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Abstract Introduction: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) has continued develop-
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ment and standardization of methodologies for biomarkers and has provided an increased depth
and breadth of data available to qualified researchers. This review summarizes the over 400 publica-
tions using ADNI data during 2014 and 2015.
Methods: We used standard searches to find publications using ADNI data.
Results: (1) Structural and functional changes, including subtle changes to hippocampal shape and
texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detect-
able in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal b-amy-
loid deposition (Ab1), biomarkers become abnormal in the order predicted by the amyloid cascade
hypothesis; (3) Cognitive decline is more closely linked to tau than Ab deposition; (4) Cerebrovas-
cular risk factors may interact with Ab to increase white-matter (WM) abnormalities which may
accelerate Alzheimer’s disease (AD) progression in conjunction with tau abnormalities; (5) Different
patterns of atrophy are associated with impairment of memory and executive function and may un-
derlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are dis-
rupted as AD progresses. Models of prion-like spreading of Ab pathology along WM tracts predict
known patterns of cortical Ab deposition and declines in glucose metabolism; (7) New AD risk and
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protective gene loci have been identified using biologically informed approaches; (8) Cognitively
normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified
not only by “classic” AD pathology but also by normal biomarkers, accelerated decline, and sus-
pected non-Alzheimer’s pathology; (9) Selection of subjects at risk of imminent decline on the basis
of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome
measures to early changes in cognition has been improved and surrogate outcome measures using
longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and dura-
tion; (11) Advances in machine learning techniques such as neural networks have improved diag-
nostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network
connectivity measures and genetic variants show promise in multimodal classification and some clas-
sifiers using single modalities are rivaling multimodal classifiers.
Discussion: Taken together, these studies fundamentally deepen our understanding of AD progres-
sion and its underlying genetic basis, which in turn informs and improves clinical trial design.
� 2017 Published by Elsevier Inc. on behalf of the Alzheimer’s Association.
Keywords: Alzheimer’s disease; Mild cognitive impairment; Amyloid; Tau; Biomarker; Disease progression
1. Introduction

The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) began in 2005 as a naturalistic longitudinal study
to develop and validate biomarkers for subject selection
and as surrogate outcome measures in clinical trials of Alz-
heimer’s disease (AD)-modifying therapies. The initial
5-year study, known as ADNI-1, enrolled 800 participants
from 56 study sites in the United States and Canada, in the
three groups: normal cognitive aging (CN), mild cognitive
impairment (MCI), and early Alzheimer’s disease (AD)
[1]. This was extended by a Grand Opportunities grant
(ADNI-GO) in 2009, and a competitive renewal of ADNI-
1 (ADNI-2) in 2011 [1] with each successive grant enrolling
earlier stage patients and incorporating newly developed
techniques. A further competitive renewal, ADNI-3, extends
the study for another 5 years from 2016 to 2021 [2].

ADNI is structured as a public-private partnership over-
seen by the Private Partner Scientific Board comprising rep-
resentatives of private, for-profit entities, and nonprofit
organizations which facilitates precompetitive collaboration
[3]. ADNI has been described as an exemplar of how these
partnerships can impact both clinical and basic science
research [4]. First, it has systematically optimized bio-
markers for clinical trials through validation, and reproduc-
ibility studies, statistical analysis, and the avoidance of bias
[5]. Second, ADNI has been an unmitigated success from the
standpoint of generating new knowledge about the underly-
ing physiopathology and genetic contributions to AD [6].
These advances have been largely predicated on the develop-
ment of standardized protocols for use in multiple centers,
the emphasis of the initiative on studying multiple modal-
ities, and a policy of open data sharing [7]. ADNI’s approach
has proved so successful that its framework has provided
inspiration for similar consortia around the world. These
include worldwide studies modeled on ADNI [8], as well
as initiatives focused on biomarker discovery for diseases
such as multiple sclerosis and Parkinson’s disease [1], and
Down’s syndrome [9].

The impact of ADNI’s policy of open data sharing cannot
be overemphasized [10]. All data generated by the eight
ADNI cores [1] are deposited in the Laboratory of Neuro Im-
aging (LONI) at the University of Southern California, an
informatics infrastructure which, after quality-control pro-
cedures, disseminates ADNI data to a continually growing
number of investigators in the wider scientific community
[11]. LONI has received nearly 1800 applications for data
from scientists from multiple disciplines ranging from
neuroscience to radiology to genetics to computer science.
These investigators have downloaded over 7 million neuro-
images and clinical data sets from the ADNI repository [11]
resulting in the burgeoning number of scientific studies pub-
lished using ADNI data over the past decade (Fig. 1).

