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Abstract TheAlzheimer’s DiseaseNeuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter
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study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detec-
tion and tracking of Alzheimer’s disease (AD). The study aimed to enroll 400 subjects with early mild
cognitive impairment (MCI), 200 subjectswith earlyAD, and 200 normal control subjects; $67million
fundingwas provided by both the public and private sectors, including theNational Institute onAging,
13 pharmaceutical companies, and 2 foundations that provided support through the Foundation for the
National Institutes of Health. This article reviews all papers published since the inception of the
initiative and summarizes the results as of February 2011. The major accomplishments of ADNI
have been as follows: (1) the development of standardized methods for clinical tests, magnetic reso-
nance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF)
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biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and
CSF biomarker measurements in control subjects,MCI patients, andADpatients. CSF biomarkers are
consistent with disease trajectories predicted by b-amyloid cascade (Hardy, J Alzheimers Dis
2006;9(Suppl 3):151–3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atro-
phy and hypometabolism levels show predicted patterns but exhibit differing rates of change depend-
ing on region and disease severity; (3) the assessment of alternative methods of diagnostic
categorization. Currently, the best classifiers combine optimum features from multiple modalities,
including MRI, [18F]-fluorodeoxyglucose-PET, CSF biomarkers, and clinical tests; (4) the develop-
ment of methods for the early detection of AD. CSF biomarkers, b-amyloid 42 and tau, as well as
amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymp-
tomatic subjects, and are leading candidates for the detection of AD in its preclinical stages; (5) the
improvement of clinical trial efficiency through the identification of subjects most likely to undergo
imminent future clinical decline and the use of more sensitive outcome measures to reduce sample
sizes. Baseline cognitive and/or MRI measures generally predicted future decline better than other
modalities, whereas MRI measures of change were shown to be the most efficient outcome measures;
(6) the confirmation of the AD risk loci CLU, CR1, and PICALM and the identification of novel
candidate risk loci; (7) worldwide impact through the establishment of ADNI-like programs in
Europe, Asia, and Australia; (8) understanding the biology and pathobiology of normal aging,
MCI, and AD through integration of ADNI biomarker data with clinical data from ADNI to stimulate
research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD,
thereby advancing efforts to find disease-modifying drugs for AD; and (9) the establishment of infra-
structure to allow sharing of all raw and processed data without embargo to interested scientific inves-
tigators throughout theworld. TheADNI studywas extended by a 2-year GrandOpportunities grant in
2009 and a renewal of ADNI (ADNI-2) in October 2010 through to 2016, with enrollment of an
additional 550 participants.
Published by Elsevier Inc. on behalf of The Alzheimer’s Association.
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1. Introduction to Alzheimer’s Disease Neuroimaging
Initiative: Goals, history, and organization

1.1. Background

Alzheimer’s disease (AD), the most common form of de-
mentia, is a complex disease characterized by an accumula-
tion of b-amyloid (Ab) plaques and neurofibrillary tangles
composed of tau amyloid fibrils [1] associated with synapse
loss and neurodegeneration leading to memory impairment
and other cognitive problems. There is currently no known
treatment that slows the progression of this disorder. Accord-
ing to the 2010 World Alzheimer report, there are an esti-
mated 35.6 million people worldwide living with dementia
at a total cost of more than US$600 billion in 2010, and
the incidence of AD throughout theworld is expected to dou-
ble in the next 20 years. There is a pressing need to find bio-
markers to both predict future clinical decline and for use as
outcome measures in clinical trials of disease-modifying
agents to facilitate phase II-III studies and foster the devel-
opment of innovative drugs [2]. To this end, Alzheimer’s
Disease Neuroimaging Initiative (ADNI) was conceived at
the beginning of the millennium and began as a North Amer-
ican multicenter collaborative effort funded by public and
private interests in October 2004. Although special issues fo-
cused on North American ADNI have been published in Alz-
heimer’s and Dementia [3] and Neurobiology of Aging [4] in
addition to a number of other review articles [5–12], the
purpose of this review is to provide a detailed and
comprehensive overview of the approximately 200 papers
that have been published as a direct result of ADNI in the
first 6 years of its funding.
1.2. Disease model and progression

One approach toward a greater understanding of the events
that occur in AD is the formulation of a disease model [3,12–
16]. According to the Ab hypothesis, AD begins with the
abnormal processing of the transmembrane Ab precursor
protein. Proteolysis of extracellular domains by sequential
b and g secretases result in a family of peptides that form
predominantly b-sheets, the b-amyloids (Ab) (Fig. 1). The
more insoluble of these peptides,mostlyAb42, have a propen-
sity for self-aggregation intofibrils that form the senile plaques
characteristic ofADpathology. Subsequently, it is thought that
themicrotubule-associated tau protein in neurons becomes ab-
normally hyperphosphorylated and forms neurofibrillary tan-
gles that disrupt neurons. However, although ADNI and
other biomarker data support this sequence of events, by direct
examination of postmortem human brains, Braak andDel Tre-
dici have shown that tau pathology in themedial temporal lim-
bic isocortex precedes the development of Ab deposits with
advancing age in the human brain [17].Downstreamprocesses
such as oxidative and inflammatory stress contribute to loss of
synaptic and neuronal integrity, and eventually, neuron loss



Fig. 1. Generation of soluble b-amyloid (Ab) fragments from amyloid precursor protein. Reproduced with permission from Ref [7].
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results in brain atrophy. Jack et al [14,16] presented
a hypothetical model for biomarker dynamics in AD
pathogenesis. The model begins with the abnormal
deposition of Ab fibrils, as evidenced by a corresponding
drop in the levels of soluble Ab42 in cerebrospinal fluid
(CSF) and increased retention of the positron emission
tomography (PET) radioactive tracer [11C]-labeled
Pittsburgh compound B (11C-PiB) in the cortex. Sometime
later, neuronal damage begins to occur, as evidenced by
increased levels of CSF tau protein. Synaptic dysfunction
follows, resulting in decreased [18F]-fluorodeoxyglucose
(FDG) uptake measured by PET. As neuronal degeneration
progresses, atrophy in certain areas typical of AD becomes
detectable by magnetic resonance imaging (MRI). The
model provided by Jack et al [14] is highly relevant to many
papers reviewed in section 4 (Studies of the ADNI cohort),
which often provide empirical evidence to support it. An ex-
ample of a model that proposes a series of pathological events
leading to cognitive impairment and dementia is summarized
in Fig. 2.
1.3. Mild cognitive impairment

Similar to many disease processes that originate in micro-
scopic environments and are asymptomatic until the start of
organ failure, the course of AD pathology is likely to be 20 to
30 years. It is now generally accepted that the initial AD pa-
thology develops in situ while the patient is cognitively nor-
mal, sometimes termed the “preclinical stage” [18,19]. At
some point in time, sufficient brain damage accumulates to
result in cognitive symptoms and impairment. Originally
defined in 1999, this has been classified in a number of
ways, including as predementia AD or as mild cognitive
impairment (MCI), a condition in which subjects are
usually only mildly impaired in memory with relative
preservation of other cognitive domains and functional
activities and do not meet the criteria for dementia [5], or
as the prodromal state AD [18]. Epidemiological studies of
participants aged 70 to 89 years who were nondemented
found the prevalence of MCI in this population to be approx-
imately 15%, with an approximate 2:1 ratio of two identified
phenotypes, amnestic and nonamnestic [20,21]. Studies
showed that MCI patients progressed to AD at a yearly
rate of 10% to 15%, and that predictors of this conversion
included whether the patient was a carrier of the 34 allele
of the apolipoprotein E (APOE) gene, clinical severity,
brain atrophy, certain patterns of CSF biomarkers and of
cerebral glucose metabolism, and Ab deposition [5].
1.4. History of biomarker development

Although the etiology ofADwas not known, therewas suf-
ficient knowledge of the mechanisms of AD pathology at the
beginning of the past decade to allow the development of
newdrugs.Once transgenicmice expressingAb in their brains
were available [22], development of treatments to slow the
progression of AD began in earnest. Although considerable
work had been done to develop quantitative measurements
of cognitive function and activities of daily living for clinical
trials of symptomatic treatments such as acetylcholinesterase
inhibitors, it was recognized that changes in cognition did
not necessarily signify “disease modification.” Therefore,
investigators from academia and the pharmaceutical industry
became interested in how “disease modification” of AD could
be detected using a variety of biomarkers, includingbrainMRI
scanning, and blood and CSF analytes. This led to a decision
by the National Institute on Aging (NIA) to fund the ADNI
and to structure it as a public–private partnership.

The development of AD biomarkers for clinical trials,
both for use in subject selection and as outcome measures,
is paramount to the success of ADNI. During the genesis
of the initiative, Frank et al [23] described the importance
of biomarkers to ADNI and to clinical trials. In the first paper
to come out of ADNI, Trojanowski [24] reviewed candidate



Fig. 2. Model for Alzheimer’s disease (AD) progression. Reproduced with permission from Ref [14].
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AD biofluid biomarkers thought to be most promising at the
time, homocysteine, isoprostanes, sulfatide, tau, and Ab, and
described how ADNI was poised, as a large public–private
collaboration, to identify and validate the best candidate
AD biomarkers. Mueller et al [25] reported on the scientific
background at the beginning of ADNI and the limitations of
the clinical and neuropsychological tests available for mon-
itoring disease progression at that time. Principally, a defini-
tive diagnosis of AD required severe cognitive deficits and
autopsy confirmation, whereas the clinical criteria for the
detection of the MCI transitional phase were much less cer-
tain. Accordingly, outcome measures for assessing the effi-
cacy of new drugs relied primarily on neurocognitive tests
such as ADAS-cog (cognitive subscale of the Alzheimer’s
Disease Assessment Scale), the efficacy of which was lim-
ited by substantial ceiling effects and variability in subject
performance over time. There was a clear need to develop
biomarkers, biological tools that “mark” the presence of
pathology, for the early diagnosis of AD and for measuring
clinical drug trial outcomes [8].

Relatively early in the initiative, a major concern was
developing an AD biomarker that distinguished AD from
other dementias, such as Lewy body dementia, frontotempo-
ral degeneration, and Parkinson disease with dementia [10].
Based on a model of AD pathogenesis fundamentally similar
to that described in the paper by Jack et al [14], Shaw et al
[10] reviewed a number of potential biomarkers, including
some, such as isoprostanes and total plasma homocysteine,
that did not subsequently prove to be of use. Others, such
as levels of soluble Ab42 or tau protein in CSF, reflected
the increase in deposition ofAb in fibrillar plaques or the later
release of tau protein as a result of neuronal damage. Neuro-
nal metabolism and neuronal degeneration could be mea-
sured using FDG-PET and by examining the concentrations
of total tau protein (t-tau) and tau phosphorylated at serine
181 (p-tau181p) in CSF, respectively. Volumetric changes to
brain structure could be assessed by MRI of specific regions
such as the hippocampus, entorhinal cortex, temporal and
parietal lobes, and ventricles. Additional potential risk bio-
markers included genetic susceptibility factors, such as the
APOE genotype, plasma homocysteine levels, and isopros-
tanes as non-AD-specific indicators of oxidative stress. By
the following year, the wide range of potential biomarkers
had been substantially narrowed to include CSF Ab42,
t-tau and p-tau181p hippocampal volume, voxel-based volu-
metry, deformation-based morphometry (DBM), functional
MRI, and FDG-PET [26]. In tandem with the development
of these biomarkers, a new imaging technology using
11C-PiB in PET scans was being developed [27,28], and the
possibility of a diagnostic approach predicated on the
concept of certain combinations of biomarkers providing
complementary information was raised [8,26].

In 2008, twin reviews were published in Neurosignals
[8,15] by members of the ADNI Biomarker Core at the
University of Pennsylvania. The first paper reviewed
potential biomarkers for the early detection of AD. In
addition to the potential biomarkers described previously,
these included MRI T1r relaxation times to image neuritic
plaques and single-photon emission computed tomography
(SPECT) using a 125I-labeled imidazole derivative (6-iodo-
2-(4’-dimethylamino-)phenyl-imidazo[1,2]pyridine) as an
alternative approach to amyloid PET imaging [29]. The sec-
ond paper distinguished between diagnostic biomarkers and
risk biomarkers, such as the APOE 34 allele and plasma total
homocysteine levels, suggesting that although they were not
sufficiently sensitive for diagnostic purposes, they were
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indicative of increased risk for AD and were predictive of
disease progression. Finally, in 2010, Hampel et al [7] pre-
sented a review that updated our current understanding of
tau and Ab biomarkers, including levels of Ab42 and activ-
ity of BACE1 (the major amyloid precursor protein-cleaving
b-secretase in the brain) in CSF, blood plasma levels of
Ab40 and Ab42, and human antibodies against Ab-related
proteins. Thus, the search for biomarkers to fulfill a variety
of niches is an ongoing quest and is without doubt set to
evolve even further as research progresses.
1.5. Goals of ADNI

A comprehensive description of the goals of ADNI is
given in papers by Mueller et al [2] and Weiner et al [3].
At initiation, ADNI had the overall objective of characteriz-
ing clinical, genetic, imaging, and biochemical biomarkers
of AD and identifying the relationships between them over
the course of disease progression from normal cognition to
MCI to dementia. Specific goals of ADNI included the
development of optimized and standardized methods for
use across multiple centers, the enrollment of a large cohort
(.800) of healthy elderly subjects, MCI patients, and AD
patients for baseline characterization and longitudinal stud-
ies, and the establishment of repositories of data and biolog-
ical samples, both of which were to be accessible to the
wider scientific community without embargo. A specific pre-
specified goal was to identify those imaging (MRI and PET)
and image analysis techniques and blood/CSF biomarkers
that had the highest statistical power to measure change
(defined as the sample size required to detect a 25% reduc-
tion of rate of change in 1 year) and thus, it was hoped, detect
effects of treatments that would slow the progression of AD.
With these goals, ADNI hoped to identify a combination of
biomarkers that could act as a signature for a more accurate
and earlier diagnosis of AD, and that could be used to mon-
itor the effects of AD treatment [2,3].

When originally conceived, ADNI had not included aims
around genetic or proteomic analysis. Additional add-on
studies supported the evolution of the Genetics Core (see
later in the text) and the study of protein changes in plasma
and CSF. Plasma proteomic data from a 190-analyte multi-
plex panel have been posted to the ADNI Web site and are
available for additional data mining.
1.6. The evolution of an idea: ADNI-1, ADNI Grand
Opportunities, and ADNI-2

Drs. Neil Buckholz and William Potter had discussed the
overall concept of a large biomarker project to study AD for
many years. Dr. Buckholz convened an NIAmeeting focused
onAD biomarkers in 2000. In 2001, Drs.MichaelWeiner and
Leon Thal (since deceased) proposed a longitudinal MRI
study of AD, MCI, and control subjects. Subsequently,
Dr. Buckholz brought together a number of investigators
from the field of AD as well as industry leaders, all of
whom strongly supported the overall concept. The NIA pub-
lished a Request for Applications, and ADNI was funded in
2004. The initial ADNI was projected to run for 5 years and
to collect serial information, every 6months, on cognitive per-
formance; brain structural and metabolic changes; and bio-
chemical changes in blood, CSF, and urine in a cohort of
200 elderly control subjects, 200 MCI patients, and 400 AD
patients [2–4]. It was funded as a public–private partnership,
with $40 million from the NIA and $27 million from 20
companies in the pharmaceutical industry and 2 foundations
for a total of $67 million, with the funds from private
partners provided through the Foundation for the National
Institutes of Health. An interesting perspective of the
process by which potential competitors in the race to develop
new drugs for AD were brought together in a consortium
under the auspices of the Foundation for the National
Institutes of Health is given in the paper by Schmidt et al
[30], who emphasize the importance of the cooperative, pre-
competitive nature of ADNI. When the ADNI grant was first
submitted and funded, the significance and impact of 11C-PiB
[27,28] studies were not fully appreciated, and there was no
infrastructure to conduct multisite clinical trials with 11C-
PiB. Therefore, Ab imaging with 11C-PiB was not included
in the application. However, after the first year of funding,
Chet Mathis proposed adding an 11C-PiB substudy to
ADNI, whichwas funded by theAlzheimer’s Association and
General Electric. In addition, further industry and foundation
funding was secured to allow supplemental or “add-on”
genomewide association studies (GWAS), and for additional
lumbar punctures to obtain CSF, as new technologies
emerged to make these studies feasible in a large-scale initia-
tive such as ADNI.

In 2009, toward the end of the ADNI study, a Grand
Opportunities grant, ADNI-GO, was secured to extend the
original ADNI-1 studies with both longitudinal studies of
the existing cohort and the enrollment of a new cohort of
early MCI patients to investigate the relationship between
biomarkers at an earlier stage of disease progression. Techni-
cal advances made it possible to add analyses of the new
cohorts using AV45 (Florbetapir; Eli Lilly, Indianapolis,
IN) amyloid imaging. Additional experimental MRI se-
quences included for evaluation of ADNI-GO and ADNI-2
are arterial spin labeling perfusion imaging and diffusion ten-
sor imaging. The development of the [18F]-labeledAV45 am-
yloid imaging agent with a substantially longer radioactive
half-life than the 11C form made it practicable to extend am-
yloid imaging studies to additional sites beyond those under-
taken in ADNI-1 [7].

A competitive renewal of the ADNI-1 grant, ADNI-2,
was awarded with total funding of $69 million on October
1, 2010, together with funding from the pharmaceutical
industry in a cooperative agreement similar to the original
initiative, to further extend these studies with additional
cohorts [3,4,31]. It is anticipated that the study of very
mild MCI patients in ADNI-GO and ADNI-2 will help iden-
tify subjects at risk who are candidates for preventative
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therapy when they are mildly symptomatic or asymptomatic
[30]. Table 1 summarizes details of the three initiatives.
1.7. Structure and organization of ADNI

A full description of ADNI structure is given in the paper
by Weiner et al [3]. Briefly, ADNI is governed by a Steering
Committee that includes representatives from all funding
sources as well as principal investigators of the ADNI sites
and is organized as eight cores, each with different responsi-
bilities, under the direction of an Administrative Core, led by
Dr. Weiner, as well as a Data and Publications Committee
(DPC), led by Dr. Green (Fig. 3). The eight cores comprise
(1) the Clinical Core, led by Drs. Aisen and Petersen, respon-
sible for subject recruitment, collection and quality control
of clinical and neuropsychological data, testing clinical hy-
potheses, and maintaining databases; (2) the MRI and (3)
PET Cores, led by Drs. Jack and Jagust, respectively,
responsible for developing imaging methods, ensuring qual-
Table 1

Comparison of ADNI-1, ADNI-GO, and ADNI-2

Study characteristics ADNI-1

Primary goal Develop CSF/blood and

imaging biomarkers as

outcome measures

Funding $40 million federal (NIA),

$20 million industry and

foundation, $7 million

industry for supplemental studies

Duration/start date 5 years/October 2004

Cohort 200 elderly control subjects

200 MCI

400 AD

Study techniques

MRI X

fMRI

FLAIR (microhemorrhage

detection)

T2* GRE (microhemorrhage

detection)

Vendor-specific protocols (1)

resting state (task-free) fMRI

to Phillips systems, (2) perfusion

imaging (ASL) to Siemens, and

(3) DTI to General Electric

FDG-PET X

AV45

Biosamples X

“Add-on” studies GWAS, PiB-PET,

lumbar puncture

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI-GO

tute on Aging; MCI, mild cognitive impairment; AD, Alzheimer’s disease; EMCI,

functional magnetic resonance imaging; FLAIR, fluid attentuated inversion recove

tensor imaging; FDG-PET, [18F]-fluorodeoxyglucose-positron emission tomograph

B-positron emission tomography.
ity control between neuroimaging centers, and testing imag-
ing hypotheses; (4) the Biomarker Core, led by Drs. Shaw
and Trojanowski, responsible for the receipt, storage, and
analysis of biological samples; (5) the Genetics Core, led
by Dr. Saykin, responsible for genetic characterization and
analysis of participants as well as banking DNA, RNA,
and immortalized cell lines at the National Cell Repository
for Alzheimer’s Disease; (6) the Neuropathology Core, led
by Drs. Morris and Cairn, responsible for analyzing brain
pathology obtained at autopsies of ADNI participants; (7)
the Biostatistics Core, led by Dr. Beckett, responsible for sta-
tistical analyses of ADNI data; and (8) the Informatics Core,
led by Dr. Toga, responsible for managing data sharing func-
tions [2,3]. A schematic of ADNI structure is given in Fig. 3.
1.8. Data sharing and informatics

An objective of ADNI, in addition to its scientific goals
outlined in section 1.5, was to make data available to the
ADNI-GO ADNI-2

Act as bridging grant

between ADNI-1 and

ADNI-2, examine

biomarkers in earlier stage

of disease progression

Develop CSF/blood and

imaging biomarkers as

predictors of cognitive

decline, and as outcome

measures

$24 million American Recovery

Act funds (stimulus finds)

$40 million federal (NIA),

$27 million expected

industry and foundation

2 years/September 2009 5 years/September 2011

Existing ADNI-1 cohort plus:

200 EMCI

Existing ADNI-1 and

ADNI-GO cohort plus:

150 elderly control

subjects

100 EMCI

150 MCI

150 AD

X X

X X

X X

X X

X X

X X

X X

X X

, Grand Opportunities grant; CSF, cerebrospinal fluid; NIA, National Insti-

early mild cognitive impairment; MRI, magnetic resonance imaging; fMRI,

ry; T2* GRE, T2* gradient echo; ASL, arterial spin labeling; DTI, diffusion

y; GWAS, genomewide association studies; PiB-PET, Pittsburgh compound



Fig. 3. Alzheimer’s Disease Neuroimaging Initiative (ADNI) structure and

organization.
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scientific community, without embargo. To this end, DPC, in
conjunction with the Bioinformatics Core of ADNI at the
Laboratory of Neuroimaging (LONI) at UCLA, has devel-
oped policies and procedures for immediate, open-access
data sharing on a previously unprecedented scale. The prin-
ciples for this data sharing were developed in the initial
months of the ADNI project by the DPC in consultation
with the Executive Committee and presented to the Steering
Committee for adoption in the first year. The infrastructure
for implementing this policy is through the LONI data ar-
chive (LDA), enabling the widespread sharing of imaging,
clinical, genetics, and proteomic ADNI results, while over-
coming fundamental hurdles such as the question of owner-
ship of the disseminated scientific data, and the collection of
data from multiple sites in a form that supports data analysis
[32]. Briefly, LONI has developed automated systems that
deidentify and upload data from the 57 ADNI sites, ensure
quality control of images before removing them from quar-
antine status and make them available for download, manage
preprocessing and postprocessing of images and their link-
age to associated metadata, support search functions, and
manage user access and approval. Clinical data are collected
by the Alzheimer’s Disease Cooperative Study through their
online data capture system and transferred to the ADNI
repository at LONI through nightly data transfers. After
these data are received at LONI, portions of the clinical
data are used to update data in the ADNI repository to ensure
consistency of demographic and examination data and to
update the status of image data based on quality assessment
results. Additional nightly processes integrate other clinical
data elements, so they may be used in querying the data in
the repository. Any researcher who has been granted access
to ADNI data is able to analyze any part of the available data
and can post results to LONI. In addition to ADNI data, LDA
also contains data from the parallel Australian Imaging Bio-
markers and Lifestyle (AIBL) Flagship Study of Ageing,
which were collected using protocols comparable with those
of ADNI. To date, from 35 countries worldwide, more than
1300 investigators from academic and governmental institu-
tions, the pharmaceutical and biotechnology industries, and
the scanner manufacturing sector have accessed ADNI data
through the LDA [32]. The number of downloads of ADNI
data has increased yearly since 2006, and in 2010, more
than 400,000 images, 1416 sets of clinical data (including
cognitive tests and levels of CSF biomarkers), 781 numeric
summary results for all analyses, and 33,620 genetic single-
nucleotide polymorphism (SNP) results were downloaded.

AlthoughLONI acts as theADNI data repository, theDPC
is responsible for developing policy around data access and
publication, granting access to the data to investigators
around the world, and reviewing publications that result
from this data use. Briefly, members of the scientific commu-
nity can apply for access to ADNI data for either research or
teaching purposes and must submit a data use agreement
(available at: http://adni.loni.ucla.edu/wp-content/uploads/
how_to_apply/ADNI_Data_Use_Agreement.pdf) for ap-
proval. As of April 2011, 1590 data applications from across
theworld had been approved, predominantly from academia,
but also from the biotechnology, pharmaceutical, and other
industries. Part of the data use agreement requires applicants
to include certain language in manuscripts prepared from
ADNI data, including citing “for the Alzheimer’s Disease
Neuroimaging Initiative” as an ADNI group ack-
nowledgment, and the recognition of ADNI’s role in data
gathering in the Methods section and of ADNI’s funding in
the Acknowledgments. Manuscripts must be submitted for
approval to the DPC before publication. The full publication
policy can be found at: http://adni.loni.ucla.edu/wp-content/
uploads/how_to_apply/ADNI_DSP_Policy.pdf. The role of
the DPC in this step is primarily to check that manuscripts
are compliant with ADNI publication policy, and not to pro-
vide a scientific peer review. Papers found to be noncompli-
ant are returned to the authors for editing and can
subsequently be resubmitted for approval. This process is pri-
marily designed to track, tabulate, and standardize the publi-
cation of manuscripts using ADNI data.
1.9. The ADNI special issue of Alzheimer’s and Dementia

Weiner et al [3] introduced the special ADNI issue of Alz-
heimer’s and Dementia in 2010 with an overview of ADNI’s
background, rationale, goals, structure, methods, impact, and
future directions. A set of papers followed highlighting the
achievements of individual ADNI cores and perspectives of

http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf


Table 2

Characteristics of an ideal biomarker

Characteristic Ideal
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the Industry Scientific Advisory Board (or ISAB), which is
now referred to as the Private Partner Scientific Board (or
PPSB). Jack et al [33] described the achievements of the
MRI Core of ADNI in areas ranging from the development
ofMRI technology to the elucidation ofADbiology, and con-
cluded that this Core had succeeded in demonstrating the fea-
sibility of multicenter MRI studies in ADNI and validity of
this method as a biomarker in clinical trials. The progress
of the PET Core of ADNI in developing FDG-PET and
11C-PiB PET protocols, ensuring quality control, and acquir-
ing and analyzing longitudinal data was reviewed by Jagust
et al [34], who similarly concluded that the Core had success-
fully demonstrated both the feasibility of this technology in
a multicenter setting and the potential of FDG-PET to reduce
sample sizes in clinical trials. Trojanowski et al [12] reviewed
progress by the Biomarker Core of ADNI in developing pro-
files of CSF or plasma biomarkers that would act as a “signa-
ture” of mild AD or predict future MCI to AD conversion.
Moreover, the reviewdescribed studies in support of a tempo-
ral sequence of changes in individual biomarkers that
reflected proposed trajectories of Ab deposition and the for-
mation of neurofibrillary tangles inADprogression [14]. The
accomplishments of the Clinical Core of ADNI were
reviewed by Aisen et al [35], who reported that the Core
had successfully recruited a cohort of.800 subjects, charac-
terizing them both clinically and cognitively at baseline and
following them longitudinally over the course of the study.
As the Clinical Core provided data management support to
ADNI, this review also reported on the contribution of
ADNI biomarker andMRIfindings to improving clinical trial
design by determining the most powerful outcome measures
and reducing sample size using subject selection strategies.
The contribution of the Genetics Core of ADNI to untangling
the apparently complex genetic contributions to AD was
reviewed bySaykin et al [6],who reported considerable prog-
ress in the identification of novel AD susceptibility loci and
of candidate loci worthy of further investigation, often using
AD biomarkers as quantitative traits (QTs) in imaging genet-
ics and GWAS. The role of the Neuropathology Core in de-
veloping procedures to improve the autopsy rate of ADNI
patients and to standardize neuropathological assessment
was reviewed by Cairns et al [36]. Finally, Schmidt et al
[30] discussed the contributions of the Industry Scientific
Advisory Board, including acting as a conduit of information
to and from sponsoring companies and foundations, support-
ing add-on studies, and contributing to the scientific reviewof
protocols and procedures.
Sensitivity: % of patients correctly identified

as having AD

.80%–85%

Specificity: % of patients correctly identified

as not having AD.

.80%

Positive predictive value: % of patients who

are positive for biomarker and have

definite AD pathology at autopsy

.80%

Negative predictive value: % of patients who,

at autopsy, prove not to have the disease

.80%

NOTE. Adapted from Refs [7] and [10].
2. Development and assessment of treatments for AD:
Perspectives of academia and the pharmaceutical
industry

Given that the ultimate goal of ADNI is to develop bio-
markers to facilitate clinical trials of AD therapeutics, it is
germane to consider the perspective of investigators from
academia and the pharmaceutical industry on the develop-
ment of these biomarkers. The aim of this section is to review
those papers that focus on this issue.

