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The application of deep learning techniques to the detection and automated classification

of Alzheimer’s disease (AD) has recently gained considerable attention. The rapid

progress in neuroimaging and sequencing techniques has enabled the generation

of large-scale imaging genetic data for AD research. In this study, we developed a

deep learning approach, IGnet, for automated AD classification using both magnetic

resonance imaging (MRI) data and genetic sequencing data. The proposed approach

integrates computer vision (CV) and natural language processing (NLP) techniques, with

a deep three-dimensional convolutional network (3D CNN) being used to handle the

three-dimensional MRI input and a Transformer encoder being used to manage the

genetic sequence input. The proposed approach has been applied to the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) data set. Using baseline MRI scans and selected

single-nucleotide polymorphisms on chromosome 19, it achieved a classification

accuracy of 83.78% and an area under the receiver operating characteristic curve

(AUC-ROC) of 0.924with the test set. The results demonstrate the great potential of using

multi-disciplinary AI approaches to integrate imaging genetic data for the automated

classification of AD.
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1. INTRODUCTION

Alzheimer’s disease (AD), themost common cause of dementia, is the sixth leading cause of death in
the United States. It is an irreversible and progressive brain disorder that slowly destroys memory,
thinking skills, eventually, and the ability to carry out the simplest tasks. AD is characterized
by the loss of neurons and synapses in the cerebral cortex and in certain subcortical regions. A
probable diagnosis can be made based on medical tests. However, initial AD symptoms are often
mistaken for normal aging. A definite diagnosis usually requires an examination of brain tissue
after death. Although no cure for AD has yet been found, treatments are available to slow its
progress and improve the quality of life for patients. Therefore, accurate and timely diagnosis of
AD is of great importance. Neuroimaging is among the most promising areas of research focused
on early detection of AD, because microscopic changes in the brain begin long before the first
signs of memory loss appear. In the present study, we focused on magnetic resonance imaging
(MRI), a non-invasive structural imaging technique that can be performed comparatively easily and
has been used extensively for clinical diagnosis and medical research. Structural imaging provides
information on the shape, position, and volume of brain tissue. Although scientists have not yet
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reached a consensus, it has been shown that the brains of
patients with AD shrink significantly as the disease progresses.
Structural imaging research also has shown that shrinkage in
specific brain regions, such as the hippocampus, may be an
early sign of AD. The search for genetic risk factors for AD has
made substantial progress over the years. For example, the ǫ4
allele of apolipoprotein E (APOE) has been identified as a strong
genetic risk factor for both early-onset and late-onset AD (Farrer
et al., 1997). In addition to the well-established effects of APOE,
genome-wide association studies (GWASs) have identified more
than 30 genomic loci that are associated with increased risk of
AD (MacArthur et al., 2017). These advances in AD genetics
have not only provided important assistance in AD diagnosis but
have also encouraged current endeavors in translational research
and personalized treatment of AD. Therefore, it is important and
beneficial to facilitate AD diagnosis by leveraging both imaging
and genetic data.

Our study was motivated by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). This began in 2004 and is
the first “Big Data” project for AD. Comprehensive biomarkers,
including T1 MRI and single-nucleotide polymorphism (SNP)
data were collected for normal controls and for patients with AD.
We aim to fuse imaging and genetic data by using deep learning
techniques to build an automated AD classification system. This
is a challenging task because of (a) the multi-modal nature
of the data, in which brain MRI scans are three-dimensional
(3D) images and genetic data are usually one-dimensional (1D)
sequences; (b) the high dimensionality, whereby an MRI scan
usually comprises hundreds of thousands of voxels and the
genetic data can include millions of variants depending on the
sequencing technique; and (c) the limited sample sizes, which are
much smaller than the dimensions of the imaging genetic data.

