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This paper studies the problem of classifying longitudinal structural brain networks to

identify meaningful substructures and their time-varying effects. The problem is

motivated by a subpopulation of healthy older adults who can maintain excellent

cognitive functions across time, while others usually have cognitive decline in aging.

It is of substantial scientific interest to study neurological mechanisms behind this

successful aging phenomena; however, existing statistical tools for longitudinal

networks are very limited. We propose a structured classification method that could

identify a set of small outcome-relevant subgraphs and estimate the age effect of

each signal subgraph from the longitudinal network predictors, as well as an efficient

algorithm for model estimation. Application of this method to the Alzheimer's

Disease Neuroimaging Initiative (ADNI) data identifies a small set of brain regions

whose connectivity strengths are predictive of successful cognitive aging, which has

more appealing interpretation and better predictive performance compared with

unstructured classification methods.
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1 | INTRODUCTION

With advanced neuroimaging technologies, more and more large neuroscience studies start collecting longitudinal brain scans, for example,

the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Jack Jr et al., 2008) and the recent Adolescent Brain Cognitive Development

(ABCD) study (Casey et al., 2018). Compared with cross-sectional data, longitudinal network data have the advantage of revealing dynamic

changes across time and their effect on the final outcome. In this paper, we are interested in studying a subset of healthy older adults

in ADNI who, instead of having a declined trend, can maintain their excellent cognitive trajectories across time. This subpopulation

is often referred as supernormals in the literature (Lin, Ren, et al., 2017; Lin, Wang, et al., 2017). Studying neural mechanisms of this

subpopulation can provide valuable therapeutic targets to delay cognitive decline and prevent severe cognitive impairment (Alzheimer's or

another dementia).

Using a state-of-the-art connectome extraction pipeline (Zhang, Descoteaux, et al., 2018), we extracted longitudinal structural brain networks

over a 5-year span for 40 supernormals and 45 cognitively normal controls with matched age, gender and education. Each subject's diffusion

magnetic resonance imaging (MRI) and structural MRI were used in this preprocessing process, and more preprocessing details are described in

Section 4. The structural brain network corresponds to a set of white matter connections among predefined brain regions. In our data, the number

of observed structural brain networks for each individual ranges from 1 to 5 since not all the participants visited every year during the 5-year

programme. Each structural brain network is characterized by a weighted adjacency matrix where each element denotes the connectivity strength

of fibers between a pair of brain regions. Figure 1 shows a profile of the dataset we used.

We aim to study the relationship between successful cognitive aging and structural brain networks in hope of finding neurologically interpret-

able structural markers in brain connectome predictive of supernormals, for example, a subgraph formed by a small set of closely interrelated brain
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regions. With age information of the subjects, we also aim to estimate the age effect of each outcome-relevant subgraph, that is the dynamic

importance of each subgraph in preserving cognition, which may improve cognition diagnosis and provide insights on the role of aging in normal

and diseased brains.

The signal subgraph learning is basically a variable selection problem where the number of predictors—connections in the longitudinal brain

networks—could easily exceed the number of observations (subjects). One typical approach to this large p small n problem would be some

generalized linear model with certain regularization, such as LASSO (Tibshirani, 1996), Elastic-Net (Zou & Hastie, 2005) and SCAD (Fan &

Li, 2001). But these methods require first transforming each adjacency matrix into a long vector and do not guarantee any structure among the

selected connections in the brain network, making the results hard to interpret.

There are some advanced statistical methods taking into account network structure in the variable selection problem. Arroyo Reli�on

et al. (2019) proposed a graph classification method that incorporates L1 and group lasso penalty in selection of edges and nodes. Guha

and Rodriguez (2020) and Wang et al. (2019) both built on the idea of sparse and low-rank matrix decomposition and used Bayesian

shrinkage or penalized optimization to identify important nodes and edges. But these methods are not applicable to longitudinal network

classification.

