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Abstract
Automatic and accurate segmentation of hippocampal structures in medical images is of great importance in neuroscience
studies. In multi-atlas based segmentation methods, to alleviate the misalignment when registering atlases to the target image,
patch-based methods have been widely studied to improve the performance of label fusion. However, weights assigned to the
fused labels are usually computed based on predefined features (e.g. image intensities), thus being not necessarily optimal. Due to
the lack of discriminating features, the original feature space defined by image intensities may limit the description accuracy. To
solve this problem, we propose a patch-based label fusion with structured discriminant embedding method to automatically
segment the hippocampal structure from the target image in a voxel-wise manner. Specifically, multi-scale intensity features and
texture features are first extracted from the image patch for feature representation. Margin fisher analysis (MFA) is then applied to
the neighboring samples in the atlases for the target voxel, in order to learn a subspace in which the distance between intra-class
samples is minimized and the distance between inter-class samples is simultaneously maximized. Finally, the k-nearest neighbor
(kNN) classifier is employed in the learned subspace to determine the final label for the target voxel. In the experiments, we
evaluate our proposed method by conducting hippocampus segmentation using the ADNI dataset. Both the qualitative and
quantitative results show that our method outperforms the conventional multi-atlas based segmentation methods.
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Introduction

As an advanced imaging modality, magnetic resonance (MR)
has been extensively applied in pathology, diagnostic imag-
ing, neuro-analysis, and clinical medicine (Wu et al. 2013;
Zhou et al. 2014, 2016; Wang et al. 2016a, b). The segmenta-
tion of hippocampal structures in MR images is of particular
importance to various neuroimaging studies, including brain

disorders and brain anatomy (Zu et al. 2017; Dong et al. 2016;
Wu et al. 2015a). However, due to the large amount of clinical
data, manual segmentation is quite laborious, time-consuming
and tedious. In addition, manual segmentation often suffers
from the disagreement between different clinicians.
Therefore, the development of automatic hippocampus seg-
mentation has become a hot topic in the field of medical image
analysis (Carmichael et al. 2005; Zarei et al. 2013).

The advances in computer vision and machine learning
have made possible the ability to automate the segmentation
process (Jafari-Khouzani et al. 2011; He et al. 2017; Rincón
et al. 2017). Among the existing medical image segmentation
techniques, atlas-based methods have attracted great attention
(Zhu et al. 2017; Chen et al. 2017). This technique first em-
ploys deformable image registration to construct correspon-
dences between the pre-labeled atlas images and the target.
Then, using the obtained deformation field, labels in the atlas
are further propagated to the target image space. Obviously,
the anatomical differences between the target and the atlas
images could influence the image registration accuracy, thus
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greatly affecting the final segmentation performance (Wu
et al. 2015b). To alleviate the impact of anatomical variability,
multi-atlas based methods have been extensively studied
(Wang et al. 2013; Sundar et al. 2009). By fusing the propa-
gated labels of multiple atlases in the target image space,
multi-atlas based methods can achieve more robust and accu-
rate segmentation results. The performance of multi-atlas
based methods relies on both the registration accuracy and
the label fusion strategy. Consequently, in addition to optimiz-
ing the registration, many researchers focus on improving
segmentation performance by exploring more effective label
fusion strategies. Particularly, patch-based label fusion
methods have been widely studied for multi-atlas based seg-
mentation (Liao et al. 2013; Chen et al. 2015; Rekik et al.
2015). The patch-based methods are proposed based on a
basic assumption, that is, if two image patches are similar in
their appearance, they should have the same anatomical label.
Since the hippocampal structures in MR images usually share
similar intensity values with the neighboring tissues, the tra-
ditional patch-based methods which just utilize the intensity
features as the feature appearance might restrict the segmen-
tation performance. Due to the lack of discriminating features,
the original feature space defined by image intensities may
limit the description accuracy. Another limitation is that the
label propagation in most traditional multi-atlas based
methods is implemented under a voxel-wise strategy, which
cannot adequately utilize the local label information to deter-
mine the final label of the target sample.

In order to tackle the above limitations, we propose a patch-
based label fusion with structured discriminant embedding
method for hippocampus segmentation. Specifically, we first
linearly register each atlas to the target image. Then, multi-
scale intensity features and texture features are extracted from
the image patch for feature representation. After that, a local
discriminant subspace is learned from the candidate training
set based on the margin fisher analysis (MFA) strategy, where
the distance between intra-class samples is minimized and the
distance between inter-class samples is simultaneously maxi-
mized. Finally, the k-nearest neighbor (kNN) classifier is
employed in the learned subspace to determine the final label

for the target voxel. The novelties and contributions of the
paper are as follows.

1) To enhance the feature description ability, we extract both
the texture information and multi-scale intensity informa-
tion from the image patch as the feature representation for
each voxel.

2) To strengthen feature discrimination, we adopt margin
fisher analysis (MFA) to ensure the minimization of the
distance between intra-class samples and the maximiza-
tion of the distance between inter-class samples.

3) In label fusion, instead of utilizing the label value of each
voxel, we employ the label patch as the structured class
label to preserve local anatomical structure information.

Our proposed method for segmenting hippocampus is val-
idated on 133 MR images from ADNI dataset, including 46
normal controls (NC), 45 Mild Cognitive Impairments (MCI)
and 42 Alzheimer’s disease (AD) subjects. The experimental
results indicated that our method could achieve better segmen-
tation performance compared with the traditional multi-atlas
based segmentation method.