The purpose of this review was to provide a comprehen-
sive overview of the advances in the field of dementia from
all studies published (to the best of our knowledge) in 2014
and 2015 using ADNI data (approximately 400). We hope
that this will allow investigators to determine what analyses
have already been done on ADNI data to help prevent dupli-
cation and to identify which questions remain to be
answered. Previous successive reviews compiled summaries
of publications using ADNI data until the end of 2011 [12],
mid-2012 [13], and the end of 2013 [1]. The complete list of
ADNI studies may be found at http://adni-info.org/
Scientists/ADNIScientistsHome/ADNIPublications.html.

The review is structured in a thematic manner in three
parts to reflect evolving views of AD progression. The first
part outlines primarily technical advances made by the
ADNI Clinical, Magnetic Resonance Imaging (MRI), Posi-
tron Emission Tomography (PET), Biomarker, and Genetics
cores that do not pertain directly to disease progression or

http://adni-info.org/Scientists/ADNIScientistsHome/ADNIPublications.html
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Fig. 1. Applications for use of ADNI data, download activity, and the num-

ber of ADNI publications per year, 2006–2015. Abbreviation: ADNI, Alz-

heimer’s Disease Neuroimaging Initiative.
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the improvement of clinical trials. The second part takes a
holistic approach to the discussion of disease progression,
incorporating advances from many ADNI cores. This sec-
tion addresses in particular (1) the extension of the disease
continuum to include the preclinical stage; (2) the impor-
tance of Ab positivity at even preclinical stages; (3) the
concept of the disease disrupting structural, functional, and
metabolic connectivity in the brain; and (4) the role of
white-matter (WM) disease in alternative pathways to de-
mentia. The final part of the study discusses the application
of these advances in our knowledge of disease progression to
the improvement of clinical trials for AD preventive or
modifying therapies, the ultimate goal of ADNI.
2. Cognitive and clinical aspects of Alzheimer’s disease

As cognition lies at the heart of AD, so too does cognitive
characterization of the ADNI cohort. This is central to the
development of all other biomarkers and to the improvement
of clinical trial efficiency.With the focus of disease interven-
tion shifting to the presymptomatic phase, there has been
substantial effort in adapting cognitive tests to improve their
sensitivity at early disease stages. Recognition that CN and
MCI groups selected on the basis of cognition in fact repre-
sent a heterogeneous mix of pathologies has spurred studies
to identify the basis of that heterogeneity and ultimately in-
crease the power of clinical trials by selecting cohorts with
defined pathology. Other studies have identified cognitive
measures capable of predicting future decline. Beyond
improving clinical trial efficiency, studies have investigated
the associations between neuropsychiatric symptoms, or
clinical risk factors in AD, and imaging and fluid
biomarkers.

During ADNI-2, ADNI’s Clinical Core, led by Dr. Paul
Aisen, focused on characterizing the trajectory of subjects
in the early stages of disease. This required the development
of cognitive and functional measures able to detect the first
of subtle cognitive changes [14]. A subjective memory
concern (SMC) group with self-reported memory problems
was enrolled in ADNI-2 to facilitate investigation of the
very earliest cognitive changes. This group was selected us-
ing a quantitative approach based on 12 episodic memory
items from the self-rating form of the 20 item Cognitive
Change Index [15–17]. The Clinical Core then used the
self and informant versions of the Everyday Cognition
instrument to study the relationship to AD biomarker
measures [18]. Across all groups, a total of 1182 subjects
were enrolled and followed during ADNI-2 (Table 1),
many of whom will be followed in the next phase of the
study which will incorporate computerized cognitive
assessments.
2.1. Psychometric analysis of cognitive tests