Although ADNI is a natural history study, and it is not
known whether its biomarkers can measure the effect of can-
didate treatments in drug trials, the primary focus of ADNI
has been the development of diagnostic biomarkers for the
early detection of AD and development of prognostic bio-
markers that would be used to monitor disease progression
[37]. Mueller et al [38] and Weiner et al [3] reaffirmed the
definition of an ideal biomarker formulated at the first meet-
ing of the NIA working group on AD biomarkers, which
proposed that an ideal AD biomarker should detect a funda-
mental feature of AD pathology; be minimally invasive, sim-
ple to analyze, and inexpensive; and meet criteria with
regard to specificity and sensitivity outlined in Table 2. Prog-
nostic biomarkers should be representative of a stage of AD
at which the treatment has maximal effect, and also be rep-
resentative of the proposed mechanism of action of the treat-
ment [3,38].

Both diagnostic and prognostic biomarkers are required
for clinical trials. To date, such clinical trials have been frus-
tratingly unsuccessful. It was thought that the failures of
phase III clinical trials of high-profile putative antiamyloid
therapies, flurizan and Alzhemed, were in part due to meth-
odological difficulties, such as the initial subject selection,
and the statistical comparison of results from multiple cen-
ters [7,9,39]. In the case of the first generation of clinical
trials focusing on patients with MCI, there was a lack of
consistency in numbers of patients progressing to AD over
a certain period, likely due to the heterogeneous nature of
MCI; it is possible that one-half of study participants did
not have underlying AD pathology [7,11,40]. Correctly
distinguishing patients with AD pathology is critical,
especially considering the overlap that exists between
various late-life neurodegenerative pathologies. For exam-
ple, the Lewy bodies that characterize Parkinson’s disease
are found in .50% of patients with AD, in addition to neu-
ritic plaques and tangles. Therefore, there is a real need for
biomarkers that reliably distinguish between different types
of dementias [8,10].

Diagnostic biomarkers that meet the criteria outlined pre-
viously are urgently needed for subject selection, thereby
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allowing the stratification and enrichment of clinical trials.
There is a need to select subjects at an early stage of the Alz-
heimer’s continuum who are likely to progress through MCI
to dementia, and also to eliminate subjects with other pathol-
ogies. In phase I, II, and III trials, biomarkers that detect the
earliest indications of AD pathology, Ab deposition, such as
CSF Ab42, and 11C-PiB PET are most likely to be useful.
FDG-PET as a measure of metabolism could also have
potential [41].

The biomarkers used in a clinical trial will differ depend-
ing on the mechanism of action of the therapeutic, the goals
of the trial, and questions at hand. In small, short phase I tri-
als, CSF and plasma measures can be used to monitor Ab
turnover in healthy subjects. In phase II proof-of-principle
or proof-of-concept trials, Ab biomarkers in brain can be
used to confirm the mechanism of action of a new treatment
and “target engagement.” For phase II and III trials, CSF tau
and phosphorylated tau, MRI, and Ab PET can be used to
determine whether there is evidence of an effect of treatment
on disease progression. Clinical MRI is used routinely for
subject selection, to exclude confounding medical condi-
tions, and for detection of vasogenic edema as a safety end
point of “immune”-based treatments [41]. Finally, Ab PET
imaging, MRI, CSF and plasma biomarkers, and FDG-
PET are candidates as prognostic biomarkers in phase II
trials for selection of nondemented subjects at risk for devel-
oping AD to test whether treatments have the potential of
preventing or delaying the onset of AD. The predictive
power of these biomarkers in isolation or in combination
varies and will need to be factored into consideration.
None of the current generation of treatments proposed to
modify the progression of AD is free of safety concerns.
Estimation of the probability of developing AD will be
required for assessing the risk versus possible benefit of par-
ticipating in research trials [41]. Figure 4 shows ADNI bio-
markers that could be used at different stages of the drug
development process.

Looking at drug development as a whole, Cummings [37]
saw a wide variety of roles for biomarkers, from identifying
disease pathology and tracking disease progression, to dem-
onstrating pharmacokinetic effects of the body on the drug,
to facilitating proof-of-principle and determining doses for
subsequent trials, to determining drug efficacy, and, finally,
Fig. 4. AD drug development. Black arrows show the phases of drug devel-

opment; the brick-colored arrows show the ADNI biomarkers that could be

used in that stage. Reproduced with permission from Ref [37].
to contributing to corporate decision making, such as
whether to proceed with riskier and more expensive later-
phase trials (Fig. 5). Fleisher et al [9] reviewed progress in
developing neuroimaging biomarkers, either alone or in con-
junction with CSF biomarkers, for subject selection, and in
developing biomarkers functioning at later stages in disease,
such as MRI measures of brain atrophy or changes in cere-
bral glucose metabolism detected by FDG-PET as outcome
measures. This review also highlighted the need for bio-
markers in drug development and discussed the use of imag-
ing biomarkers in replacing cognitive end points in clinical
trials.

Both common sense and regulatory policies of the Food
and Drug Administration (FDA) and regulators in other
countries require that treatment trials need to demonstrate
a significant effect on cognition and function. Although ef-
fects on biomarkers would provide additional evidence of
treatment effect and evidence of disease modification, there
are no validated surrogates for AD trials, and such surrogates
will take many years to develop. Different biomarkers are
likely to be effective over different phases of the disease
[11,41]. To be used as surrogates for clinical measures,
biomarkers would need to be validated as reflecting
clinical and/or pathological disease processes with a high
degree of specificity and sensitivity. To qualify for
validation as an outcome measure, the biomarker must be
shown to predict clinical outcome over several trials and
several classes of relevant agents by following subjects
through disease progression and even possibly to autopsy
[3,9,37]. This validation process is likely to be aided by
the contribution of ADNI to standardizing procedures,
particularly for imaging techniques, to reduce
measurement errors in clinical trials [42]. A review by
Petersen and Jack [11] discussed neuroimaging and chemi-
cal biomarkers, either alone or in combination, for the pre-
diction of the development of dementia in MCI patients.
These authors provided an excellent and succinct summary
of the issues facing clinical trials for AD-modifying drugs
and the role of both U.S. and worldwide ADNI in developing
biomarkers to facilitate these trials.
Fig. 5. Roles of biomarkers in AD drug development. Abbreviations: AD-

MET, absorption, distribution, metabolism, excretion, toxicity; BBB,

blood–brain barrier; POP, proof of principle. Reproduced with permission

from Ref [37].
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A detailed discussion of the position of the FDA on bio-
marker validation is given by Carrillo et al [31], and it is
likely that the process will require a wider population of
well-characterized subjects than is available through
ADNI. To this end, and for the further study of therapeutic
interventions for AD, Petersen [40] proposed the establish-
ment of a national registry of aging. In their editorial in
the Journal of the American Medical Association, Petersen
and Trojanowski [39] introduced a paper that reports on
the evaluation of CSF biomarkers in a large multicenter
study. Placing this in the context of other work in the same
area, and in research undertaken as part of ADNI, they con-
cluded that as biomarkers become more sophisticated, they
will play even greater roles in AD clinical trials, and may
one day be of use in clinical practice in a diagnostic capacity.
Hill [41] concluded in his perspective on neuroimaging and
its role in assessing safety and efficacy of disease-modifying
therapies for AD: “..there is now sufficient experience of
imaging for Alzheimer’s disease in both natural history
and therapeutic trials for a clear recipe for success to be
emerging.”Weiner [43] concluded that the use of biomarkers
to select cognitively normal subjects who have AD-like pa-
thology and as validated outcome measures in clinical trials
“is the path to the prevention of AD.”

ADNI has proven to be a rich data set for industry-
sponsored research, including an assessment of disease pro-
gression in the AD population [44]. ADNI data have been
combined with additional placebo data from clinical trials
conducted in AD and are publicly available on the Coalition
Against Major Disease Web site (http://www.c-path.org/
CAMDcodr.cfm) for additional data mining. Modeling
efforts have highlighted the importance of age, baseline cog-
nitive status, and APOE status on disease progression rates;
a model is currently under qualification review through
newly developed European Medicines Agency (EMA) and
FDA qualification procedures. These types of models will
inform clinical trial design and streamline analysis for
drug studies conducted in mild-to-moderate AD.

ADNI has also enabled clinical studies in predementia,
and many have been posted to www.clinicaltrials.gov, high-
lighting the use of CSF and amyloid PET biomarkers in cog-
nitively impaired subjects to enrich for predementia clinical
trials. Application to registration-level, phase III studies re-
mains a challenge, as the biomarkers in ADNI have not yet
been qualified for use or received regulatory approval. To ad-
dress some of the remaining challenges, precompetitive and
industry-sponsored initiatives were recently conducted to
qualify CSF Ab-42 and t-tau as biomarkers for enrichment
in predementia study with the EMA, and a positive qualifica-
tion opinion was posted on the EMA site for these particular
biomarkers. Additional efforts are ongoing with the FDA.
For the most part, industry has been using the biomarkers
as enrichment tools in predementia and mild-to-moderate
AD studies, and as secondary or exploratory efficacy mea-
sures to assess impact of exploratory drugs on biomarker
measures of disease progression.
3. Methods papers

A considerable proportion of papers published as a result
of ADNI concerns the development and testing of methods
for use in ADNI, in the cohorts of other studies, or in clinical
trials. These run the gamut from papers examining the best
way to reduce differences between scanners in multicenter
studies to those describing a new way to discriminate
between AD, MCI, and control subjects, to methods for
enriching clinical trials to reduce required sample sizes
and therefore the associated cost, to new methods for exam-
ining genotype–phenotype relationships in neuroimaging
GWAS. This section presents an overview of these papers.
3.1. Standardization of ADNI procedures
3.1.1. Magnetic resonance imaging

3.1.1.1. Assessment of scanner reliability
A key feature of assessing the reliability of scanner hard-

ware over longitudinal scans is the use of a high-resolution
geometric “phantom” that can detect linear and nonlinear
spatial distortion, signal-to-noise ratio, and image contrast,
allowing these artifactual problems to be identified and sub-
sequently eliminated. Although these are commonly used
for periodic adjustments to quality control, they are scanned
after every patient in the ADNI MRI protocol. Gunter et al
[45] estimated that these artifactual problems would contrib-
ute to .25% imprecision in the metric used, and found that
phantom analysis helped correct scanner scaling errors and/
or miscalibration, thereby increasing the potential statistical
power of structural MRI for measuring rates of change in
brain structure in clinical trials of AD-modifying agents.
The utility of a scanner phantom was once again under-
scored by Kruggel et al [46], who examined the influence
of scanner hardware and imaging protocol on the variability
of morphometric measures longitudinally and also across
scanners in the absence of a phantom in a large data set
from the ADNI cohort. Using different acquisition condi-
tions on the same subject, the variance in volumetric mea-
sures was up to 10 times higher than under the sample
acquisition conditions, which were found to be sufficient
to track changes. Their results suggested that the use of
a phantom could reduce between-scanner imaging artifacts
in longitudinal studies. Kruggel et al [46] also investigated
the effect of scanner strength and the type of coil used on im-
age quality and found that a 3.0-T array coil system was op-
timal in terms of image quality and contrast between white
matter (WM) and gray matter (GM). Ho et al [47] similarly
tested the ability of 3.0-T and 1.5-T scanners to track longi-
tudinal atrophy in AD and MCI patients using tensor-based
morphometry (TBM). They saw no significant difference on
the ability of either scanner type to detect neurodegenerative
changes over a year, and found that TBM used at both field
strengths gave excellent power to detect temporal lobe atro-
phy longitudinally.

http://www.c-path.org/CAMDcodr.cfm
http://www.c-path.org/CAMDcodr.cfm
http://www.clinicaltrials.gov
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While the scanning of a geometric phantom helps elimi-
nate artifacts introduced by the machine, Mortamet et al
[48] described an automated method for accounting for pa-
tient artifacts that can affect image quality, such as edge,
flow, and aliasing artifacts. They developed two quality indi-
ces and tested their ability to differentiate between high- and
low-quality scans, as assigned by an expert reader at the
ADNI MRI center. Both indices accurately predicted the
“gold standard” quality ratings (sensitivity and specificity
.85%), and the authors proposed that this method could be
integrated into a real-time or online MRI scanning protocol
to eliminate the need to rescan at a later date due to a poor-
quality scan, in keeping with the goal of placing as minimal
burden on the patient as possible. Clarkson et al [49] exam-
ined within-scanner geometric scaling drift over serial MRI
scans, as assessed by geometric phantoms, and developed
a nine degrees-of-freedom registration algorithm to correct
these scaling errors in longitudinal brain scans of patients.
They found that the nine degrees-of-freedom registration
was comparable with geometric phantom correction, allow-
ing atrophy to be measured accurately, and the authors sug-
gest that this registration-based scaling correction was the
preferred method to correct for linear changes in gradient
scaling over time on a given scanner. This in turn could obvi-
ate the need for scanning a phantomwith every patient. Bauer
et al [50] assessed the utility of collecting whole brain quan-
titative T2 MRI from multiple scanners using fast spin echo
(FSE)/dual spin echo sequences, which have been shown to
be useful in the early detection of AD pathology in MCI pa-
tients. Although FSE–T2 relaxation properties were related
to the global dementia status, the authors concluded that
the utility of the method was affected by the variability be-
tween scanners. Several papers were aimed at reducing
between-scanner effects, including those by Gunter et al
[45] and Clarkson et al [49]. Leung et al [51] presented
amethod aimed at overcoming variability in serialMRI scans
for the detection of longitudinal atrophy by modifying the
boundary shift integral (BSI) method of image analysis.
Two improvements to the BSI method were made: (1)
tissue-specific normalizationwas introduced to improve con-
sistency over time, and (2) automated selection of BSI pa-
rameters was based on image-specific brain boundary
contrast. The modified method, termed KN-BSI, had en-
hanced robustness and reproducibility and resulted in a reduc-
tion in the estimated sample sizes, required to see a 25%
reduction in atrophy in clinical trials ofAD-modifying drugs,
from 120 to 81 AD patients (80% power, 5% significance).

3.1.1.2. Development of protocols
Jack et al [52] described the development of standard-

ized MRI procedures for use in the multiple ADNI centers,
a process guided by the principle of maximizing the scien-
tific benefit of a scan while minimizing the burden on the
patient. Using technology widely available in 2004 to
2005, and limiting scanner platforms to three vendors,
they succeeded in developing a protocol that could be run
in ,30 minutes and that included the use of a phantom
scan to monitor scanner performance over time and across
different centers, back-to-back T1-weighted magnetization-
prepared rapid gradient echo scans to capture structural in-
formation while minimizing the need to rescan patients due
to technical difficulties, and T2-weighted dual-contrast FSE
sequences for the detection of pathologies. Postacquisition
corrections were instituted to remove certain image arti-
facts. Serial MRI scans, such as those used in ADNI, often
suffer from problems associated with the uniformity of sig-
nal intensity that introduce artifacts into the results. Boyes
et al [53] tested the ability of nonparametric nonuniform in-
tensity normalization (N3) to eliminate these artifacts on
higher-field 3-T scanners, which had a newer generation
of receiver coils, in serial 2-week scans of healthy elderly
control subjects. They found that the robustness and reli-
ability of the N3 correction were highly dependent on the
selection of the correct mask to identify the region of the
scan over which the N3 worked, and on the smoothing pa-
rameter used for head scans at different pulse sequences.
Leow et al [54] also used serial scans, 2 weeks apart, of
healthy elderly control subjects to investigate the stability
of different pulse sequences. They used TBM to generate
maps of computed changes that could be statistically ana-
lyzed and to give information on MRI reliability, reproduc-
ibility, and variability. This optimization of pulse sequences
contributed to the design of the ADNI MRI protocol, and
authors concluded that TBM is a useful tool for the study
of longitudinal changes in brain structure.

3.1.2. Ab- and FDG-PET
Variability across scanners is also a major factor in ADNI

PET studies, which are spread over 50 different centers and
involve 15 different scanner/software combinations. Joshi
et al [55] tackled the problem of reducing between-scanner
variability in PET images that has been observed despite
the use of standardized protocols. Major sources of
between-scanner variability are high-frequency differences,
mostly related to image resolution, and low-frequency dif-
ferences, mostly related to image uniformity and also to cor-
rections for scatter and attenuation. Joshi et al [55] scanned
a Hoffmann phantom at each participating center, and by
comparing the scans to the Hoffman “gold standard” digital
phantom, they developed corrections for both types of vari-
ability, which were tested on scans from the ADNI cohort.
They found that the high-frequency correction, by smooth-
ing all images to a common resolution, reduced interscanner
variability by 20% to 50%, but that the low-frequency cor-
rection was ineffective, perhaps due to differences in geom-
etry between the Hoffman phantom and the human brain.
Jagust et al [34] reported the development of a standardized
protocol for the acquisition of FDG-PET and 11C-PiB PET
data that first granted approval to participating sites based
on the results from a pair of phantom scans on the three-
dimensional (3-D) Hoffman brain phantom using defined
acquisition and reconstruction parameters. These were
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assessed for image resolution and uniformity using a quality
control process that used the digital gold standard phantom
for comparison. In this way, corrections were made for dif-
ferences in PET images across sites.

3.1.3. Biomarkers
The measurement of CSF concentrations of Ab-42, t-tau,

and p-tau is recognized to reflect early AD pathology.Within
ADNI, levels of these analytes are measured by flow cytom-
etry using monoclonal antibodies provided in the INNO-
BIA Alz Bio3 immunoassay kit (Innogenetics, Ghent,
Belgium) with xMAP technology (Luminex, Austin, TX)
[56,57]. The Biomarker Core of ADNI has worked to
make this a standardized procedure across multiple ADNI
sites, and Shaw et al [56] presented an analysis of within-
site and intersite assay reliability across seven centers using
aliquots of CSF from normal control subjects and AD
patients. Five CSF pools were tested, each pool made up
of either AD patients (n5 2) or controls (n5 3). Each center
performed three analytical runs using separate fresh aliquots
of each CSF sample and data were analyzed using mixed-
effects modeling to determine assay precision. The coeffi-
cient of variation was 5.3% for Ab-42, 6.7% for t-tau, and
10.8% for p-tau within center, and 17.9% for Ab-42,
13.1% for t-tau, and 14.6% for p-tau between centers. The
authors concluded that although they found good within-
laboratory assay precision, the reason for the reduced inter-
laboratory precision is not fully understood and may be
caused by many sources of variability.
3.2. Methods for MRI image preparation and processing

A large portion of ADNI research relies on the extraction
of information from MRI images; therefore, the develop-
ment of automated methods to reliably and robustly process
thousands of scans from multiple centers is vital to the pro-
ject. Processing steps include whole brain extraction, image
registration, intensity normalization, tissue classification
(segmentation), cortical thickness estimation, and brain atro-
phy estimation [58].

3.2.1. Whole brain extraction
The separation of brain from nonbrain voxels in neuroi-

maging data, known as whole brain extraction or “skull-
stripping,” is an important initial step in image analysis.
Inaccuracies at this step can lead to the introduction of arti-
facts adversely affecting further analysis; therefore, a robust
and accurate automated method for this step is highly desir-
able. To this end, Leung et al [58] compared the accuracy of
a technique, multiatlas propagation and segmentation
(MAPS), previously developed for hippocampal segmenta-
tion ([59]; see later section), with three other widely used au-
tomated brain extraction methods: brain extraction tool,
hybrid watershed algorithm, and brain surface extractor.
They found that compared with the semiautomated “gold
standard” segmentation, MAPS was more accurate and reli-
able than the other methods and that its accuracy approached
that of the gold standard, with a mean Jaccard index of 0.981
using 1.5-T scans and 0.980 using 3-T scans of control, MCI,
and AD subjects.

3.2.2. Automated registration and segmentation
As manual registration and segmentation of images into

WM, GM, and CSF is time-consuming, rater-dependent,
and infeasible for a large study because of its often prohibi-
tive cost, a number of studies have focused on developing
automated registration and segmentation methods.

3.2.2.1. Atlas-based registration
Wolz et al [60] offered a solution in which atlases are

automatically propagated to a large population of subjects
using a manifold learned from a coordinate embedding sys-
tem that selects similar images and reduces the potentially
large deformation between dissimilar images, thereby reduc-
ing registration errors. This learning embeddings for atlas
propagation method resulted in a more accurate segmenta-
tion of the hippocampus compared with other multiatlas
methods [60].

The use of more than one atlas on which to register brain
images has been recognized as a powerful way to increase
accuracy of the automatic segmentation of T1-weighted
MRI images, as it addresses the problem of brain variability.
The steps of the process have been described by Lotjonen
et al [61] and are presented in Fig. 6. Initially, multiple
atlases are nonrigidly registered to the patient image, after
which majority voting is applied to produce class labels
for all voxels. Then, postprocessing by a variety of algo-
rithms takes into account intensity distributions of different
structures.

The addition of atlases has been found to increase seg-
mentation accuracy in a logarithmic manner, that is, rapidly
at first, but eventually slowing toward a maximum. This in-
creased accuracy must be balanced by the increased compu-
tation time required for each additional atlas [61]. Lotjonen
et al [61] obtained the best segmentation accuracy with rel-
atively few [8–15] atlases, and, additionally, found that
postprocessing using either the graph cuts or expectation
maximization algorithms contributed to an optimized
multiatlas segmentation method that balanced accuracy
and computation times. They also found that the use of
normalized intensity differences in the nonrigid registration
step produced segmentation accuracy similar to that found
using the more computationally intensive normalized
mutual information method.

The selection of the atlases is a critical step. Heckeman
et al [62] described the case in which the use of atlases based
on the brains of young people resulted in occasional gross
segmentation failures due to ventricular expansion in the
older AD subjects. To overcome this problem, they modified
a hierarchical registration approach by changing the first
three levels to a tissue classification algorithm, instead of
using native magnetic resonance (MR) intensity data. This



Fig. 6. Steps of multiatlas segmentation. (I) nonrigid registration used to register all atlases to patient data, (II) classifier fusion using majority voting for pro-

ducing class labels for all voxels, and (III) postprocessing of multiatlas segmentation result by various algorithms, taking into account intensity distributions of

different structures. Reproduced with permission from Ref [61].
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multiatlas propagation with enhanced registration approach
was found to create accurate atlas-based segmentations and
was more robust in the presence of pathology than previous
approaches.

Leung et al [58] generated multiple segmentations using
nonlinear registration to best-matched manually segmented
library templates and combined them using a simultaneous
truth and performance level estimation algorithm. MAPS
was then used to measure volume change over 12 months
by applying the BSI. The accuracy of MAPS was found to
compare favorably to manual segmentation, with a mean dif-
ference between automated and manual volumes of approxi-
mately 1% and a Dice score of 0.89 compared with other
methods developed by ADNI (0.86: Morra et al [63]; 0.85:
Wolz et al [64]; and 0.89: Lotjonen et al [61]).

3.2.2.2. Other registration methods
In addition to registration of images to one ormore atlases,

segmentation of images may use image statistics to assign la-
bels for each tissue or use geometric information such as
deformable models or active contours [65]. A method that
combines elements of these two approaches was described
by Huang et al [65], who used an edge-based geodesic active
contour. They found that this method segmented a range of
images more accurately and robustly than those using indi-
vidual statistical or geometric features only.

Calvini et al [66] developed software for the automatic
analysis of the hippocampus and surrounding medial tempo-
ral lobe (MTL) and the calculation of a novel statistical
indicator, theD-box, computed on intensities of the automat-
ically extracted regions Their method did not directly seg-
ment the hippocampus, relying instead on the use of the
D-box to assess intensities after a manual extraction step.

A computational processing application to measure sub-
tle longitudinal changes using nonlinear registration to the
baseline image was described by Holland and Dale [67].
This method, called quantitative anatomical regional change
(QUARC), used nonrigid 12-parameter affine registration,
image smoothing minimization, normalization of local in-
tensity nonuniformity, direct calculation of the displacement
field of the region of interest (ROI) rather than the Jacobian
field, and bias correction. When QUARC was compared
with four other common registration methods used on
ADNI data, it produced significantly larger Cohen d effect
sizes in several ROIs than FreeSurfer v4.3 (Athinoula A.
Martinos Center for Biomedical Imaging, Massachusetts
General Hospital, Boston, MA; http://surfer.nmr.mgh.
harvard.edu/), voxel-based morphometry, and TBM, and
a similar whole brain effect size to the standard KN-BSI
method. Although, unlike the other methods, the signal-to-
noise ratio of the raw images obtained using QUARC was
enhanced by back-to-back repeat scans, the authors con-
cluded that QUARC is a powerful method for detecting lon-
gitudinal brain morphometric changes in levels varying from
the whole brain to cortical areas to subcortical ROIs.

3.2.3. Automated temporal lobe and hippocampal
segmentation

In AD, atrophy in MTL and, in particular, the hippocam-
pus is associated with declining cognitive function. It is not
surprising, then, that a substantial body ofwork has been pub-
lished on the subject of analyzing structural MRI

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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T1-weighted measurements of this region. Chupin et al [68]
developed a fully automated method for hippocampal seg-
mentation based on probabilistic information derived from
an atlas built from the manually segmented hippocampi of
16 young subjects and anatomical information derived
from stable anatomical patterns. Wolz et al [64] used a fully
automated four-dimensional (4-D) graph-cut approach to
hippocampal segmentation that segmented serial scans of
the same patient. Power analysis of the method revealed
that a clinical trial for an AD-modifying drug would require
67AD or 206MCI patients to detect a 25% change in volume
loss (80% power and 5% significance). Morra et al [69] de-
veloped the auto context model (ACM), a fully automated
method to segment the hippocampus, based on the machine
learning approach, AdaBoost. After training the classifier
on a training set, ACM was able to discriminate between
AD, MCI, and control groups, suggesting that the automatic
segmentation is sufficiently sensitive to detect changes in
hippocampal volume over the course of disease progression.
Thismethodwas comparedwithmanual and other automated
methods for hippocampal segmentation, and also with TBM,
whichwas used to assess whole brain atrophy in an earlier pa-
per by the same group [63]. These authors found that ACM
compared well with hand-labeled segmentation and that the
volume atrophy over clinical groups and correlation with
clinical measures with ACM were comparable with that
found with other automated methods and better than TBM,
suggesting that the latter method may not be optimal for
assessing hippocampal atrophy.

Automatic image segmentation is prone to systematic er-
rors, which are introduced when these mostly knowledge-
based protocols mistranslate manual segmentation protocols
into the automatic format. Wang et al [70] presented a wrap-
per algorithm that can be used in conjunction with automatic
segmentation methods to correct such consistent bias. The
algorithm uses machine learning methods to first learn the
pattern of consistent segmentation errors and then applies
a bias correction to the mislabeled voxels detected in the ini-
tial step. When the algorithm was applied to four different
segmentation methods, it decreased the number of misla-
beled voxels by 14% (multiatlas hippocampal segmentation)
to 72% (FreeSurfer hippocampal segmentation) and resulted
in a higher Dice overlap than other hippocampal segmenta-
tion methods, including some of those by Leung et al, Chu-
pin et al, andMorra et al, described in this review [59,68,69].

Beyond volumetric analysis of ROIs, recent research has
focused on extracting more meaningful information from
the shape of brain structures, but most studies have not con-
sidered the pose, or location and orientation of the structure.
Bossa et al [71] presented amethod for the statistical analysis
of the relative pose of subcortical nuclei. The framework of
the analysis was a variety of approaches based on similarity
transformations with Reimannian metrics. Significant group
differences were found between control subjects, MCI
patients who did or did not subsequently convert to AD
(MCI-c and MCI-nc, respectively), and AD patients, and
the authors suggested that the method may be particularly
useful as an AD biomarker in conjunction with shape analy-
sis, as both approaches leverage complementary information.

3.2.4. TBM and DBM
Bossa et al [72] used themethod of TBM,which examines

the deformation fields generated when an image is registered
to a template. Previous work used large deformation algo-
rithms for the nonrigid registration step, as they have the flex-
ibility to characterize anatomical variability in cross-sectional
studies. These algorithms are, however, computationally
intensive, and the authors proposed a simplified version of
the large deformation algorithms, stationary velocity field dif-
feomorphic registration. When the method was evaluated us-
ing ADNI subjects, it provided brain atrophy maps at high
spatial resolution with lower computational requirements.
Hua et al [73] examined two methods of image registration
in TBM and found that the method in which each image is
aligned to a single template was a more effective measure
of brain deterioration. They also found TBM to be better
suited to analyzing morphometric changes over larger areas,
such as the entire temporal lobe, rather than specific ROIs,
such as the hippocampus, and that atrophic changes detected
by their method correlated well with clinical measures of
brain deterioration (Mini-Mental State Examination
[MMSE] and clinical dementia rating [CDR] scores).