The rest of the paper is organized as follows. The second
section presents the details of the proposed method. In the
third section, we extensively investigate the performance of
the proposed method with respect to different parameters, and
also verify the rationality and validity for every step of the
proposed method. The comparison with the conventional
multi-atlas based methods is discussed in the third section.
Finally, we conclude this paper in the fourth section.

Method

Figure 1 schematically illustrates the overview of the pro-
posed method which consists of a training stage and a testing
stage. Similar to typical multi-atlas based segmentation
methods, we first linearly register each atlas to the target im-
age. In the training stage, we generate the candidate training
set for each target voxel to be segmented in the target image,
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using voxels of registered atlases within a spatial neighbor-
hood of the target voxel. Then, for each training sample, a set
of features is extracted for capturing effective information
from the hippocampus using abundant texture descriptors ad
multi-scale patch intensities. Moreover, its associated class
label is determined by the label of the voxel on the label
map. In the subspace learning submodule, we learn a local
discriminant subspace from the candidate training samples
by using MFA. Afterwards, all the training samples are
projected into the learned subspace. In the testing stage, a
kNN classifier is employed in the learned subspace to estimate
the label of the target voxel. Specifically, the feature represen-
tation of the target voxel is first extracted from its surround-
ings in the target image and then projected into the learned
subspace. Finally, the target voxel is compared with each
training sample in the learned subspace, and the final label
of the target voxel is determined by the most common label
of the k-nearest neighbor samples.

In the following subsection, we present the details of the
proposed segmentation method. This includes generation of a
candidate training set, feature extraction, structured subspace
learning, and patch-wise label fusion, respectively.

Generation of a Candidate Training Set

Due to variability among different atlases, linear image regis-
tration cannot achieve perfect alignment of all voxels in an
image. Therefore, the direct usage of corresponding voxels in
the atlases for a target voxel, to determine the target voxel label,
may lead to unsatisfactory results. In this paper, we employ a
local patch based method to generate a candidate training set.
Specifically, given one target voxel x of the target image, voxels
in its neighborhood V(x) (with the size ω ×ω ×ω) of all atlases
are used to generate the training samples. This produces

N × ω × ω × ω candidate training samples f
!

i; j; li; j
� �n

i ¼ 1; 2;…Nj ; j∈V xð Þg from N registered atlases, where f
!

i; j

is a feature vector extracted from voxel j of the ith atlas based
on the feature extraction method which would be discussed in
the next subsection, and li, j ∈ {+1, −1} is the segmentation label
of each candidate training sample. The generated candidate
training samples include different degrees of similarity with
the target voxel. In order to balance the positive and negative
samples for subspace learning, we respectively extract the same
number of training samples from the hippocampus and non-
hippocampus regions. Specifically, for the positive training
samples, we select the q1 most similar samples with the target
image patch and randomly select another q2 samples from the
remaining training samples in the hippocampus region. In a
similar manner, q1 + q2 negative samples are selected from the
non-hippocampus regions, in which q1 are the most similar
with the target image patch and q2 are randomly selected. The

similarity is determined by the following well-known structural
similarity (ss) measure:

ss ¼ 2μxμi; j

μx
2 þ μi; j

2
� 2σxσi; j

σx
2 þ σi; j

2
ð1Þ

where μ represents the mean and σ represents the standard
deviation of patches centered at the target voxel x and voxel j
of the ith atlas.

Feature Extraction

As described above, solely extracting image intensity informa-
tion may not be sufficient to distinguish hippocampus struc-
tures. In order to obtainmore discriminative features, we extract
texture information and multi-scale intensity information as the
feature representation. The texture features consist of outputs
from the first-order difference filters (FODs), second-order dif-
ference filters (SODs), 3D Hyperplan filters, 3D Sobel filters,
Laplacian filters and range difference filters. The detailed de-
scription of the textual features is presented in the Appendix.
By extracting the above features, we can capture rich textual
information which embedded in the target image.

For the intensity feature extracting in most patch-based
segmentation methods, each voxel in an image patch contrib-
utes equally to generate intensity features. However, this ap-
proach may not adequately capture the complex tissue appear-
ance patterns expressed in hippocampus structure. In this pa-
per, we use a multi-scale strategy which encodes both local
and semi-local image information to characterize an image
patch (Wu et al. 2015c). Specifically, the entire image patch
is first divided into several non-overlapping scales, propagat-
ing from the center voxel to the boundaries of the patch.
Different Gaussian filters are used in this paper to replace
the original intensity values with convolved intensity values.
Using three layers as an example, Fig. 2 shows the procedure
for constructing a multi-scale image patch via Gaussian filters.
Considering the final purpose of the segmentation procedure
is to determine the label of the center voxel, we use a fine scale
(the right subgraph in Fig. 2) to capture the center information
of the image patch (in red in Fig .2), and increasingly larger
scales to capture coarse scale information as the distance to the
patch center increases (in yellow and blue). In this paper, we
use three scales to generate the intensity features.