The longitudinal networks can be easily formed into a multidimensional array (tensor), and hence, tensor regression models (Zhou et al. 2013)

are relevant, which directly work with a tensor covariate without vectorization. Zhang, Li, et al. (2019) proposed tensor generalized estimating

equations for longitudinal imaging analysis, but they consider a general-order tensor, which is not suitable for the case of symmetric adjacency

matrices, and the response is time-varying. There is a line of research following tensor regression in imaging and network data analysis (Sun &

Li, 2019; Wang et al., 2021; Zhang, Sun, et al., 2018, 2019), but none can be directly applied to our problem.

We propose a longitudinal network classification model with partial time-varying coefficients and elastic-net penalty to learn a set of small

signal subgraphs and estimate their temporal effects (age effects in our application). The signal subgraphs are cliques (fully-linked graphs) which

have appealing interpretation in neurological studies, as many complex cognitive processes are the product of coordinated activities among

several brain regions. The estimated age effect of each subgraph reflects how its predictive effect on the outcome varies over time, which can

improve our understanding of the interaction between the aging of brain structure and cognitive functioning. The rest of the paper is organized as

follows. Our proposed model and model estimation algorithm are introduced in Section 2. Section 3 presents a simulation study evaluating the

performance of our model in recovering true signal subgraphs and age effects. We apply our method to a longitudinal dataset of ADNI in

Section 4, and Section 5 concludes.

2 | METHOD

The data can be summarized as yi,fðWðsÞ
i ,gisÞ : s¼1,…,Tig

� �
for each subject i, i¼1…,n. The binary response yi ¼1 denotes that subject

i is a supernormal and yi ¼0 for a normal control. We use the clinical criteria in Lin, Ren, et al. (2017) and Lin, Wang, et al. (2017) to

F IGURE 1 The profile of longitudinal structural brain networks for individuals in the dataset
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identify supernormals from healthy older subjects. Note that the most important feature for a subject to be a supernormal is his or

her ability to maintain a stable (or an increasing) cognitive function trajectory across a 5-year period. Multiple brain scans were taken in this

period, and WðsÞ
i is the weighted adjacency matrix of the structural brain network measured for subject i at the sth visit (s¼1,…,Ti), and gis is the

age of subject i when the network WðsÞ
i was observed. Note that each WðsÞ

i measures the connectivity strengths among the same set of V brain

regions and is an undirected network without self loops. Therefore, each WðsÞ
i is a V�V symmetric matrix with zero diagonal. Our goal is to learn

a set of small signal subgraphs from the brain network predictive of the outcome and estimate their age effects.

2.1 | Model

We propose the following longitudinal network classification model (LNCM):

yijfðgis ,WðsÞ
i Þ : s¼1,…,Tig �indBernoulliðpiÞ, i¼1,…,n,

logitðpiÞ¼ α0þ
XK
h¼1

1
Ti

XTi

s¼1

λhðgisÞβ >
h WðsÞ

i βh,
ð1Þ

whereβh �ℝV and λh(g) is a function of age g. Model (1) assumes that the binary outcome yi of each individual follows an independent Bernoulli

distribution given his/her longitudinal network observations and the corresponding age information fðWðsÞ
i ,gisÞ : s¼1,…,Tig. The bilinear part in

the logit link of (1) is divided by Ti because not all the subjects have the same number of network observations. Note that we impose a linear rela-

tionship between the log odds of the response and the edges of longitudinal networks. While this model may have the risk of losing some global

topological information encoded in WðsÞ
i , it does not lose any information at the edge level and brings significant convenience for our signal

subgraph learning problem. This linear assumption has been widely used in classification or regression with network predictors (Arroyo Reli�on

et al., 2019; Guha & Rodriguez, 2020; Zhou et al., 2013).