Yushkevich et al [74] examined the use of DBM, a tech-
nique closely related to TBM in estimating longitudinal hip-
pocampal atrophy in the ADNI cohort. They found that
without a correction for asymmetry that arises during longitu-
dinal image registration, substantial bias can result in the
overestimation of the rate of change of hippocampal atrophy.
Park and Seo [75] tackled the problem of accurate registration
algorithms required in DBM to compute the displacement
field. They proposed a method that uses multidimensional
scaling to improve the robustness of the registration step,
and found that thismethod improves the ability ofDBMto de-
tect shape differences between patients.

3.2.5. Quantification of brain morphometric changes
Several papers have focused on the development of

methods for quantifying structural changes across the whole
brain from structural MRI scans. Chen et al [76] developed
a semiquantitative brain and lesion index based on T1- and
T2-weighted imaging. They found that both the T1-based
and T2-based scores correlated with age and cognitive per-
formance and differentiated between control, MCI, and AD
subjects. Acosta et al [77] presented a new accurate and com-
putationally efficient voxel-based method for 3-D cortical
measurement. The method, which uses an initial Lagrangian
step to initialize boundaries using partial volume information
and a subsequent Eulerian step to compute the final cortical
thickness, offered higher statistical power to detect differ-
ences between clinical groups with a slight increase in com-
putational time compared with methods using only the
Eulerian step. The authors proposed that the increased
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accuracy and precision are attributable to the Lagrangian
step, which effectively achieves subvoxel accuracy.

3.2.6. Fractal analysis
A different approach for detecting atrophy in disease

progression based on fractal analysis has been described
by King et al [78]. Recognizing that the cerebral cortex
has fractal properties, such as being statistically self-
similar, this group investigated the effect of AD on gyrifi-
cation using fractal analysis. They found that fractal
analysis of cortical ribbons was able to discriminate be-
tween AD and control subjects in all of the seven regions
tested, apart from the hippocampus, and suggested that
this method may play a complementary role to ROI ap-
proaches, especially at earlier stages of disease progres-
sion. In a subsequent work, King et al [79] presented
a new method for fractal dimension analysis of the cortical
ribbon that also measured cortical thickness. When this
method was compared with gray/white and pial surface
cortical models, they found that it was the only measure-
ment to have a significant correlation with cortical thick-
ness and ADAS-cog scores, and that it best discriminated
between control subjects and AD patients. The authors con-
cluded that the fractal dimension of the cortical ribbon has
strong potential as a quantitative marker of cerebral cortex
atrophy in AD. Li et al [80] presented a method to reliably
measure cortical thickness for longitudinal studies by in-
corporating 4-D information from successive scans directly
into processing steps. In the absence of a gold standard
against which to test their method, they used power analy-
sis of the correlation between cortical thickness and the
MMSE to show that this method improved longitudinal sta-
bility compared with 3-D methods that do not take the tem-
poral factor into account.

3.2.7. Other MRI methods
Risser et al [81] presented a new method to compare

imaged shapes, either longitudinally or against an atlas, on
several different scales simultaneously, and to quantify the
deformations on a single scale using large-scale deformation
diffeomorphic mapping. When the method was applied to
examine hippocampal atrophy in ADNI patients using base-
line and 24-month scans, it was found to be able to extract
information at the desired scale among all the scales.

A modification of the voxel-based analysis and statistical
parametric mapping method for the detailed spatial analysis
of image data without a priori defined ROIs was proposed by
Zhang and Davatzikos [82]. Their method, optimally
discriminative voxel-based analysis, uses non-negative dis-
criminative projection applied to the spatial neighborhood
around each voxel to find the optimally discriminative direc-
tion between two groups, determines a statistic for each
group, and obtains a statistical parametric map of group dif-
ferences. Optimally discriminative voxel-based analysis was
found to perform well compared with traditional statistical
parametric mapping using an ADNI data set.
3.3. Methods for AD classification from imaging data

The development of automatic methods for the accurate
classification of patients into clinical groups from imaging
data has been the aim ofmultipleADNI studies.Many of these
classification methods are based on support vector machines
(SVMs), a set of algorithms that uses supervised learning of
pattern recognition in a training set to build a classifier to pre-
dict the category to which a new example belongs. Some
methods condense imagingdata into one score that is reflective
of brain abnormalities associated with AD to allow the direct
comparison of patients, thereby facilitating their classification
into patient group [83–85], whereas others examine which
combination of imaging, CSF biomarkers, genetics, and
other factors results in the most accurate classifiers [86,87],
or formulate novel approaches for identifying AD-like pat-
terns [87–90]. Other methods leverage the changes in spatial
connectivity between different areas of the brain that most
likely occur, as functional connectivity becomes affected
during disease progression [65,83]. Finally, some methods
[91,92] use an alternative approach to machine learning,
a relevance vector machine (RVM), which, unlike the binary
SVM, is a probabilistic machine learning algorithm. A brief
description of these methods is given later in the text, and
their results are presented and compared with existing
methods of classification in section 5.4.1.
3.3.1. Magnetic resonance imaging
Fan et al [83] used an SVM to construct a classifier based

on patterns of spatial distribution of brain tissue from T1-
weighted MRI scans of control subjects and AD patients
and applied this classifier to scans of MCI patients. The clas-
sifier, which acts as an indicator of how the structural profile
of an individual fits that of AD or control subjects, also pro-
duced a structural phenotypic score (SPS) that allowed direct
comparison of patients. This approach differs from ROI or
voxel-based analyses, as it examines spatial patterns of atro-
phy rather than individual brain regions, and is also able to ex-
amine functional connectivity. Shen et al [89] also developed
a method that integrated feature selection into the learning
process, but used sparse Bayesian learning methods instead
of an SVM. They reported that their automatic relevance
determination and predictive automatic relevance determina-
tion, in general, outperformed the SVM used for comparison
and classified patients more accurately than the method of
Hinrichs et al [88]. Stonnington et al [91] used regression
analysis based on an RVM to analyze T1-weighted MRI
data and predict clinical scores, whereas Franke et al [92]
used an RVM combined with an automatic preprocessing
step and dimension reduction using principal component
analysis to estimate the age of healthy subjects from T1-
weightedMRI data, and found the method to be reliable, effi-
cient, and scanner independent. In contrast to the supervised
SVMsused in the aforementioned studies, FilipovychandDa-
vatzikos [93] used a semisupervised SVM to classify MCI-c
and MCI-nc patients. In the supervised approach, there is an
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assumption that patterns in a heterogeneous construct like
MCI are known, but in a semisupervised approach, only
some of the data, in this instance, baselineMRIs fromAD pa-
tients and control subjects, are labeled, whereas scans ofMCI
patients are left unlabeled. Using a leave-one-out approach,
scans were then classified as having a degree of AD-like or
normal-like anatomic features, as defined by Fan et al [83].

Amore data-driven approach for patient classification that
circumvents the need for a priori definedROIs by using an ini-
tial independent component analysis (ICA) stepwas proposed
byYang et al [94]. Their preliminary study combined the ICA
step to extract defining neuroimaging features with a subse-
quent SVM for classification of scans intoAD,MCI, and con-
trol subjects, and the resulting method was tested on two
cohorts, including ADNI. Pelaez-Coca et al [95] compared
ability of anatomical versus statistically defined ROIs to dis-
criminate between control andADsubjects.Using a variety of
classifiers, they sought to restrict the number of features using
principal component analysis and found that a higher number
of features did not necessarily correspond with higher classi-
fication accuracy.When generalizability of the algorithmwas
tested by analyzing classification performance of 20 different
experiments inwhich different subsets of the cohortwere used
as training and testing sets, they found that the resulting var-
iability was larger than within the different classifiers used.
Finally, they found that statistically definedROIs representing
voxelswith the largest significance difference in a group com-
parisonwith an unbiased atlas (belonging to voxels in the hip-
pocampi and amygdalae) resulted in better classification
accuracy than anatomically predefined ROIs in the hippo-
campi, lateral ventricles, and amygdalae.

3.3.2. [18F]-fluorodeoxyglucose-positron emission
tomography

Haense et al [84] also used a discrimination procedure,
developed by the European Network for Standardization of
Dementia Diagnosis, which generates a measure reflective
of scan abnormality from FDG-PET data. This measure,
AD t-sum, is calculated from the sum of abnormal t-values
in voxels known to be affected by AD, and was used for dis-
crimination of clinical groups. A similar approach was used
byChen et al [85], who developed an automatically generated
hypometabolic convergence index (HCI) reflective of the
degree to which the patient’s pattern and magnitude of cere-
bral hypometabolism corresponded to that of probable AD
patients.Huang et al [65] identified changes in spatial connec-
tivity patterns based on sparse inverse covariance estimation
using FDG-PET data. Salas-Gonsalez et al [90] developed
an automated procedure to classify AD patients from FDG-
PET data using a t test to select voxels of interest and factor
analysis to reduce feature dimension. The resulting factor
loadings were tested on three different classifiers, two Gauss-
ian mixture models with either linear or quadratic discrimi-
nant functions and an SVM. Lemoine et al [87] used
a combination of feature selection and data fusion to construct
SVMs from both FDG-PET and clinical data. To extract the
most meaningful features from FDG-PET scans, they used
an evolutionary algorithm inwhich each feature corresponded
to one gene, the number of features was arbitrarily selected to
be 30, and which was complete when an area under the curve
(AUC) of 0.98 was achieved on the training data set. SVMs
were also constructed for a range of clinical features, and
the results of these and the FDG-PET classifiers were
weighted and data finally fused to create a final classifier.

3.3.3. Cognitive methods
Llano et al [96] developed a cognitive test based on

ADAS-cog as an alternative to imaging or CSF biomarkers
for use as an outcome measure or for subject enrichment
in clinical trials. The ADAS.Tree composite was derived
by weighting test components of ADAS-cog based on their
ability to discriminate between control, MCI, and AD sub-
jects of the ADNI cohort using a Random Forests tree-
based algorithm. ADAS.Tree discriminated between patient
groups as well as, or better than, the best imaging or CSF
biomarkers or cognitive tests. Optimal sets of markers for
the prediction of 12-month decline were then determined
using machine learning algorithms, and performance of the
derived cognitive marker was found to be comparable
with, or better than, other individual or composite baseline
CSF or neuroimaging biomarkers. The authors suggest that
the ADAS.Tree might prove more widely applicable than
expensive and/or invasive imaging or CSF biomarkers.

3.3.4. Combined modalities
The new machine learning algorithm of Hinrichs et al

[88], which uses data from both MR and FDG-PET images,
integrates a spatial discrimination step to identify
AD-related patterns in different brain regions, rather than as-
sessing these relationships at the pre- or postprocessing steps.
3.4. Other imaging methods

Rousseau [97] presented a method for generating a high-
resolution image from a low-resolution input, using jointly
one low-resolution image and intermodality priors from
another high-resolution image to create a super-resolution
framework, for instance, a high-resolution T1-weighted
image and a low-resolution T2-weighted image from the
same patient. The method, when tested on clinical images
from ADNI data, automatically generated high-resolution
images from low-resolution input, and the authors suggest
that this method may permit the investigation of multimodal
imaging at high resolution.

The problem of representing a high dimensionality of
brain images amassed in common neuroimaging applica-
tions was tackled by Gerber et al [98], who proposed that
these images can be approximated by a low-dimensional,
nonlinear manifold representative of variability in brain
anatomy. They constructed a generative manifold model
through kernel regression and tested this using ADNI data,
and their finding was that important clinical trends were
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captured by this manifold when learned manifold coordi-
nates and clinical parameters were subjected to analysis by
linear regression.
3.5. Statistical methods

Interpretationof imagingdata is a key facet in the process of
extracting meaningful information from these scans. As the
volume of neuroimaging data generated byADNI studies bur-
geons, there is an obvious need formore sophisticated analysis
techniques. Habeck and Stern [99] reviewed advances in mul-
tivariate analysis techniques that are being developed to super-
sede the more commonly used univariate, voxel-by-voxel
analysis of imaging data. By evaluating the correlation or co-
variance of activation across brain regions, these multivariate
techniques produce results that can be interpreted as neural
networks, thereby addressing brain functional connectivity.
Habeck and Stern [99] directed this review specifically at neu-
roscientists to explain the “bewildering variety of (multivari-
ate) approaches .presented.typically by people with
mathematics backgrounds.” In an effort to further spread the
word to neuroscientists about this technique, a video article
is also available [100].

Wu et al [101] presented a method to assess the reliability
of hypometabolic voxels during the statistical inference
stage of analysis. The aim of this method was to incorporate
the differential involvement of each voxel into the multiple
comparison correction, as opposed to current methods in
which each location is treated equally. They used statistical
parametric mapping and bootstrap resampling to create
a bootstrap-based reliability index and compared this
approach with the commonly used type I error approach,
and found a strong, but nonlinear, association between the
two methods. The authors suggest that this approach could
have utility in both cross-sectional and longitudinal studies,
in the early detection of AD, and in tracking disease progres-
sion in clinical trials.

Singh et al [102] presented a new method to relate com-
plex anatomical changes observed in AD patients with
changes in cognition based on a statistical analysis of large
deformation diffeomorphic metric mapping. In this method,
the diffeomorphic transformations were analyzed using
a multivariate and partial least squares approach without
segmentation or the use of a priori defined ROIs. They found
that this approach associated ventricular expansion, cortical
thinning, and hippocampal atrophy with worsening scores
on neuropsychological variables such as ADAS-cog, Rey
Auditory Verbal Learning Test (AVLT), and clinical demen-
tia rating-sum of boxes (CDR-SB), confirming that this data-
driven approach was able to reach similar conclusions as
other studies based on predefined ROIs.
3.6. Genetics methods

Genetic contributions to AD are being revealed by GWAS
that search for associations between QTs in the form of
imaging or biomarker data and genetic loci. The standard
approach (mass univariate linear modeling), which com-
pares each phenotype–genetic loci pair individually and
then ranks the association in terms of significance, is
extremely computing-intensive and can miss information
from areas surrounding a particular association. Vounou
et al [103] proposed a new method, sparse reduced rank
regression, which overcomes these problems by enforcing
sparsity of regression. They found sparse reduced rank
regression to be less computing-intensive and to have better
power to detect deleterious genetic variants than mass uni-
variate linear modeling. An alternative approach to reducing
computational requirements, while retaining a high degree
of significance to AD, has been presented by Chen et al
[104], who used each of 142 preselected imaging ROIs as
QTs in a GWAS. Heat maps and hierarchical mapping
were then used to organize and visualize results and to select
target SNPs, QTs, or associations for further analysis.

In addition to computational challenges, imaging genetics
studies with multiple testing are also prone to false-positive
results, and both familywise error and false discovery rate cor-
rections are used to adjust significance thresholds acrossmul-
tiple voxels. Silver et al [105] measured false-positive rates
using VBM to investigate the effect of 700 null SNPs on
GM volume in the ADNI cohort. They found that although
false-positive rates were generally found to be well con-
trolled, under certain conditions, such as under low cluster-
forming thresholds, the false-positive rates were substantially
elevated. Consequently, they proposed the use of parametric
randomfield theory cluster size inference and alternative non-
parametric methods under different circumstances.
3.7. Methods papers: Summary and conclusions

Papers focused on method development have been instru-
mental in facilitating ADNI research thus far and promise to
deliver improvements in reliability, efficiency, and effective-
ness in ADNI-GO and ADNI-2. The establishment of stan-
dardized protocols that account for problems of variability,
both across the multicenter setting of ADNI and longitudi-
nally, has been a primary accomplishment. Likewise, the de-
velopment of methods for automatic tissue registration and
segmentation that avoid the necessity of time-consuming
and costly manual segmentation is critical for the analysis
of ADNI data. The majority of these approaches are atlas-
based, although statistically based registration has also
been proposed. Automatic segmentation of the hippocam-
pus, a prominent AD biomarker, poses particular challenges
because of its size and location, and several studies have
made contributions to the analysis of its volume, shape,
and pose. TBM and DBM methods and fractal approaches
offer an alternative to volumetric ROI analysis. Methods to
allow the classification of patients according to disease sta-
tus have primarily been based on SVMs and the related
RVMs, which are used to build classifiers that can include
MRI, FDG-PET, biomarker, APOE 34, and cognitive data.
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Finally, statistical methods have been developed to deal with
the complexities of the volume and diverse types of data gen-
erated by ADNI studies.
4. Studies of the ADNI cohort

4.1. Clinical characterization

Central to achieving the goals of ADNI was the recruit-
ment of a study population that mirrors cohorts used in
MCI and mild AD trials. Petersen et al [106] presented
a baseline and 12-month longitudinal clinical characteriza-
tion of the ADNI cohort, comprising 229 normal control
subjects, 398 subjects with MCI, and 192 subjects with
mild AD, and provided clear support for the success of
ADNI in this regard. The demographic characteristics of
the participant groups, given in Table 3, indicate that the co-
hort was mostly white and well educated, and that there were
a high proportion of APOE 34 carriers, consistent with pop-
ulations recruited for clinical trials. At baseline, each study
group differed significantly in a range of cognitive measures,
with the MCI group intermediate between the control and
AD groups in measures of memory impairment and in levels
of CSF biomarkers (Table 4). In contrast to AD subjects who
were impaired in virtually all cognitive measures, MCI sub-
jects were only mildly impaired in nonmemory cognitive
measures. After 12 months, 16.5% of MCI subjects had con-
verted to AD, and a greater increase in the ADAS-cog was
seen in the AD group compared with the MCI group. Little
change was observed in control subjects. The study also
found that baseline Ab-42 levels were predictive of the pro-
gression of clinical measures over 12 months.
Table 3

Demographic characteristics of ADNI participant groups

Characteristic Control subjects (n 5 229) MCI group (n

Age, mean 6 SD, years 75.8 6 5.0 74.7 6 7.4

Education, mean 6 SD, years 16.0 6 2.9 15.7 6 3.0

Years from symptom onset Not available Not available

% Female 48.0 35.4

Marital status, %

Married 80.2

Widowed 17.5 12.1

Divorced 7.4 6.3

Never married 6.6 1.5

Unknown 0.4 0

APOE 34, %

Carriers 26.6 53.3

Noncarriers 73.4 46.7

Ethnicity

American Indian 0 0.3

Asian American 1.3 2.3

African American 7.0 3.5

Hispanic 0.9 3.5

White 90.8 90.5

Other 0 0

NOTE. Reproduced with permission from Ref [106].

*Multiple comparisons abbreviated as: (a) control subjects differ from subjects

subjects differ from subjects with MCI.
4.2. Medication use

Medication use among the ADNI cohort was investigated
by Epstein et al [107]. They found a high rate of polyphar-
macy, with 85% of participants taking more than four med-
ications, the average being eight (SD 5 4). Moreover, 22%
of participants reported taking one or more Beers list medi-
cations deemed to be potentially dangerous in the elderly
population. The most common medications for symptomatic
treatment of AD or MCI were the cholinesterase inhibitor
donepezil and the N-methyl-D-aspartate partial receptor ag-
onist memantine, which were frequently taken as a combina-
tion therapy. Despite the lack of FDA approval for use of
these drugs to treat MCI, donepezil, memantine, and other
cholinesterases were commonly used by MCI patients.
Women, less educated, and more elderly participants were
less likely to receive treatment. Schneider et al [108] focused
on the use of cholinesterase inhibitors and memantine in the
ADNI cohort. They found that 44% ofMCI patients and 85%
of mild AD patients were treated with cholinesterase inhib-
itors, and that 11% of MCI patients and 46% of mild AD pa-
tients were treated with memantine. In both patient groups,
use of these medications was associated with increased cog-
nitive impairment at baseline, a higher rate of clinical de-
cline over 2 years, and a more rapid progression to
dementia in MCI patients. Cholinesterase inhibitors and
memantine appeared to be more frequently prescribed to pa-
tients diagnosed as having MCI due to AD, despite a lack of
evidence from clinical trials and lack of FDA approval for
this treatment. The authors suggested that use of these med-
ications may affect the interpretation of clinical trial out-
comes.
5 398) AD (CDR: 1.0) group (n 5 192) P value P , .05*

75.3 6 7.5 .137

14.7 6 3.1 ,.001 b, c

3.9 6 2.5 NA

47.4 .002 a, c

.002 a

81.2

10.4

4.7

3.6

0

,.001 a, b, c

66.1

33.9

0

1.0

4.2

2.1

92.2

0.5

with AD, (b) subjects with MCI differ from subjects with AD, (c) control



Table 4

Baseline assessments of the ADNI cohort

Assortment variable

Control subjects MCI AD

P value P , .05*Mean SD Mean SD Z score MCI–control Mean SD Z score AD–MCI

MMSE score 29.1 6 1.0 27.0 6 1.8 218.8 23.3 6 2.1 221.3 ,.001 a, b, c

CDR global score 0.0 6 0.0 0.5 6 0.0 397 0.7 6 0.3 13.4 ,.001 a, b, c

CDR-SB 0.0 6 0.1 1.6 6 0.9 34.9 4.3 6 1.6 21.3 ,.001 a, b, c

Memory 0.0 6 0.0 0.6 6 0.2 61.3 1.0 6 0.3 16.5 ,.001 a, b, c

Orientation 0.0 6 0.0 0.2 6 0.3 17.5 0.8 6 0.4 17.7 ,.001 a, b, c

Judgment 0.0 6 0.1 0.4 6 0.3 21.8 0.8 6 0.4 14.6 ,.001 a, b, c

Community affairs 0.0 6 0.0 0.2 6 0.2 13.1 0.7 6 0.4 16.9 ,.001 a, b, c

Hobbies 0.0 6 0.0 0.2 6 0.3 15.1 0.8 6 0.5 15.9 ,.001 a, b, c

Personal care 0.0 6 0.0 0.1 6 0.2 4.4 0.2 6 0.4 4.3 ,.001 a, b, c

Hachinski score 0.6 6 0.7 0.6 6 0.7 0.8 0.7 6 0.7 0.7 .418 NA

GDS score 0.8 6 1.1 1.6 6 1.4 7.3 1.7 6 1.4 0.6 ,.001 a, b

FAQ 0.1 6 0.6 3.9 6 4.5 16.2 13.0 6 6.9 16.8 ,.001 a, b, c

ADAS-cog total 6.2 6 2.9 11.5 6 4.4 18.1 18.6 6 6.3 14.0 ,.001 a, b, c

ADAS word list immediate recall 2.9 6 1.1 4.6 6 1.4 16.8 6.1 6 1.5 12.2 ,.001 a, b, c

ADAS word list recognition 2.6 6 2.3 4.6 6 2.7 10.1 6.6 6 2.8 8.2 ,.001 a, b, c

ADAS-cog without word list 0.8 6 0.9 2.3 6 2.0 12.9 5.9 6 4.1 11.4 ,.001 a, b, c

ADAS word list delayed recall 2.9 6 1.7 6.2 6 2.3 20.8 8.6 6 1.6 15.0 ,.001 a, b, c

AVLT trials 1-5 43.3 6 9.1 30.7 6 9.0 216.7 23.2 6 7.7 210.4 ,.001 a, b, c

AVLT delayed recall 7.4 6 3.7 2.87 6 3.3 215.6 0.7 6 1.6 210.3 ,.001 a, b, c

AVLT DR/trial, 5% 65.8 6 27.6 32.1 6 33.1 213.9 11.2 6 22.0 29.3 ,.001 a, b, c

Trails A 36.5 6 13.2 44.9 6 22.8 5.9 68.0 6 36.9 8.0 ,.001 a, b, c

Trails B 89.2 6 44.3 130.7 6 73.5 8.8 198.9 6 87.2 9.2 ,.001 a, b, c

Category fluency (animal) 19.9 6 5.6 15.9 6 4.9 29.1 12.4 6 4.9 28.1 ,.001 a, b, c

Category fluency (vegetable) 14.7 6 3.9 10.7 6 3.5 212.7 7.8 6 3.3 29.8 ,.001 a, b, c

Number cancellation 0.4 6 0.7 1.0 6 0.9 8.0 1.8 6 1.3 7.6 ,.001 a, b, c

Boston Naming Test 27.9 6 2.3 25.5 6 4.1 29.4 22.4 6 6.2 26.2 ,.001 a, b, c

Digit backward 7.2 6 2.2 6.2 6 2.0 26.0 5.0 6 1.8 27.2 ,.001 a, b, c

Clock drawing 4.7 6 0.7 4.2 6 1.0 27.6 3.4 6 1.3 27.5 ,.001 a, b, c

CSF biomarkers (pg/mL) (n 5 114) (n 5 199) (n 5 102)

Tau 69.7 6 30.4 101.4 6 62.2 6.0 119.1 6 59.6 2.4 ,.001 a, b

Ab242 205.6 6 55.1 162.8 656.0 26.6 143.0 6 40.8 23.5 ,.001 a, b, c

p-tau181P 24.9 6 14.6 35.5 6 18.0 5.7 41.6 6 19.8 2.6 ,.001 a, b, c

Abbreviations: GDS, Geriatric Depression Score; FAQ, Functional Activities Questionnaire; ADAS-cog, cognitive subscale of the Alzheimer’s Disease As-

sessment Scale; AVLT, Rey Auditory Verbal Learning Test; CDR-SB, clinical dementia rating-sum of boxes.

NOTE. Reproduced with permission from Ref [106].

*Multiple comparisons abbreviated as: (a) control subjects differ from subjects with MCI, (b) control subjects differ from subjects with AD, (c) subjects with

MCI differ from subjects with AD.
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4.3. Baseline and longitudinal studies of brain
morphometric changes during disease progression

ADNI has afforded a unique opportunity to examine brain
morphometric changes that occur during disease progression
in a large, well-defined cohort. Using MRI data,
cross-sectional and longitudinal studies focused either on
evaluating spatial pattern and regional rates of atrophy or
on characterizing biomarkers for varying disease stages
have together resulted in amore detailed and coherent picture
of this complex process.

A cross-sectional study by Fennema-Notestine et al [109]
examined the feasibility of high-throughput image analysis
to detect subtle brain structural changes in the early stages
of AD. They further divided the MCI group, based on neuro-
psychological performance, into single-domain and multi-
domain groups, which they proposed represented earlier
and later stages in disease progression, respectively. Using
comparisons of cortical thickness, they found a pattern of
progressive atrophy from normal control subjects to
single-domain MCI subjects, to multidomain MCI subjects,
and finally to subjects with AD (Fig. 7). When ROIs were ex-
amined, they found that the regions that differed between the
control group and the single-domain MCI group included
not only the hippocampus and entorhinal cortex, which
had the largest effect sizes, but also other temporal regions,
the temporal horn of the lateral ventricle, rostral posterior
cingulate, and several parietal and frontal regions. Relative
to control subjects, multidomain MCI patients had greater
differences in the same regions as well as in the lateral infe-
rior, middle, and superior temporal gyri and fusiform corti-
ces. Additional atrophy was seen in AD patients relative to
control subjects in the inferior parietal, banks of the superior
temporal sulcus, retrosplenial, and some frontal regions.
Similar results were reported in a cross-sectional study by



Fig. 7. Group differences in average thickness (mm) for left hemisphere.

Top row: NC vs. SMCI; middle row: normal controls (NC) vs. MMCI; bot-

tom row: NC vs. AD. Left mesial views, right lateral views. The scale ranges

from , 20.3 (yellow) to . 10.3 (cyan) mm thickness. Areas on the red-

yellow spectrum indicate regions of thinning with disease: approximate

color scale in mm is20.05 to20.15 dark red,20.20 bright red,20.25 or-

ange, and , 20.30 yellow. For thicker regions: 10.05 to 10.15 blue. Any

differences smaller than 6 0.05 mm are gray. Reproduced with permission

from Ref [109].
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Karow et al [110], who found a pattern of atrophy spreading
from the mesial temporal lobe in MCI patients to widespread
areas in AD patients. Fennema-Notestine et al [109] also ex-
plored the trajectories of change of ROIs over the course of
the disease and found that although some regions, such as
mesial temporal regions, exhibited a linear rate of atrophy
through both MCI stages to AD, other regions, such as the
lateral temporal middle gyrus, retrosplenial cortex, inferior
parietal cortex, and rostral middle frontal cortex, exhibited
accelerated atrophy later in the disease.