Structured Subspace Learning

A candidate training set can be generated using the above
feature extraction method. It is further used to train a subspace
in order to enhance the discernibility of the feature represen-
tation for each voxel. As described in BGeneration of a
Candidate Training Set^ section, q1 + q2 samples were respec-
tively selected from hippocampus and non-hippocampus
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regions and used as the final positive and negative training
samples. For simplicity, we use U = [u1, u2,…, uM], ui ∈ℝd

to denote training samples together with the corresponding
class labels Y = [y1, y2,…, yM], yi ∈ {+1, −1}. Here, M =
2(q1 + q2) denotes the number of training samples, and d is
the feature dimension. MFA aims to learn a subspace in which
the intra-class manifold is compacted (i.e., intra-class com-
pactness), while the manifold margin between different clas-
ses is enlarged based on the margin criteria (i.e., inter-class
separability).

Two undirected graphs, the intrinsic graphGI = {U, SI} and
the penalty graphGP = {U, SP}, were constructed according to
graph embedding theory to respectively characterize the intra-
class manifold structure and the manifold margin of different
classes. In this case,U is the training samples set, and SI, SP ∈
ℝM ×M are the corresponding similarity matrices. To charac-
terize intra-class compactness with the margin criteria, the
similarity matrix SI of the intrinsic graph GI is defined as
follows:

SIij ¼ 1; if i∈Nþ
k1 jð Þ or j∈Nþ

k1 ið Þ
0; else

�
ð2Þ

where Nþ
k1 jð Þ indicates the index set of the k1 nearest neigh-

bors of uj in the same class. On the other hand, MFA defines
the similarity matrix SP of the penalty graphGP to characterize
interclass separability with the margin criteria, as follows:

SPij ¼ 1; if i; jð Þ∈Pk2 yið Þ or i; jð Þ∈Pk2 y j
� �

0; else

(
ð3Þ

where Pk2 yð Þ is a set of data pairs that are the k2 nearest pairs
among the set {(i, j), yi = y, yj ≠ y}. Then, the corresponding
diagonal matrix D and the Laplacian matrix L of the intrinsic
graph GI are defined as

L ¼ D−S; Dii ¼ ∑ j≠iSij ∀i: ð4Þ

The Lapaican matrix LP of the penalty graph GP can be de-
fined similarly to Eq. (4). Finally, according to the graph em-
bedding framework, the subspace projection matrix ΦMFA ∈
ℝd × p, where p is the dimension of the subspace, can be com-
puted by solving the objective function

Φ*
MFA ¼ argmax

ΦMFA

Tr ΦT
MFAULU

TΦMFA

� �
Tr ΦT

MFAUL
PUTΦMFA

� � ; ð5Þ

where Tr(·) is the trace operator of the matrix. Specifically, the
projection matrix ΦMFA consists of the eigenvectors corre-
sponding to the largest eigenvalues of matrix

ΦT
MFAULU

TΦMFA

� �−1⋅ ΦT
MFAUL

PUTΦMFA

� �
. After obtaining

the projection function ΦMFA, each feature representation ui is
projected into the learned space as follows:

wi ¼ ΦT
MFA⋅ui ð6Þ

To preserve local anatomical structure information, we
extend the traditional subspace learning for patch-wise
label fusion. For the voxel-wise label fusion, we can di-
rectly extract voxel labels from the label map and use
them as class labels to perform supervised subspace learn-
ing. In contrast, for patch-wise label fusion, each voxel is
assigned with one label patch. Specifically, we extend the
class label yi ∈ℝ (i = 1,…,M) of each voxel to the struc-
tured class label patch Yi∈ℝt�t�t corresponding to the
label patch centered at the voxel, where t × t × t is the size
of the label patch. However, for the training set U togeth-
er with the corresponding structured class label set
Y1;…;YMf g, MFA cannot be directly used to train the

subspace. In order to perform MFA similar to that in the
original class label space, we adopt k-means cluster meth-
od to Y1;…;YMf g, and thus obtain the corresponding

subclass labels y
0
1;…; y

0
M

� �
; y

0
i∈ þ1;−1f g in the unsuper-

vised manner. Then, we replace Y1;…;YMf g by

y
0
1;…; y

0
M

� �
and combine them with U to learn the sub-

space using MFA. In this case, samples with similar label
patches are compacted and samples with dissimilar label
patches are separated.

Patch-Wise Label Fusion

In the testing stage, a kNN classifier is employed in the
learned subspace to estimate the label of the target voxel.
Specifically, the feature representation of the target voxel is
first extracted from its surroundings in the target image and
then projected into the learned subspace. By comparing the
feature similarity between the target voxel and the training
samples in the learned subspace, k-nearest training samples
are selected to determine the final label of the target voxel,
as shown in Fig. 3.

Fig. 2 Multi-scale image patch with different Gaussian filters. Three
regions labeled by different colors are filtered by different Gaussian
kernels, respectively
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Then, the estimation of the label patch centered at the target
voxel x is obtained by:

L̂̂x ¼ ∑k
i¼1w Px;Pið ÞY i

∑k
i¼1w Px;Pið Þ ð7Þ

where Yi is the corresponding label patch of the selected k
training samples, w(Px, Pi) is the weight which is typically
determined by the similarity measure.

w x; xið Þ ¼ e−
Px−Pik k2

σx ; i ¼ 1; 2;…; k ð8Þ
where ‖⋅‖2 represents the L2 norm between Px and Pi, σx is the
decay parameter controlling the strength of penalty in the ex-
ponential way. It is worth noting that when testing the target
voxel x, the labels of its neighbor voxels are also estimated,
leading the overlapped estimations. Here, we adopt an aver-
aging method to fuse the overlapped estimations and use it as
the final label estimation. Compared with voxel-wise label
fusion, patch-wise label fusion uses the whole label patches
to estimate the final label, thus preserving the local anatomical
structure information in the segmentation.