Deep learning methods have been adopted for various
biomedical applications, especially for handling complex high-
dimensional data such as medical images (Kamnitsas et al.,
2017), electronic health records (Lu et al., 2021), and omics
data (Jumper et al., 2021). Convolutional neural networks
(CNNs) have achieved great success with hierarchical feature
representation in various challenging natural image recognition
tasks, such as object detection (Li et al., 2015) and image
classification (Krizhevsky et al., 2012). Lately, 3D CNNs have
also demonstrated outstanding effectiveness in 3D medical
image detection (Dou et al., 2016) and spatiotemporal feature
learning (Tran et al., 2015). For 3D brain MRI, a 3D CNN,
which uses 3D convolution kernels, has proved to be a more
promising and reliable approach that takes full advantage of
spatial contextual information in volumetric data for more
accurate detection and prediction (Ueda et al., 2019). Recurrent
neural networks, i.e., long short-term memory neural networks
(Hochreiter and Schmidhuber, 1997) and gated recurrent neural
networks (Chung et al., 2014), have been established as effective
approaches for sequence modeling. They have also been applied
to omics studies, such as the detection of DNA basemodifications
(Liu et al., 2019) and protein–RNA binding prediction (Li et al.,
2019). Lately, Transformer (Vaswani et al., 2017), a model
architecture that eschews recurrence and instead relies entirely
on an attention mechanism, has been widely adopted in various

fields. Transformer was originally proposed as a sequence-to-
sequence model for machine translation (Sutskever et al., 2014).
Subsequent work has shown that Transformer-based pre-trained
models can achieve state-of-the-art performance in various tasks
(Qiu et al., 2020). Transformer has also been adopted in omics-
related tasks such as protein sequence modeling (Rives et al.,
2021) and DNA sequence modeling (Ji et al., 2021).

Recently, there has been a dramatic proliferation of multi-
disciplinary artificial intelligence (AI) tasks that combine AI
techniques in more than one domain, such as tasks that require
an inter-section of vision and language (Fang et al., 2015; Vinyals
et al., 2015). One example is visual question answering (VQA)
(Antol et al., 2015). Given an image and an open-ended, natural
language question about the image, the task is to provide an
accurate natural language answer. This requires fusing computer
vision (CV) techniques (for the input image) and natural
language processing (NLP) techniques (for the input question)
to generate the output (the answer sentence) jointly. Motivated
by the VQA system, we are interested in combining brain MRI
and genetic variant information to predict AD diagnosis by using
deep neural network models. The brain MRI scans are treated as
3D images, and the genetic variants, i.e., the SNPs, are treated as
1D sequences. Our goal is to make full use of the imaging genetic
data to achieve automated AD classification.

In this article, we present an imaging genetic deep neural
network system (IGnet) that fuses imaging and genetic inputs
to generate a binary AD diagnosis. The proposed method is
based on the following components: an imaging channel using
a 3D CNN for the 3D imaging input; a genetic channel using
a Transformer encoder for the SNP sequence input; and a
multi-layer perceptron (MLP) for fusing the two channels and
for generating the AD classification label. We have applied the
proposed approach to the ADNI data set for automated detection
of patients with AD vs. normal controls, using baseline T1 brain
MRI and SNPs on chromosome 19. The main contributions of
this article are as follows: (a) we present IGnet, which combines
CV andNLP deep learning techniques to use 3D brain image data
and genetic sequence data jointly to predict AD diagnosis; (b) we
show that fusing brainMRI and genetic information together can
provide predictions that are more accurate than those obtained
with a single data modality; and (c) we show that the proposed
method can serve as a baseline for related imaging genetic tasks
and that it can be easily generalized.