The idea that rates of change of atrophy are not uniform
but vary by disease stage is supported by several studies.
When MCI groups were classified according to subsequent
clinical outcome, Leung et al [59] found higher rates of hip-
pocampal atrophy in MCI-c than MCI-nc patients.
McDonald et al [111] examined regional rates of neocortical
atrophy in the ADNI cohort, dividing MCI subjects into two
groups by their CDR-SB scores. The less impaired MCI
group had CDR-SB scores of between 0.5 and 1.0, whereas
the more impaired group had CDR-SB scores of between
1.5 and 2.5 (AD subjects had CDR-SB scores of .2.5).
They found that over the course of disease progression, atro-
phy changed from the medial and inferior lateral temporal,
inferior parietal, and posterior cingulate cortices initially,
to the superior parietal, prefrontal, and lateral occipital corti-
ces, and finally to the anterior cingulate cortex (Fig. 8).More-
over, the rates of change differed among the three groups. The
least impairedMCI patients showed the greatest rates of atro-
phy in the medial temporal cortex, whereas later in disease
progression, rates of atrophy were higher in the prefrontal,
parietal, and anterior regions. Similar patterns were found
by several other groups using a range of MRI methods. Hua
et al [112] and Leow et al [113] both used TBM to create 3-D
maps of structural changes over 12 months. Risacher et al
[114,115] examined a variety of structural MRI markers for
their sensitivity to longitudinal change and clinical status
using multiple methods, including VBM and ROIs,
whereas Schuff et al [116] focused on changes in hippocam-
pal volume, and McEvoy et al [117] calculated an atrophy
score based on ROIs most associated with AD atrophy. Col-
lectively, these studies showed atrophy spreading from the
MTL to the parietal, occipital, and frontal lobes over the
course of the disease, with MCI patients, in general, having
a more anatomically restricted AD-like pattern of change.
MCI subjects who converted to AD within the time frame
of the study (MCI-c) had a more AD-like pattern of atrophy,
and nonconverters (MCI-nc) had a pattern more intermediate
between control and AD subjects (Fig. 9). Several stud-
ies [114,115,118,119] divided the MCI group into those
patients who converted to AD within a year and those who
remained stable. Each group had distinct profiles when
assessed using a score derived from patterns of structural
abnormality, the future converters having mostly positive
scores that reflected a largely AD-like pattern of brain atro-
phy. Conversely, the distribution of abnormality scores in
the MCI-nc group was bimodal, reflecting the heterogeneity
of this group that appears to contain some members who,
with abnormality scores close to those of AD patients, are
likely to convert in the near future.

The highest rates of change occurred in AD subjects and
MCI-c patients in measures of hippocampal volume and en-
torhinal cortex thickness [115,120]. Schuff et al [121] found
that atrophy was detectable at 6 months and accelerated with
time to 12 months in MCI and AD subjects, with the highest
rates of atrophy seen in AD patients (Fig. 10). Hua et al [120]
used TBM to examine the effects of age and sex on atrophic
rates and found that the atrophic rates of women were 1% to
1.5% higher than for men. They also observed a 1% increase
in atrophic rate and a 2% increase in ventricular expansion
for every 10-year decrease in age, with correlations strongest
in the temporal lobe.

A different data-driven approach to determining the time
course of brain volume changes in healthy elderly, MCI, and
AD subjects without using a priori models was taken by
Schuff et al [116]. Using generalized additive models to an-
alyze serial MRI scans over 30 months, they found that atro-
phy rates varied nonlinearly with age and cognitive status,
most noticeably in temporal regions, and that atrophy tended



Fig. 8. Annual atrophy rates as a function of degree of clinical impairment. Clinical impairment measured using baseline clinical dementia rating-sum of boxes

(CDR-SB) scores. Mean atrophy rates are represented as a percent change in neocortical volume and mapped onto the lateral (left), ventral (middle), and medial

(right) pial surface of the left hemisphere. These data demonstrate that atrophy rates are most prominent in posterior brain regions early in the course of disease,

spreading to anterior regions as the level of impairment increases, with relative sparing of sensorimotor regions. Reproduced with permission from Ref [111].
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to level off in control and MCI-nc subjects, but decline fur-
ther in MCI-c and AD patients. The authors suggest that
these differences are a reflection of the different processes
involved in healthy versus disease-related neurodegenera-
tion. The regions with the greatest effect sizes between
young control and AD subjects were the entorhinal cortex,
the hippocampus, and the lateral ventricles, suggesting that
rates of change in these regions have potential as biomarkers
for the early detection of AD.

Beyond simple volumetric analysis, one approach to an-
alyzing brain morphometric changes in greater detail has
been to assess changes in shape of ROIs. Qiu et al [122]
used large deformation diffeomorphic metric mapping to re-
veal that the anterior of the hippocampus and the basolateral
complex of the amygdala had the most surface inward defor-
mation in MCI and AD patients, whereas the most surface
outward deformation was found in the lateral ventricles
(Fig. 11). These results are in agreement with the volumetric
findings of Apostolova et al [123] and also with many find-
ings documenting the enlargement of the lateral ventricles
with disease progression.

4.4. Associations between characteristics of the ADNI
cohort

A major area of focus in research using ADNI data has
been the elucidation, both at baseline and longitudinally, of
associations between various imaging, CSF, genetic, and
clinical correlates in different clinical groups to gain a better
understanding of the interplay of biomarkers throughout dis-
ease progression.

4.4.1. Magnetic resonance imaging

4.4.1.1. Temporal lobe
Structures within the temporal lobe have long been asso-

ciated with AD decline because of their critical role in the



Fig. 9. Distribution of atrophy scores used to classify subjects with MCI.

MCI atrophy score was derived from LONI data archive trained on data

from all control subjects and subjects with AD. Discriminant model as-

sumed equal prior group probabilities. Individuals were classified as having

control phenotype if their scores were above –0.33. Cutoff score was chosen

to maximize overall accuracy of classifying control subjects and subjects

with AD on whom this model was trained. Average atrophy score for sub-

jects with MCI was –0.50. Atrophy score is not normally distributed (Kol-

mogorov–Smirnov test 5 0.73, df 5 175, P 5 .025) but shows evidence of

bimodal distribution. Reproduced with permission from Ref [117].
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formation of long-term memory, one of the first functions to
be affected in disease progression. Leow et al [113] found
temporal lobe atrophy to be associated with increased cogni-
tive impairment in MCI patients, as indicated by changes in
CDR, MMSE scores, and the AVLT (Fig. 12). Among the
structures of the temporal lobe, hippocampal atrophy is the
best studied structural biomarker, as it is one of the earliest
structures to degenerate in AD. In a small initial study,Morra
et al [63] found that bilateral hippocampal atrophy at baseline
was strongly correlated with both MMSE and CDR-SB
(Table 5). A further larger study by the same group [124] ex-
amined rates of hippocampal atrophy over 12 months and
found that these correlated with both baseline cognitive
scores on MMSE and global and sum of boxes CDR and
with longitudinal change in these measures (Table 5). Wolz
et al [64] also revealed significant correlations between rates
of hippocampal atrophy and both baseline MMSE and CDR,
and changes in these measures over 12months (Table 5). Ad-
ditionally, a study by Schuff et al [121] found that rates of
change of MMSE and ADAS-cog were associated with rates
of hippocampal atrophy (Table 5). Using TBM,Hua et al [73]
found that baseline temporal lobe atrophy was associated
with both baseline and change in the CDR-SB in MCI and
AD patients, but with change in the MMSE only in the AD
group, providing further evidence for the acceleration of atro-
phic change with disease progression.

The relationships between hippocampal volume and
memory retention were examined by Apostolova et al
[123], who found that MCI patients had bilateral associa-
tions between hippocampal volume and radial distance and
three tests of delayed recall (DR): ADAS-cog-DR, AVLT-
DR, and the Wechsler Logical Memory Test II-DR, whereas
associations between these tests in AD patients were stron-
ger in the left hippocampus both at baseline and at the
12-month follow-up (Table 5). In addition, they found highly
significant regional associations for memory performance,
especially in the CA-1 subregion and the subiculum on the
anterior hippocampal surface. Associations between tempo-
ral lobe degeneration and memory performance (Wechsler
Memory Scale-Revised—Logical Memory, immediate
recall and DR) were also found by Hua et al [73]. Along
with hippocampal atrophy, ventricular expansion is a hall-
mark of brain morphometric changes that occur during AD
progression and has great potential as a structural biomarker,
as the lateral ventricles are comparatively easy to measure,
because of their high contrast underMRI, and are highly sen-
sitive to disease progression. Evans et al [125] found that
ventricular expansion differentiated between patient groups
was associated with ADAS-cog scores in AD patients, and
that MCI-c patients had higher rates of ventricular expansion
than MCI-nc patients. Chou et al [126] automatically map-
ped ventricular geometry and examined correlations
between surface morphology, clinical decline, and CSF bio-
markers. They found that ventricular enlargement at base-
line correlated with diagnostic group, depression severity,
both baseline and rates of change of cognitive function
(MMSE and CDR-SB), and lower CSF Ab-42. In a subse-
quent study by the same group [127] using automated radial
mapping to generate statistical maps, ventricular enlarge-
ment was found to correlate with a large number of measures
of clinical decline as well as with lower levels of CSFAb-42
and the APOE 34 allele (Fig. 13). Chou et al [126] also noted
expansion of the posterior regions of the ventricles in MCI
patients and in the frontal regions of the superior horns in
AD patients compared with control subjects, suggesting a to-
pographic sequence of morphometric change throughout
disease progression.

The studies of Morra et al [124], Wolz et al [64], Hua et al
[112], and Risacher et al [115] all found that carriers of the
APOE 34 allele had higher rates of hippocampal atrophy
than noncarriers. In contrast, Schuff et al [121] found that
increased rates of hippocampal atrophy were associated
with APOE 34 in the AD, but not MCI or control, group. Us-
ing Structural Abnormality Index (STAND) scores to reflect
the overall level of AD-like anatomic features, Vemuri et al
[128] also found that the APOE 34 allele contributed to
MRI atrophy. Hua et al [112] found that the APOE 34 allele
had a dose-dependent detrimental risk with greater atrophy
in the hippocampus and temporal lobe in homozygotes
than heterozygotes in MCI and AD groups (Fig. 13). The re-
cently identified AD risk allele GRIN2b was associated with
higher rates of temporal lobe atrophy in the pooled group, but
moreweakly thanAPOE 34 [120]. Other thus far unidentified
genetic risk factors likely contribute to AD, with epidemio-
logical studies suggesting maternal history of the disease



Fig. 10. Individual trajectories of hippocampal volume change. Thick black lines indicate themean trajectory change of each group.Reproducedwith permission

from Ref [121].
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increases the risk of developing AD. Andrawis et al [129] ex-
amined the influence of maternal history of dementia on hip-
pocampal atrophy and found smaller baseline and 12-month
follow-up hippocampal volumes inMCI patients with mater-
nal, but not paternal, history. APOE 34-positive patients
also had decreased hippocampal volumes, regardless of pa-
rental history. These results suggest the involvement of ma-
ternally inherited genetic material, encoded on either the X
chromosome or mitochondrial genome. The latter may be
more likely, given that decline in mitochondrial function
has been found to lead to increased generation of reactive
oxygen species, enhanced apoptosis, cell loss, and brain atro-
phy [129].
Fig. 11. Group differences in regional shape deformations. Abbreviations: Am, am

caudate; Pu, putamen; Pa, globus pallidus; Th, thalamus. Reproduced with permi
4.4.1.2. Other ROIs
Although the caudate has not been the subject of intensive

AD research, it plays a crucial role in the formation of new
associations required for the acquisition of explicit memo-
ries. Madsen et al [130] found that baseline caudate atrophy
was associated with a number of clinical and biochemical
measures, including, most strongly, body mass index
(BMI), in the AD group alone and in the pooled sample,
and CDR-SB and MMSE scores at baseline (Table 5). There
appeared to be preferential right caudate atrophy in AD pa-
tients, and the authors proposed that caudate atrophy might
function as a complementary biomarker to other structural
measures. The inferior parietal lobe (IPL) is involved in
ygdala; Hp, hippocampus; V, ventricles; iLV, inferior lateral ventricles; Cd,

ssion from Ref [122].



Fig. 12. Cumulative distribution function (CDF) plots for voxelwise correlation of progressive temporal lobe tissue loss in MCI, AD, and pooled groups. (A)

Correlations with various biomarker indices, including Ab-42 (AB142), tau protein (TAU), phosphorylated-tau 181 (PTAU), tau/Ab-42 ratio (TAUAB), and p-

tau/Ab-42 ratio (PTAUAB), and (B) correlations with various clinical measures. Reproduced with permission from Ref [113].
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Table 5

Associations between biomarker and clinical measures in ADNI cohort (correlation coefficients)

Biomarker N

Clinical

group

Clinical correlates

ReferenceMMSE DMMSE CDR-SB DCDR-SB ADAS-cog

DADAS-

cog

LM-II-

DR AVLT

TMTA

and B

Hippocampal

volume (L/R)

21 Pooled

sample

0.423*/0.529y 20.369*/20.705y [63]

12-month hippocampal

atrophy rate (L/R)

490 Pooled

sample

20.191y

/20.168y
0.117y/

0.136y
0.173y/

0.181y
20.174y/

20.171y
[124]

12-month hippocampal

atrophy rate (L/R)

555 Pooled

sample

20.52z

/20.43z
0.36z/

0.30z
0.47z/

0.38z
20.27z/

20.21z
[64]

Hippocampal radial

distance (L/R)

245 MCI 20.20y/20.17y 0.24x/0.31x 0.27x/0.25x [123]

98 AD 20.21*/NS NS/NS 0.21*/NS

Hippocampal atrophy

rate

498 Pooled

sample

0.18* [121]

607 MCI Learning Retention [140]

0.36z 0.37z

Cortical thickness

Entorhinal 0.33z 0.33z

Parahippocampal 0.22z 0.23z

Frontal caudal middle 0.16z NS

Rostral middle 0.23z 0.16c

Lateral orbitofrontal 0.16z NS

Inferior parietal 0.24z 0.17z

Precuneus 0.25z 0.16z

Cortical thickness

(L/R)

536 Pooled

sample

Posterior cingulate 0.14z/0.13y 0.22y/0.19y [138]

Caudal middle NS/NS 0.17y/0.15y High EF: TM A

1 B Low EF:

AVLT

Rostral middle 0.30y/0.13z 0.18y/0.21y

Superior frontal NS/0.13y 0.16y/0.17y

Operculum NS/NS 0.14y/0.16y

Lateral bifrontal NS/NS 0.15y/NS
Frontal polar NS/NS 0.17y/NS
STAND score 399 Pooled

sample

20.50z 0.59z [132]

192 MCI 20.19y 0.26z

98 AD 20.29y 0.34z

Ab242 399 Pooled

sample

0.31z 20.37z

192 MCI NS NS

98 AD NS NS

Caudate volume 400 Pooled

sample

0.175* 20.209* [130]

Hippocampal volume

[130]

0.349* 20.365*

Ventricular volume 20.205* 0.225*

(Continued )
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Table 5

Associations between biomarker and clinical measures in ADNI cohort (correlation coefficients) (Continued )

iomarker N

Clinical

group

Clinical correlates

ReferenceMMSE DMMSE CDR-SB DCDR-SB ADAS-cog

DADAS-

cog

LM-II-

DR AV T

TMTA

and B

redicted scores from

whole brain gray

matter volumes

586 Pooled

sample

[91]

MSE 0.47z

DAS-cog 0.49z

VLT NS

iomarker N

Clinical

group

Clinical correlates

MMSE DMMSE CDR-SB DCDR-SB FAQ ADAS-cog

LM-II-

DR AVLT

TMTA

and B

DG 12 months ROI

ecline in CMRgl

154 MCI 0.22y 20.19* NS [104]

69 AD NS 20.25* NS

DG-PET regional-

to-whole brain CMRgl

(L/R)

[134]

osterior cingulate 298 Pooled

sample

NS 20.47x/NS

recuneus 0.36x/0.37x 20.46x/20.49x

arietal 0.26x/0.36x 20.42x/20.47x

emporal 0.43x/0.32x 20.41x/20.41x

rontal 0.23x/0.22x 20.24x/20.26x

edial temporal NS 20.36x/20.41x

ccipital 0.31x/0.22x 20.37x/20.26x

PiB uptake 61{ Pooled

sample

20.22 (P 5 .09) NS [16]

entricular

expansion

20.52y 20.42y

161 Pooled

sample

Learning Recognition [136]

ippocampal volume 0.35x,** 0.34x,**
arahippocampal

complex volume

NS 0.17*,**

recuneus cortical

thickness

0.22y,** NS

nferior parietal lobe

metabolism

0.23y,** NS

ippocampal

metabolism

0.15*,** 0.25x,**

POE genotype NS 0.14*,**

DG-ROIs baseline 95 AD NS 21.95y,** [135]

FDG-ROIs 21.21y,** 23.25z,**
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FDG-ROIs baseline 208 MCI 20.88z,** 20.66y,**
DFDG-ROIs NS 21.08z,**
ypometabolic

onvergence index

188 Pooled

sample

20.48 0.54 0.53 20.43 0.45 [85]

50 MCI [155]

ippocampal volume NS NS 0.41*

etrosplenial volume 20.42* 20.43* NS

etrosplenial

metabolism

0.47* NS NS

ntorhinal

metabolism

0.38* NS NS

D LM-I Boston

Naming

Category

fluency

TMT B [142]

ight medial lobe

atrophy rate

20.41z,yy

eft entorhinal cortex 0.47z,yy

eft lateral lobe thinning 0.31z,yy

eft temporal lobe

atrophy rate

0.38z,yy

eft frontal lobe —

pars orbitalis

0.33z,yy

Learning Delayed

recall

[110]

ippocampal volume 156 MCI 20.388 0.279 0.459

ntorhinal metabolism 20.406 0.175 0.318

Abbreviations: ROI, region of interest; CMR-gl, cerebral metabolic rate for glucose; TMT, Trail Making Test; NS, not significant.

*P , .05.
yP , .01.
zP , .001.
xP , .0001.
{Includes 23 subjects from the Mayo Clinic Study of Aging.

**b values from regression model.
yyFigures from a mixed effect model that examined baseline level and longitudinal change as independent variables as predictors of change.
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Fig. 13. Apolipoprotein E (APOE) gene effects on regional brain volumes. Maps show the mean percent differences in regional brain volumes for four different

group comparisons. Percent differences are displayed on models of the regions implicated: (A) ventricular cerebrospinal fluid (CSF), (B) sulcal CSF, (C) hip-

pocampi, and (D) temporal lobes; dotted lines show the boundary of the hippocampus. Reproduced with permission from Ref [112].
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sensory and motor association and possibly comprises part
of the memory circuitry. Greene and Killiany [131] exam-
ined the associations between subregions of the IPL (gyrus,
banks, and fundus) and cognitive measures in control, MCI,
and AD subjects. They found that compared with control
subjects, MCI patients differed only in the thickness of the
banks of the left IPL, a change that correlated with decreased
scores in the AVLT-DR, whereas AD patients had significant
morphometric changes in all subregions of the right IPL.
These results suggest a temporal sequence of changes during
disease progression, with atrophy beginning in the left IPL
and spreading to the right.

4.4.1.3. Multiple ROIs and whole brain studies
Other MRI studies have used approaches based on the

whole brain or multiple ROIs, rather than specific ROIs.
Evans et al [125] examined brain atrophy rates using the
brain BSI technique and found atrophy to be associated
with MMSE and ADAS-cog scores in MCI and AD patients.
Within the MCI group, they found greater rates of change, in
a range similar to that observed in the AD group, in subjects
who converted to AD within the time frame of the study.
Stonnington et al [91] found that whole brain GM at baseline
predicted baseline scores on the ADAS-cog and, MMSE, but
not on the AVLT (Table 5). The latter is a more specific test
of memory, and the authors suggest that whole brain
methods may be preferentially more highly sensitive to tests,
unlike the AVLT, that involve diverse brain regions. Vemuri
et al [132] used STAND scores as a measure of the degree of
AD-like anatomic features to assess correlations between
brain morphometric changes and cognitive scores, and found
that STAND scores were highly correlated with CDR-SB
and MMSE scores in individual groups and the pooled sam-
ple (Table 5). These studies lend support for atrophy of the
whole brain or multiple ROIs as biomarkers, based on their
ability to differentiate between patient groups and healthy
control subjects, and to track disease progression and clini-
cal decline.

A measure derived from a multidimensional scaling
method for quantifying shape differences using DBM [75]
had a strong inverse correlation with the MMSE (r 5
20.53), although the findings were limited by small sample
size. Using the related method of TBM, Ho et al [133] cre-
ated regional maps of changes in brain tissue and used the
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resulting Jacobian values to represent brain tissue excess or
deficit relative to a template. They found that lower brain
volume in the frontal, parietal, occipital, and temporal lobes
was associated with higher BMI in MCI and AD patients,
and that ventricular expansion correlated with higher BMI
in AD, but not MCI, patients (Fig. 14). Every unit increase
in BMI was associated with a 0.5% to 1.5% decrease in brain
volume in patients of the ADNI cohort.

4.4.2. [18F]-fluorodeoxyglucose-positron emission
tomography

FDG-PET has been used by several groups to investigate
relationships between cerebral glucose hypometabolism and
other factors, including cognitive measures and CSF bio-
markers. Several papers confirmed that there is a characteristic
regional pattern of hypometabolism in MCI and AD patients.
Wu et al [101] found that hypometabolic voxels were associ-
atedwith the posterior cingulate/precuneus and parietotempo-
ral regions. Lower bilateral cerebralmetabolic rate for glucose
(CMRgl) at baseline in these regions and in the frontal cortex
was associated with higher CDR-SB and lowerMMSE scores
inMCI andADgroups [134] (Table 5).Although the pattern of
hypometabolismwas similar in the two groups, themagnitude
and spatial extent were greater with increasing disease sever-
ity. In the AD group alone, however, lower MMSE correlated
with lower left frontal and temporal CMRgl, suggesting that
the characteristic pattern of baseline reductions in glucoseme-
tabolism shifts to the frontal cortex after the onset of dementia.
Chen et al [104] investigated declines inCMRgl in statistically
predefined ROIs associated with AD over 12 months in the
ADNI cohort and found significant changes in MCI and AD
groups comparedwith control subjects bilaterally in the poste-
rior cingulate, medial and lateral parietal, medial and lateral
temporal, frontal, and occipital cortices. These changes corre-
latedwith CDR-SB, but not ADAS-cog, scores in both groups,
and with MMSE scores in the MCI group (Table 5). Landau
et al [135] found a greater decline in CMRgl in all a priori de-
fined ROIs in AD patients and in a composite score of ROIs in
MCI patients compared with control subjects. Longitudinal
Fig. 14. Association of regional brain tissue volumes with body mass index. Thes

a percentage, for every unit increase in body mass index, after statistically controlli

radiological convention (left side of the brain shown on the right) and are displayed

within each cohort (mean deformation template). Reproduced with permission fro
glucose decline was associated with concurrent ADAS-cog
scores and decline on the Functional Activities Questionnaire
(FAQ), validating the relevance of longitudinal measures of
glucose metabolism to both cognitive and functional decline.
The annual decline in the ADAS-cog and FAQ was greatest
in AD patients, followed by the MCI and control groups, in
accordance with an acceleration of the disease process over
time (Table 5). The hypometabolism index reported by Chen
et al [85] correlated with cognitive measures of disease sever-
ity, hippocampal volume, and CSF biomarkers (Table 5).
These papers support the use of glucosemetabolismas a sensi-
tive measure of cognition in AD.

4.4.3. Cognitive
A number of studies have focused on the relationship be-

tween cognitive function and imaging or CSF biomarkers.
Atrophic changes in the episodic memory network
(Fig. 15), which is composed of MTL structures, medial
and lateral parietal cortical areas, and prefrontal cortical
areas and is involved in the formation of new episodic mem-
ories, are presumed to underlie ongoing memory loss in AD.
Walhovd et al [136] studied how baseline brain morphome-
try and metabolismwithin the episodic memory network and
APOE genotype predicted memory, as assessed by the
AVLT. They found that in the total sample of the ADNI co-
hort, hippocampal volume and metabolism, parahippocam-
pal thickness, and APOE genotype predicted recognition,
whereas hippocampal volume and metabolism, cortical
thickness of the precuneus, and inferior parietal metabolism
predicted learning, suggesting that MTL structures are
related to learning, recall, and recognition, whereas parietal
structures are involved solely in learning (Table 5). The
authors concluded that MRI and FDG-PET imaging have
differential sensitivity to memory in AD and thus provide
complementary information. Episodic memory likely
involves a number of different cognitive processes, such as
initial encoding, learning on repeated exposure, and DR,
which may be subserved by disparate components of the ep-
isodic memory network. Wolk and Dickerson [137]
e represent the estimated degree of tissue excess or deficit at each voxel, as

ng for the effects of age, sex, and education on brain structure. Images are in

on a specially constructed average brain template created from the subjects

m Ref [133].



Fig. 15. The episodic memory network. Along with the hippocampal for-

mation, the cortical areas shown here are part of the episodic memory net-

work. Shown here are pial cortical representations of selected parcellations

in the left hemisphere. From left to right: medial, ventral, and lateral views.

Reproduced with permission from Ref [136].
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investigated whether verbal episodic memory could be frac-
tionated into dissociable anatomic regions in mild AD pa-
tients, using cortical thickness of predefined “AD
signature” ROIs and hippocampal volume as structural mea-
sures and different stages of the AVLT as a verbal memory
measure. They found that initial immediate recall trials
were most significantly associated with the temporal pole re-
gion, but that regions in the MTL became more significantly
associated in later trials. In tests of DR, only the hippocam-
pus correlated with performance, whereas the perirhinal/en-
torhinal cortex was most strongly associated with delayed
recognition discrimination. The authors concluded that their
results lend support to models hypothesizing that dissociable
brain regions are involved in differential episodic memory
processes. Associations between memory learning and brain
morphometry in the MTL were found in a study by Chang
et al [138]. MCI patients were differentiated into learning-
deficit and retention-deficit subgroups using the AVLT.
Low memory retention was associated with changes in the
medial temporal regions, particularly the hippocampus and
entorhinal cortex, whereas low memory learning correlated
with a more widespread pattern of morphometric changes
beyond the temporal lobe, including areas of the frontal
and parietal lobes (Table 5).While memory loss is a hallmark
of AD, a subset ofMCI patients is impaired primarily in their
executive function. Dickerson and Wolk [139] identified
dysexecutive and amnestic phenotypes in patients with
MCI or very mild AD based on performance on the Trail
Making Test and ADAS-cog subscale: Word recognition.
They found that the memory-impaired group had a more fre-
quent occurrence of the APOE 34 allele status than the dys-
executive group, and that patients with low executive
function had thinner frontoparietal cortical regions and
were more impaired in daily life than those with predomi-
nantly memory impairment. A further study by Chang et al
[140] found that MCI patients with high executive function
performed better on tests of verbal memory than those with
low executive function, and that morphometric measures of
the two groups differed primarily in the dorsolateral prefron-
tal and posterior cingulate cortices, where more thinning was
evident in low executive function patients (Table 5). Results
from both studies suggest that the dysexecutive phenotype
may reflect differences in underlying pathology in brain re-
gions beyond the MTL.

The ideas that different brains regions subserve different
cognitive functions and that MCI is a heterogeneous con-
struct led Wolk et al [141] to examine the influence of
APOE genotype on memory and executive function in AD.
When cortical thickness in predefined ROIs was examined
in carriers and noncarriers of the APOE 34 allele who had
a CSF biomarker profile consistent with AD, carriers were
more impaired in measures of memory retention and had
greater atrophy in medial temporal regions, whereas noncar-
riers were more impaired in tests of executive function,
working memory, and lexical access and had greater fronto-
parietal atrophy. The finding that neuroanatomic regions
thought to subserve different cognitive processes are differ-
entially affected by APOE 34 allele status supports the hy-
pothesis that this allele exerts its effect on AD by
influencing different large-scale brain networks.

The question of whether domain-specific cognitive defi-
cits in MCI are caused by global atrophy or progressive atro-
phy within specific regions was studied by McDonald et al
[142], who examined 2-year regional atrophy rates in MCI
patients. Stepwise regression models revealed that left ento-
rhinal atrophy, left lateral lobe thinning, left temporal lobe
atrophy, left frontal lobe atrophy rate, and the right MTL
atrophy rate were associated with memory decline (Logical
Memory II), naming decline (Boston Naming Test), seman-
tic fluency decline (Category Fluency Test), executive func-
tion (Trail Making Test B; TMT-B), and clinical decline
(CDR-SB), respectively (Table 5). This study affords
a glimpse into the specific structure–function relationships
that occur early in disease progression and enhances our
understanding of the neural basis of cognitive impairments.

Although studies, such as those described previously,
have focused on the relationship between brain atrophy,
APOE 34 status, and cognitive decline, relatively little is
known about the biomarkers of functional decline, a hallmark
ofAD. Accordingly, the rate of decline in the FAQ, ameasure
of the ability of patients tomaintain daily function, and how it
is affected by cerebral atrophy andAPOE 34 allele status, was
studied by Okonkwo et al [143]. They found that AD patients
had a higher rate of functional decline than control subjects,
with the rate of MCI patients intermediate between the two.
Moreover, MCI patients who subsequently progressed to de-
mentia had higher rates of decline on the FAQ than stable
MCI patients. Increasing ventricle-to-brain ratio, the mea-
sure of neurodegeneration chosen for the study, correlated
with increased functional impairment inMCI patients. Those
patients who were both APOE 34-positive and had elevated
ventricle-to-brain ratio were the most functionally impaired.
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These results parallel studies that have shown neurodegener-
ation and APOE 34 status to be associated with cognitive de-
cline. In a further study by the same group, Okonkwo et al
[144] investigated the relationships betweenCSF biomarkers
and everyday function, as assessed by the FAQ. They found
that biomarkers were more sensitive to functional decline
in control subjects and MCI patients than in AD patients,
and that in the latter group, scores on the ADAS-cog were
more highly correlated with functional activity. Combina-
tions of tau and Ab-42 abnormalities had the steepest rates
of functional decline across clinical groups. The authors sug-
gested that the effect of CSF abnormalities on functional de-
cline is partially mediated by their effect on cognitive status.

