ecause we cannot know what the true causal effects are nor their 

ffect size, which makes a quantitative evaluation impossible. As 

uch, results need to be interpreted with caution and in light of the 

ncorporated prior knowledge. Yet, the ability to assess confound- 

ng in the model can be very helpful, not just for the development 

f harmonization tools, but more generally for inferring knowledge 

rom neuroimaging studies. 

. Conclusion 

Bias is a complex and challenging topic in neuroimaging that 

ill become more prevalent in the future with the translation 

f results in the clinic and the surge of mega-analyses. Based on 

ata with more than 35,0 0 0 individuals, we have demonstrated 

hat simply pooling scans from distinct studies can introduce 

ubstantial bias that would be passed on to a machine learning 

odel trained on the pooled data. First, we showed that it is 

ossible to correctly identify the dataset that a scan is part of with 
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ore than 70% accuracy. Second, we introduced a novel approach 

or differentiating causal from confounded relationships based 

n causal inference. Importantly, the confounder was modeled as 

nknown variable, which is helpful in complex neuroimaging stud- 

es, where the assumption of causal sufficiency is challenging to 

ulfill. Third, we studied multi-site harmonization techniques and 

valuated their effectiveness of reducing bias. We have proposed 

 harmonization method that extends ComBat for the inclusion of 

dditional variables to remove, where the integration of principal 

omponents, to capture generic variation, led to the best results. 

Overall, we believe that the growing amount of medical im- 

ges necessitates novel methods for handling bias in datasets and 

mage-derived features. As bias is in its core a causal concept, 

ethods from the growing field of causal inference may be par- 

icularly promising to yield new insights. 
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ppendix A. Additional results 

Table A.4 

Median, minimum, and maximum normalized � across 10 repet

Dataset Raw ComBat 

(site, age, sex) 

ABCD −1.571 [ −1.572; −1.570] −1.676 [ −1.677; −
ABIDE I −1.226 [ −1.229; −1.224] −1.202 [ −1.205; −
ABIDE II −0.824 [ −0.825; −0.823] −1.354 [ −1.356; −
ADHD200 −1.520 [ −1.527; −1.519] −1.740 [ −1.742; −
ADNI −1.153 [ −1.155; −1.152] −1.235 [ −1.238; −
AIBL −1.154 [ −1.154; −1.154] −1.318 [ −1.318; −
COBRE −1.691 [ −1.691; −1.690] −1.701 [ −1.701; −
CORR −1.117 [ −1.121; −1.116] −1.449 [ −1.451; −
GSP −2.228 [ −2.232; −2.225] −1.995 [ −1.998; −
HBN −1.115 [ −1.115; −1.114] −1.363 [ −1.365; −
HCP −2.330 [ −2.337; −2.327] −2.150 [ −2.156; −
IXI −1.866 [ −1.867; −1.865] −1.866 [ −1.868; −
MCIC −1.694 [ −1.694; −1.694] −1.821 [ −1.821; −
NKI −1.280 [ −1.281; −1.279] −1.307 [ −1.308; −
OASIS −2.664 [ −2.664; −2.664] −2.901 [ −2.901; −
PPMI −0.986 [ −0.987; −0.986] −1.161 [ −1.162; −
UKB −1.432 [ −1.433; −1.432] −1.374 [ −1.374; −
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