Experiments

DatasetDescribed in this section are several experiments con-
ducted to evaluate the performance of our method for hippo-
campus segmentation using the publically available ADNI
dataset. In the experiments, we randomly selected 46 NC sub-
jects, 45 MCI subjects, and 42 AD subjects from the ADNI
dataset. The hippocampal segmentations from ADNI were
regarded as the ground truth. For all selected subjects, three
standard preprocessing steps were first performed, including
1) skull-stripping using a learning-based meta-algorithm (Shi
et al. 2012), 2) N4-based bias field correction (Tustison et al.
2010), and 3) histogram matching to normalize the intensity
range (Shen 2007). In the experiments, we used a leave-one-
out cross-validation to evaluate the performance of our meth-
od, i.e., when one subject is tested, the other subjects are

regarded as atlases. Affine registration was performed to align
each atlas image with the target image using FLIRT in the FSL
toolbox, with 12 degrees of freedom and default parameters.
These included normalizedmutual information similarity met-
ric and search range of ±20 in all directions.

Evaluations For comparison purposes, the conventional patch-
based method by non-local weighting (Nonlocal-PBM) and
the recently proposed sparse patch-based labeling (Sparse-
PBM) were also evaluated on the same dataset. To quantita-
tively evaluate the proposed method, five metrics were used
for performance evaluation. The degree of overlap was mea-
sured for two ROIs Vs and Vg, where Vs and Vg are the sets of
object (hippocampus) voxels automatically segmented by the
segmentation method and manually segmented by clinical ex-
pert, respectively.

1) Dice similarity coefficient (DSC) is a comprehensive simi-
laritymetric that measures the degree of overlap of twoROIs

DSC ¼ 2� Vs∩Vg
		 		
Vsj j þ Vg

		 		 ð9Þ

where |·| is the cardinality of a set.

2) Jaccard similarity coefficient (JSC), which is a statistic
used for comparing the similarity and diversity of two
ROIs, is described as follows:

JSC ¼ Vs∩Vg
		 		
Vs∪Vg
		 		 ¼ Vs∩Vg

		 		
Vsj j þ Vg

		 		− Vs∩Vg
		 		 ð10Þ

3) Precision Index (PI) is the ratio between the overlap of
two ROIs and the ROI manually segmented by clinical
expert, as follows:

PI ¼ Vs∩Vg
		 		

Vg
		 		 ð11Þ

4) Recall Index (RI) is the ratio between the overlap of two
ROIs and the ROI segmented by the segmentation meth-
od, as follows:

RI ¼ Vs∩Vg
		 		

Vsj j ð12Þ

Learned subspace

Fig. 3 Label fusion based on k-nearest training samples, green block is
the image patch of the target voxel, red triangle the positive samples and
blue circle the negative samples
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5) Hausdorff distance (HD) measures surface distance be-
tween segmentation results:

HD ¼ max maxa∈Vsminb∈Vgd a; bð Þ;maxb∈Vgmina∈Vsd a; bð Þ� � ð13Þ

where d(a, b) represents the Euclidean distance between a and b.
Theoretically, segmentation results with a higher DSC,

JSC, PI, RI, R and lower HD represent better segmentation
performance.

Parameter Tuning In order to determine of the optimal values
for k1 and k2 in the MFA analysis, we test the combinations of
k1, k2 ∈ {5, 10, 20, 40}. For the candidate training set, the
search neighborhood Vx is set as 7 × 7 × 7, and the number
of the candidate training samples is set from 100 to 500 with
a step of 100. For the dimensionality of the learned subspace,
we test p from 10 to 150 with a step of 20. For the label fusion,
we select the side length of label patches from 1 to 15 with a
step of 2 and set each side length to be equal. For the kNN
classifier, k selected from {1 5 10 20}.

Influence of Components in the Proposed Method

In this section, we analyze four main components of the pro-
posed method and their influence on the performance of our
method given different input parameters: 1) multi-scale inten-
sity patch and texture features, 2) structured subspace embed-
ding, 3) patch-wise label fusion, and 4) kNN classifier.

Multi-Scale Intensity Patch and Texture Features

In this section, we evaluate the performance of the fea-
tures used in our method including multi-scale intensity
patch and multiple texture descriptors. To evaluate the

segmentation performance of each feature type, we com-
pared our method to procedures using only intensity
patches with the original scale (Patch), intensity patches
with three different scales (Patch-scale1, Patch-scale2, and
Patch-scale3), texture descriptors (Texture), multi-scale
intensity patch (Multi-scale Patch), the combination of
intensity patch and texture descriptors (Patch+Texture)
and the combination of multi-scale intensity patch and
texture descriptors (Mult i-scale Patch+Texture).
Moreover, we varied the size of intensity patch from 3 ×
3 × 3 to 11 × 11 × 11. In this experiment, we used DSC
measure and implemented our method by using voxel-
wise label fusion with MFA-based and NN classifier.
For MFA, the dimension of the subspace was set to 150,
and k1 and k2 were set to 10 and 20, respectively. For
Patch-scale1, Patch-scale2 and Patch-scale3, we respec-
tively set the variances of the three Gaussian filters to
1.0, 1.414, and 2.0 moving from the fine to coarse scales.
Figure 4 shows the mean DSCs for the left and right
hippocampus segmentation for several feature types plot-
ted against image patch size.