2. MATERIALS AND METHODS

2.1. ADNI Data
The development of IGnet was motivated by the imaging
genetic data analysis of the ADNI data set. ADNI initially
recruited approximately 800 participants (ADNI-1) according
to its initial aims and was extended by three follow-up studies,
namely, ADNI-GO, ADNI-2, and ADNI-3. Our experiments
were carried out on an ADNI-1 data subset with 379 participants
who are either AD patients or cognitive normal controls (MCI
participants were excluded) and with both baseline 1.5T MRI
and genetic information available. We aim to achieve automated
AD classification by using baseline T1 MRI and genetic variant
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FIGURE 1 | Architecture of IGnet. Upper left: The imaging channel with a 3D CNN. Upper right: The genetic channel with a Transformer encoder. Bottom: The MLP

with two fully connected layers followed by softmax.

data from the 379 ADNI-1 participants, comprising 174 patients
with AD and 205 normal controls. The MRI data, which
were collected across various 1.5-Tesla MRI scanners with
protocols individualized for each scanner, included standard T1-
weighted images obtained using volumetric 3D sagittal MPRAGE
or equivalent protocols with varying resolution. The typical
protocol included the following variables: repetition time (TR)
= 2,400 ms, inversion time (TI) = 1,000 ms, flip angle = 8o, and
field of view (FOV)= 24 cm, with a 256× 256× 170 acquisition
matrix in the x-, y-, and z- dimensions, yielding a voxel size of
1.25 × 1.26 × 1.2 mm (Jack et al., 2008; Bühlmann et al., 2013).
The MRI data were preprocessed by standard steps, including
anterior commissure and posterior commissure correction,
skull stripping, cerebellum removal, intensity inhomogeneity
correction, and registration, and were finally down-sampled to
128 × 128 × 128. For the genetic data, the Human 610-Quad
BeadChip (Illumina, Inc., San Diego, CA) was used to genotype
the ADNI participants, which resulted in a set of 620,901 SNP

and copy number variation (CNV) markers. Because the APOE
SNPs, rs429358 and rs7412, are not included on the Human
610-Quad Bead-Chip, they were genotyped separately. These two
SNPs together define a three-allele haplotype, namely the ǫ2,
ǫ3, and ǫ4 variants, and the ADNI database recorded whether
these variants were present in a given individual. The software
EIGENSRAIT in the package of EIGENSOFT 3.0 was used to
calculate the population stratification coefficients of all subjects.

2.2. Method
We have developed IGnet, a two-channel 3D imaging genetic
network culminating with a softmax over K possible outputs. In
the ADNI, K = 2 for AD diagnosis (normal control or patient
with AD). Figure 1 shows an overview of the proposed approach,
which is composed of two channels: an imaging channel with
a 3D CNN and a genetic channel with a Transformer encoder.
After acquiring the imaging embedding and genetic embedding
in each channel separately, the two embeddings are combined
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and the combined embedding is then passed to an MLP for the
final classification. Figure 1 shows the components of IGnet.

2.2.1. Imaging Channel
Typically, a (2D) CNN (Goodfellow et al., 2016) alternately stacks
convolutional and sub-sampling, e.g., max-pooling, layers. In
a convolutional layer, small feature extractors (kernels) sweep
over the topology and transform the input into feature maps.
In a max-pooling layer, activations within a neighborhood are
abstracted to acquire invariance to local translations. After
several convolutional and max-pooling layers, feature maps
are flattened into a feature vector (imaging embedding). For
classification tasks using image data alone, the feature vector is
usually passed to fully connected layers, after which a softmax
classification layer yields the prediction probability.

Compared to a 2D CNN, a 3D CNN can model 3D images
better owing to its 3D convolution and 3D pooling operations
(Zou et al., 2017). In our proposed IGnet, the network for the
imaging channel is a 3D CNN that is set up to take preprocessed
3D brain MRI as input. With limited GPU memory and sample
size, we designed the 3D CNN to have five convolution layers
and five pooling layers (each convolution layer is immediately
followed by a pooling layer). The numbers of filters for the
five convolution layers are [4, 8, 16, 32, 32] for layers 1 to 5,
respectively, as shown in Figure 1. As suggested by Tran et al.
(2015), Dou et al. (2016), all of the 3D convolution filters are
3 × 3 × 3 with stride 1 × 1 × 1. All of the 3D pooling layers
are max pooling, with kernel size 2× 2× 2 with stride 1× 1× 1.
The imaging channel concludes with three fully connected layers
that yield the final imaging embedding of dimension 16.