Psychometric analysis was applied to cognitive tests to
improve their reliability, to allow the comparison of different
cognitive tests, and to increase understanding of the cogni-
tive processes underlying each test. The comparison of
studies of cognitive decline is often hampered by the use
of multiple cognitive tests. Gross et al. [19] derived summary
factors based on the strength of association between cogni-
tive change on a particular test and changes in cortical thick-
ness and hippocampal volume biomarkers. These
represented the average rate of cognitive decline and al-
lowed the direct comparison of longitudinal decline on
different cognitive tests. Trzepacz et al. provided a conver-
sion table permitting translation of scores between the Mon-
tr�eal Cognitive Assessment and Mini–Mental State
Examination (MMSE) [20]. Balsis et al. [21] determined
the correspondence between scores on the Alzheimer’s Dis-
ease Assessment Scale–cognitive (ADAS-cog), MMSE, and
Clinical Dementia Rating–Sum of Boxes (CDR-SB) mea-
sures in the entire ADNI cohort (Fig. 2). Their analysis sug-
gested that ADAS-cog and CDR-SB were more precise than
MMSE at measuring the severity of cognitive dysfunction.
The reliability of ADAS-cog scores for measuring change
in more cognitively intact subjects between baseline and 1
year was improved by reweighting the scale subtests for
AD subjects, but not MCI subjects, although overall reli-
ability remained low (0.39–0.61 for MCI subjects and
0.53–0.64 for AD subjects) [22].

Application of a psychometric model to the free recall
task of ADAS-cog suggested that impaired patients have
deficits in both long-term memory encoding, and short-
term memory retrieval, in addition to poorer transfer into
long-term memory of items successfully retrieved from
short-term memory, and poorer retention of items encoded
into long-term memory after long delays [23]. Their imme-
diate recall of encoded words and long-term memory were
unaffected. Using a psychometric dual retrieval model, Brai-
nerd et al. [24] found that differences in reconstructive
retrieval, rather than recollective retrieval in the delayed
recall component of the Rey Auditory Verbal Learning
Test (RAVLT) distinguished MCI from AD subjects, and



Table 1

Clinical and cognitive characteristics of ADNI-2 subjects

N CN, N 5 314 SMC, N 5 107 EMCI, N 5 300 LMCI, N 5 311 AD, N 5 150 Combined, N 5 1182 P-value

Age 1182 74.1 (5.8) 72.2 (5.6) 71.2 (7.4) 73.1 (7.4) 74.7 (8.2) 73.0 (7.0) ,.0011

Sex: female 1182 158 (50%) 62 (58%) 133 (44%) 127 (41%) 62 (41%) 542 (46%) .0092

Education (years) 1182 16.5 (2.6) 16.8 (2.5) 16.0 (2.7) 16.1 (2.8) 15.8 (2.7) 16.2 (2.7) .0071

Marital 1182

Married 226 (72%) 70 (65%) 227 (76%) 242 (78%) 130 (87%) 895 (76%) ,.0012

Widowed 42 (13%) 15 (14%) 21 (7%) 38 (12%) 14 (9%) 130 (11%)

Divorced 33 (11%) 12 (11%) 34 (11%) 26 (8%) 5 (3%) 110 (9%)

Never married 13 (4%) 10 (9%) 14 (5%) 3 (1%) 1 (1%) 41 (3%)

Unknown 0 (0%) 0 (0%) 4 (1%) 2 (1%) 0 (0%) 6 (1%)

Ethnicity 1182

Not Hisp/Latino 300 (96%) 103 (96%) 284 (95%) 304 (98%) 141 (94%) 1132 (96%)

Hisp/Latino 13 (4%) 2 (2%) 15 (5%) 7 (2%) 8 (5%) 45 (4%)

Unknown 1 (0%) 2 (2%) 1 (0%) 0 (0%) 1 (1%) 5 (9%) .142

Race 1182

Am Indian/Alaskan 1 (0%) 0 (0%) 1 (0%) 0 (0%) 0 (0%) 2 (0%)

Asian 7 (2%) 0 (0%) 4 (1%) 5 (2%) 5 (3%) 21 (2%) .0492

Hawaiian/Other PI 0 (0%) 0 (0%) 1 (0%) 1 (0%) 0 (0%) 2 (0%)

Black 21 (7%) 3 (3%) 5 (2%) 10 (3%) 6 (4%) 45 (4%)

White 283 (90%) 101 (94%) 279 (93%) 294 (95%) 137 (91%) 1094 (93%)

More than one 2 (1%) 3 (3%) 7 (2%) 1 (0%) 2 (1%) 15 (1%)

Unknown 0 (0%) 0 (0%) 3 (1%) 0 (0%) 0 (0%) 3 (0%)

CDR-SB 1182 0.030 (0.126) 0.075 (0.179) 1.286 (0.757) 1.630 (0.910) 4.507 (1.696) 1.341 (1.622) ,.0011

ADAS-11 1178 5.8 (3.0) 5.6 (2.7) 7.9 (3.5) 11.1 (4.6) 20.8 (7.1) 9.6 (6.4) ,.0011

MMSE 1182 29.1 (1.2) 29.0 (1.2) 28.4 (1.6) 27.5 (1.8) 23.1 (2.1) 27.7 (2.4) ,.0011

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitively normal; SMC, subjectivememory concern; EMCI, early mild cognitive

impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating–Sum of Boxes; ADAS-11, Alzheimer’s Dis-

ease Assessment Scale, 11 point; MMSE, Mini–Mental State Examination; SD, standard deviation.