It is evident in the figure that using texture descriptors
alone as the feature representation leads to a worse perfor-
mance than using only intensity features. However, combin-
ing texture descriptors and intensity features results in an
improvement. Specifically, compared with the Patch method
for left hippocampus segmentation, the Patch+Texture meth-
od obtains mean DSC increases of 0.7%, 0.7%, 0.4%, 0.4%
and 0.8% from the size of the intensity patch 3 × 3 × 3 to 11 ×
11 × 11. Compared with the Multi-scale Patch method for left
hippocampus segmentation, the Multi-scale Patch+Texture
method also results in an improvement, with mean DSC in-
creases of 0.3%, 0.1%, 0.3%, 0.2% and 0.8% over different
image patch sizes. For the right hippocampus, the Patch+
Texture and the Multi-scale Patch+Texture methods also

Fig. 4 Left: mean DSC for left hippocampus segmentation produced by
the Patch, Patch-scale1, Patch-scale2, Patch-scale3, Texture, Patch+
Texture, Multi-scale Patch and Multi-scale Patch+Texture methods.

Right: mean DSC for right hippocampus segmentation produced by the
corresponding methods
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respectively obtain improvements over methods using differ-
ent image patch sizes, when compared with the Patch and the
Multi-scale Patch methods. These analysis indicate that a
combination of intensity and texture features can improve
segmentation accuracy. From Fig. 3, we can also see that,
when using patch sizes of 3 × 3 × 3 and 5 × 5 × 5, intensity
patch on a fine scale (Patch-scale1) yields better performance
than the original scale (Patch). However, for patch sizes of
7 × 7 × 7, 9 × 9 × 9 and 11 × 11 × 11, the Patch method ob-
tains a higher mean DSC than the Patch-scale1 method.
This indicates that when using a small patch size, the Patch
method is inferior to the Patch-scale1 method. This could be
due to a lack of local information in the larger region.
However, when increasing the patch size, the Patch method
with fine resolution is superior to Patch-scale1. The perfor-
mance of Patch-scale2 and Patch-scale3 is much worse than
Patch and Patch-scale1 over different image patch sizes be-
cause the resolution is too low. When combining intensities
with different resolutions in one patch, the Multi-scale Patch
method achieves the best performance among methods using
intensities with a single resolution. It is worth noting that,
since MFA can extract discriminant features and remove re-
dundancy features, we use the largest patch size (11 × 11 ×
11) to obtain the best performance.

Table 1 lists the mean of five DSC, JSC, PI, RI and HD
measures for the left and right hippocampus for the Patch and
Multi-scale patch+Texture methods. It can be seen that the
Multi-scale patch+Texture method achieves an improvement
over the measures. On both the left and right hippocampus,
compared with the Patch method, the Multi-scale patch+
Texture method obtains statistically significant improvements
with P-values of P < 0.001 for all measures.

Structured Subspace Learning

To evaluate the subspace projection based on MFA, we pri-
marily investigate the effect which MFA parameters have on
segmentation performance in our proposed method.
Specifically, the considered parameters include the number
of nearest intra-class samples k1, the number of nearest inter-
class samples k2, the number of training samples M and the
dimension of the subspace p. In this experiment, we use multi-
scale patch intensities and texture descriptors with the patch
size of 11 × 11 × 11 as the feature representation and perform
our method using voxel-wise label fusion with MFA and NN
classifier. To highlight the effect of each parameter on seg-
mentation performance, parameters are individually tested as
other parameters are fixed. To determine the parameters k1 and
k2, we set k1, k2 ∈ {5, 10, 20, 40} and considered all their com-
binations. To test the parameterM, we varyM from 100 to 500
with a step of 100. For the parameter p, we vary p from 10 to
150 with a step of 20. Table 2 shows the mean DSC for left
and right hippocampus segmentations with different parame-
ters k1 and k2 by the proposed method.

From Table 2, we observe that when k1 = 10 and k2 = 40,
the highest average DSC (0.856) for left hippocampus is ob-
tained, and when k1 = 20 and k2 = 40, the highest averaged

Table 1 Themean of DSC, JSC, PI, RI, R andHD (mm) of left and right hippocampus onADNI dataset, produced by the Patch andMulti-scale patch+
Texture method respectively

DSC JSC PI RI HD(mm)

Patch 0.842/0.847 0.739/0.746 0.877/0.892 0.841/0.855 4.12/3.95

Multi-scale Patch+Textures 0.856/0.859 0.752/0.755 0.891/0.903 0.859/0.862 4.01/3.89

The value in the left ‘/’ denotes the segmentation accuracy of the left hippocampus, while the value in the right ‘/’ denotes the segmentation accuracy of
the right hippocampus

Table 2 Themean DSC of left and right hippocampus, produced by our
method with different parameters k1 and k2, and the best results are in bold