2.2.2. Genetic Channel
Attention mechanisms have become an integral part of
compelling sequence modeling and transduction models in
various tasks, enabling the modeling of dependencies without
regard to their distance in the input or output sequences
(Bahdanau et al., 2014; Kim et al., 2017). Transformer is a model
architecture that relies entirely on an attention mechanism to
draw dependencies between input and output (Vaswani et al.,
2017). It also allows for significant parallelization and has been
shown to be computationally efficient in many tasks, such
as translation.

In the proposed method, we use a two-layer Transformer
encoder in which each layer consists of multi-head self-attention
(with four heads), residual connection, layer normalization, and
a fully connected layer. The input genetic sequence is processed
to a genetic embedding of dimension 16, which is the same
dimension as for the imaging embedding.

2.2.3. Multi-Layer Perceptron (MLP)
The image and genetic embeddings are combined to obtain
a single embedding via element-wise multiplication. This
combined embedding is then passed to anMLP, a fully connected
neural network classifier with two hidden layers and 16 hidden
units in each layer with ReLU non-linearity, followed by a
softmax layer to obtain a distribution over a binary distribution
for normal controls or patients with AD.

2.3. Implementation
The brain MRI scans from the ADNI were preprocessed to
dimensions 128 × 128 × 128, where the value at each voxel
was an integer indicating a grayscale intensity from 0 to 255.
Examples of the preprocessed brain images of 4 randomly picked
AD patients and normal controls are shown in Figures 2A,B

upper panel, respectively. We focused on the 8946 SNPs on
chromosome 19. For each SNP, we conducted Fisher’s exact
test with the binary AD diagnosis. Ninety-eight SNPs with P
values < 0.01 were selected and concatenated with APOE ǫ4,
where the value for each SNP was {0,1,2}. Because APOE ǫ4
was genotyped separately in the ADNI, we used a different
set of input embeddings for the number of alleles of APOE
ǫ4 from all of the other 98 selected SNPs on chromosome 19.
The data set was randomly split into training, validation, and
testing sets, with 80%, 10%, and 10% samples, respectively. The
ratios of the number of AD patients vs. normal controls on the
three subsets are around 0.85. We used the categorical cross-
entropy loss with K = 2 categories. The loss function was
optimized by AdamW (Loshchilov and Hutter, 2017), where
β1 = 0.9, β2=0.999, and ǫ = 10−8. The batch size was 16.
The initial learning rate was 0.001. For the hyperparameters, the
number of layers of the imaging channel was chosen based on
(Tran et al., 2015) except that we only kept one of every two
consecutive convolution layers. We applied dropout (Srivastava
et al., 2014) to the output of each sub-layer. The dropout rate
of the imaging channel was set to be 0.2 as suggested by Dou
et al. (2016). Examples of the feature maps after 5 convolution
layers of the 4 AD patients and normal controls are shown in
Figures 2A,B lower panel. One widely used dropout rate for
Transformer encoders is 0.1. However, Araabi and Monz (2020)
suggests using 0.3 under low-resource conditions. Given the
limited sample size of our data set, we choose to use a dropout
rate 0.2 between 0.1 and 0.3 for the genetic channel. The other
tuning parameters such as the number of nodes in the fully
connected layers and the number of filters in the 3D CNN were
optimized based on the training and validation sets. For the
computation resources, the imaging and the genetic data together
take up around 256M for each batch and the model parameter
size is 0.58M. Therefore training the IGnet requires less than
300M of memory which should be compatible with commonly
used GPUs. We conducted our experiments with a Tesla V100.
The training of IGnet took around 45min where the optimization
stopped at approximately 13 epochs with patience 3. The changes
of the training and validation losses over time are shown
in Figure 3.