NOTE. Mean (SD) for continuous variables. N is the number of nonmissing values. Tests used: 1F test; 2Pearson test.
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predicted conversion of MCI to AD more accurately than
APOE ε4 status, supporting the idea that declines in non-
recollective processes characterize memory loss in AD. A
comparison of methods for quantifying how quickly a list
of words is learned in a verbal learning test concluded that
simple slope calculations, while less highly correlated with
structural brain changes, offered ease of calculation
advantages over regression-based methods [25]. Finally,
Fig. 2. The correspondence among three measures of cognitive dysfunction

in Alzheimer’s disease. Latent AD–related cognitive dysfunction was calcu-

lated using Item Response Theory methodologies estimated from ADAS-

cog, MMSE, and CDR-SOB. Abbreviations: AD, Alzheimer’s disease;

ADAS-cog, Alzheimer’s Disease Assessment Scale–cognitive subscale;

CDR-SOB, Clinical Dementia Rating–Sum of Boxes; MMSE,Mini–Mental

State Examination. Reproduced with permission from [21].
psychometric analysis showed that the RALVT 30-minute
delayed recall score was the best predictor of Ab pathology
with an accuracy equal to the best imaging biomarker,
regional [18F]-fluorodeoxyglucose (FDG) PET measures
(area under receiver operating curve [AUC] 5 0.67 for
both) [26] and that the addition of imaging biomarkers did
not significantly improve either predictor. Overall, cognitive
tests weremore predictive of Ab status inAPOE42 subjects.
2.2. Associations between cognitive measures and AD
biomarkers

Several studies investigated the underlying neural corre-
lates of cognitive measures. In early-stage risk groups (CN
to early MCI [EMCI]), Ab was highly associated with
APOE genotype, whereas EMCI subjects characterized by
subtle memory performance changes were associated with
decreases on structural MRI and metabolism on PET [16].
Episodic memory decline in MCI patients was associated
with hippocampal atrophy and basal forebrain degeneration
in Ab1 subjects [27], and the association was mediated by
hypometabolism in domain-specific cortical networks.
Cognitive impairment in MCI subjects in the absence of hip-
pocampal volume loss was accounted for by changes in hip-
pocampal texture [28]. In Ab2 MCI subjects, episodic
memory decline was correlated with hypometabolism in
multiple regions outside the temporoparietal areas
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associated with memory deficits in Ab1MCI subjects [29].
Attentional control was associated with basal forebrain
degeneration in MCI subjects [27]. Impairment of daily
function was associated with greater hypometabolism in
middle frontal and orbitofrontal regions [30] and temporal
atrophy [31]. Worsening impairment of instrumental activ-
ities of daily living was associated with baseline middle
frontal and posterior cingulate hypometabolism [30] and
predicted by baseline parietal and temporal atrophy [31].
2.3. Associations between neuropsychiatric symptoms and
AD biomarkers

Most patients with dementia suffer from neuropsychiatric
symptoms (NPSs) such as anxiety, depression, apathy, and
psychosis. MCI subjects differed in their trajectories of
NPSs, with one group characterized by an initial low NPS
burden that remained stable, a second group by an initial
moderate NPS burden that worsened, and a final group
with an initial high NPS burden that decreased over 2 years
[32]. The group with worsening symptoms had the most
rapid declines in cognition and function and had a 1.74
fold chance of being diagnosed with AD than the stable
group.

Anxiety and irritability are common NPSs endorsed by
cognitively impaired subjects. Anxiety was correlated with
greater Ab deposition [33]. Anxiety severity was correlated
with increased rate of progression from MCI to AD above
and beyond the effects of depression, memory loss, or atro-
phy and predicted greater rate of entorhinal cortex atrophy
[34]. Therefore, anxiety may accelerate cognitive decline
by affecting the entorhinal cortex and influencing Ab depo-
sition. Irritability was correlated with Ab deposition in pari-
etal regions in AD subjects [33].