In elderly populations, in addition to brain atrophy or
genetic studies, BMI has been associated with cognitive
decline. Cronk et al [145] examined the relationship between
BMI and cognition in MCI patients and found that lower
BMI at baseline was associated with a decline in the
MMSE, ADAS-cog, and a global composite of the ADNI
neuropsychological battery, but not with CDR-SB scores
or conversion to AD. The causal relationships between
BMI and cognitive decline in MCI remain to be elucidated,
but the authors suggest either that low BMI is a result of fac-
tors associated with MCI or that MCI patients with low BMI
are predisposed to more rapid disease progression.

4.4.4. CSF biomarkers
The relationship between CSF biomarkers and neuronal

degeneration has been investigated by a number of groups
within and outside ADNI following the seminal publication
by Shaw et al [57], which defined cut points for CSF tau and
Ab-42 based on an ADNI-independent cohort of autopsy-
confirmed AD patients as well as normal control subjects
and then applied these cut points successfully to the ADNI
cohort. Follow-up studies went on to test the hypothesis
that changes in levels of biomarkers occur early in disease
and thus are likely predictive of future brain atrophy, if not
directly associated with all parts of the degenerative process.
For example, Tosun et al [146] examined how rates of re-
gional brain trophy were related to levels of CSF biomarkers
in MCI patients and healthy elderly control subjects. They
found that lower CSF Ab-42 levels and higher tau levels
were associated with increased atrophy in numerous brain
regions, beginning primarily in the temporal and parietal
cortices in MCI patients and extending to regions not nor-
mally associated with amyloid pathology, such as the cau-
date and accumbens areas, in AD patients. Schuff et al
[121] also found that increased rates of hippocampal atrophy
were associated with lower levels of Ab-42 in the MCI, but
not AD or control, group. Leow et al [113] used TBM to ex-
amine rates of atrophy and found that lower CSF Ab-42
levels, higher tau levels, and a higher p-tau/Ab-42 ratio
were significantly associated with temporal lobe atrophy in
the pooled group, and, additionally, that within the AD
group, levels of CSF p-tau and the p-tau/Ab-42 ratio were
also significantly associated. Fjell et al [147] investigated
whether baseline levels of CSF biomarkers were associated
with baseline brain morphometric differences between con-
trol, MCI, and AD subjects, as measured by cortical thick-
ness in a number of ROIs. They found that although CSF
biomarkers levels could not account for baseline differences,
they were moderately associated with longitudinal change in
multiple areas, including medial temporal regions and be-
yond.

A second focus of research into CSF biomarkers has been
how they are modulated by APOE genotype and their asso-
ciation with cognitive measures. Shaw et al [57] reported
that Ab-42 concentrations were dose dependent on the num-
ber of APOE 34 alleles, with the highest concentrations
found in homozygotes. Vemuri et al [128] found that Ab-
42 is more closely associated with APOE genotype than cog-
nitive function (MMSE, CDR-SB), but that APOE genotype
had no significant effect on levels of t-tau (Fig. 16). An ear-
lier study by the same group [132] investigated the relation-
ship between CSF biomarkers and cognitive function
(MMSE and CDR-SB), and found that the CSF biomarkers
Ab-42, t-tau, and p-tau181p were only significantly correlated
with cognitive function in the pooled sample (Table 5). Ott
et al [148] studied the relationship between CSF biomarkers
and ventricular expansion with the hypothesis that ventricu-
lar dilation may reflect faulty CSF clearance mechanisms re-
sulting in reduced levels of Ab. They found that ventricular
expansion was associated with reduced CSF Ab levels in
normal elderly carriers of APOE 34, but that in APOE 34-
positive AD patients, ventricular expansion was associated
with increased levels of tau and not Ab. The authors sug-
gested that the APOE 34 allele may exert its effect through
modulation of CSF–blood–brain barrier function.

The results from these studies support a model in which
changes in the levels of CSF biomarkers are an early step
in the course of the disease that reflects the degree of AD
pathology, and in which Ab-42 is modulated by the APOE
34 allele, which functions in the early stages of pathology
by reducing the efficiency of Ab-42 clearance. As described
in the Genetics section 5.3, Kim et al [149] performed
a genomewide search for markers associated with CSF ana-
lyte levels in the ADNI cohort. Overall, CSFAb-42 and tau,
in conjunction with imaging measures of atrophy, are prom-
ising biomarkers for early detection of AD.

4.4.5. 11C-PiB PET imaging
A complementary method for assessing amyloid deposi-

tion is 11C-PiB PET imaging. Jack et al [16] investigated the
relationship between amyloid deposition and ventricular ex-
pansion in the ADNI cohort by examining serial 11C-PiB
PET and MRI scans. They found no difference in the rate
of global PiB retention between clinical groups, and
changes in global PiB retention only weakly correlated
with concurrent decline on MMSE and CDR-SB. In con-
trast, ventricular expansion increased from control subjects
to MCI to AD groups and correlated strongly with concur-
rent cognitive decline (Table 5). The relationship between



Fig. 16. Correlations between biomarker levels, structural abnormalities,

and cognitive performance in APOE 34 carriers and noncarriers. Smoothed

biomarker (A and B) or STAND (C) z score curves plotted as a function of

cognitive performance (Mini-Mental State Examination, MMSE). Abbrevi-

ation: STAND, Structural Abnormality Index. Reproduced with permission

from Ref [128].
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PET and CSF biomarkers and cognitive measures in the
ADNI cohort at baseline was investigated by Jagust et al
[150]. CSF Ab-42 and 11C-PiB PET were found to be in
substantial agreement as measures of amyloid deposition,
and neither measure correlated with MMSE scores. In con-
trast, FDG-PET, as a measure of cerebral glucose metabo-
lism, was strongly correlated with MMSE scores, but
much less so with CSF biomarkers (Table 6). Apostolova
et al [151] also examined associations between hippocam-
pal atrophy, CSF biomarkers, and average cortical, precu-
neal, and parietal uptake of 11C-PiB. They found that
although all CSF biomarkers were associated with hippo-
campal atrophy, the strongest correlations were with
p-tau181p and the weakest with Ab-42. Precuneal 11C-PiB
uptake was most strongly associated with hippocampal
atrophy. Jack et al [152] examined the relationship between
log relative hazard of progressing from MCI to AD and both
hippocampal atrophy and amyloid load, measured as a com-
posite of 11C-PiB PET and CSF Ab-42 data. They found
that although the risk profile was linear throughout the
range of hippocampal atrophy, amyloid load reached a ceil-
ing at a certain concentration earlier in disease progression.
These papers support a disease model in which initial amy-
loid deposition occurs in the early stages and does not cor-
relate with cognitive decline, but stabilizes later in disease,
and in which neurodegeneration accelerates with disease
progression with concomitant cognitive decline.

4.4.6. Combined modalities
The dynamics of CSF, MRI, and FDG-PET biomarkers in

the ADNI cohort were studied by Caroli and Frisoni [153] in
an effort to understand how they change over the course of
the disease. Each biomarker differed between clinical
groups after post hoc analysis, and the authors found that
these measures of disease progression fit better in sigmoidal,
rather than linear, models, suggesting that individual bio-
markers vary in their rate of change during disease progres-
sion. Ab-42 imaging signals increased early in disease
progression and then plateaued, whereas CSF Ab-42
declined early and then plateaued, and hippocampal volume
followed a similar trajectory, with volumes increasing later
in disease progression. In contrast, FDG-PET measures of
glucose metabolism and CSF tau began to increase early
in disease progression and only stabilized at later stages of
disease, suggesting that there is an ongoing reduction in
glucose metabolism and tau-mediated neurodegeneration
throughout the early stages of AD (blue line in Figs. 2 and
17). Carriers of the APOE 34 allele had earlier
hippocampal atrophy. A similar study by Beckett et al
[154] also found that measures associated with early disease,
such as Ab-42, had greater changes in MCI patients than in
AD patients, and that those associated with later changes,
such as those in FDG-PET ROIs, were more evident in AD
patients (Table 7). The authors hypothesized that changes
in biomarkers may not be linear and that for each biomarker,
there may be steeper rates of change in some stages of



Table 6

Associations between imaging, clinical, and CSF biomarkers (correlation coefficients)

Imaging or clinical

biomarker N

Clinical

group

CSF biomarker correlates

ReferenceAb242 t-tau p-tau181p t-tau/Ab242

FDG-PET

composite ROI

Mean cortical

PiB SUVR

Hippocampal

volume (L/R)

388 Pooled

sample

0.11*/0.17y 20.17y/0.21z 20.17y/20.23z 20.17y/20.21z 20.24*/20.23* [151]

Mean cortical PiB

SUVR

55 Pooled

sample

20.73z 20.42x 0.49z 0.28* [34]

FDG-PET

composite ROI

0.33y 0.24 (P 5 .08) 0.34y

MMSE NS 0.26 (P 5 .055) 0.28* 0.63z NS

Ab242 0.38y

APOE 34 77 CN 20.50z NS NS [146]

119 MCI 20.49z 0.39z 0.34y

54 AD 20.53z NS NS

Abbreviations: NS, not significant; SUVR, standard uptake value ratio.

*P , .05.
yP , .01.
zP , .001.
xP , .0001.
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disease progression than others. In seeking an optimum
combination of imaging and CSF biomarkers to predict nor-
mal control/AD classification,Walhovd et al [155] examined
the relationships between the best predictive biomarkers and
changes in cognitive scores in the MCI group. They found
that changes in MMSE scores correlated with retrosplenial
volume and metabolism as well as entorhinal volume, but
that only hippocampal volume was associated with the Log-
ical Memory II-DR, and only retrosplenial volumewas asso-
ciated with changes in CDR-SB. No CSF biomarkers were
significantly associated with cognitive scores in this clinical
group (Table 5). Once again, these results are consistent with
the disease progression model in that earlier changes that are
reflected in CSF biomarkers do not correlate with clinical
measures, whereas changes in brain metabolism and mor-
phometry occur at later stages of the disease and therefore
correlate better with cognitive measures. Further support
for this model comes from the study of the annual change
in MRI and CSF biomarkers and how these are influenced
by APOE genotype in control, MCI, and AD subjects
[156]. Levels of neither Ab-42 nor t-tau changed signifi-
cantly over 12 months in any clinical group, but annual
changes in ventricular volume increased with disease sever-
ity and were correlated with worsening cognitive and func-
tional indices. APOE 34 carriers had higher rates of change
in ventricular volume, but not in levels of CSF biomarkers,
consistent with the model in which levels of Ab and tau pla-
teau as neurodegeneration becomes detectable by MR mea-
sures.

The question of whether structural or metabolic measures
are the most sensitive biomarkers of changes associated with
early stages of AD was investigated by Karow et al [110].
Directly comparing the ability of MR and FDG-PET mea-
sures in prespecified ROIs to detect such changes by quanti-
fying and comparing their effect sizes (Cohen d), they found
that largest morphometric effect size (hippocampal volume:
1.92) was significantly greater than the largest metabolic
effect size (entorhinal metabolism: 1.43). Both measures
were significantly associated with ADAS-cog and AVLT
scores in AD patients, but in MCI patients, the relationship
was only maintained with hippocampal volume (Table 5).
The authors concluded that for the detection of early AD,
MRI may be preferable to FDG-PET, as it is more sensitive,
more widely available, less invasive, and less costly.

4.4.7. Summary and conclusions of papers concerning
associations of the ADNI cohort

ADNIhas succeeded in recruitinga cohort ofMCI andmild
AD patients that mirrors populations used for clinical trials of
AD therapies. A number of cross-sectional and longitudinal
studies have lent support to a model of disease progression
in which the earliest indications of neurodegeneration occur
within the MTL, particularly the hippocampus, and atrophy
becomes more widespread in later stages, ultimately encom-
passing areas of the parietal, occipital, and frontal lobes. Rates
of atrophy are initially fastest in the temporal lobe, but accel-
erate in other regions as the disease progresses. Cortical atro-
phy and that of specific regions identified in the model of
disease progression as well as ventricular enlargement have
been correlated with measures of clinical severity. Structure–
function relationships within the brain are being elucidated
with findings that atrophy in dissociable anatomic regions,
especially within the episodic memory network, is associated
with different cognitive functions. Patterns of glucose hypo-
metabolism associated with AD have been identified, with
the precuneus and posterior cingulate typically displaying
the most reduced CMRgl and with reduced metabolism in
these key areas being associated with lower scores on cogni-
tive tests. The differential effects of an SNP in brain-derived
neurotrophic factor suggest that genetics may modulate



Fig. 17. Biomarker trajectories through disease progression. For each biomarker, individual z scores are plotted against ADAS-cog (cognitive subscale of the Alz-

heimer’sDiseaseAssessment Scale) scores, and the fitted sigmoid curve is displayed. Full circles denote healthy control subjects, full squaresMCI patients converted

toAD, empty circles earlyAD,and full triangles lateADpatients. Sigmoidfittingwasbetter than linearfitting for tau,Ab-42, andhippocampus (for the latter: sigmoid

nonsignificantly better than linear); linear fitting was better for [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET). Reproduced with permission

from Ref [153].
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glucose metabolism. Levels of CSF biomarkers, particularly
Ab and tau, have been associated with earlier stages of neuro-
degeneration. 11C-PiB PETAb imaging has largely confirmed
that decreased levels of CSFAb and increasing 11C-PiB PET
Table 7

Mean (standard deviation) of annualized change for selected ADNI

variables

Variable name

Annualized mean change by diagnosis

Normal control MCI AD

CSF Ab242 20.94 (18) 21.4 (17) 20.1 (14)

CSF tau 3.45 (13) 2.34 (21) 1.24 (24)

PiB 0.098 (0.18) 20.008 (0.18) 20.004 (0.25)

FDG-PET: ROI-avg 20.006 (0.06) 20.015 (0.064) 20.081 (0.047)

Hippocampus 240 (84) 280 (91) 2116 (93)

Ventricles 848 (973) 1551 (1520) 2540 (1861)

ADAS-cog total 20.54 (3.05) 1.05 (4.40) 4.37 (6.60)

MMSE 0.0095 (1.14) 20.64 (2.5) 22.4 (4.1)

CDR-SB 0.07 (0.33) 0.63 (1.16) 1.62 (2.20)

AVLT 5-trial total 0.29 (7.8) 21.37 (6.6) 23.62 (5.6)

NOTE. Reproduced with permission from Ref [154].
represent an early event in disease progression, and neither
amyloid imaging nor studies of CSF biomarkers have found
that levels of these biochemicals are strongly associated with
cognitive decline. Levels of CSF biomarkers have been found
tobe abnormal (i.e., decreasedCSFAb and increasedCSF tau)
early in disease and then plateau with little detectable change,
whereas glucosemetabolism remains relatively stable until the
latest stages of disease progression. Presence of the APOE 34
allele has been shown to enhance neurodegeneration and to
modulate levels of CSF biomarkers, but the exact mechanism
bywhich it exerts its effect remains unclear. Likewise, the role
of BMI has been the subject of contradictory reports, and it is
unknown whether changes in BMI influence disease develop-
ment or occur as a result of the disease.
4.5. Diagnostic classification of study participants

The ability to accurately diagnose to which clinical group
a subject belongs is a crucial one in the clinical trial design.
To this end, some researchers have investigated the ability of in-
dividual MRI, FDG-PET, and CSF biomarkers to discriminate
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between ADNI AD participants and ADNI control subjects,
and between MCI-c and MCI-nc subjects. Others have tried
to determine the optimum combination of these biomarkers
for ADNI participant classification, with many studies leverag-
ing knowledge of associations between various structural and
fluid biomarkers and the sequence of brain morphometric
change over the course of disease to guide development of
marker combinations. Discrimination between the clinically
distinct ADNI participant groups offers an important first step
in identifying biomarker diagnostic tools that can be validated
in representative population-based studies before clinical use.

4.5.1. Magnetic resonance imaging

4.5.1.1. Temporal lobe structures
Atrophy of the hippocampus, the best studied structure af-

fectedbyAD,has been used in patient classification by anum-
ber of groups. Chupin et al [68] correctly distinguished AD
patients from control subjects 76% of the time, and MCI pa-
tients whowould convert within 18 months from control sub-
jects 71% of the time (Table 8). Karow et al [110] found that
hippocampal volume discriminated between control subjects
and AD patients with an AUC of 0.90, and between control
subjects and MCI patients with an AUC of 0.75 (Table 8).
The discriminative ability of the rate of hippocampal atrophy
was investigated by Wolz et al [64], who found that their
method correctly classified 75% to 82% of AD patients and
70% of MCI patients who converted to AD over 12 months.
Their method was also able to discriminate between MCI-c
and MCI-nc patients at a rate of 64% (Table 8). Calvini et al
[66] derived a statistical indicator from the hippocampus
and other MTL structures and were able to discriminate be-
tween AD and control groups, and between MCI and control
groups, withAUCs of 0.863 and 0.746, respectively (Table 8).

4.5.1.2. Multiple ROIs and whole brain
Other methods have focused on many ROIs across the

brain, using the degree of association with AD to construct
a score reflective of the anatomic profile of AD. These in-
clude temporal, cingulate, and orbitofrontal regions. The
classifier developed by Fan et al [83] produced an SPS that
allowed direct comparison of patients and was able to dis-
criminate between AD and control subjects, between MCI
and control subjects, and between AD and MCI subjects
with AUCs of 0.965, 0.846, and 0.750, respectively (Table
8). Similarly, Misra et al [118] extracted an abnormality
score that discriminated MCI-c patients from MCI-nc
patients with a classification accuracy of 81.5 and an AUC
of 0.77 (Table 8). Using a semisupervised SVM, Filipovych
and Davatzikos [93] discriminated between MCI-c and
MCI-nc patients with an AUC of 0.69, comparing favorably
with fully supervised SVM methods (Table 8). They also
found that 79.4% of all converters were classified as AD-
like (the remainder being classified as normal-like). In addi-
tion, 51.7% of nonconverters were classified as normal-like
and the remainder as AD-like, perhaps representing a propor-
tion of MCI patients who would convert to AD further in the
future. The authors also found that semisupervised SVM
performed better than a fully supervised SVM in instances
when there were a small number of labeled images. The clas-
sifier developed by Yang et al [94], which relied on image
features defined by ICA, discriminated between control
and AD subjects with an accuracy of 80.7%, a sensitivity
of 81.9%, and a specificity of 79.5%, and between control
and MCI subjects with an accuracy of 71.1%, a sensitivity
of 73.2%, and a specificity of 68.6%, based on GM images
and a training set-to-test set ratio of 90%:10% (Table 8).

McEvoy et al [117] presented data from their fully cross-
validated linear discriminant model compared with partially
cross-validated models, and found that the fully cross-
validated model discriminated between AD and control sub-
jectswith an accuracyof 89%, a sensitivity of 83%, a specificity
of 93%, and an AUC of 0.915 (Table 8). They noted that these
numbers were lower than those obtained using the partially
cross-validated model, suggesting that numbers presented by
other studies using partially cross-validated models may be ar-
tificially high. Hinrichs et al [88] used a classifier based onGM
probability maps and found that it discriminated between AD
and control subjects with a sensitivity of 85% and a specificity
of 80%. Park and Seo [75] tested their method of multidimen-
sional scaling (MDS) of DBM and compared it with the ability
of hippocampal volume to discriminate between AD and con-
trol subjects. They found that their MDSmethod outperformed
hippocampal volume, yielding accuracies of 86.3%and 75.0%,
respectively (Table 8). Further details of classifier construction
using SVMs are given in the Methods section 3.3.

Longitudinal measurements of cortical thickness were
the focus of a classifier constructed by Li et al [157]. They
found that although the pattern of cortical thinning was sim-
ilar in all patient groups, the rate of thinning and ratio of
follow-up to baseline measures provided a better tool for dis-
tinguishing between MCI-c and MCI-nc patients. An addi-
tional complementary component in the form of a brain
network feature computed from the correlations of cortical
thickness changes with ROIs further improved classification
accuracy. The final classifier, comprising static, dynamic,
and network measures, discriminated between normal
control subjects and AD patients with an accuracy of
96.1%, and between MCI-c and MCI-nc patients with an
accuracy of 81.7% (Table 8).

4.5.1.3. Comparison of MRI methods
Cuingnet et al [158] directly compared 10methods for the

automatic classification of AD patients from anatomical MR
data using the ADNI database. Five voxel-based approaches,
three cortical approaches, and two methods based on hippo-
campal shape and volume were tested for their ability to dis-
criminate between control, MCI-c, MCI-nc, and AD
subjects. They found that voxel- or cortical thickness-based
whole brainmethods yielded highest sensitivities for ADver-
sus control subjects (maximum of 81%), but that sensitivities
were substantially lower for discriminating between MCI-c
and MCI-nc subjects (maximum of 70%).



Table 8

Methods for the classification of MCI and AD patients

Method

Control vs AD Control vs MCI Control vs MCI-c MCI-c vs MCI-nc
Cross-

validated? ReferenceSEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC

Hippocampal volume 75 77 76 61 71 72 72 67 66 60 [68]

Hippocampal volume 82 89 49 89 62 67 [68]**

12-month hippocampal

atrophy rates

81 83 82 0.88 59 71 63 0.71 73 78 76 62 68 66 [60]

MTL structural atrophy 74 85 0.86 45 85 0.75 85 83 0.88 [66]

SPS score 82 0.97 76 0.85 Yes [83]

SPS score 71 77 70 73 62 69 [83]**

ROI atrophy score 83 93 89 0.92 Yes [117]

DBM-multidimensional scaling 86.3 [75]

ROI atrophy score 81.5 0.70 Yes [118]

Semisupervised SVM, SPS score 79.6 85.7 82.9 0.69 Yes [93]

ICA and SVM–gray matter 81.9 79.5 80.7 73.2 68.6 71.1 [94]

FDG-PET abnormality index 83 78 0.90 [84]

FDG-PET functional connectivity 88 88 Yes [65]

FDG-PET factor analysis

feature selection

98.1 92.5 95.2 91.2 80.8 88.0 Yes [90]

AD-like brain regions Yes [88]

MRI 85 80 82 0.88

FDG-PET 84 82 84 0.87

Hippocampal volume [110]

MRI 0.90 0.75

Entorhinal metabolism

FDG-PET 0.71 0.63

AD-like brain regions–

Bayesian approach

87.6 [89]

Hippocampal volume,

ventricular expansion,

APOE, age

82 0.95 Yes [86]

Hippocampal volume,

ventricular expansion, age

71 0.86

T-tau 69.3 92.3 80.6 0.83 [57]

Ab242 96.4 76.9 87.0 0.91

p-tau181p 67.9 73.1 70.4 0.75

t-tau/Ab242 85.7 84.6 85.2 0.92

p-tau181p/Ab242 91.1 71.2 81.5 0.86

LRTAA model 98.2 79.5 89.9 0.94

Cortical normalized thickness

index (NTI)

0.76 Yes [165]

AVLT 0.67

ADAS-cog–DR 0.67

MMSE 0.64

Longitudinal cortical thickness:

static, dynamic, and

network features

96.1 81.7 0.88 [225]
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MRI: Hippocampal volume,

entorhinal thickness,

retrosplenial thickness

85.0 [155]

FDG-PET: Entorhinal, retrosplenial,

lateral orbitofrontal metabolism

82.5

CSF: t-tau/Ab242 81.2

Combination: Hippocampal volume,

retrosplenial thickness; entorhinal,

retrosplenial, orbitofrontal

metabolism, t-tau/Ab242

88.8

t-tau/Ab–42, left entorhinal

cortex, hippocampal volume

82.5 90.1 86.7 Yes [161]

t-tau/ Ab242, RAVLT

immediate and delayed recall,

TMT2B*

93.8 95.6 94.8

LTRAA, left entorhinal cortex,

hippocampal volume

90.1 92.1 91.1

LTRAA, left entorhinal cortex,

hippocampal volume, RAVLT

immediate and delayed recall, TMT-B

92.2 97.5 95.2

ADAS-cog 0.93 Yes [87]

FDG-PET–30 best features 0.94

Combined classifier 0.97

Abbreviations: t-tau, total tau; SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under the curve; SPS, structural phenotypic score; MTL, medial temporal lobe; DBM, deformation-based mor-

phometry; SVM, support vector machine; ICA, independent component analysis.

*MRI measures no longer significant in this model ** in [158].
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4.5.2. [18F]-fluorodeoxyglucose-positron emission
tomography

AsAD affects not only morphology but alsometabolism in
the brain, Haense et al [84] used theAD t-summeasure of scan
abnormality fromFDG-PET data to discriminate betweenAD
and control subjects with a sensitivity of 83% and a specificity
of 78% (Table 8). The HCI of Chen et al [85], which also cap-
italized on hypometabolism data across the entire brain, was
significantly different in control,MCI-nc,MCI-c, andADsub-
ject groups. Themethod ofHinrichs et al [88], described in the
MRI section, was also used with FDG-PET data and was able
to discriminate between AD and control subjects with a sensi-
tivity of 78% and a specificity of 78% (Table 8). Huang et al
[65] used FDG-PET data to examine functional connectivity
between brain regions and then leveraged the patterns they
found to be typical of AD for classification purposes. They
found that compared with control subjects, AD patients had
decreased temporal lobe inter-regional connectivity, espe-
cially in the hippocampus, and weaker between-lobe and
between-hemisphere connectivity. In contrast, MCI patients
had increased connectivity between occipital and frontal lobes
compared with control subjects, illustrating the uniqueness of
this condition. This method discriminated between AD and
control subjects with a specificity of 88% and a sensitivity of
88% (Table 8). Using their method based on feature selection
using factor analysis and an SVM, Salas-Gonzalez et al [90]
discriminated between AD and control subjects with sensitiv-
ity, specificity, and accuracy of 98.1%, 92.5%, and 95.2%, re-
spectively, and between MCI and control subjects with
sensitivity, specificity, and accuracy of 92.1%, 80.8%, and
88.0%, respectively (Table 8). Having identified entorhinal
metabolism as the FDG-PET measure with the largest effect
size for the detection of early AD, Karow et al [110] found
that this measure discriminated between control and AD sub-
jects with an AUC of 0.71, and between control andMCI sub-
jects with an AUC of 0.63 (Table 8). Mormino et al used
11C-PiB PET imaging to deduce a cutoff point to optimally
separate PiB-positive from PiB-negative MCI patients, and
found that PiB-positive MCI patients had lower hippocampal
volumes and greater episodic memory loss compared with
MCI patients with 11C-PiB levels below the cutoff point
of 1.465.

4.5.3. CSF biomarkers
Shaw et al [57] examined CSF biomarkers in the ADNI

cohort as well as in a cohort of non-ADNI autopsy-con-
firmedADpatients, with the goal of developing a “biomarker
signature” best able to predict AD and to classify patients
correctly. Like many smaller studies, they found that t-tau
and p-tau181p, as well as the t-tau/Ab-42 and p-tau181p/Ab-
42 ratios, all increased in MCI patients compared with con-
trol subjects, whereas CSFAb-42 decreased. The best single
measure for discriminating between AD and control subjects
was CSFAb-42, which had an AUC of 0.913, a sensitivity of
96.4%, a specificity of 76.0%, and an accuracy of 87%
(Table 8). Linear regression analyses determined which vari-
ables, including APOE genotype, contributed most to the
discrimination, and a final linear regression model, which
included Ab-42, APOE 34 carriers, and t-tau (LRTAAmodel),
resulted in enhanced discrimination over individual factors
(Table 8). De Meyer et al [159] used an unsupervised
learning method that did not presuppose clinical diagnosis
to identify biomarkers of AD. A mixture modeling approach
derived a signature, consisting of both Ab-42 and t-tau
concentrations, which had a sensitivity of 94% in
autopsy-confirmed AD patients from an independent
cohort and was present in 90%, 72%, and 36% of patients
with AD, MCI, and no cognitive impairment, respectively
(Fig. 18). APOE 34 carriers were over-represented in those
patients with the AD biomarker signature by a factor of
6.88:1. Interestingly, when modeling single biomarkers,
the cutoff concentration of Ab-42 that optimally delineated
AD patients from healthy elderly subjects was found to be
188 pg/mL, close to that found by Shaw et al [57] and Schott
et al [160]. Moreover, the proportion of healthy elderly sub-
jects with an identifying AD CSF biomarker signature was
similar to that found by Schott et al [160], and likely reflects
a proportion of cognitively normal elderly subjects who will
progress to MCI and AD in the future. Further, De Meyer
et al [159] examined another data set with MCI patients
(n5 57) followed up for 5 years, and they showed that their
model had a sensitivity of 100% in patients progressing to
AD. The finding that AD pathology is detectable in signifi-
cant numbers of healthy elderly control subjects has impor-
tant implications for future clinical trials and suggests the
possibility of presymptomatic treatment studies of potential
AD-preventive compounds.