The coefficients in model (1) are assumed to have K components, where each component matrix βhβ
T
h selects a predictive subgraph. For ease

of interpretation, the logit link of (1) can be written in the following matrix dot product form:

logitðpiÞ¼ α0þ 1
Ti

XTi

s¼1

XK
h¼1

⟨λhðgisÞβhβ >
h ,WðsÞ

i ⟩ ð2Þ

where ⟨B,W⟩¼ trace(B>W) = vec(B)>vec(W). Moreover, Equation (2) indicates that the nonzero entries in each component matrix βhβ
>
h locate an

outcome-relevant clique subgraph in the network predictor. The dynamic contribution of each subgraph to the outcome is captured by λh(g),

which also avoids constraining the coefficient matrix in (2) to be positive semi-definite. We do not let βh vary with age in (2) for two reasons. First,

the brain regions in each subgraph associated with y are assumed to be stable across time for healthy adults. Second, βh is fixed over time for

model simplicity. Otherwise a random function has to be assigned to each entry of βh (h¼1,…,K), leading to intractable estimation and overfitting

issues.

Suppose that the connection strengths of a subgraph corresponding to βhβ
>
h tend to decrease for older adults with normal aging,

while to maintain unchanged for supernormals. Then higher weight should be put on the term β >
h WðsÞ

i βh observed at an older age in

predicting y. In this case, λh(g) would be expected to increase with age and may be assumed as a linear function λhðgÞ¼ ρhgþαh.

Alternatively, λh(g) could be a higher order polynomial function to increase flexibility. In simulations and applications, we let λh(g) be up to the

second order, that is, λhðgÞ¼ γhg
2þρhgþαh, for interpretation and model simplicity, because higher order terms of age are difficult to

interpret and prone to overfitting. In addition, we rarely observed nonzero coefficient estimates for the quadratic terms of age in real

data analysis.

Plugging in the quadratic function λhðgÞ¼ γhg
2þρhgþαh into (2), we have

logitðpiÞ¼ α0þ
XK
h¼1

⟨αhβhβ
>
h ,

1
Ti

XTi

s¼1

WðsÞ
i ⟩þ ⟨ρhβhβ

>
h ,

1
Ti

XTi

s¼1

gisW
ðsÞ
i ⟩þ ⟨γhβhβ

>
h ,

1
Ti

XTi

s¼1

g2isW
ðsÞ
i ⟩

" #
: ð3Þ

Equation (3) implies that the actual covariates for each subject i in model (1) are not the raw longitudinal network observations, but the

average of his/her networks, the weighted average of his/her networks by age and squared age, respectively. To ensure both the identifiability of

the model and the sparsity of coefficient matrices αhβhβ
>
h ,ρhβhβ

>
h ,γhβhβ

>
h

� �
:

�
h¼1,…,Kg, we penalize the magnitude of the lower triangular

entries in these coefficient matrices with the following elastic-net penalty:
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δ
XK
h¼1

XV
u¼1

X
v < u

η jαhjþ jρhjþ jγhjð Þjβhujjβhvjþð1�ηÞðα2h þρ2h þ γ2hÞβ2huβ2hv=2
� � ð4Þ

where the overall penalty factor δ > 0 and η � [0, 1] controlling the fraction of L1 penalty.

The goal of model (2) is to identify more interpretable signal subgraphs (in the form of clique graphs) for classifying subjects from longitudinal

observed networks. The model will have the most power if the true signals are in the form of clique graphs; but what will happen if the true signal

subgraphs are not in the form of clique graphs? Without considering the penalty term, there are possibilities: (1) we will need to have a large K to

gain flexibility due to the clique constraint; or (2) the selected clique graphs have overlapping edges that are canceling out each other to

approximate the true regression coefficients. The penalty term in (4) actually encourages the former solution over the later one.

2.2 | Model estimation

The parameters in LNCM (1) are estimated by minimizing the loss function below:

Loss function¼�1
n

Xn
i¼1

lliþ
XK
h¼1

XV
u¼1

X
v < u

δ η jαhjþ jρhjþ jγhjð Þjβhujjβhv jþð1�ηÞðα2h þρ2h þ γ2hÞβ2huβ2hv=2
� � ð5Þ

where lli is the log-likelihood of subject i.