DSC k2 = 5 k2 = 10 k2 = 20 k2 = 40

k1 = 5 0.813/0.803 0.823/0.825 0.834/0.832 0.845/0.841

k1 = 10 0.815/0.817 0.831/0.835 0.843/0.846 0.856/0.859

k1 = 20 0.818/0.818 0.836/0.837 0.847/0.851 0.853/0.861

k1 = 40 0.816/0.821 0.834/0.841 0.851/0.853 0.852/0.859

See Table 1 for description of ‘/’
Fig. 5 Mean DSC for segmentation of left and right hippocampus using
MFAwith different subspace dimensions
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DSC (0.861) for right hippocampus is achieved. When fixing
k1 at 5, 10, 20, and 40, we increase k2 from 5 to 40 and then
respectively obtain an average DSC increase of 3.2%, 4.1%,
3.5% and 3.6% for left hippocampus and an average DSC
increase of 3.8%, 4.2%, 4.3% and 3.8% for right hippocam-
pus. In turn, when fixing k2 at 5, 10, 20, and 40, we increase k1
from 5 to 40 and then respectively obtain an averaged DSC
increase of 0.3%, 1.1%, 1.7% and 0.7% for left hippocampus
and an averaged DSC increase of 1.8%, 1.6%, 2.1% and 1.8%
for right hippocampus. Experimental results indicate that in-
creasing the number of nearest inter-class samples k2 is more
effective for improving the segmentation performance than
increasing the number of nearest intra-class samples k1. In
addition, it also indicates that for margin criteria in MFA, the
selecting of k1 and k2 is of great significance to segmentation
performance, in order to characterize intra-class compactness
and interclass separability with margin criteria. Figure 5 plots
the mean DSCs of our method with different dimensions of
the learned subspace using MFA. As shown in Fig. 5, along
with an increase in the subspace dimension, the average DSCs
for both left and right hippocampus experience rapid growth
in the beginning from 10 to 70, a stable increase trend in the
middle from 70 to 90, and maintain a high segmentation per-
formance level in the end from 90 to 150. Experimental results

indicate that the segmentation performance of our method can
remain stable with a large enough subspace dimension when
using MFA.

Figure 6 shows the mean DSCs of our method using a
different number of training samples. It can be seen in the
figure that increasing the number of training samples im-
proves segmentation accuracy.

In order to demonstrate the efficacy of subspace learning
using MFA, we compare the results of our method with and
without a subspace projection procedure. Table 3 gives the
comparison results regarding five measures. For simplicity,
we use MFA +NN and NN to denote our methods with and
without the subspace projection procedure using voxel-wise
label fusion, respectively. We also present the Label patch
based MFA +NN and the Label patch based NN to denote
our methods with and without the subspace projection proce-
dure using patch-wise label fusion. Compared with NN,
MFA + NN obtains increases of 2.1%, 1.0%, 1.7%, and
1.3% for the left hippocampus segmentation and 2.0%,
1.4%, 2.4% and 0.4% for the right hippocampus segmentation
in terms of DSC, JSC, PI, and RI, respectively. It also pro-
duced an HD decrease of 0.28 mm and 0.6 mm for left and
right hippocampus segmentation, respectively. Meanwhile,
compared with the Label patch based NN, the Label patch
based MFA + NN respectively obtains increases of 2.3%,

Fig. 6 Mean DSC for segmentation of left and right hippocampus
generated using our method with different numbers of training samples

Table 3 The mean of DSC, JSC,
PI, RI, and HD (mm) of left and
right hippocampus on ADNI
dataset, produced by NN, MFA +
NN, Label patch based NN and
Label patch based MFA +NN,
respectively

Method DSC JSC PI RI HD (mm)

NN 0.835/0.831 0.742/0.739 0.874/0.871 0.846/0.851 4.29/4.36

MFA +NN 0.856/0.859 0.752/0.755 0.891/0.903 0.859/0.862 4.01/3.89

Label patch based NN 0.846/0.851 0.749/0.753 0.884/0.895 0.852/0.855 3.87/3.76

Label patch based MFA +NN 0.879/0.889 0.773/0.789 0.902/0.914 0.889/0.891 3.01/2.84

See Table 1 for description of ‘/’

Fig. 7 The effect of using different label patch sizes for segmentation for
left and right hippocampus
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2.1%, 1.1% and 3.0% for the left hippocampus segmentation
and 2.7%, 3.4%, 1.1% and 2.9% for the right hippocampus
segmentation in terms of DSC, JSC, PI and RI. It also

produced an HD decrease of 1 mm and 1.05 mm for left and
right hippocampus segmentation, respectively. Experimental
results indicate that the employment of a subspace learning
procedure based on MFA can improve the segmentation per-
formance for both voxel-wise and patch-wise label fusion. In
addition, it is clearly evident in Table 3 that the performance of
patch-wise label fusion is superior to voxel-wise label fusion.
The impact of label patch in label fusion would be explored in
more detail in BPatch-Wise Label Fusion^ section.