Approximately 40% of AD subjects suffer from depres-
sive symptoms. Depression may either be a risk factor for
developing dementia, a symptom of dementia, or an early re-
action to cognitive loss. MCI converters (MCIc) with depres-
sive symptoms had earlier ages of progression [35] and those
with chronic depressive symptoms had a 60% shorter pro-
gression time to AD than subjects without this history of
depression [36]. These symptoms may exert their effect
via modulation of Ab load, tau pathology, brain structure,
and/or metabolism. Amnestic MCI patients with a lifetime
history of major depression had higher Ab deposition in
the frontal cortex than controls [37]. Current depressive
symptoms in Ab1 MCI subjects were associated with a
higher Ab load in the frontal, temporal, and insular cortices
and with hypometabolism in the frontal cortices compared
with nondepressed controls [38]. Depressed AD subjects
had a greater correlation between levels of total tau (t-tau)
and cortical thickness in the precuneus and parahippocampal
cortex [39]. MCI subjects with depressive symptoms who
converted to AD within 2 years had greater left hippocampal
volume loss compared with converters without depressive
symptoms [35]. Chronic depressive symptomatology was
associated with accelerated cortical atrophy in the frontal
lobe and anterior cingulate [36], and AD subjects with
depressive symptoms had greater cortical thinning in the
left parietal and temporal regions [39]. Finally, CN, but
not MCI or AD, subjects with subsyndromal depression
had greater frontal WM lesion volume and smaller orbito-
frontal cortical volumes than controls [40].

Psychosis in the form of symptoms, such as delusions,
physical aggression, and hallucinations, has long been
recognized in AD and is now known to be an independent
predictor of more rapid cognitive decline. Substantial evi-
dence suggests that AD with psychosis is a distinct variant
of AD with neuropathological specificity and localization
[41]. Current psychosis in AD subjects was associated
with reduced orbitofrontal brain metabolism, and functional
decline, and decline on theMMSE [42], and the onset of psy-
chosis in MCI or AD subjects was most significantly associ-
ated with increased atrophy in the lateral frontal lobe [43].
Delusional MCI and AD subjects had greater atrophy in
the right frontotemporal regions compared with those
without delusions [44]. Hallucinations and apathy also
appear to be associated with both changes in brain structure
and in metabolism. MCI patients with apathy had decreased
metabolism in the posterior cingulate cortex, a landmark re-
gion for hypometabolism in AD, compared to subjects
without apathy [45]. Greater temporal and parietal atrophy
at baseline in CN, MCI, and AD subjects was associated
with worsening apathy and hallucinations over 3 years
[46]. These studies support the idea that psychosis predom-
inantly affects frontal brain regions, with concomitant reduc-
tions in regional glucose metabolism, resulting in an
acceleration of cognitive decline.
2.4. Other clinical risk or protective factors

A variety of other clinical factors have been associated
with accelerated cognitive decline or in the preservation of
cognition. Sleep breathing abnormalities such as snoring
or complete airway obstruction have a high prevalence in
the elderly and may be associated with cognitive impair-
ment. Subjects with sleep-disordered breathing had an
earlier age of progression from both CN to MCI, and MCI
to AD than subjects without sleep-disordered breathing,
but treatment with continuous positive airway pressure
almost completely offset this effect and delayed MCI onset
[47]. Epidemiological studies have suggested a link between
dietary supplementation with fish oil, cancer history, and
educational attainment, among other factors, and preserva-
tion of cognition. The use of fish oil supplements, containing
omega-3 polyunsaturated fatty acids, in CN APOE42 sub-
jects, was associated with preserved cognition, lower
cortical gray-matter (GM) and hippocampal atrophy, and
lower ventricular expansion, suggesting that fish oil supple-
mentation may influence cognition by inhibiting brain
morphology changes [48]. A history of cancer was associ-
ated with a later onset age of AD. Across the ADNI cohort,
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the number of previous cancer incidences incrementally
increased the age ofAD onset, from 81.7 to 84.3 to 85.7 years
for subjects with zero, one, and two previous cancer inci-
dences, respectively, and patients with a history of cancer
showed regional atrophy in the frontal gyrus compared to pa-
tients with no cancer history [49]. These results suggest that
alternative mechanisms to the metabolic survival theory
(positing the metabolic survival of GM in these patients
due to the presence of cancer cells that do not undergo
apoptosis) may account for the delay in the onset of demen-
tia in cancer survivors. The protective effect of educational
attainment on cognition has led to the concept of cognitive
reserve although the mechanisms underlying cognitive
reserve remain uncertain. Higher education and larger hip-
pocampal volume were significantly associated in AD but
not CN or MCI subjects [50]. However, large intracranial
volume, a measure of brain reserve, increased the risk of pro-
gression to AD and increased the rate of cognitive decline
and brain atrophy in male MCI APOE4 noncarriers [51].