The adjacency matrices fWðsÞ
i g and age {gis} of subjects are standardized as follows before fitting the model. Each cell of the adjacency matrix

is normalized to have mean 0 and variance 1 with respect to all
Xn

i¼1
Ti observations. Age and squared age are also standardized in a similar way.

Let f~gisg and f eg2isg denote the standardized {gis} and fg2isg, respectively. Then the entries in the matrix predictors 1
Ti

XTi

s¼1
WðsÞ

i , 1
Ti

XTi

s¼1
~gisW

ðsÞ
i and

1
Ti

XTi

s¼1
eg2isWðsÞ

i in (3) are roughly of the same magnitude. After obtaining the estimated ðα̂h, ρ̂h, γ̂hÞ with the standardized covariates, it is easy to

recover age effects in the original scale through λ̂hðgisÞ¼ γ̂ðoÞh g2isþ ρ̂ðoÞh gisþ α̂ðoÞh with

γ̂ðoÞh ¼ γ̂h
σ2

, ρ̂ðoÞh ¼ ρ̂h
σ1

, α̂ðoÞh ¼ α̂h� ρ̂h
μ1
σ1

� γ̂h
μ2
σ2

ð6Þ

where μ1, μ2 are the means of {gis} and fg2isg, respectively, and σ1, σ2 their standard deviations.

Although there is scaling indeterminacy between λh(g) and βhβ
>
h within each component such that

λhðgisÞβhβ >
h ¼ chλhðgisÞ

1
ch
βhβ

>
h

for any ch ≠ 0, this scaling of λh(g) does not change the maximizer or minimizer of λh(g) if λh(g) is a quadratic function, or the linear trend if λh(g) is

a linear or constant function. In practice, we always report the estimated age effect λh(g) after scaling βhβ
>
h so that the off-diagonal element with

the largest magnitude is 1 for each nonempty component.

The logit(pi) in model (1) is a quadratic function of each βh and the second derivative of lli with respect to βh is

∂2lli
∂βh∂β

>
h

¼ðyi�piÞ
2
Ti

XTi

s¼1

λhðgisÞWðsÞ
i �pið1�piÞ

4

T2
i

XTi

s¼1

XTi

t¼1

λhðgisÞλðgitÞWðsÞ
i βhβ

>
h WðtÞ

i

which may not be negative semi-definite. Therefore the loss function (5) is not a convex function of βh when fixing the other parameters, and

there is no closed form solution for βh when block updating each component vector βh, h¼1,…,K. Notice that the networks in this case are

undirected without self loops. The diagonal entries of each adjacency matrix WðsÞ
i are zero. Then the loss function (5) is actually a convex function

of each entry βhu in βh when fixing the others. So we employ the coordinate descent algorithm to minimize (5). The technical details of deriving

the analytic form update for each parameter are discussed in the supporting information. The coordinate descent algorithm for model estimation

is summarized in Algorithm 1.
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Since the loss function (5) is lower bounded by 0 and each update always decreases the function value, Algorithm 1 is guaranteed to

converge. The estimates for αh,ρh,γh,βhð Þ :f h¼1,…,Kg will all be zero under a sufficiently large penalty factor δ, but they cannot be initialized at

zero because the results will get stuck at zero. In practice, we recommend to initialize all the parameters as nonzero (except α0) in case some

components get degenerated unexpectedly at the beginning. Each parameter excluding α0 is randomly initialized from the uniform distribution U

(�0.1, 0.1) in Algorithm 1. In general, Algorithm 1 should be run from multiple initializations to locate a good local solution. We use five

initializations for Algorithm 1 in simulations and applications.

2.3 | Model selection

The penalty factors δ and η in regularization (4) can be tuned by cross validation (CV) for a fixed K. We use the “one-standard-error” rule (Hastie

et al., 2009) to select the optimal pair (δ, η), which corresponds to the most parsimonious model whose mean cross-validated deviance is within

one standard-error of the minimum. Cross validation can be used to select K as well. After the optimal solutions for a sequence of K values are

obtained, the best model is the one with the smallest mean CV deviance.