Patch-Wise Label Fusion

In our method, we adopt k-means cluster method to assign
label patches of training samples with corresponding class
labels. These class label, together with the feature representa-
tions of training samples, are then used to train the subspace in
which patch-wise label fusion is performed using the NN
classifier. In the evaluation of patch-wise label fusion per-
formed in our method, we analyze the effect of label patch
size on segmentation performance. In this experiment, we
varied the label patch size from 1 × 1 × 1 to 9 × 9 × 9 with a

Fig. 8 The effect of using kNN classifier with different numbers of
nearest neighbors for segmenting left and right hippocampus

Fig. 9 Box plots of mean DSC, JSC, PI, RI, RAI, and HD (mm) for left
and right hippocampus. In each box, the central mark is the median and
edges of the box denote the 25th and 75th percentiles. Whiskers extend

from each end of the box to adjacent values in the dataset and the extreme
values within 1 interquartile range from the ends of the box. Outliers are
data with values beyond the ends of the diamond
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step of 2 for each side. When 1 × 1 × 1 label patch is used,
patch-wise label fusion becomes voxel-wise label fusion.
Figure 7 shows the mean DSC for our method with different
label patch sizes.

As seen in the figure, our method yields the best perfor-
mance (0.856 for left hippocampus and 0.859 for right hippo-
campus) when 7 × 7 × 7 label patch is used. Along with an
increase in the size of label patch from 1 × 1 × 1 to 7 × 7 × 7,
the segmentation accuracy is gradually improved. However,
for patch size of 9 × 9 × 9, the segmentation accuracy de-
creases slightly. Experimental results indicate that using our
method, with patch-wise label fusion, can improve segmenta-
tion accuracy. Table 3 in BStructured Subspace Learning^ sec-
tion also demonstrates that the Label patch based NN and
Label patch based MFA + NN respectively outperform the
NN and MFA +NN across all five metrics. This demonstrates
the superiority of our method using patch-wise label fusion,
compared with the use of voxel-wise label fusion.

The kNN Classifier

For evaluation of the kNN classifier used in our method,
we perform our method and also MFA + kNN (without the
patch-wise label strategy) using kNN classifier with a dif-
ferent number of nearest neighbors. In this experiment, we
set the number of nearest neighbors k ∈ {1, 5, 10, , 20} for
the kNN classifier. Figure 8 shows the mean DSC of

MFA + kNN and our method using kNN classifier for left
and right hippocampus segmentation, plotted against dif-
ferent numbers of nearest neighbors.

It can been seen in Fig. 8 that the highest average DSCs for
both the left and right hippocampus are obtained at k = 5 and
the corresponding ones of MFA + kNN is obtained at k = 10.
This implies that, compared with the patch-wise label fusion
(our method), voxel-wise label fusion (MFA + kNN) requires
kNN classifier with more nearest neighbors to obtain the best
segmentation performance. In our method using patch-wise
label fusion, kNN classifier with a small number of nearest
neighbors can yield a high segmentation performance.

Comparison with Conventional Methods

We compared our method with two conventional multi-atlas
based segmentation methods, i.e., non-local patch-based label
fusion (NPL) (Coupé et al. 2011) and sparse patch-based label
fusion (SPL) (Tong et al. 2013). In this experiment, we imple-
mented our method using patch-wise label fusion with MFA-
based subspace and kNN classifier. Specifically, we set the
number k of nearest neighbors in the kNN classifier to 5, the
dimension p of subspace learning using MFA to 150, the in-
tensity patch size to 11 × 11 × 11 and the label patch size for
label fusion to 7 × 7 × 7. For MFA, the numbers k1 and k2 of
the nearest intra-class and inter-class samples were respective-
ly set to 10 and 40. For a fair comparison, we also

Fig. 10 Hippocampal
segmentation results by different
methods. The first row shows
segmentation results obtained by
different methods, the second row
presents their corresponding
surface rendering results, and the
third and fourth row show the
comparisons between the results
of manual and automatic
segmentation methods from
different perspectives (blue:
overlap between manual and
automated segmentation results,
red: unidentified voxels, green:
miss-identified voxels)
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implemented NPL and SPL using the same patch-wise label
fusion strategy used in our method. To take into morpholog-
ical unity of segments, we also reported one of the structural
metrics, i.e. rand index (RAI) (Rand 1971) for quantification.
Figure 9 shows box plots of segmentation performance mea-
sures (DSC, JSC, PI, RI, RAI and HD) for left and right
hippocampus of NLP, SLP, and our method, respectively.
For visual inspection, Fig. 10 shows segmentation results for
a subject randomly chosen from the dataset. As indicated by
the white arrows, it is evident that compared with the NLP and
SLP methods, the segmentation obtained by our method is
closer to the manual segmentation. This suggests that the pro-
posed method could be a more effective method for hippo-
campus segmentation.

The mean and standard deviation values for the segmenta-
tion performance achieved using NLP, SLP, and our method
are reported in Table 4.

As shown in the table, our method obtains the best
segmentation performance, followed by the SPL and
NPL methods. Compared with the SPL method, our meth-
od achieves a significant increase in several metrics. This
includes increase of 0.011/0.008 and 0.031/0.024 in the
mean DSC, 0.01/0.011 and 0.021/0.025 in the mean JSC,
0.016/0.02 and 0.025/0.031 in the mean PI, and 0.013/
0.015, 0.022/0.025 in the mean RI, and 0.005/0.013 in
the mean RAI. It also included a decrease of 0.142/
0.043 and 0.484/0.386 in the mean HD for the left and
right hippocampus segmentation. In terms of standard var-
iance deviation values for the segmentation performance
measures, our method also achieves the smallest variance
in segmentation accuracy over all test subjects. This indi-
cates that our method is more stable, robust, and reliable
than other label fusion methods. Among the compared
methods, the NLP method achieved the worst perfor-
mance due to the lack of discriminating features and
highly-correlated candidate patches which repeatedly pro-
duced the labeling errors. In terms of average performance
for DSC, JSC, PI, RI, and HD, our method obtains statis-
tically significant improvements (p-value<0.001) com-
pared with NLP and SPL. All experimental results indi-
cated that the proposed method performed consistently
better than other segmentation methods.