4.5.4. Clinical
Llano et al [96] compared the ADAS-cog andMMSE tests

with a new form of ADAS-cog in which the subscores were
given weights using a Random Forests tree algorithm, thereby
resulting in a new metric, the composite ADAS.Tree. There-
fore, ADAS.Tree represents a multivariate model in which
subscales have been weighted according to their importance
in discriminating between AD and control subjects. When
the ability of ADAS.Tree to classify control, MCI, and AD
subjects was compared with that of ADAS-cog and MMSE,
the composite model generated a numerically highest test sta-
tistic. The authors suggest that this derivative of an internation-
ally recognized and easily administered test may offer a more
widely useful and less expensive approach to other imaging
and CSF biomarkers that can be invasive and/or expensive.

4.5.5. Combined modalities
The approach of Kohannim et al [86] combined multiple

factors, including MRI and FDG-PET measures, CSF bio-
markers, APOE genotype, age, sex, and BMI, to enhance
machine learning methods for AD diagnosis. They found
that the optimum combination of factors to discriminate be-
tween AD and control subjects—hippocampal volume, ven-
tricular expansion, APOE genotype, and age—yielded an



Fig. 18. Separation of control, MCI, and AD subjects using a CSFAb-42/t-tau mixed model signature. A combined CSFAb-42/t-tau mixed model was applied

to the subject groups. Densities of each signature are represented with confidence ellipses, and signature membership of the subject based on the mixture is

indicated with the corresponding color (signature 1 is the AD signature [red]; signature 2 is the healthy signature [green]). Reproduced with permission

from Ref [159].
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AUC of 0.945 with an accuracy of 82%, whereas to detect
MCI patients, the optimum combination of hippocampal
volume, ventricular expansion, and age yielded an AUC of
0.860 and an accuracy of 71% (Table 8). Walhovd et al
[155] likewise sought the optimum discriminatory combina-
tion of biomarkers. They found that the best MRI combina-
tion to discriminate between AD and control subjects
consisted of hippocampal volume, entorhinal thickness,
and retrosplenial thickness (85% accuracy); the best FDG-
PET combination was entorhinal, retrosplenial, and orbito-
frontal metabolism (82.5% accuracy); and the best CSF
combination was t-tau/Ab-42 (81.2% accuracy). Using step-
wise linear regression, they developed a final model that in-
cluded retrosplenial thickness and the t-tau/Ab-42 ratio as
predictors and which achieved 88.8% accuracy in the classi-
fication of AD versus control subjects. For the discrimina-
tion of MCI from control subjects, the optimum
combination of factors was found to be hippocampal volume
and the t-tau/Ab-42 ratio, with an accuracy of 79.1 %
(Table 8). Ewers et al [161] tested a variety of cross-
validated models of single or multiple predictors for their
ability to discriminate between control and AD subjects.
They found that the addition of neuropsychological tests,
specifically the AVLT immediate free recall and DR and
the TMT-B, to models that included only CSF and/or genetic
biomarkers and imaging measures resulted in increased
overall classification accuracy. The best model, which in-
cluded CSF t-tau/Ab-42, the number of APOE 34 alleles
(the previously described LRTAA model [57]), left entorhinal
volume, and hippocampal volume, in addition to the afore-
mentioned neuropsychological tests, resulted in an accuracy
of 95.2%, a sensitivity of 92.2%, and a specificity of 97.5%
(Table 8). Van Gils et al [162] also demonstrated that cogni-
tive tests such as the CDR, MMSE, and the neuropsycholog-
ical battery comprised the most important feature category
of all classifiers designed to discriminate between different
patient groups. The classifier constructed by Lemoine et al
[87] from data fusion of both FDG-PETand clinical data dis-
criminated between control and AD subjects with an AUC of
0.97, an improvement over the best single FDG-PET classi-
fier (AUC5 0.94) or the best clinical classifier (derived from
ADAS-cog data: AUC5 0.93) (Table 8). Vemuri et al [132]
compared STAND score measures from MRI with CSF and
concluded that CSF and MRI biomarkers independently
contribute to intergroup diagnostic discrimination, and the
combination of CSF and MRI provides better prediction
than either source of data alone.

4.5.6. Summary and conclusions of diagnostic classification
papers

Avariety of approaches have been used to diagnose MCI
and AD, some based on single measures, others on compos-
ite scores of a single modality, and still others on a combina-
tion of factors from different modalities. It should be
emphasized that ADNI was not designed as a diagnostic
classification study; none of the imaging methods used in
ADNI is as accurate as a clinical diagnosis, and the enrolled
cohort represents typical cases rather than the types of diffi-
cult diagnostic problems that clinicians often confront. How-
ever, a number of conclusions can be drawn from the results
of these studies. Single features, such as hippocampal vol-
ume, are not as accurate as multiple features, such as whole
brain or cortical thickness measurements. The best classi-
fiers combine optimum features from different modalities,
including CSF biomarkers, MRI, FDG-PET, and cognitive
measures, as well as factors such as age and APOE 34 allele
status. The most discriminative measures include hippocam-
pal volume, entorhinal cortical thickness, entorhinal metab-
olism, the t-tau/Ab-42 ratio, and ADAS-cog scores. In some
of these models, FDG-PET measures appear to lose
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significance to cognitive and MRI measures; however, glu-
cose hypometabolism alone has been shown to have high
classification accuracy. ADAS-cog scores, either used di-
rectly or in a model using weighted components, appear to
be an excellent diagnostic tool, although the highest accura-
cies were found with the addition of MRI measures.
Although most classifiers used baseline measurements, there
is some evidence to suggest that longitudinal data may pro-
vide even more accurate diagnoses, but it remains to be seen
whether this approach is more generally applicable to other
modalities. Currently, the best classifiers are able to discrim-
inate between control and AD subjects with accuracies in the
mid-90% range, but have considerably lower accuracies
when discriminating between control and MCI subjects or
between MCI-nc and MCI-c subjects, although data for the
latter diagnoses, arguably the more important distinction to
make, are far less reported. It is as yet unknown whether
the application of some of the promising classifiers to these
problems will result in increased diagnostic accuracy. An-
other key question is how methods that perform well in
ADNI, with its sharply delineated diagnostic groups and ex-
clusion of mixed dementias and borderline cases, will trans-
late to the community or general clinic setting for wider
diagnostic use. Validation studies in population-based sam-
ples will be required to address this issue.
Fig. 19. Association between temporal lobe atrophy and conversion to AD.

Subjects who converted from MCI to AD over a period of 1 year after their

first scan were coded as “1”; nonconverters were coded as “0.” A negative

correlation suggests that temporal lobe degeneration predicts future conver-

sion to AD. Reproduced with permission from Ref [112].
4.6. Improvement of clinical trial efficiency

One of the primary goals of ADNI is to improve the effi-
ciency of clinical trials of AD-modifying treatments. Selec-
tion of the study population and development of more
sensitive outcome measures are two approaches to increas-
ing the power of clinical trials and therefore reducing the
number of participants required, the length of time required
before a disease-modifying effect is observed, and therefore
the overall cost. This section details the results of studies ex-
amining the use of structural, fluid, and genetic biomarkers
in the improvement of clinical trial efficiency.

4.6.1. Prediction of cognitive decline
Beyond the simple classification of clinical trial partici-

pants, an important strategy for increasing clinical trial effi-
ciency is the enrichment of clinical trial populations,
normally MCI patients, with participants who are likely to
progress to AD within a short time frame. In particular, the
early and reliable detection of MCI subjects who convert
early to AD could support clinical decisions for or against
therapy with disease-modifying drugs. Many studies have
therefore focused on identifying baseline predictors of future
decline, with “future decline” meaning both decline in clin-
ical measures such as the MMSE, ADAS-cog, and CDR-SB,
and conversion of MCI to AD status. However it is mea-
sured, it is desirable for appreciable decline to occur over
a relatively short time frame, typically 12 months. Imaging
measures, CSF biomarkers, and APOE 34 allele status, in
combination or alone, have been identified as baseline future
predictors, and several studies have focused on determining
the optimum combination of all modalities that results in the
most power for clinical trials.

4.6.1.1. Magnetic resonance imaging

4.6.1.1.1. Temporal lobe
Hua et al [112] used TBM to create Jacobian maps of

temporal lobe atrophy at baseline and examined the relation-
ship between the maps and cognitive decline over the follow-
ing year, as assessed by both the CDR-SB and the MMSE.
They found that baseline temporal lobe atrophy predicted
decline in the MMSE in AD patients and also predicted
the conversion of MCI to AD over 12 months (Fig. 19;
Table 9). Baseline atrophy of MTL structures was also found
to best predict the progression of MCI patients to AD in
a study by Desikan et al [163]. These measures, including
the volumes of the hippocampus and amygdala and the
thickness of the entorhinal cortex, temporal lobe, and para-
hippocampal gyrus, were found to be better predictors of
clinical decline than levels of CSF Ab-42 or FDG-PET
ROIs. The combination of CSF biomarkers and FDG-PET
ROIs predicted time to progression of MCI to AD with an
AUC of 0.70, a sensitivity of 93%, and a specificity of
48% compared with MRI temporal lobe factors, which had
an AUC of 0.83, a sensitivity of 87%, and a specificity of
66%. The addition of CSF or FDG-PET measures to the
combined Cox proportional hazards model did not signifi-
cantly increase prediction accuracy, with the combined
model predicting conversion with an AUC of 0.83,



Table 9

Predictors of future decline

Predictor Measurement of decline Statistical measurement Patient group Cross-validated? Reference

Baseline temporal lobe measures MMSE P , .05 MCI [112]

MCI to AD

conversion

P , .05 MCI

CDR-SB P , .05 CN, MCI, AD

Baseline temporal

lobe measures

CDR-SB AUC 5 0.83, SEN

5 87%, SPE 5 66%

MCI Yes [163]

CSF biomarkers 1
FDG-PET ROIs

AUC 5 0.70, SEN

5 93%, SPE 5 48%

TL measures 1 CSF

1 FDG-PET ROIs

AUC 5 0.83, SEN 5
90%, SPE 5 69%

Baseline hippocampal,

amygdala, temporal horn

volume

MMSE b (P) 5 0.14 (.04), 0.18

(.004), 20.2 (.003)

Pooled sample [164]

CDR-SB b (P) 5 20.19 (.005),

20.12 (.06), 0.2 (.005)

Baseline hippocampal

volume

MCI to AD

conversion

Cohen d 5 0.603 MCI-nc vs MCI-c [114]

Baseline inferior temporal

gyrus volume

Cohen d 5 0.535

Baseline middle temporal gyrus

volume

Cohen d 5 0.529

Baseline entorhinal cortical

volume

Cohen d 5 0.493

Baseline ventricular expansion MMSE, global

CDR, CDR-SB

P , .05 Pooled sample [126]

Baseline ventricular expansion MMSE, global

CDR, CDR-SB

P , .05 Pooled sample [127]

Baseline right caudate volume MMSE P , .05 Pooled sample [130]

MCI to AD

conversion

P , .05

Baseline cortical thickness

in ROIs

MCI to AD

conversion

Accuracy 5 76% MCI Yes [165]

Baseline cortical thickness

in ROIs

[147]

Longitudinal cortical thickness MCI to AD

conversion

Accuracy 5 81.7% MCI Yes [157]

Baseline white matter hyperintensity

volume

ADAS-cog b (P) 5 0.34 (.05) Pooled sample [166]

MMSE b (P) 5 20.096 (,.001)

Multiple ROI atrophy score MMSE r (P) 5 0.39 (,.001) MCI [117]

Structural phenotypic score MCI to AD

conversion

AUC 5 0.77 MCI Yes [118]

STAND score CDR-SB MCI, AD [167]

MCI to AD

conversion

Cox proportional

hazards ratio 5 2.6

MCI

Log (t-tau/Ab242) MCI to AD

conversion

Cox proportional

hazards ratio 5 2.0

SPARE-AD score MCI to AD

conversion

AUC 5 0.734, SEN 5
94.7%, SPE 5 37.8%

MCI Yes [119]

MMSE P , .05

FDG-PET hypermetabolic

convergence index

MCI to AD

conversion

Cox proportional

hazards ratio 5 7.38

MCI [85]

FDG-PET HCI 1 hippocampal

volume

Cox proportional hazards

ratio 5 36.72

Ab load MCI to AD

conversion

75th vs 25th percentile

Cox HR 5 2.6

(P , .001)

MCI [152]

Baseline hippocampal volume 25th vs 75th percentile

Cox HR 5 2.6 (P, .001)

Baseline ADAS-cog (from

meta-analysis)

ADAS-cog Slope of disease progression

5 5.49 points/yr, baseline

five point increase in ADAS-

cog effect on slope 5 0.669/yr

MCI, AD [171]

(Continued )
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Table 9

Predictors of future decline (Continued )

Predictor Measurement of decline Statistical measurement Patient group Cross-validated? Reference

Baseline ADAS.Tree MCI to AD

conversion

P 5 6.23E-10,

AUC 5 0.746

MCI Yes [96]

Baseline MMSE P 5 .0188, AUC 5 0.589

Baseline hippocampal volume CDR-SB, MMSE, LM

delayed change

r5 20.29, 0.29, 0.41 MCI [155]

Baseline entorhinal volume r 5 20.17, 0.23, 0.34

Baseline retrosplenial volume r 5 20.43, 0.42, 0.35

Baseline entorhinal metabolism r 5 20.30, 0.38, 0.28

Baseline retrosplenial volume r 5 20.22, 0.47, 0.11

t-tau/Ab242 r 5 0.02, 0.08, 20.23

APOE 341 Hippocampal volume

change (P, .05).

Multivariate model

Coefficient of effect on

annual change 5 20.36

MCI [154]

FDG-PET ROI-avg Coefficient of effect on

annual change 5 9.3

CSF tau Coefficient of effect on

annual change 5 28.7

AD

FDG-PET ROIs MCI to AD

conversion

b (SE) 5 1.00 (0.51),

Cox HR 5 2.72

MCI [173]

AVLT b (SE) 5 1.46 (0.64),

Cox HR 5 4.30

FDG-PET ROIs ADAS-cog b (SE) 5 1.26 (0.43)

p-tau181/Ab242 b (SE) 5 1.10 (0.53)

Right entorhinal cortical

volume

MCI to AD

conversion

Prediction accuracy (95% CI)

5 68.5% (59.5, 77.4)

MCI Yes [161]

TMT-B test Prediction accuracy

5 64.6% (55.5, 73.4)

p-tau181/Ab242,

hippocampalvolume,

TMT2B, age

Prediction accuracy

5 76.3 (68.4, 84.2)
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a sensitivity of 90%, and a specificity of 69% (Table 9).
Similar structures were found to predict future decline in
cognitive status by Kovacevic et al [164], who used high-
throughput volumetry to segment ROIs in control, MCI,
and AD subjects. They found that after adjusting for age, ed-
ucation, and APOE genotype, smaller baseline volumes of
the hippocampus and the amygdala and larger temporal
horn volume predicted 6-month decline in both the MMSE
(b [P] 5 0.14 [.04], 0.18 [.004], and 20.2 [.003], respec-
tively) and CDR-SB (b [P] 5 20.19 [.005], 20.12 [.06],
and 0.2 [.005], respectively) in all groups (Table 9). Risacher
et al [114] also found atrophy of structures within the MTL
to be the best antecedent of imminent conversion of MCI to
AD. The largest effect sizes were for hippocampal and
amygdalar volume and cortical thickness of the entorhinal
cortex and inferior, middle, and superior gyri (Fig. 20;
Table 9).

4.6.1.1.2. Ventricles
Baseline ventricular morphology has been shown to pre-

dict future clinical decline in studies of the ADNI cohort.
Chou et al [126] found that this measure predicted decline
in MMSE, global CDR, and CDR-SB over 12 months
(Fig. 21; Table 9). These findings were confirmed in a subse-
quent larger study by the same group [127], and further ex-
tended by examining additional cognitive criteria. Only right
ventricular baseline anatomy was correlated with future
decline in DR memory scores, but there was no correlation
between ventricular anatomy and changes in depression
scores, despite a baseline association between these mea-
sures (Table 9).

4.6.1.1.3. Other regions
Targeting the caudate, a region not traditionally associ-

ated with AD,Madsen et al [130] found that baseline atrophy
in the right caudate predicted both the conversion ofMCI pa-
tients to AD and cognitive decline of this group, as assessed
by the MMSE (Fig. 22; Table 9). Querbes et al [165] created
a normalized thickness index, which was derived from the
cortical thicknesses of regions most likely to show atrophy
in AD and to distinguish between MCI-c and MCI-nc pa-
tients, primarily the left lateral temporal, right medial tem-
poral, and right posterior cingulate. They found that the
normalized thickness index predicted conversion of MCI pa-
tients to AD with 76% accuracy compared with accuracies
ranging from 63% to 72% by cognitive scores (Table 9).
The additional dimension of time increased the ability of
cortical thickness measurements to predict the conversion
of MCI to AD in a study by Li et al [157]. By incorporating
both static baseline and follow-up measures, dynamic mea-
sures of thinning speed, the ratio of follow-up to baseline
thicknesses in ROIs, and a network feature that examined



Fig. 20. Effect size of imaging biomarkers for MCI converters versus MCI

nonconverters. Effect sizes (Cohen d) of the comparison between MCI sta-

ble (MCI nonconverter) and MCI converter groups evaluated for selected

imaging biomarkers. Reproduced with permission from Ref [114].
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correlations between longitudinal thickness change in differ-
ent ROIs, Li et al constructed a classifier that correctly iden-
tified 81.7% of MCI-c patients 6 months ahead of their
conversion (Table 9).

White matter hyperintensities (WMH) may represent an
accrual of nonspecific neuronal injury over a lifetime. Car-
michael et al [166] investigated the relationship between
WM disease and cognition over a year, and found that
both baseline and longitudinal change in WMHwere associ-
ated with worsening of ADAS-cog and MMSE scores over
12 months (Table 5), raising the possibility of the use of
WMH as a biomarker and highlighting its ability to predict
future clinical decline (Table 9).
Fig. 21. Significance maps of correlation between ventricular shape and cognitive

quent decline, over the following year, in three commonly used clinical scores. R
A number of studies have leveraged information on atro-
phy frommultiple brain regions to distill a number or a score
that is more predictive of future clinical decline than single
regions alone. McEvoy et al [117] found that an atrophy
score derived from mesial and lateral temporal, isthmus cin-
gulate, and orbitofrontal areas was predictive of 1-year de-
cline in MMSE scores and progression of MCI patients to
AD. They found that the atrophy score was a better predictor
than right or left hippocampal volume or the thickness of the
left or right entorhinal cortex (Table 9). Similarly, a structural
abnormality score extracted from baseline MRI data by
Misra et al [118] was higher in MCI patients who converted
to AD over the following year than stable MCI patients, and
an SPS derived by Fan et al [83] from a complex pattern of
spatial atrophy predicted decline in MMSE scores within
a year from baseline (Table 9). Vemuri et al [167] found
that STAND scores that reflected greater baseline atrophy
in regions associated with AD predicted greater subsequent
decline on the CDR-SB and also a shorter time to conversion
for MCI patients than CSF analytes (Table 9). Davatzikos
et al [119] focused on structural changes occurring at the
early stages of AD and derived SPARE-AD scores (Spatial
Pattern of Abnormalities for Recognition of Early AD)
largely from changes in the temporal regions, posterior cin-
gulate cortex, precuneus, and orbitofrontal cortex. They
found that higher SPARE-AD scores predicted conversion
of MCI to AD (Table 9).

McEvoy et al [168] also investigated enrichment strate-
gies for constraining recruitment into clinical trials by
selecting MCI patients most likely to progress. Their first
strategy, which selected MCI patients with an APOE 34
allele, reduced sample sizes by an estimated 10% to 40%,
but this was discounted because of the possibility that re-
stricting patient genotype may invalidate trial findings. Their
second strategy, based on baseline MRI atrophy in regions
previously shown to be predictive of disease progression,
decline. Significance maps correlate baseline ventricular shape with subse-

eproduced with permission from Ref [126].



Fig. 22. Maps of associations with MMSE scores at baseline and 1 year later, MCI-to-AD conversion, and CSF concentrations of tau. Three-dimensional maps

show areas of significant associations between local volumetric atrophy in the caudate and MMSE scores at baseline and after a 1-year follow-up interval, with

P values color-coded at each surface voxel. Reproduced with permission from Ref [130].
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resulted in an estimated sample size reduction of 43% to
60% (Table 11).

4.6.1.2. [18F]-fluorodeoxyglucose-positron emission
tomography

Chen et al [85] reported that their HCI outperformed
other measures such as hippocampal volume, cognitive
scores, APOE genotype, and CSF biomarkers in the predic-
tion of conversion of MCI patients to AD. In a univariate
model, patients with an HCI above a predefined cutoff had
an average Cox proportional hazards ratio for the estimated
risk of conversion to probable AD within 18 months of 7.38
compared with 6.34 for hippocampal volume, 4.94 for
p-tau181p, and 3.91 for ADAS-cog, the most significant of
the other measures tested. Moreover, patients with a combi-
nation of both high HCI score and hippocampal volume
below a similarly defined threshold value had a Cox propor-
tional hazards ratio of 36.72 (Table 9). This study suggests
that data from FDG-PET analyses represent a powerful
tool for the prediction of future decline in AD that is comple-
mentary to MRI data.

4.6.1.3. CSF biomarkers
Vemuri et al [167] examined the ability of CSF bio-

markers to predict decline in CDR-SB and MMSE scores
over 2 years and the time to conversion from MCI to AD.
Although all CSF biomarkers were predictive of future de-
cline, the best predictor was log (t-tau/Ab-42), which was
comparable with the MRI-derived STAND scores. In con-
trast, Ab-42 alone was only weakly predictive of conversion
to AD, reflecting its status as a marker of early AD pathol-
ogy. Used in combination with STAND scores, only log
(t-tau/Ab-42) improved the predictive ability of the MRI
measure (Table 9). Jack et al [152] compared the ability of
amyloid load, measured either by levels of CSF Ab-42 or
by 11C-PiB PET imaging, and hippocampal volume to pre-
dict MCI to AD progression. Using a new method to pool
CSF and 11C-PiB PET data [169] and to extract a score rep-
resentative of Ab load from the pooled information, they
found that the group of MCI patients classified as being
Ab positive had higher frequencies of the APOE 34 allele
and smaller baseline hippocampal volumes and a threefold
higher chance of progressing to AD within 3 years than
the Ab-negative group (Fig. 23; Table 9). Thus, both base-
line hippocampal atrophy and Ab load were significant pre-
dictors of future decline. Interestingly, when risk profiles
were constructed from the log relative hazard of progressing
and degree of hippocampal atrophy or Ab load, the relation-
ship was linear for hippocampal atrophy, but plateaued at



Table 10

Comparison of methods for increasing power in clinical trials: sample sizes per arm required to detect a 25% reduction in atrophy with 80% power, 5%

significance

Strategy

Outcome measure: MCI (AD)

ReferenceADAS-cog CDR-SB Whole brain Ventricular expansion Hippocampal volume Entorhinal complex

Subject selection by multiple

biomarker classifier

,40 (,40) [86]

No baseline adjustments,

no aging

149 (81) 234 (118) 201 (88) [174]

Best baseline adjustments,

no aging

122 (68) 167 (84) 178 (74)

No baseline adjustments,

with aging

739 (235) 944 (254) 648 (179)

Best baseline adjustments,

with aging

605 (197) 675 (181) 573 (150)

Ab242 ,192 pg/mL 141 225 467 [160]

Normal elderly

APOE 34 carrier 224 222 703

Normal elderly

All MCI 834 674 [172]

Screening in, best

enrichment

260* 191y

Screening out, best

enrichment

517* 351z

All MCI 978 437 181 161 186 140 [168]

APOE 34 enrichment 774 397 135 129 133 100

Atrophy enrichment 458 191 141 121 107 67

All MCI 375 [154]

Enrichment with Ab242 225

*FDG-PET.
yHippocampal volume.
z11C-PiB-PET.
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higher Ab loads, consistent with a model in which Ab depo-
sition is an early event in AD progression, whereas neurode-
generation, as evidenced by hippocampal atrophy, occurs
later and is thus a better indicator of progression toward de-
mentia.

Using the ADNI database, Schneider et al [170] empiri-
cally tested the recommendation that low Ab-42 and
a high t-tau/Ab-42 ratio can help select those MCI patients
most likely to progress to AD throughout the course of a clin-
ical trial. After statistically simulating a number of different
clinical trial scenarios with MCI patients with or without
biomarker enrichment, they found that selection with either
of the biomarker criteria resulted in only minor increases in
power for the trial, and concluded that the use of these crite-
ria would likely not result in more efficient clinical trials. In
contrast, Beckett et al [154] calculated that restricting a trial
population to MCI subjects with CSFAb-42 levels of,192
pg/mL would reduce the sample size required from 375 to
226 subjects per arm to detect a 25% change using ADAS-
cog as an outcome measure, demonstrating a clear beneficial
use of CSF biomarkers in clinical trial population selection
(Table 10). Schott et al [160] tested the use of the same cutoff
point of CSFAb-42 levels in cognitively normal elderly sub-
jects as a selection tool for presymptomatic treatment studies
in AD. Those participants with CSF Ab-42 levels of ,192
pg/mL had higher levels of t-tau and p-tau and higher ratios
of tau/CSFAb-42 and p-tau/CSFAb-42, were more likely to
be carriers of the APOE 34 allele, and had significantly
higher whole brain atrophy, ventricular expansion, and hip-
pocampal atrophy over 1 year than participants with higher
CSF Ab-42 levels. Of the six participants who later con-
verted to MCI or AD, five had low or borderline baseline
CSF Ab-42 levels, suggesting that the roughly one-third of
healthy elderly subjects with a CSF profile consistent with
AD were at greater risk for development of the disease.
When sample sizes for clinical trials were calculated for
both CSF Ab-42 levels and APOE 34 genotype as selection
criteria and using whole brain atrophy, ventricular expan-
sion, or hippocampal atrophy as the outcome measure, the
smallest size per arm [140] was calculated using selection
by CSFAb-42 levels and whole brain atrophy as an outcome
measure (Table 10).

4.6.1.4. Cognitive
Ito et al [171] evaluated disease progression in clinical

studies and drug trials performed between 1990 and 2008
by using a model to assess the effect of cholinesterase inhib-
itors and placebos on longitudinal ADAS-cog scores in
mild-to-moderate AD patients. They found no significant
differences in the rate of disease progression between pa-
tients taking the placebo versus patients receiving cholines-
terase treatment. The only significant covariate in disease



Table 11

Comparison of outcome measure methods in clinical trials: sample size estimates per arm required to detect a 25% reduction in atrophy with 80% power, 5%

significance

Outcome measure Method tested Sample size AD Sample size MCI Reference

Hippocampus Two scans, 0–6 months 462 949 [121]

Three scans, 0–6–12 months 255 673

Three scans 1 Markov Chain 1 APOE 34 86 341

Clinical ADAS-cog two tests, 0–6 months 745 4663

ADAS-cog three tests, 0–6–12 months 569 8354

MMSE two tests, 0–6 months 1280 6300

MMSE three tests, 0–6–12 months 780 3353

Hippocampal atrophy 12-(24)-month 67 (46) 206 (121) [64]

Hippocampal atrophy 12-month 78 285 [59]

Ventricular expansion 6-month change 342 1180 [175]

Clinical MMSE 7056 7712

ADAS-cog 1607 .20,000

MRI (Model T/Model D) Entorhinal 45/65 135/241 [176]

Inferior temporal 79/117 199/449

Fusiform 72/114 185/485

Mid temporal 83/122 229/501

Hippocampus 67/118 179/510

Inferior lateral ventricle 76/157 160/550

Whole brain 101/189 158/541

Ventricles 86/240 189/1141

Clinical (Model T/Model D) CDR-SB 226/236 490/551

ADAS-cog 324/283 1232/804

MMSE 482/494 1214/1304

Whole brain atrophy KN-BSI 81 NA [51]

Classic-BSI 120 NA

TBM 1.5-T MRI/3.0-T MRI 37/48 107/159 [47]

SIENA* 1.5-T MRI/3.0-T MRI 116/92 207/265

TBM sKL-MI S6L8y 48 88 [177]

Clinical ADAS-cog 619 6797

MMSE 1078 3275

CDR-SB 408 796

TBM Gray matter atrophy 43 86 [120]

Temporal lobe atrophy 43 82

CSF biomarkers Ab242 5,721,531 75,816

t-tau 81,292 19,098

t-tau/Ab242 66,293 533,091

PET ROI-avgz 4605 [154]

logSumZ2PNSx 2176

logSumZ2PRx 1629

DD-fROI{ 249

MRI VBSI** 284

Ventriclesyy 277

Hippocampusyy 202

BSIzz 177

DD-ROIy 73

*Structural Image Evaluation, using Normalization, of Atrophy (SIENA). See text for more details.
yA nonlinear registration algorithm driven by mutual information cost function and with a regularizing term based on the symmetric Kullback–Leibler (sKL)

distance.
zJagust laboratory method.
xFoster laboratory method, measures of glucose hypometabolism, log transformed.
{Reiman laboratory method, data-driven summaries applied to independent test set.