3 | SIMULATION STUDY

We conduct simulations to evaluate the performance of LNCM in recovering true signal subgraphs and age effects as well as prediction. Algorithm

1 of LNCM is implemented in Matlab (R2018a) and the code is publicly available at https://github.com/wangronglu/LNCM.

We compare the results of LNCM to the following unstructured logistic regression with the elastic-net penalty:

logitðpiÞ¼ α0þ ⟨B1,
1
Ti

XTi

s¼1

WðsÞ
i ⟩þ ⟨B2,

1
Ti

XTi

s¼1

~gisW
ðsÞ
i ⟩þ ⟨B3,

1
Ti

XTi

s¼1

eg2isWðsÞ
i ⟩: ð7Þ

where B1, B2 and B3 are V � V symmetric coefficient matrices with entrywise elastic-net penalty on them. Edges corresponding to the nonzero

entries in B1, B2 and B3 have constant, linear and quadratic age effects, respectively. In fact, only the upper triangular entries of 1
Ti

XTi

s¼1
WðsÞ

i ,
1
Ti

XTi

s¼1
~gisW

ðsÞ
i and 1

Ti

XTi

s¼1
eg2isWðsÞ

i are entered in the regression. We write (7) in the matrix dot product form for the convenience of

displaying results. This method is fitted with the glmnet toolbox in Matlab (https://www.stanford.edu/�hastie/glmnet_matlab). The penalty

factors (λ, α) of glmnet are also tuned by cross validation and selected by the one-standard-error rule. The set of values for the L1 fractional

penalty factor α is chosen as {0.1, 0.2,… , 1} and for each α, the overall penalty factor λ is tuned over a sequence of 100 equally spaced values on

the logarithmic scale.
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We simulate a synthetic dataset of n¼200 subjects. The number of network observations for each subject Ti ranges from 1 to 5 randomly

and the age varies over a 5-year span with an initial age gi1�U(60, 90). Each network has 10 nodes. The first network observation Wð1Þ
i for each

subject is generated from a set of basis subgraphs with individual loadings as

Wð1Þ
i ¼

X8
h¼1

aihqhq
>
h þΔi ð8Þ

where qh � f0,1g10 is a random binary vector with qhk k0 ¼ hþ1, h¼1,…,8. The loadings {aih} in (8) are generated independently from N(0, 1) and

Δi is a 10�10 symmetric noise matrix with each entry Δi½u,v� �iid Nð0,0:12Þ, u< v. This generating process (8) produces dense networks with complex

correlation structures. The follow-up adjacency matrix WðsÞ
i for each subject is generated by adding N(0, 0.12) random noise to each edge weight

in Wðs�1Þ
i , s¼2,…,Ti. The generated adjacency matrices fWðsÞ

i : s¼1,…,Ti; i¼1,…,ng are standardized to have mean 0 and variance 1 for each cell

and the diagonals are set to zero.

The binary response yi is generated from Bernoulli(pi) independently with

logitðpiÞ¼
1
Ti

XTi

s¼1

λðgisÞq >
3 WðsÞ

i q3 ð9Þ

where q3 is defined in (8) and the function λ(g) is set as the right plot of Figure 2. The generating process (9) indicates that the true signal subgraph

associated with y is a 4-node clique and its predictive effect on the outcome increases with age as displayed in Figure 2.

The input parameters of Algorithm 1 for LNCM are set as follows. The tolerance ϵ¼10�6. The number of components K is tuned over 1, 2,

3. We use fivefold cross validation to tune δ and η under each K, where the L1 fractional penalty factor η� {0.1, 0.2,… , 1} and a sequence of

10 equally spaced δ values are chosen on the log scale for each η. The same fivefold cross validation is used for tuning (λ, α) in glmnet.