Falls are common in cognitively impaired elderly and can
have serious consequences—around 13% of falls on the
ADNI cohort are reported to be either serious or severe
adverse events [52]. Alzheimer’s medication use was associ-
ated with hazard of fall after adjusting for age and Beers list
medications use, suggesting that clinicians need to be aware
of this additional risk when managing medications for AD
patients [52]. In addition, the use of medications with high
anticholinergic activity in CN subjects was associated with
decreases on structural MRI and metabolism on FDG PET,
in addition to the known risk of these drugs for cognitive
decline [53].
2.5. Conclusions

Recent publications of predominantly clinical and
cognitive analyses have steadily expanded our knowledge
in numerous areas. Psychometric analyses have resulted
in methods of correlating cognitive tests, characterized
the nature of memory loss in AD, and even shown that
cognitive measures can predict Ab pathology. Neuropsy-
chiatric symptoms in MCI subjects were associated with
more rapid decline and generally found to accelerate atro-
phy, increase Ab burden, and decrease metabolism. Psy-
chosis symptoms appeared to mainly affect frontal brain
regions. The neuroprotective effects of education, cancer
history, and fish oil suggested by epidemiological
approaches were supported by studies investigating their
association with brain morphology and APOE4 status.
Finally, changes on neuroimaging biomarkers in CN sub-
jects were used to demonstrate the adverse effects of anti-
cholinergic medications.
3. Magnetic resonance imaging

The ADNI MRI Core has played a central role in the
development of biomarkers for clinical trials. Jack et al.
[54] reviewed the contributions of the MRI Core over the
course of ADNI-1, ADNI-GO, and ADNI-2. Major accom-
plishments of this Core include the development of standard-
ized protocols for use across different scanner platforms,
quality-control methodologies, and algorithms to measure
longitudinal change for use as potential outcome measures
in clinical trials. The MRI Core has been instrumental in
standardizing imaging approaches for clinical trials in addi-
tion to structural MRI that reflect both technological devel-
opment and evolving views of disease progression. These
include sequences to image cerebrovascular disease (Fluid
Attenuation Inversion Recovery [FLAIR]) and cerebral mi-
crobleeds (T2* gradient echo), and functional measures
such as perfusion MRI (arterial spin labeling), diffusion
MRI (diffusion tensor imaging [DTI]), and task-free func-
tional MRI (TF-MRI, resting-state fMRI). Functional mea-
sures were introduced primarily because of their potential
to detect early disease-related changes occurring before
the atrophic changes detected by structural MRI. Jack
et al. [54] present an excellent review of studies pertaining
to the MRI Core over the course of ADNI-2.

In 2008, ADNI entered into collaboration with the Euro-
pean Alzheimer’s Disease Consortium to develop a harmo-
nized protocol for manual hippocampal segmentation. The
goal of this international endeavor was to create a standard
definition for hippocampal boundaries and standard data
sets to facilitate use of hippocampal volumetry in clinical tri-
als. This project had many phases and succeeded through the
concerted effort of many scientists. A summary of how the
harmonized segmentation protocol (HarP) was established
is presented in Fig. 3.

In the preliminary phase, the most reliable standard orien-
tation for hippocampal volumetry was determined to be
perpendicular to the anterior-posterior commissure [56].
Landmark variability across 12 manual segmentation proto-
cols was reduced to four discrete and measurable segmenta-
tion units: the alveus/fimbria, whole hippocampal tail, and
medial border of the body [57]. An international Delphi
panel agreed on the inclusion of these segmentation units,
finding that this definition captured 100% of hippocampal
tissue and all of AD-related atrophy, and had good intrarater
and interrater reliability estimates [58]. Two steps in the im-
plementation of the HarP were the provision of benchmark
labels which produced high intraclass and interclass correla-
tion coefficients and could be used for training human
tracers [59], and the development of a platform for training
and qualifying new tracers to perform manual segmentation
using the HarP [60]. Further validation for the protocol came
from comparison of hippocampi segmented by tracers
following local protocols and then segmented following
the HarP [55]. Local protocols were in low agreement
compared to the high measurement stability and good repro-
ducibility within and among human tracers using the HarP.
Pathological validation revealed that hippocampal volume
was significantly correlated to Braak and Braak staging,
tau, Ab burden, and neuronal count and that hippocampal



Fig. 3. Steps followed to develop the European Alzheimer’s Disease Consortium–ADNI harmonized protocol for manual hippocampal segmentation (HarP).