**Fox laboratory method, ventricular boundary shift interval as a percentage of baseline brain volume.
yySchuff laboratory method (FreeSurfer).
zzFox laboratory method, brain shift interval.
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progression was baseline ADAS-cog score, suggesting that
those patients with a higher (worse) ADAS-cog score at
baseline had a significantly worse prognosis and higher rates
of cognitive deterioration than those with lower (better)
baseline scores (Table 9). Llano et al [96] used a new Ran-
dom Forests tree-based multivariate model of ADAS-cog
in which the subscores had been weighted according to their
contribution to patient discrimination. This model, ADAS.-
Tree, predicted conversion of MCI to AD more accurately
than baseline MMSE or ADAS-cog and, in addition, was



Fig. 23. Pittsburgh compound B-positron emission tomography (PiB-PET)

and magnetic resonance imaging (MRI) comparisons of MCI converters

versus MCI nonconverters. Left: MCI progressor. Top: positive PiB-PET.

Bottom: MRI illustrating atrophic hippocampi and ventricular enlargement.

Right: MCI nonprogressor. Top: negative PiB-PET with nonspecific white

matter retention but no cortical retention. Bottom: MRI illustrating normal

hippocampi and no ventricular enlargement. Reproduced with permission

from Ref [152].

M.W. Weiner et al. / Alzheimer’s & Dementia 8 (2012) S1–S68 S47
a better predictor of conversion than the best single imaging
(left inferior temporal cortex), metabolism (left precuneus),
or CSF (p-tau181p/Ab-42) biomarkers. The significance of
association varied by several orders of magnitude, with the
ADAS.Tree four orders of magnitude higher than the next
MRI marker, and FDG-PET and CSF biomarkers several or-
ders of magnitude lower than theMRI marker. Moreover, the
addition of these markers to the ADAS.Tree model did not
result in substantial improvement, providing support for
this modified form of ADAS-cog as a useful and effective
predictor of future decline (Table 9).

4.6.1.5. Combined modalities
Lorenzi et al [172] tested two strategies for the enrich-

ment of MCI patients in clinical trials using changes in brain
structure or metabolism, or changes in CSF biomarkers well
known to herald future disease progression. They used hip-
pocampal atrophy (MRI); temporoparietal hypometabolism
(FDG-PET); CSFAb-42, t-tau, and p-tau; and cortical amy-
loid deposition (11C-PiB PET) as biomarkers to either screen
in MCI-c or screen out MCI-nc. Although both strategies
substantially reduced the estimated sample sizes required,
the authors found that there was a trade-off between the
high proportion of converters screened out in the first strat-
egy and the decreased power and increased estimated sample
sizes using the second strategy (Table 10). Kohannim et al
[86] investigated the utility of their machine learning classi-
fier, based on MRI hippocampal and ventricular summaries,
APOE genotype, and age as features, in subject stratification
and found that it reduced the numbers of AD and MCI
patients required to detect a 25% slowing of temporal lobe
atrophy with 80% power to fewer than 40, a substantial
reduction over other methods (Table 10). Walhovd et al
[155] examined baseline MRI, FDG-PET, and CSF bio-
marker data to determine the optimum combination of these
biomarkers for the prediction of decline over 2 years. They
found that in MCI patients, retrosplenial and cortical thick-
ness predicted decline on the CDR-SB, retrosplenial and
entorhinal metabolism predicted decline on the MMSE,
and hippocampal volume predicted decline in delayed logi-
cal memory. The tau/Ab-42 ratio also predicted decline in
the CDR-SB and MMSE, but less significantly than the
MRI and FDG-PET measures (Table 9). Beckett et al
[154] found that in MCI and AD patients, baseline glucose
metabolism in a range of ROIs predicted cognitive decline,
as measured by ADAS-cog in a multivariate model. In uni-
variate models, hippocampal and ventricular volume, Ab-
42, and tau also predicted cognitive decline in MCI patients
(Table 9). Both papers support the idea that reduced metab-
olism and greater brain atrophy at baseline are associated
with more rapid cognitive decline, and that CSF biomarkers
are less useful indicators of future change. A degree of
agreement with these results was found by Landau et al
[173], who studied a range of predictors of conversion to
AD and cognitive decline, including FDG-PET measures,
CSF biomarkers, APOE 34 status, and hippocampal atrophy,
that were defined dichotomously according to their ability to
separate AD and control subjects. Although all biomarkers
were predictive of decline in univariate models, only
reduced glucose metabolism and episodic memory (mea-
sured by the AVLT) predicted conversion to AD and, in con-
trast to the studies by Beckett et al [154] and Walhovd et al
[155], only p-tau181p/Ab-42 predicted decline in ADAS-cog
scores in multivariate models (Table 9). Ewers et al [161]
compared the effectiveness of single variables and multiple
variables in predicting the conversion of MCI to AD. They
found that these best single predictors (right entorhinal cor-
tex and the TMT-B) were comparable in accuracy with the
best multiple predictor models, which included right hippo-
campal volume, CSF p-tau181p/Ab-42, TMT-B, and age
(Table 9).

4.6.2. Adjustments for normal aging and baseline
characteristics

McEvoy et al [168] also examined the effect of normal
aging on the detection of longitudinal change and found
that although this did not affect clinical outcome measures
such as ADAS-cog and CDR-SB, neuroimaging outcome
measures were far more sensitive to atrophy associated
with normal aging. They suggested that larger sample sizes
are required in clinical trials to account for this effect, and
that clinical trials run the risk of being severely
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underpowered if normal aging is not taken into account.
Schott et al [174] proposed an alternative method for in-
creasing the statistical power of clinical trials without resort-
ing to subject selection procedures that can potentially limit
the applicability of studies. They found that by statistically
adjusting for a range of baseline characteristics that might
account for interindividual differences, and also for normal
aging, sample sizes were reduced by 15% to 30% in AD sub-
jects and by 10% to 30% in MCI subjects (Table 10).

4.6.3. Biomarkers as outcome measures
A number of studies have focused on determining the

effectiveness of different biomarkers as outcomes in clinical
trials by calculating sample size estimates for a hypothetical
clinical trial, per arm at either 90% (N90) or 80% (N80)
power to detect a 25% improvement in annual rate of
decline. Schuff et al [121] used hippocampal volume loss
over time, assessed by MRI, as an outcome measure and
found that the greatest reductions in sample size were
achieved when three serial scans (0, 6, and 12 months)
were combined with APOE 34 data usingMarkov chain anal-
ysis to exploit correlations between observations (Table 11).
The inclusion of Ab-42 level data did not further reduce
sample size. All MRI hippocampal measures were substan-
tially better than cognitive measures (ADAS-cog and
MMSE) as outcome measures. Wolz et al [64] used a 4-D
graph cut method to segment the hippocampus and subse-
quently calculated N80s in the same range as the best com-
binations of Schuff et al [121] (Table 11). Nestor et al [175]
investigated the use of ventricular expansion as an outcome
measure and found that ventricular expansion over 6 months
was sufficiently sensitive to produce N80s for a hypothetical
trial at least an order of magnitude lower than clinical scores
(MMSE and ADAS-cog). Moreover, sample sizes were fur-
ther reduced when the trial population of AD subjects was
restricted to carriers of the APOE 34 allele (Table 11).
Holland et al [176] examined the utility of longitudinal vol-
umetric change in a variety of ROIs as an outcome measure
with which to measure putative disease-modifying medica-
tions for AD and MCI. ROIs, including temporal lobe struc-
tures and ventricles, and whole brain atrophy were compared
with clinical measures in two separate models, one in which
the putative drug was presumed to affect both disease and
aging-related changes (model T for “total”), and one in
which the drug putatively affected only disease-specific
changes (model D for “disease-specific”). They found that
although imaging measures generally resulted in smaller
sample sizes than cognitive measures in both models, model
T was the more conservative model for cognitive measures,
whereas model D was more conservative for imaging mea-
sures. The authors emphasized the importance of comparing
both models when comparing across imaging and cognitive
outcome measures (Table 11).

Hua et al [177] compared a variety of nonlinear registra-
tion methods used in TBM with standard clinical outcome
measures and found that a substantial reduction in sample
size at 80% power (N80s) was achieved over clinical mea-
sures using all TBM methods, with the best TBM measure
presenting an eightfold improvement over the best clinical
measure (CDR-SB) (Table 11). The same group [120] subse-
quently compared the use of TBM to measure GM of the en-
tire brain and WM atrophy in the temporal lobe with 1-year
changes in CSF biomarkers as outcome measures in a hypo-
thetical clinical trial. The N80s for CSF biomarkers were
much larger than those from neuroimaging measures,
reflecting their poorer reproducibility, especially in later
stages of the disease process (Table 11). Ho et al [47] com-
pared 3.0-T and 1.5-T MRI for tracking disease progression
using TBM and an alternative method for measuring the
overall percentage brain volume change, Structural Image
Evaluation, using Normalization, of Atrophy. The lowest
calculated N80 resulted from using TBM on a 1.5-T MRI
scanner to detect changes in brain atrophy as an outcome
measure (Table 11). Leung et al [51] estimated N80s for
both the classic brain BSI MRI technique and their improve-
ment on this, the KN-BSI method, and found that the
improved method resulted in lower N80s (Table 11). More
recently, using a newly revised TBM method that enforces
inverse consistency, Hua et al [178] reported that to demon-
strate a 25% slowing of atrophic rates with 80% power, 62
AD and 129 MCI subjects would be required for a 2-year
trial and 91 AD and 192 MCI subjects for a 1-year trial.

Beckett et al [154] compared a number of promising MRI
and FDG-PET outcome measures. They calculated the sam-
ple size that would be required in a two-arm, 1-year clinical
trial with 80% power to detect a 25% effect, and found that
MRI measures of overall brain change, using either ROIs or
BSI techniques, or hippocampal volume required fewest
subjects. Brain metabolism measures were generally less ef-
fective, requiring substantially larger sample sizes, although
the best FDG-PET measure, a data-driven functional ROI,
was comparable with many of the MRI measures (Table 11).

4.6.4. Summary and conclusions of papers focused on the
improvement of clinical trial efficiency

Strategies for the reduction of sample sizes in clinical tri-
als by the selection of subjects with a significantly worse
prognosis and through the use of more effective outcome
measures have been developed over the course of ADNI.
Studies have found that baseline MRI measures, particularly
of hippocampal volume and of whole brain atrophy, outper-
form measures of glucose hypometabolism or CSF bio-
markers in the prediction of future decline. In one instance,
a score derived from AD-like patterns of hypometabolism
outperformed other singleMRI, cognitive, or CSF biomarker
measures, but this too was enhanced by the addition of MRI
measures. Of the CSF biomarkers, the t-tau/Ab-42 ratio and
the use of a cutoff value of approximately 192 pg/mL Ab-42
have been shown to best predict future decline. In a manner
similar to classification of AD subjects, the use of multiple
modalities appears to enhance the prediction of future de-
cline. Interestingly, a weighted version of the ADAS-cog
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[96] has been shown to outperform any single MRI measure
tested as a predictor of future change and was not improved
by the addition of any MRI measure tested. In contrast,
MRI and FDG-PET, which have strikingly better signal-to-
noise ratios, clearly outperformed cognitive tests as outcome
measures of rates of change. Calculated sample sizes for clin-
ical trials required to see a 25% effect at 80% power were
lowest for MRI measures of overall morphometric change
or of hippocampal volume, followed by those for hypometab-
olism ROIs and cognitive scores. CSF biomarkers were the
least effective outcomemeasures by several orders of magni-
tude. Finally, it also will be necessary to study the compara-
tive effectiveness and cost-effectiveness of the AD
biomarkers studied in ADNI to determine the optimal way
to make use of these biomarkers in the diverse applications
needed in AD research. For example, based on the recent
studies of Wiegand et al [169], it is possible to impute Ab
measures determined byAb imaging using far less expensive
measures of CSFAb-42 levels. Additional similar studies as
well as others focused on the economics of the use of bio-
markers in clinical trials and clinical practice are needed.
5. Identification of genetic risk factors for AD

The influence of genetics on the dynamic trajectory of
brain development and aging is well established, if not
well understood. Studies of twins have estimated the herita-
bility of AD to be between approximately 60% and 80%
[179], and until recently the only established genetic risk
factor for AD was the APOE 34 allele, which accounts for
approximately 50% of AD heritability [180]. The question
of accounting for the up to 30% of heritability remaining
has only begun to be addressed, and although there have
been a number of candidate genes proposed, the majority
of them await independent confirmation. ADNI is in the
unique position of providing a large cohort with genotype in-
formation in addition to imaging and biochemical data that
can be leveraged as QTs in uncovering new genetic associa-
tions, and as such plays an increasingly important role in the
discovery and confirmation of novel genetic risk alleles.

Three main approaches have been taken to investigating
the genetic basis of AD. Case–control studies that search
for loci with differential frequency between patient groups
have identified a number of candidate genes. Typically,
markers are used to tag susceptibility loci, usually in 10-kb
to 20-kb regions in the genome, that are rarely found to be
causal. Using this method, the association of APOE 34 allele
with AD has been confirmed, and three new risk loci, CLU,
PICALM, and CR1, have been identified and confirmed
[181–183]. Further studies have focused on examining
relationships between SNPs in a limited number of genes
of interest and quantifiable phenotypic characteristics or
QTs, such as imaging data or levels of CSF biomarkers.
GWAS evaluate a large and dense set of SNP markers
distributed throughout the genome, providing an unbiased
search for the discovery of new candidate genes. With
more than 500,000 markers typically included in a GWAS,
a stringent correction for multiple testing is required with
typical thresholds of P , 1028 used to reduce false
detections. These stringent corrections also greatly reduce
power and require extremely large sample sizes to achieve
significance in case–control designs. However, the use of
quantitative phenotypes such as cognitive, imaging, and
fluid biomarker measures can greatly increase the power to
detect associations. Where a binary case–control design
might require many thousands of samples to detect a gene
effect, samples on the scale of ADNI are sufficient for
detecting associations with quantitative phenotypes [184].
The emerging field of imaging genetics, which uses
imaging data as QTs in GWAS, promises the power to reveal
patterns of genetic associations throughout the brain, but is
hampered by the computational load required for such
high-dimensional studies. Further development of this field,
including improvement of existing GWAS methods, is a ma-
jor goal of the Genetics Core of ADNI [6].
5.1. Case–control studies

Jun et al [185] conducted a meta-analysis case–control
study of AD patients and healthy elderly control subjects
from 12 different studies, including ADNI, to examine the
association of APOE 34, CLU, PICALM, and CR1 with
AD. They found that CLU, PICALM, and CR1 were signif-
icantly associated with AD only in Caucasian populations.
In contrast, APOE 34 was significantly associated with AD
in all ethnic groups and with PICALM in white populations,
suggesting that APOE 34 and PICALM act synergistically
and may participate in a common pathological pathway
(Table 12). Two of the largest case–control GWAS studies
of AD were recently published as companion reports in Na-
ture Genetics [186,187]. Both reports included the ADNI-1
data in their analyses (Table 12). These multistage meta-
analytic reports included discovery and replication data
sets and confirmed each other. These new results bring the
total set of confirmed and replicated candidate genes to 10
(APOE/TOMM40, ABCA7, BIN1, CD2AP, CD33, CLU,
CR1, EPHA1, MS4A4/MS4A6A, PICALM).

Mitochondrial genes are also of great interest in AD, and
Lakatos et al [188] studied the incidence ofAD in patients be-
longing to different subgroups (HV, JT, UK, and IWX) of mi-
tochondrial haplogroup N in the ADNI cohort. They found
that haplogroup UK had the strongest association with AD,
and that this relationship remained significant after adjusting
forAPOE 34 allele dose. Additionally, they identified fivemi-
tochondrial SNPs that were associated with increased risk of
AD and suggested that, given the vital role ofmitochondria in
maintaining cellular energy balance, dysfunctional mito-
chondria may contribute to AD by causing neuronal oxida-
tive damage. In another case–control design, Kauwe et al.
[189] attempted to replicate a study that found that epistatic
linkage between two SNPs in the transferrin and hemochro-
matosis genes was associated with AD risk, suggesting a role



Table 12

AD susceptibility and quantitative trait loci identified by genetic studies of ADNI cohort

SNP

Location

of SNP* Protein

Putative protein

function

P value/odds

ratio (OR) Cohort (N)

QT of

association

Significant

association

of APOE? Study type Reference

rs11136000 CLU Clusterin Clearance of Ab 0.91y ADNI 1 11

others (3055

AD, 8169 CN)

N/A Meta-analysis,

case–control

[185]

rs3818361 CR1 Complement

component

[3b/4b]

receptor

Clearance of Ab 1.14y

rs3851179 PICALM Phosphatidylinositol-

binding clathrin

assembly protein

Synaptic vesicle

cycling and/or

affects APP

processing via

endocytic pathways

0.89y

rs104926 TF Transferrin Increased redox-active

iron 1 oxidative

stress

.00016 ADNI 1 2 others

(1161 AD, 1342

CN)

Association

between

two genes

Synergy

factor

analysis

[189]

rs1800562 HFE Hemochromatosis

rs2986017 CALHM1 Calcium homeostasis

modulator 1

Increase Ab through

lower intracellular

[Ca21]

.042 ADNI 1
1 other

(251 AD,

351 CN)

CSF Ab242 Limited loci [192]

rs1868402 PPP3R1 Protein

phosphatase B

Affects tau

phosphorylation

1.17 ! 1025 ADNI 1 2

others (1106 AD,

1216 CN

CSF P-tau181 Limited loci [191]

rs1868402 PPP3R1 Protein

phosphatase B

Affects tau

phosphorylation

6.2 ! 1025 ADNI 1 1

other (776)

CSF T-tau,

P-tau181

Limited loci [190]

rs17030379 PPP3CA Protein

phosphatase B

Affects tau

phosphorylation

2.05 ! 1024

rs1408077 CR1 Complement

component

[3b/4b] receptor

Clearance of Ab .03 ADNI (171

AD, 364 MCI,

205 CN)

ECTz Limited loci [193]

rs3851179 PICALM Phosphatidylinositol-

binding clathrin

assembly protein

Synaptic vesicle

cycling

and/or affects APP

processing through

endocytic pathways

.05, .01 ECTz, HVx

rs7561528 BIN1 Myc box-dependent-

interacting protein

1

Synaptic vesicle

endocytosis

.03, .01 TPT{, ECTz

rs10501927 CNTN5 Contactin-5 Neurite growth .002, .05, .02, .02 WML**, PGTyy,
TPT{, ECTz

rs2899462 CYP19A1 Cytochrome P450,

family 19, subunit

a, polypeptide 1

Conversion of

androgens

to estrogens

1.9 ! 1027 ADNI (176

AD, 115

MCI, 119 CN)

CSF Ab242 GWAS [199]
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rs1022422 NCAM2 Neural cell adhesion

molecule 2

Neural adhesion,

fasciculation of

neurons

2.75 ! 1027

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

3.03 ! 1027

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

,1027 ADNI (96 AD,

176 MCI,

102 CN)

Ab242,

ptau181/

Ab242,

t2tau/Ab242

Yes GWAS [149]

rs439401 LOC100129500 Unknown function,

overlaps with

APOE

Unknown ,1027 Ab242

rs2121433,

rs1374441,

rs449362,

rs10171238

EPC2 Enhancer of polycomb

homolog 2

Formation of

heterochromatin

,1027 t-tau

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

7.48 ! 1027 ADNI (172

AD, 208 CN)

HV** GWAS [184]

rs1082714 CAND1 Cullin-associated and

neddylation-

associated 1

Ubiquination,

apoptosis

4.93 ! 1026

rs11525066 MAGI2 Membrane associated

guanylate kinase

Ubiquination,

dementia

2.85 ! 1026

rs337847 ARSB Arylsulfatase b Oxidative necrosis,

dementia

6.71 ! 1026

rs10781380 PRUNE2 Prune homolog 2 Apoptosis 7.13 ! 1027

rs12654281 EFNA5 Ephrin-A5 Hippocampal

development

3.72 ! 1027

rs11129640 ARPP-21 Cyclic AMP-regulated

phosphoprotein, 21

kD

Cellular cAMP

signaling pathway

5.57 ! 1028 ADNI and 1

other (236

AD, 424 MCI,

279 CN)

ECTz No GWAS [197]

rs1925690 ZNF292 Zinc finger protein

292

Expressed in brain 2.6 ! 1028 Entorhinal

cortical

volume

rs3851179 PICALM Phosphatidylinositol-

binding clathrin

assembly protein

Synaptic vesicle

cycling and/or

affects APP

processing via

endocytic

pathways

1.9 ! 1028 ECT

(Continued )

M
.W
.
W
ein

er
et

a
l.
/
A
lzh

eim
er’s

&
D
em

en
tia

8
(2
0
1
2
)
S
1
–
S
6
8

S
5
1



Table 12

AD susceptibility and quantitative trait loci identified by genetic studies of ADNI cohort (Continued )

SNP

Location

of SNP* Protein

Putative protein

function

P value/odds

ratio (OR) Cohort (N)

QT of

association

Significant

association

of APOE? Study type Reference

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

,1026 ADNI (166 AD,

346 MCI,

203 CN)

Multiple

brain

regions

GWAS [194]

rs6463843 NXPH1 Neurexophilin 1 Dendrite-axon

adhesion

,1026

rs10932886 EPHA4 EPH receptor A4 Synapse morphology ,1026

rs7610017 TP63 Tumor protein 63 Unknown ,1026

rs1085480 GRINB N-methyl-D-aspartate

glutamate receptor

Learning, memory,

excitotoxic cell

death

1.26 ! 1027 ADNI (742

AD, MCI,

CN)

Temporal

lobe volume

GWAS [196]

rs476463 CSMD2 CUB and sushi

domain-containing

protein 2

Oligodendroglioma

suppressor?

1.27 ! 1026 ADNI (173

AD, 360 MCI,

206 CN)

Voxels of

entire brain

Voxelwise GWAS [195]

rs2429582 CADPS2 Calcium-dependent

secretion activator

2

Synaptic vesicle

priming

6.46 ! 1027

rs4938933 MS4A4A Membrane spanning 4

domains subfamily

A, member 4

Cell surface protein-

receptor?

1.7 ! 1029 ADNI 1 8 others

(8309 AD,

7366 CN)

N/A Meta-analysis, case–

control

[186]

rs9349407 CD2AP CD2-associated

protein

Regulation of

receptor-mediated

endocytosis

8.6 ! 1029

rs3865444 CD33 Siglec-3 Clathrin-independent

endocytosis

1.6 ! 1029

rs11967557 EFHA1 EF-hand domain

family member

A1

Regulation of cell

morphology and

motility in

epithelial tissues

6.0 ! 10210

rs3764650 ABCA7 ATP-binding cassette

subfamily A

member 7

Membrane transporter

highly expressed

in brain

4.5 ! 10217 ADNI 1 3

others (6688

AD, 13685 CN)

N/A Meta-analysis, case–

control

[187]

rs610932 MSA4 Membrane spanning 4

domains subfamily

A gene cluster

Cell surface protein–

receptor?

1.8 ! 10214

rs2075650 TOMM40 Translocase of outer

mitochondrial

membrane

Protein transport

across

mitochondrial

membrane

,1028 ADNI (742

AD, MCI,

CN)

Rate of change in

hippocampal

volume

GWAS [6]
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for iron in AD pathology. Using synergy factor analysis, they
found significant association between bicarriers of the minor
alleles of both SNPs and risk for AD in several U.S. and Eu-
ropean study populations, including ADNI, providing sup-
port for the iron hypothesis (Table 12).
5.2. Studies of limited loci using quantitative phenotypes

Several studies have used knowledge of the model for AD
progression by testing the associations between genes poten-
tially involved in AD pathology and CSF biomarkers. Cru-
chaga et al [190] examined associations between SNPs in
35 genes putatively involved in tau posttranslational modifi-
cation and CSF levels of p-tau181p. They found that SNPs in
the gene for protein phosphatase B were associated with
higher levels of p-tau181p, and that an SNP in the regulatory
subunit of protein phosphatase B was more highly expressed
in AD patients compared with control subjects (Table 12).
These results suggest that genetic variants that alter the
activity of protein phosphatase B could contribute to AD pa-
thology by affecting tau phosphorylation. A further study by
the same group [191] found that the SNP in the regulatory
subunit of protein phosphatase B was associated with the
rate of disease progression, and not with the age of onset
or risk of AD. In contrast, APOE 34 was associated with
lower levels of CSFAb-42, increased disease risk, and lower
age of onset, providing support for a model in which amyloid
deposition is an early event in disease progression and accu-
mulation of hyperphosphorylated tau occurs at a later stage
(Table 12). Kauwe et al [192] also used levels of CSF bio-
markers as a QT to investigate the predicted biological
effects of SNPs in three genes associated with AD. They
found that a nonsynonymous coding substitution in the
gene for calcium homeostasis modulator 1 (CAHLM1), pro-
posed to affect levels of Ab by modulating intracellular cal-
cium levels, was associated with increased CSF levels of
Ab-42 (Table 12). Associations between levels of CSF bio-
markers and SNPs in the two other genes for growth factor
receptor-bound protein-associated binding protein 2
(GAB2; proposed to influence tau phosphorylation) and
sortilin-related receptor (SORL1; an apoE receptor proposed
to bind Ab) were not found, perhaps because of power lim-
itations of the study.

Using six imaging measures reflective of AD pathology
as QTs, Biffi et al [193] searched for associations between
these and SNPs in a range of established and candidate genes
for AD risk. They first sought to confirm associations of
APOE, PICALM, CLU, and CR1 with AD, and found that
although APOE had a strong association with diagnosis, of
the remaining identified risk alleles, only CR1 was associ-
ated with AD in the ADNI cohort, possibly reflecting sample
size limitations for case–control studies. Two novel loci,
CNTN5 and BIN1, were also found to have significant asso-
ciation with AD (Table 12). When the relationship of APOE
34, CR1, CNTN5, and BIN1 with imaging measures was
examined, it appeared that APOE 34 was associated with
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virtually all brain regions, whereas the other loci had a more
limited pattern of association, consistent with APOE 34 be-
ing the primary AD genetic risk factor and other loci making
more modest contributions to the disease.
5.3. GWAS of quantitative phenotypes

In the first ADNI GWAS using the ADNI AD cases and
control subjects, Potkin et al [184] confirmed the association
of APOE with AD and identified a novel AD risk gene,
TOMM40, encoding a regulatory subunit of a protein
translocase in the outer mitochondrial membrane, as being
significantly associated with AD. A further GWAS using
VBM-derived estimates of hippocampal volume as a QT iden-
tified 21 loci with significant association with hippocampal
volume including, in addition to APOE 34, genes involved in
hippocampal development (EFNA5), ubiquination (MAGI2,
CAND1), apoptosis (PRUNE2, CAND1), necrosis (ARSB),
and dementia (MAGI2, ARBS) (Table 12). The involvement
ofTOMM40 in numerousbrain regionsofADpatientswas con-
firmed by Shen et al [194]. This study used a novel whole brain
set of ROIs frombothVBMandFreeSurfer parcellation asQTs
in a GWAS. Of the three SNPs additionally identified as signif-
icantly associated with brain volumetric changes, only one,
proximal to the NXPH1 gene encoding neurexophilin (known
to promote adhesion between dendrites and axons), had a bilat-
eral pattern of association and was chosen for further study
(Table 12). AD patients homozygous for the T allele at this
locus displayed reduced GMmost significantly in hallmark re-
gions ofADatrophy, such as the hippocampus. This study illus-
trates the potential power of imaging genetics to identify novel
candidate genes that warrant further investigation as AD candi-
dates.