3. RESULTS

We evaluated the performance of IGnet on the test set by
calculating the accuracy (the number of participants correctly
classified as patients with AD or normal controls divided by
the total number of participants), the precision (the number of
patients correctly classified as having AD divided by the total
number of patients classified as having AD), the recall (the
number of patients correctly classified as having AD divided by
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FIGURE 2 | (A) Upper panel, selected 2D slices of the input 3D brain images of 4 randomly picked AD patients; lower panel, the corresponding feature maps after 5

convolution layers (two selected filters). (B) Upper panel, selected 2D slices of the input 3D brain images of 4 randomly picked normal controls; lower panel, the

corresponding feature maps after 5 convolution layers (two selected filters).

FIGURE 3 | The changes of training and validation losses overtime of IGnet.

the number of patients that actually had AD), the F1 score (equal
to the harmonic mean of precision and recall), the AUC-ROC
(the area under the receiver operating characteristic curve), and
the AUC-PRC (the area under the precision recall curve). We
compared IGnet to two restricted versions that used genetic data
alone (IGnet-G) or imaging data alone (IGnet-I). For IGnet-
G, only the genetic embedding was passed to the MLP and the
image channel was excluded. IGnet-I worked in a similarmanner;
only the imaging embedding was passed to the MLP and the
genetic channel was excluded. All other implementation details
for IGnet-G and IGnet-I, such as the hyperparameters, batch
size, and dropout rates, were the same as IGnet, as described in
section Implementation.

We evaluated the performances of the two important
building blocks namely the imaging channel and the genetic
channel by comparing IGnet-I and IGnet-G to several popular
single modality based prediction methods. IGnet-I is essentially
a 3D CNN which has been shown to be effective on
handling 3D volumetric medical data. We compared IGnet-I to
two conventional methods including support-vector machines
(SVMs) and functional principal component analysis (FPCA).
For the SVMs, we adopted the pipeline proposed by Varatharajah
et al. (2019). It first conducts feature selection using joint mutual
information (JMI) and then the selected top k features are passed
to an SVM classifier. We set k = 100 and considered both
linear (SVM-linear) and radial (SVM-radial) kernels where the
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TABLE 1 | Comparison of the performance of IGnet on the ADNI data set. AUCs are not available for the IG-vote, SVM-linear, and SVM-radial methods, therefore, are not

presented.

Accuracy Precision Recall F1 score AUC-ROC AUC-PRC

Methods using both imaging and genetic data:

IGnet 83.78% 87.50% 77.78% 0.824 0.924 0.935

IG-avg 81.08% 82.35% 77.78% 0.800 0.886 0.893

IG-vote 70.27% 88.89% 44.44% 0.593 – –

Methods using imaging data:

IGnet-I 67.57% 68.75% 61.11% 0.647 0.784 0.737

SVM-linear 64.86% 50.00% 38.46% 0.435 – –

SVM-radial 62.16% 46.67% 53.85% 0.500 – –

FPCA 62.16% 52.94% 60.00% 0.563 0.676 0.655

Methods using genetic data:

IGnet-G 78.38% 77.78% 77.78% 0.778 0.822 0.845

RNN 72.97% 76.92% 55.56% 0.645 0.839 0.850

Reg-ridge 70.27% 62.50% 66.67% 0.645 0.748 0.640

Reg-lasso 67.57% 52.63% 76.92% 0.625 0.744 0.609

Methods using genetic data without APOE ǫ4:

IGnet-G 67.57% 71.43% 55.56% 0.625 0.827 0.823

RNN 70.27% 57.14% 61.54% 0.593 0.837 0.749

Reg-ridge 62.16% 52.94% 60.00% 0.563 0.733 0.634

Reg-lasso 64.86% 50.00% 84.62% 0.629 0.750 0.668

hyperparameters were chosen based on 10-fold cross validation.
For the FPCA based method, we considered the idea proposed
by Wang et al. (2021). We first used FPCA for feature extraction
and then applied logistic Lasso regression to the top 10 PCs to
build the prediction model. IGnet-G is essentially a Transformer
encoder that has shown to be effective on many task especially
on sequential data. We compared IGnet-G to several popular
methods including recurrent neural network (RNN, Liu et al.,
2016), ridge regression (Reg-ridge), and Lasso regression (Reg-
lasso). More specifically, the RNN that we used was a single
layer gated recurrent unit network (GRU, Cho et al., 2014) where
the hidden size was set to be the same as IGnet-G. The tuning
parameters in the ridge regression and Lasso regression models
are selected based on 10-fold cross validation. In order to have
a better understanding of how much the APOE ǫ4 and other
SNPs in chromosome 19 contribute to the AD classification,
we evaluated the performance of the aforementioned 4 methods
without including APOE ǫ4. We also evaluate the performance
of the MLP by comparing to two simple ensembling of IGnet-
G and IGent-I methods, one by simply averaging the prediction
probabilities of IGnet-G and IGnet-I (IG-avg), another by
majority vote (IG-vote) where participants are classified as AD
patient only if they are classified as AD by both IGnet-G
and IGnet-I.

Table 1 presents the results of applying all the aforementioned
methods to the ADNI data set. For the methods using both
imaging and genetic data, IGnet yields the highest AD detection
accuracy of 83.78%, indicating the superiority of the proposed
two channel-approach on AD classification. For the methods
using imaging data only, as expected, IGnet-I achieves the highest
accuracy of 67.57% that coincides with the literature suggesting

3D CNN being more suitable for 3D volumetric data. For the
methods using genetic data, IGnet-G gives the highest accuracy
of 78.38% followed by RNN with 64.86%. When excluding the
APOE ǫ4, the accuracy of all the four methods were dropped.
IGnet-G and RNN performed comparatively well where the
RNN is slightly better than IGnet-G. The ROC and PRC curves
for IGnet, IGnet-G, and IGnet-I are shown in Figure 4. Both
Figure 4 and the AUC-ROC and AUC-PRC values in Table 1

show that IGnet outperforms IGnet-G and IGnet-I, further
indicating that integrating imaging and genetic data can boost
the accuracy of AD classification.

4. DISCUSSION

We have developed a deep learning approach, IGnet, that
combines CV and NLP techniques. It enables 3D image and 1D
sequence inputs to be combined for automated classification. The
method was applied to the ADNI data set, with both imaging and
genetic data being used to classify patients with AD vs. normal
controls. The accuracy of IGnet is superior to that obtained with a
single input modality, highlighting the superiority of integrating
imaging and genetic information for AD classification.

The proposed method has many potential extensions. Besides
3DCNN, 3D residual networks (ResNet, He et al., 2016) have also
performed strongly in image-related tasks such as video action
recognition (Feichtenhofer and P., 2016) and brain segmentation
(Chen et al., 2018). It is worth investigating whether 3D
ResNet can further improve the classification performance. The
proposed method was applied to the preprocessed genotyping
data of the ADNI database, in which each SNP was coded with
{0,1,2}. Lately, Transformer has proved to be effective at handling
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FIGURE 4 | (A) ROC curves of IGnet, using both imaging and genetic inputs; IGnet-I, using imaging input alone; and IGnet-G, using genetic input alone. (B) PRC

curves of IGnet, IGnet-I, and IGnet-G.

raw sequencing data, such as DNA sequences coded with ATCG
(Ji et al., 2021). However, distinct from other sequences such
as natural language, DNA sequences are long and shallow. The
sequence length can easily exceed tens of thousands, whereas
the bag of words always contains only four distinct elements
{A,T,C,G}. This could potentially be one of the reasons why the
IGnet-G performs inferior to RNN when excluding APOE ǫ4 on
our ADNI data set. Therefore, techniques such as sparse attention
(Zaheer et al., 2020) that alleviate thememory and computational
cost and K-mer representation of sequences (Nahum et al., 2021)
should be considered. It would be useful to investigate whether
using the ATCG data with a properly designed Transformer
encoder can boost the classification accuracy for AD. IGnet
was trained from scratch using around 300 samples. The model
capacity, such as the hidden sizes, was chosen to be smaller than
that of widely applied CNNs and transformers. As with other
tasks with limited training data, pre-training on a similar dataset
might improve the performance and is, therefore, also worth
further investigating.
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