Conclusion

In this paper, we propose a structured discriminant embedding
for patch-based label fusion segmentationmethod to effectively
increase the similarity of samples with similar label patches and
simultaneously decrease the similarity of samples with dissim-
ilar label patches. Specifically, other than using simple patch
intensities to determine the similarity, multi-scale patch intensi-
ties and texture information are extracted from image patches to
describe appearance information for a voxel. In order to en-
hance feature discrimination for different local regions in the
anatomical structure, MFA is adopted to ensure minimization
of the distance between intra-class samples and maximization
of the distance between inter-class samples. Based on the ex-
tracted features, kNN classifier is employed to determine the
final label for the target voxel. Furthermore, to take advantage
of anatomical structure information in the segmentation, we
extend MFA to the application of patch-wise label fusion, i.e.,
each voxel in the atlas is assigned with a label patch, rather than
a single voxel label for label fusion. Experimental results dem-
onstrate the superior performance of our method for hippocam-
pus segmentation, as compared with traditional multi-atlas
based segmentation methods. However, we just conduct our
method on hippocampus segmentation in this paper. The pro-
posed method is supposed to be applied in other medical seg-
mentation applications. In the future, we will evaluate our
method on segmenting other significant anatomical structures
of human brain, such as corpus callosum and amygdala.
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Table 4 The mean and standard deviation of DSC, JSC, PI, RI and HD (mm) of left and right hippocampus, produced by NLP, SPL and Our method
respectively

DSC JSC PI RI RAI HD

NLP 0.848/0.865
(0.071/0.031)

0.752/0.764
(0.074/0.050)

0.878/0.883
(0.087/0.059)

0.857/0.864
(0.045/0.039)

0.810/0.825
(0.065/0.052)

2.341/2.139
(0.532/0.536)

SPL 0.868/0.880
(0.057/0.033)

0.763/0.778
(0.073/0.050)

0.887/0.878
(0.067/0.044)

0.866/0.875
(0.037/0.039)

0.846/0.852
(0.054/0.039)

1.999/1.796
(0.445/0.388)

Our method 0.879/0.889
(0.047/0.030)

0.773/0.789
(0.064/0.045)

0.903/0.914
(0.066/0.043)

0.879/0.889
(0.033/0.039)

0.851/0.865
(0.042/0.034)

1.857/1.753
(0.369/0.348)

See Table 1 for description of ‘/’
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Appendix

Given a sampled voxel z, the texture information from the
image H we extract in this paper includes:

1. Outputs of FODs:

H zþ uð Þ−H z−uð Þ; u ¼ rcosθsinϕ; rsinθsinϕ; rcosϕð Þf g

2. Outputs of SODs:

H zþ uð Þ þ H z−uð Þ−2H zð Þ;u ¼ rcosθsinϕ; rsinθsinϕ; rcosϕð Þf g

3. Outputs of 3D Hyper plan filters:

Ψ1
* H C3;3;1 zþ uð Þ� �

−H C3;3;1 z−uð Þ� �� �
;u ¼ 0; 0; 1ð Þ;Ψ1 ¼

1 1 1
1 1 1
1 1 1

2
4

3
5

8<
:

9=
;

4. Outputs of 3D Sobel filters:

Ψ2
* H C3;3;1 zþ uð Þ� �

−H C3;3;1 z−uð Þ� �� �
;u ¼ 0; 0; 1ð Þ;Ψ2 ¼

1 2 1
2 3 2
1 2 1

2
4

3
5

8<
:

9=
;

5. Outputs of Laplacian filters:

∑
z1∈Op zð Þ

H z1ð Þ−H zð Þð Þ;Op zð Þ⊆C3;3;3 zð Þ

6. Outputs of range difference filters:

maxz1∈Op zð Þ H z1ð Þð Þ− min
z1∈Op zð Þ

H z1ð Þð Þ;Op zð Þ⊆C3;3;3 zð Þ

whereCa, b, c(z) represents a cube centered at zwith size of a ×
b × c, u is the offset vector, r is the length of u, θ and ϕ are two
rotation angles of u, Op(z) denotes the voxels in the p-neigh-
borhood of z, ∗ denotes the convolution operation. FODs and
SODs detect intensity change along a line segment. Here, we
set r ∈ {1, 2, 3}, θ ∈ {0, π/4, π/2, 3π/4}, and ϕ ∈ {0, π/4, π/2}.
3D Hyperplane filters and 3D Sobel filters are the extensions
of FODs and SODs in the plane. Filters along two other di-
rections are also implemented. Laplacian filters are isotropic
and detect second-order intensity changes. Range difference
filters compute the difference between maximal and minimal
values in the neighborhood for each voxel. In this paper, we
determine the size of a neighborhood p ∈ {7, 19, 27}.
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