While Shen et al [194] used ROIs covering the brain, Stein
et al [195] further extended the dimensionality of imaging
genetics studies by carrying out a voxelwise GWAS, which
explored associations between hundreds of thousands of
SNPs and each of the nearly 32,000 voxels of the entire brain.
Although noSNPwas found significant at the stringent criteria
used in the study, a number of SNPs of interest were identified
in or near genes known to have functions relating to brain
structure, such as monoamine uptake in neurons (CAPDS2),
psychiatric illness (CSMD2 andCAPDS2), and neurite growth
(SHB and ARP1) (Table 12). In a second GWAS of a targeted
region of TBM-derived structural brain degeneration onMRI,
Stein et al [196] identified anSNP located in thegene encoding
N-methyl-D-aspartate receptor NR2B subunit (GRIN2B) that
was significantly associatedwith lower volumes in the tempo-
ral lobe bilaterally. Risk alleles at this locus were more preva-
lent in AD patients of the AD cohort than in healthy elderly
control subjects and were additionally associated with
decreased MMSE scores (Table 12).

Furney et al [197] also used targeted imaging measures
(entorhinal cortex thickness and volume, hippocampal
volume, whole brain volume, and ventricular volume) as
QTs in a large GWAS involving two cohorts (AddNeuroMed
and ADNI). In addition to confirming a role of PICALM as
a susceptibility gene for AD and as related to entorhinal
thickness, they identified two other loci, ZNF292 and
ARPP-21, as potential candidate genes based on associations
of flanking SNPs with entorhinal cortex thickness and
volume (Table 12).

Most imaging GWAS reports have addressed baseline
ADNI data; however, genetic variants predicting rate of pro-
gression are of great interest. Saykin et al [6] reported an ini-
tial longitudinal analysis of hippocampal volume and GM
density using baseline and 12-month scans. In a candidate
gene analysis [198], five AD genes from the AlzGene data-
base (alzgene.org) were found to have significant SNPs asso-
ciated with hippocampal volume or GM density changes,
after accounting for APOE, baseline diagnosis, and other
factors (NEDD9, SORL1, DAPK1, IL1B, and SORCS1).
Next, a longitudinal GWAS was performed on hippocampal
volume and GM density, using theMRI measures reported in
the paper by Risacher et al [115]. A number of interesting
potential candidate genes were identified by this GWAS.
In addition to APOE and TOMM40, an SNP (rs12449237)
located at 16q22.1 between CDH8 (cadherin 8, type II)
and LOC390735was strongly associated with change in hip-
pocampal volume. CDH8 codes for a calcium-dependent
cell adhesion protein related to synaptic integrity (neuronal
adhesion and axonal growth and guidance). Although the
cadherin protein has been implicated in AD and is known
to interact with presenilin, this was the first indication that
genetic variation in CDH8 may be associated with rate of
neurodegenerative changes in the hippocampus. Several
other markers did not reach genomewide significance but
also showed association signals worthy of follow-up (for
volume change: SLC6A13; for GM density change:
MAD2L2, LOC728574, QPCT, and GRB2).

In a QT GWAS of CSF biomarker levels instead of imag-
ing variables, Kim et al [149] examined levels of Ab-42,
t-tau, and p-tau181p and the ratios of p-tau181p/Ab-42 and
t-tau/Ab-42 in the ADNI cohort. They found five SNPs
that reached genomewide significance for associations
with one or more biomarkers, including the known candi-
dates (APOE and TOMM40) as well as one hypothetical
gene (LOC10012950) that partially overlaps APOE. Most
interestingly, several SNPs in the vicinity of the novel
gene EPC2 (enhancer of polycomb homolog 2) were associ-
ated with t-tau levels. EPC2 is involved in chromatin remod-
eling and has not been previously associated with AD, yet
this gene may be causally associated with mental retardation
in a microdeletion syndrome. Along with EPC2, SNPs near
CCDC134, ABCG2, SREBF2, and NFATC4 approached sig-
nificance (P, 105) in their association with CSF biomarkers
and can be considered potential candidate genes for future
studies (Table 12). Han et al [199] also used levels of CSF
biomarkers as QTs in a GWAS of the ADNI cohort. They
found that increasing APOE 34 allele dose was associated
with lowered Ab-42 and elevated t-tau and p-tau181p levels.
After adjusting for age and APOE genotype, several SNPs

http://alzgene.org
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were found to be significantly associated with increased Ab-
42 levels in normal subjects, the most strongly associated be-
ing within or proximal to the TOMM40, NCAM2, and
CYP19A1 genes (Table 12). NCAM2 encodes neural adhe-
sion molecule 2, a poorly characterized protein implicated
in neuronal adhesion and fasciculation of neurons, whereas
CYP19A1 encodes cytochrome P450 aromatase, an enzyme
that catalyzes the conversion of androgens to estrogens.

5.4. Summary and conclusions of genetic risk factor
studies

Genetic studies of the ADNI cohort have confirmed that
the APOE 34 allele is the major genetic risk factor for late-
onset AD and that it is associated with atrophy in widespread
areas of the brain. Case–control GWAS that have included
ADNI data have also confirmed CLU, CRI, and PICALM
as AD risk loci and identified a number of other candidate
genes. QT GWAS using ADNI phenotypes such as Ab-42
and tau or imaging measures of brain atrophy have detected
genes implicated in the modification or modulation of Ab or
tau proteins, mitochondrial oxidative pathways, iron metab-
olism, neural adhesion and growth, synaptic plasticity, epi-
genetic processes, and memory function. A particular
contribution of ADNI imaging genetic studies has been to
develop methods to expand the dimensionality of GWAS
studies to include all regions or voxels of an imaging scan,
significantly expanding the potential of the field of imaging
genetics to pinpoint specific brain regions influenced by dif-
ferent loci. Although candidate genes await confirmation by
independent studies, they promise to unveil biological mech-
anisms underlying AD pathology.
6. Studies of normal control subjects

With the realization that AD pathologymost likely begins
to accumulate years in advance of any detectable cognitive
effect, a major issue has been determining the proportion of
apparently normal control subjects who harbor preclinical
AD. As more sensitive biomarkers have been developed,
studies have emergedwith the goals of ascertaining the utility
of these biomarkers in healthy elderly subjects and determin-
ing the earliest stage at which incipient AD pathology can be
detected. This clearly has implications for development of
AD therapies: if AD pathology can be reliably detected at
such an early stage, then would existing or novel AD-
modifying treatments be more effective when used before
clinical symptoms become evident? In tandem with these
studies, ADNI’s cohort of well-characterized normal control
subjects has been used to investigate processes occurring in
the brain during healthy aging when there are no clinically
detectable underlying pathologies. These two thrusts are of-
ten interwovenwithin the same study, as it becomesmore ob-
vious that healthy elderly subjects, although cognitively
normal, are in fact a heterogeneous group when examined
by other means.
6.1. MRI studies

The question of whether atrophy observed in normal ag-
ing is due primarily to normal aging processes or to the de-
velopment of underlying pathologies is the subject of much
debate. Fjell et al [200] presented the first detailed longitudi-
nal study of brain atrophy in healthy elderly subjects aimed
at understanding age-related changes in cognitive function.
When volume changes in multiple ROIs and across the entire
cortex were compared in healthy elderly subjects and AD pa-
tients, these authors found that the healthy elderly subjects
had an atrophy rate of about 0.5% per year and that volume
loss was widely distributed across the brain and included
both regions typical of AD-associated atrophy and areas
not typically associated with AD, such as the inferior, supe-
rior, and middle frontal cortices. The rate of change acceler-
ated with age, especially in those regions associated with
AD, possibly because of the existence of preclinical AD
pathology superimposed on normal aging processes. The
authors believe, however, that the majority of volumetric
changes observed in healthy aging are not related to those
caused by degenerative diseases. Davatzikos et al [119]
used the SPARE-AD index (see section 4.4.2.1. for further
description) to examine the degree of AD pathology in
healthy elderly subjects and its association with cognitive
decline in ADNI and another cohort with longitudinal data
available. They found that SPARE-AD scores increased
with age, as did the rate of change of the SPARE-AD score.
When healthy elderly subjects were divided into groups of
high versus low SPARE-AD score, the majority had negative
scores. However, a small group with positive scores had sig-
nificantly lower MMSE scores at baseline, suggesting that
a subset of cognitively normal elderly subjects harbored
underlying AD preclinical pathology.

In response to a paper by Burgmans et al [201] suggesting
that underlying preclinical disorders may lead to the overes-
timation of GM atrophy in normal aging studies, Fjell et al
[202] conducted a meta-analysis of a number of cross-
sectional studies. They found that atrophy correlated with
age in virtually all ROIs studied, even at younger ages, sug-
gesting a linear trajectory of brain atrophy over time. When
2-year follow-up cognitive data of healthy elderly subjects
from the ADNI cohort were used to exclude participants
with any indication of cognitive decline, significant atrophy
in all ROIs was still found in the remaining “super-stable”
cohort. These results support the view that brain atrophy is
part of normal aging and not necessarily caused by underly-
ing neuropathological processes. To detect unusually fast
atrophy in cognitively normal healthy elderly subjects,
Franke et al [92] developed a model of healthy aging by
estimating age from MRI scans of normal brain anatomy.
Their method (described in more detail in section 3.7) accu-
rately estimated the age of healthy subjects (r 5 0.92
between real and calculated ages). Using the same method,
they also estimated ages of patients with early AD and found
that the predicted ages were an average of 10 years higher
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than the actual ages, implying that the pattern of AD atrophy
does accelerate relative to healthy elderly control subjects.

Murphy et al [203] used an automated method to examine
volume changes in 14 cortical and subcortical regions over 6
months in an effort to determinewhether atrophy was detect-
able over the short period in healthy elderly subjects and
whether this atrophy was related to 2-year declines in
memory-specific neuropsychological tests. They found that
volume changes in these regions could be measured and
that they were predictive of future clinical decline. The
most significant associations were found in the MTL, sug-
gesting that this atrophy could represent the earliest stages
of AD and that MRI may be a useful tool in complementing
neuropsychological tests in the early detection of those at
risk for subsequent cognitive decline.
6.2. Studies of CSF biomarkers and amyloid deposition
(11C-PiB PET)

In a manner similar to the examination ofMRI markers of
AD pathology, there has been interest in assessing the utility
of CSF biomarkers in healthy elderly subjects on the basis
that an “earlier biomarker horizon” [204] would have great
clinical significance. Nettiksimmons et al [204] examined
healthy elderly subjects in the ADNI cohort and found three
clusters of participants when 11 biomarker and imaging
measures were subjected to unsupervised cluster analysis.
The first, compact cluster had the most “normal” CSF and
MRI measures, whereas the measures of the third, more dis-
persed group more closely resembled those of MCI patients
included in the study for comparison (the second cluster was
placed in an intermediate position). The third cluster had
a significantly higher proportion of APOE 34 carriers and
scored worse on tests of cognition (ADAS-cog, AVLT), sug-
gesting that this group may harbor the earliest manifesta-
tions of AD symptoms. These results provide support for
the notion that cognitively normal elderly subjects are in
fact a heterogeneous group, a portion of which may progress
to MCI in the future. In a study of the relationship between
levels of CSF biomarkers and 1-year atrophy in 15 subcorti-
cal and 33 cortical ROIs in healthy elderly subjects, Fjell
et al [205] reached similar conclusions. They found that
levels of CSF biomarkers, especially Ab-42, correlated
with atrophy in many of the regions tested and that atrophy
was not restricted to regions most typically associated with
AD. When Ab-42 concentration was plotted against the per-
centage of annual change in ROIs, there was an inflection
point at approximately 175 pg/mL, below which participants
had larger brain volume changes over a year, suggesting that
Ab-42 may play a role in changes in brain volume observed
in healthy elderly subjects below a certain threshold level.
De Meyer et al [159] found that when a biomarker “signa-
ture” for AD using levels of Ab-42, t-tau, and p-tau181p
was tested in healthy elderly subjects, there was a bimodal
distribution of Ab-42 levels with a separation point at 188
pg/mL. Although it was unknown whether those participants
with low levels of Ab-42 in these two studies would develop
AD pathology, they once again highlighted the heterogene-
ity of the cognitively normal healthy elderly group.

In the current model of AD pathogenesis, it is well estab-
lished that deposition of amyloid plaques is an early event
that, in conjunction with tau pathology, causes neuronal
damage typically beginning in the hippocampus and result-
ing in the first clinical manifestations of the disease in the
form of episodic memory deficits. Mormino et al [206]
investigated the relationship between Ab deposition, as mea-
sured by 11C-PiB PET uptake, hippocampal atrophy, and
episodic memory loss in cognitively normal healthy elderly
subjects. They found an inverse relationship between
11C-PiB uptake and hippocampal volume and that episodic
memory loss was predicted by hippocampal volume, but
not by 11C-PiB uptake. The results suggest that low levels
of Ab-42 accumulation in healthy elderly subjects may
reflect early stages of AD pathogenesis and may subse-
quently mediate dementia through an effect on hippocampal
volume and the resulting declines in episodic memory.
6.3. Genetic studies of normal control subjects

Although the APOE 34 allele has been clearly identified as
an AD risk allele, the question of whether a second variant in
the APOE gene, the 32 allele, confers a protective effect has
been less well studied. Evidence for the protective effect of
the APOE 32 allele came from a study by Hua et al [120],
who found reduced CSF volume in the ventricular system of
healthy elderly subjects who had the highest frequency of
this allele compared with MCI and AD patients. Chiang et al
[207] sought to determine the effect of APOE 32 allele on hip-
pocampal volume and levels of CSF biomarkers in healthy el-
derly subjects. They found that carriers of the APOE 32
genotype, constituting approximately 5% of the population,
had lower rates of hippocampal atrophy and higher Ab-42
and lower t-tau and p-tau181p levels compared with the more
common (w70% of population) APOE 33/ 33 homozygotes,
suggesting that lower rates of atrophy could be related to de-
creased underlying AD pathology and may explain the lower
rates ofADamong carriers of this allele. A similar findingwas
reported by Fan et al [208], who examined the relationship be-
tween cortical thickness at multiple regions across the brain
and APOE genotype in healthy elderly subjects who were
grouped as 32 carriers, 33 homozygotes, and 34 carriers. After
adjusting for multiple comparisons, they found greater thick-
ness in the superior temporal cortex in 32 carriers compared
with 33 homozygotes, and in the dorsolateral prefrontal cortex
in 32 compared with 34 carriers. Moreover, CSF concentra-
tions ofAb-42, t-tau, and p-tau181pwere significantly different
in all groups (Fig. 24), although no differences were found in
the MMSE between groups. The results of these two studies
provided support for the differential effect of APOE alleles
on brain structure and on CSF biomarkers.

In addition to risk factors like age andAPOE genotype, in-
creased BMI has been associated with frontal, temporal, and



Fig. 24. Mean biomarker levels (t-tau, p-tau, and Ab-42) for the APOE

genotype groups. The APOE 32 carriers are represented in black, the 33 ho-

mozygotes in gray, and the 34 carriers in white. The CSFAb-42 levels show

a significant stepwise trend downward, from APOE 32 carriers to 33 homo-

zygotes to 34 carriers, whereas the t-tau and the p-tau levels show the oppo-

site trend. Reproduced with permission from Ref [208].
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subcortical atrophy and may increase susceptibility to AD.
Recent studies identified a novel obesity genetic risk factor,
a variant of the fat mass and obesity associated (FTO) gene,
carried by almost one-half of Western Europeans. Ho et al
[209] examined the effect of the FTO risk allele on brain vol-
umes in healthy elderly subjects and compared its effects on
brain structure with that of increased BMI. They found that
carriers of the FTO risk allele had an 8% to 12% deficit in
a subset of areas affected by BMI, predominantly in the fron-
tal and occipital lobes, comparedwith noncarriers, suggesting
that the FTO risk allele contributes to, but does not fully ac-
count for, the effect of increasing BMI on brain atrophy. Ber-
tam and Heekeren [198] discussed the findings of the study
and the need for corroborating the results to determine the in-
fluence of genetics on normal brain structure and function.

The idea that common variance in brain structure may be
primarily controlled not by polymorphisms resulting in
altered protein structure, but by changes in regulatory ele-
ments found support in a study by Rimol et al [210]. Using
the ADNI cohort, they found that two SNPs located in non-
exonic regions of genes for primary microencephaly were
correlated with reduced cortical surface in males only,
regardless of disease status, and suggested that these poly-
morphisms may affect gene regulation and result in gross
abnormalities in brain structure observed in this disease.
More data on the role of common genetic sequence variations
in accounting for commonly occurring brain structure varia-
tions came from a study by the same group [211] on
associations between a common haplotype of the MECP2
gene and brain structure. Mutations in MECP2, encoding
methyl-CpG binding protein 2, cause microencephalopathy
and are associatedwith other severe neurodevelopmental dis-
orders, but Joyner et al [211] found that common sequence
variations in this region correlated with reduced cortical sur-
face area in males only of the ADNI cohort. As MECP2 is
thought to transcriptionally activate or repress thousands of
genes, studies of the influence of such common sequence var-
iations may reveal profound insights into brain structure and
development.

6.4. Summary and conclusions of papers focusing on
normal control subjects

Heterogeneity of cognitively normal healthy elderly sub-
jects seems to bewell supported by these studies, with a num-
ber suggesting the existence of a subset of cognitively
normal elderly subjects that bears the hallmarks of early
AD pathogenesis in terms of changes in brain volume and
levels of CSF biomarkers. The extent to which these changes
are separate from those of normal aging remains to be fully
elucidated. Fjell et al [202] concluded, “We need more
knowledge about which factors mediate brain atrophy in
healthy elderly and what consequences the changes have
for cognitive function.” Likewise, several intriguing studies
have pointed to the role of genetics in healthy aging, and sug-
gest a protective effect of the APOE 32 allele and increased
susceptibility to brain atrophy and perhaps AD conferred by
a risk allele at the novel FTO locus. Clearly, studies of the
healthy elderly control subjects are revealing information
not only about the processes of healthy aging but also the ini-
tial development of preclinical AD pathology.
7. Worldwide ADNI

Since the inception of ADNI in North America in 2004,
there has been worldwide interest in creating programs that
are at least partially modeled on the ADNI platform, and
that use protocols developed byADNI for at least part of their
studies. Combined, the initiatives represent a concerted effort
toward globalization of this concept. Society may well reap
the rewards of having not just a well-characterized North
American cohort for the development of AD biomarkers
but also similarly characterized cohorts globally that may
represent diverse ethnic groups, important for determining
the applicability of ADNI findings to the world population.
Like ADNI, these initiatives from Europe, Japan, and Aus-
tralia are predicated on the sharing of data, and infrastructure
is beginning to be developed to allow full transparency of
global results. Future ADNIs are expected to begin in Argen-
tina and China and have recently begun in Korea and Taiwan.
All worldwide ADNIs share common goals of increasing
understanding of AD onset and progression, both cognitively
and physically, establishing globally recognized standards
for diagnosis, and ultimately developing methods to allow
more efficient clinical trials.

7.1. European ADNI

Frisoni [212] provides an overview of all programs, either
completed or underway, in Europe that are in some way
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related to ADNI. The ADNI platform was first introduced
into Europe in the form of a small cross-sectional pilot study,
E-ADNI, which aimed to assess the feasibility of importing
ADNI procedures to a European multicenter multicountry
setting [213]. E-ADNI was initiated under the auspices of
the Alzheimer’s Association through the generosity of the
HEDCO Foundation and enrolled 49 control, MCI, and
AD participants over seven sites in seven countries. The pilot
study used all ADNI protocols, with the exception of PET
imaging, the feasibility of which had been previously dem-
onstrated, and MRI sequences for the detection of cerebral
small vessel damage, a slightly different emphasis of the
study. Buerger et al [214] conducted a multicenter feasibility
study within E-ADNI and found that the use of fresh, rather
than frozen, biological samples increased diagnostic accu-
racy. Overall, the study demonstrated that apart from age
and education, the enrolled cohort was similar to the
ADNI cohort in MRI and CSF measures and that implemen-
tation of the ADNI platform in Europe was feasible [213].

Other data collection programs in Europe include (1)
AddNeuroMed, a public–private initiative with a cohort of
700 control, MCI, and AD subjects across Europe that
used ADNI protocols for structural MRI; (2) Pharma-cog,
which overlaps to the greatest extent with ADNI and which
aims to predict cognitive properties of new drug candidates
for neurodegenerative diseases; (3) Swedish ADNI, a small-
scale initiative funded by the Alzheimer’s Association that
used ADNI protocol and which has merged into the larger
Swedish BrainPower initiative; and (4) ItalianADNI, a larger
project with 480 patients enrolled. These initiatives vary in
the size and composition of cohorts enrolled, the length of
study, and the frequency and type of data collection. How-
ever, they all have the use of standardized ADNI protocols
in common for at least some of their data collection [212].

Two additional European programs funded by the Alz-
heimer’s Association focused on harmonization of measure-
ments of both CSF biomarkers [215] and hippocampal
volume [216], aiming to createworldwide protocols for stan-
dardized hippocampal segmentation and measurement of
CSF biomarker concentrations to allow the direct compari-
son of results generated globally.

Finally, initiatives inspired by ADNI to build infrastruc-
ture including a central repository of all data, like that devel-
oped at LONI, have been implemented in Europe. NeuGRID
is being developed at the European equivalent of LONI, and
outGRID aims to synergize neuGRID, LONI, and the Cana-
dian repository CBRAIN and to develop full interoperability.
CATI (Centre pour l’Acquisition et le Traitement de l’Image)
is the French repository for data sets within that country.

ADNI-related programs and initiatives in Europe are
summarized in Table 13.
7.2. AIBL study: The Australian ADNI

Often termed the “Australian ADNI,” the AIBL has sim-
ilar goals to ADNI, namely, to better understand disease
pathogenesis and to develop tests for an earlier diagnosis
of AD, and, to this end, uses ADNI protocols for its imaging
studies [217]. Some methodological differences between the
two studies include the omission of FDG-PET metabolic in-
vestigations and the comparison of amyloid pathology using
11C-PiB PET and Ab-42 levels in blood plasma instead of
from CSF on the basis that obtaining blood plasma is both
less expensive and less invasive than lumbar punctures. Per-
haps the greatest difference between AIBL and ADNI lies in
the approach AIBL is taking to investigating lifestyle factors
involved in AD. By collecting extensive neuropsychological
and lifestyle data, the study aims to understand which health
and lifestyle factors protect or contribute to AD. Like ADNI,
however, all data are made available through LONI and are
funded by the Alzheimer’s Association. Ellis et al [217] re-
ported that one recent finding from the study found that hip-
pocampal atrophy was regionally associated with 11C-PiB
retention only in the inferior lobe, leading to a new hypoth-
esis of how Ab accumulation could disrupt connections be-
tween the hippocampus through accumulation in this area
(Bourgeat et al., Beta-amyloid burden in the temporal neo-
cortex is related to elderly subjects without dementia. Neu-
rology 2010:74:121–7; see Appendix).

Rowe et al [218] reported on the progress of the neuroimag-
ing arm of the AIBL in characterizing a cohort of 177 healthy
elderly subjects, 57 MCI patients, and 53 AD patients. The pa-
tient groups had increasing numbers of APOE 34 carriers, in-
creased hippocampal atrophy, and increased cognitive
impairment with disease progression. The distribution of 11C-
PiBbinding in control subjects did not follow anormal distribu-
tion, andcluster analysis determineda separationpoint between
low and high 11C-PiB binding groups at a neocortical standard-
ized uptake value threshold of 1.5. This bimodal distribution in
normal healthy elderly subjects again echoes the idea of hetero-
geneity within this group and the existence of a subset of pa-
tients with the first manifestations of AD pathogenesis well in
advance of any effects on cognition. 11C-PiB binding may
therefore play a role in populating andmonitoring clinical trials
of antiamyloid therapies. Rowe et al [218] also used 11C-PiB
PET imaging for diagnosis and found that 11C-PiB scans dis-
criminated between AD and control subjects with an accuracy
of 73%, a sensitivity of 98%, and a specificity of 63%, compa-
rable with results obtained using hippocampal volume (accu-
racy5 73%, specificity5 80%, sensitivity5 78%).
7.3. Japanese ADNI

The need for a Japanese ADNI (J-ADNI) was realized in
2006 when ADNI was beginning in North America and at the
end of the Japanese study J-COSMIC (Japan Cooperative
SPECTStudy onAssessment ofMild Impairment of Cognitive
Function) [219]. Iwatsubo [220] reported that J-ADNI was
needed not only to meet requirements for global clinical trials
of AD drugs about to begin in Japan and to develop the neces-
sary infrastructure for these trials, butwas alsomotivated by the
desire of Japanese researchers to improve their clinical science



Table 13

European initiatives related to ADNI

Purpose Program name Funding agency Time frame Countries

Data collection Pilot E-ADNI Alzheimer’s Association 2006–2007 IT, FR, GE, NL, SW, DE

AddNeuroMed EC Ongoing, 40 months FI, PL, UK, IT, GR, FR

Pharma-Cog

WorkPackage

5 (E-ADNI)

EC IMI Ongoing 5 years SP, IT, GE, FR

Swedish ADNI Alzheimer’s Association 2007–2009 SW

Italian ADNI NHS 2009–2011 IT

SOP development International

harmonization

of CSF Ab42,

t-tau, and p-tau

Alzheimer’s Association 2009–2013 40 laboratories (EU, US,

Japan, Australia, Brazil)

EADC-ADNI

harmonization of

hippocampal volume

Alzheimer’s Association

Lily-Wyeth

2010–2012 24 centers in EU, US, Canada,

Australia

Infrastructure

development

NeuGRID FP7 2008–2011 IT, FR, SP, CH, UK, SW

OutGRID FP7 2009–2011 IT, FR, UK, US, CD

Centre pour l’Acquisition

et le Traitement de l’

Image (CATI)

French National

Foundation on

AD and RD

2010–2013 FR

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; EC, European Commission; IMI, Innovative Medicines Initiatives; NHS, National

Health System; EADC, European Alzheimer’s Disease Consortium; FP7, 7th Framework Programme; AD and RD, Alzheimer’s disease and related diseases;

DE, Denmark; CD, Canada; CH, Switzerland; FI, Finland; FR, France; GE, Germany; GR, Greece; IT, Italy; NL, Netherlands; PL, Poland; SP, Spain; SW,

Sweden; UK, United Kingdom; US, United States.

NOTE. Reproduced with permission from Ref [212].

Fig. 25. Worldwide ADNI sites. Abbreviations: NA-ADNI, North American ADNI; Arg-ADNI, Argentinean ADNI; E-ADNI, European ADNI; C-ADNI, Chi-

nese ADNI; K-ADNI, Korean ADNI; J-ADNI, Japanese ADNI; T-ADNI, Taiwanese ADNI; A-ADNI, Australian ADNI.
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through international collaboration. A special issue of Rinsho
Shinkeigaku near the inception of J-ADNI in 2007 reported
on ADNI and the need for the establishment of a Japanese ver-
sion [221], the goals of early detection of AD and biomarker
development [222], the methods used by ADNI and adopted
by J-ADNI for achieving these goals [219], and the use of
ADNIapproaches for detectingMCI inneuropathological stud-
ies [223]. Funding for J-ADNI was sought and received from
both the public and private sector, including Japanese and inter-
national companies, to a total of approximately U300 million
per year [220]. The study began in 2008 and aimed to recruit
300 amnestic MCI patients, 150 patients with early AD, and
150 healthy elderly control subjects from 30 centers across
Japan by the end of 2010; participants would then be followed
until 2013 using a research protocol designed to maximize
compatibility with ADNI [220,224]. Compatibility with
ADNI protocols was designed to allow sharing and direct
comparison of data and as a way to contribute to global
standardizationof protocols.Arai et al [224] reported that initial
results fromADNI supporting the use of biomarkers in clinical
trials contributed to a paradigm shift in Japanese geriatric med-
icine fromdefiningAD solely by cognitivemeasures to consid-
ering the information available from biomarkers.

7.4. Worldwide ADNI future directions

The establishment of Worldwide ADNI, an umbrella or-
ganization of global ADNI efforts, is coordinated by the Alz-
heimer’s Association and is a direct result of ADNI.
Information on the countries that have established or plan
to establish ADNI sties in their countries can be
found at http://www.alz.org/research/funding/partnerships/
WW-ADNI_overview.asp. (Fig. 25). Information on the
countries that have established or plan to establish ADNI
sties in their countries can be found at http://www.alz.org/
research/funding/partnerships/WW-ADNI_overview.asp.
Using standardized protocols developed by ADNI, these
programs collectively aim to help define the rate of progres-
sion of MCI and AD, and to develop improved methods for
identifying the appropriate patient populations to participate
in clinical trials. It is anticipated that data generated by these
global initiatives will ultimately be shared through a com-
mon infrastructure with international researchers. It is clear
that ADNI has had and will continue to have a profound and
far-reaching impact on the development of methods for the
prediction and monitoring of the onset and progression of
AD and in gaining a worldwide picture of the physical
changes that lead to AD.
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