Figure 3 displays the estimated results of LNCM where the best model is selected at K¼1. In this case, LNCM correctly identifies the true

signal subgraph and its increasing age effect. Figure 4 shows the estimated results of glmnet, which partially recovers the true signal subgraph,

and we have to analyze their age effects edge by edge. Although glmnet selects most true signal edges corresponding to B1, these edges do not

appear under B2 or B3, indicating that these edges are only estimated to have constant age effects. Compared with the ground truth, glmnet only

correctly identifies one signal edge (8–10) with linearly increasing age effect, but falsely selects two non-signal edges with linear age effects and

one signal edge (6–8) with a fake quadratic age effect.

F IGURE 2 True signal subgraph and its age effect λ(g)

F IGURE 3 Estimated results of LNCM. Left: the estimated nonzero component matrix β1β
>
1 . Middle: the selected subgraph, where the

thickness of each edge is proportional to the magnitude of its estimated coefficient in β1β
>
1 . Right: the estimated age effect λ1(g)
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The procedure above is repeated 100 times. Each time a synthetic dataset is generated based on (8) and (9), and we record the true positive

rate (TPR) for LNCM and glmnet, representing the proportion of true signal edges that are correctly identified, and the false positive rate (FPR),

denoting the proportion of non-signal edges that are falsely identified. We also record the mean cross-validated AUC at the selected penalty

factors for each method as a measure of predictive performance. Table 1 displays the mean and standard deviation of TPR, FPR and the mean

cross-validated AUC for LNCM and glmnet across 100 simulations, which shows that LNCM on average achieves higher TPR, lower FPR and

competitive predictive performance compared to the unstructured method.

4 | APPLICATION

We applied our method to a dataset from the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) database as described in Section 1 to better

understand the neural mechanism underlying successful cognitive aging. The tuning methods for LNCM and glmnet are the same as in Section 3.

The dataset contains dMRI data for 40 supernormals and 45 cognitively normal controls over a 5-year span. Although ADNI2 contains many

more subjects, here we focus on healthy subjects who have both longitudinal cognitive measures and brain imaging data in a span of 5 years. Such

data are difficult to find from existing data repositories. A state-of-the-art DTI processing pipeline (Zhang, Descoteaux, et al., 2018) was applied

to extract structural brain networks of subjects. More specifically, we first used a reproducible probabilistic tractography algorithm (Girard et al.,

2014; Maier-Hein et al., 2017) to generate the whole-brain tractography data for each dMRI scan in the dataset. Then the popular Desikan–

Killiany atlas (Desikan et al., 2006) was used to define the brain regions of interest (ROIs) in the structural connectivity network. The Desikan–

Killiany parcellation has 68 cortical surface regions with 34 nodes in each hemisphere. For each pair of ROIs, the metric—connected surface area

(CSA)—is extracted for the reconstructed streamlines as a measure of connectivity strength between two ROIs. Then each weighted adjacency

matrix WðsÞ
i is made up of the CSA of streamlines connecting each pair of brain regions. Figure 5 shows the preprocess of extracting structural

brain networks from the dMRI data.

F IGURE 4 Estimated results of glmnet. Upper panel: estimated entries (lower triangular) versus true values (upper triangular) of B1, B2 and B3
in (7). Lower panel: the selected edges in the network where the thickness of each edge is proportional to the magnitude of its estimated
coefficient in B1, B2 or B3; black edges denote true signal edges and red ones falsely identified edges

TABLE 1 Mean and standard deviation of TPR, FPR and mean cross-validated AUC across 100 simulations

TPR FPR AUC

LNCM 0.7233 ± 0.2970 0.0369 ± 0.0715 0.8383 ± 0.0293

glmnet 0.6183 ± 0.1762 0.0431 ± 0.0506 0.8311 ± 0.0310
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Figure 6 displays the connections selected by glmnet with constant (left panel) and linear (right panel) age effects. LNCM identifies one signal

subgraph with constant age effect as shown in Figure 7. The structured solution of LNCM has better prediction accuracy with the fivefold

cross-validated AUC of 0.7081 ± 0.0576, while that of glmnet is 0.6588 ± 0.0680.