Reproduced with permission from [55].
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subfields were associated with Ab, tau, and neuronal count
[61]. A set of reference hippocampal labels in the HarP is
publicly available on the Web for training and qualification
of human tracers and automated algorithms [55,62].

Although manual segmentation is currently considered
the gold standard approach to determining hippocampal
morphology, the method is time consuming and dependent
on the experience of tracers. Therefore, there is much inter-
est in developing automated methods that can successfully
segment this highly variable structure in clinical settings
as well as for large brain imaging initiatives such as the
Enhancing Neuro Imaging Genetics through Meta Analysis
(ENIGMA) consortium. The subregion segmentation mod-
ule in the FreeSurfer software package had high test-retest
reliability and trans-platform reliability in 11 of the 12 hu-
man hippocampal subregions [63]. FreeSurfer had superior
reproducibility of hippocampal volume change over 1 year
to manual segmentation after removal of initially visible
incorrect automated segmentation [64]. A large number of
novel methods for robust and fully automated hippocampal
segmentation have been developed and tested on ADNI
data. These are summarized in Table 2.

The ADNI set of MRI images has been instrumental in
the development of new methodologies for improving imag-
ing at multiple stages and in the assessment of existing meth-
odologies. These run the gamut from image acquisition at
different field strengths [81–85] to brain extraction
strategies [86,87] to improvements in registration and
segmentation [88–96] to approaches for measuring
longitudinal change [97–107] to cortical thickness
estimation [108,109] to better morphometry techniques
[110–117]. Many of these studies have been detailed by
Jack et al. [54] and are summarized in Table 3.
Finally, the ADNI MRI data set has been used in investi-
gations of other neurological conditions. The ADNI control
set was used in the comparison of NeuroQuant, an auto-
mated measure of brain volume in patients with traumatic
brain injury, with manual interpretation of scans [119], and
in the investigation of systematic differences in corpus
callosum for morphology and periventricular nodular
heterotopia [120].
4. Positron emission tomography

The ADNI PET Core, under the leadership of Dr. Wil-
liam J. Jagust, has collected longitudinal data on glucose
metabolism, reflecting changes in neuronal metabolism,
from FDG PET and on Ab deposition from the uptake of
radiotracers, 11C-Pittsburgh compound (PiB) tracer in
ADNI-1, and subsequently the 18F-labeled florbetapir
[121].
4.1. FDG PET

The ADNI PET Core has been responsible for the devel-
opment of standardized procedures for FDG PET [121].
The importance of standardized procedures for FDG PET
was underscored by a Cochrane systematic review of
studies, including three from ADNI, that used baseline
FDG PET measures to predict future MCI to AD progres-
sion [122]. The meta-analysis found considerable vari-
ability in specificity values, thought to be due to the lack
of standardization and a lack of a threshold value for abnor-
mality, and the review concluded that these obstacles pre-
cluded the use of FDG PET as a diagnostic modality in
clinical practice. The PET Core has addressed these issues



Table 2

Methods for automatic hippocampal segmentation

Challenge Approach and results Reference

Hippocampal segmentation

Multi-atlas segmentation Presents a unified algorithm, Hippocampal Unified Multi-Atlas Networks (HUMAN), that combines the

accuracy of multi-atlas approaches with artificial neural network classification. The algorithm was robust

and accurate compared to manual segmentation.

[65]

Proposes a learning-based atlas selection method that learns the relationship between each pair of atlases

and target images. The method improved segmentation accuracy over other widely used multi-atlas

segmentation methods.

[66]

Present a novel segmentation method that uses a manifold learning technique to obtain spatially local

weights for atlas label fusion. The weights depend on all pairwise similarities of the population.

Segmentation using this method was highly correlated with manual segmentation.

[67]

Propose a graphical approach to labeling using a Markov random field formulation which constructs

graphs connecting atlases and the target image. This unified framework allows more efficient label

propagation. The method was robust and accurate.