The subgraph in Figure 7 features Node 30r as the central node since the coefficients of the edges linking to 30r have larger magnitudes. In

the Desikan-Killiany atlas, 30r is the right supramarginal gyrus, which has been found to engage in language processing (Price, 2010), phonological

decision-making (Hartwigsen et al., 2010) and verbal working memory (Deschamps et al., 2014). It also appears to be affected by the normal aging

process, including volumetric atrophy (Fjell et al., 2009) and decreased functional connectivity with right middle frontal cortex (Wu et al., 2011).

Figure 7 implies that older adults with stronger white matter connections among 30r (right supramarginal), 17r (right pars opercularis), 19r

(right pars triangularis), 26r (right rostral middle frontal), 34r (right insula) and 21r (right postcentral) are more likely to be supernormals, while the

connection strengths between 32r (right temporal pole) and the other regions may have very slight negative effects. The right pars triangularis

(19r) and the right pars opercularis (17r) have emerged as important to various aspects of language and motor function (Molnar-Szakacs et al.,

2004). The right rostral middle frontal gyrus (26r) is critical for executive function (Quan et al., 2013). The right insula (34r) is involved in emotion

F IGURE 5 Structural brain network extraction pipeline

F IGURE 6 Connections selected by glmnet with constant (left) and linear (right) age effects, where the thickness of each edge is proportional

to the magnitude of its estimated coefficient in B1 or B2 of (7); the colour goes from blue to red as the coefficient goes from negative to positive
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regularization and sensor-motor processing (Chang et al., 2013). The right postcentral gyrus (21r) constitutes the somatosensory cortex

(Dharani, 2015). The identified subgraph in Figure 7 represents a high level integration subnetwork of various brain functions from language,

motor, emotion to sensation, which is critical to maintain cognition. The constant age effect implies that there is no specific age between 60 and

95 that has particularly large predictive effect on the outcome (supernormal or normal aging).

5 | CONCLUSION AND DISCUSSION

We have proposed a useful model for learning signal subgraphs and their age effects in classification of longitudinal networks. An effective

algorithm was developed for model estimation which outputs a set of small clique subgraphs and a smooth function of age for each subgraph

indicating its dynamic predictive effect on the outcome. Our method contributes to finding small sets of nodes in the network whose

interconnections are associated with the outcome and avoids evaluating age effects edge by edge. Application of this method to a longitudinal

dataset of ADNI shows interesting discovery of a small set of brain regions whose connectivity strengths are predictive of successful cognitive

aging, which has more appealing interpretation and better predictive performance than unstructured classification methods.

There are also limitations to the proposed method. So far we have focused on a simple parametric form for the age effect function as a

tradeoff between interpretation and model flexibility. A future direction would be to generalize the approach to accommodate more complex

functions for age effects, for example nonparametric or piecewise constant functions. Moreover, in some applications, our model assumption

might not hold, for example, the signal graphs might not be clique subgraphs. In this case, the identified clique subgraphs from our model may

have overlapping connections with opposite signs and the out-of-sample predictive performance may be worse than that of an unstructured

classifier (e.g. glmnet). In practice, we encourage the user to take into account the identified subgraphs and the out-of-sample predictive

performance to decide whether the clique assumption is reasonable. For example, in our real data analysis, only one clique subgraph is selected

where K is tuned over {1, 2, 3} and our method achieves higher cross-validated AUC than glmnet does. This identified signal subgraph leads to the

discovery of a small set of brain regions whose interconnections are associated with the outcome, which provides a more insightful understanding

of the mechanism underlying supernormals.

ACKNOWLEDGEMENTS

We thank Dr. Feng Lin for providing us the supernormal data. The research of Lu Wang was supported by the National Natural Science

Foundation of China (grant number 11901583). Zhengwu Zhang was supported by the National Institutes of Health (award number MH118927)

and Roberta K. Courtman Revocable Trust.

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable request to the corresponding author. The data are not publicly available due to

privacy and ethical restrictions.
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