[68]

Present an algorithm Multiple Automatically Generated Templates (MAGeT-Brain) which propagates atlas

segmentation is to template library. These are then propagated to each target image and fused using a

label fusion method. The method was compared with existing methods including FIRST and FreeSurfer.

MAGeT-Brain achieved a higher Dice’s Similarity Coefficient with manual segmentation volumes

than produced by FreeSurfer and FIRST.

[69]

Use of hippocampal

shape information

Uses spectral Laplace-Beltrami wavelets to obtain high-resolution hippocampal shaped deformations.

This resulted in a sensitivity of 96% and a specificity of 90% in the classification of AD versus NC

using hippocampal shapes.

[70]

Present a method using linear registration of brain images to a standard template, feature extraction,

and voxel classification using a random Forest algorithm to determine whether voxels belong to

the hippocampus or not. Outperformed FreeSurfer.

[71]

Constructed a high-resolution atlas from manually segmented hippocampal substructures which included

manual annotations for neighboring structures. The atlas, released as part of FreeSurfer (version 6.0),

outperforms the atlas and FreeSurfer version 5.3.

[72]

Combined that the use of FreeServer, FIRST, and SPHARM software packages to create an atlas by

mapping interpolated subfields automation onto the average surface. Atlas has good reproducibility

using ADNI data.

[73]

Automated hippocampal

segmentation for

clinical use

Uses a fully automated multi-atlas segmentation. Found a high Dice Similarity Coefficient with

manual segmentation. Suggests that NeuroReader could have clinical applications.

[74]

Present a fully automated pipeline using an affine registration step and classification of voxels

using a Random Forest classifier. Classification was performed slice by slice along each of three

orthogonal directions and achieved comparable results to manual segmentation.

[75]

Present a fully automated pipeline which is atlas based and uses Statistical Parametric Mapping (SPM)

software. The automated pipeline was computationally inexpensive, accurate, and is freely available

as an SPM8 toolbox.

[76]

Development of a robust

hippocampal atrophy

biomarker

Describe development of a longitudinal hippocampal atrophy biomarker which is not confounded by

factors such as acquisition noise or artifacts, and physiological variations. Biomarker detects

hippocampal atrophy due to disease and not to other factors such as long-term aging. In combination

with baseline volumes, the method was highly accurate in discriminating patient groups.

[77]

Patch label fusion Proposed a novel patch-based labels fusion method that combines the two approaches via matrix completion.

The method results in more accurate segmentation than either with the reconstruction-based or

the classification-based approaches.

[78]

Present a novel patch-based label fusion framework that uses an optimized PatchMatch Label Fusion

(OPAL) strategy. OPAL produced a segmentation accuracy highly correlated with manual segmentation.

[79]

Introduce three new label fusion contributions: (1) the feature representation for each image patch

encodes local information; (2) each atlas image patch is further partitioned into partial image patches;

(3) label fusion is improved with a hierarchical approach. The improvements proposed resulted

in improved accuracy of segmentation.

[80]

Abbreviations: AD, Alzheimer’s disease; NC, normal cognition; ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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by developing image registration strategies to improve the
consistency of qualitative values extracted from the scans,
improving the quality-control process, and producing stan-
dardized sets of preprocessed images available for down-
load from LONI. The PET Core discontinued conducting
FDG PET scans on ADNI participants in 2014, having
amassed a considerable library of longitudinal scans for
future analysis [121].
4.2. Amyloid PET

The importance of Ab status is underscored by its inclu-
sion in the revised diagnostic criteria for AD [123] and by its
use in the selection of asymptomatic subjects likely to prog-
ress for therapeutic clinical trials. The ADNI PET Core has
worked on methodological quality assurance and control, as
well as the standardization of Ab PET images [121].



Table 3

Approaches for the improvement of MRI methodology

Challenge Approach and results Reference

Image acquisition

Evaluate measurement properties of the

Brain Atrophy and Lesion Index (BALI)

[118] at 1.5-T and 3-T MRI.

Compared T1- and T2-weighted imaging at different field strengths for their ability to

correctly diagnose patient groups. Found that 1.5-T BALI scores were similar to

those obtained using 3-T images.

[81]

Compare 1.5-T and 3-T MRI for automated

hippocampal segmentation

Compared the ability of baseline MRI data of patients scanned at both 1.5 T and 3 T to

make a clinical diagnosis based on hippocampal radial distance. Found that both field

strengths yielded comparable hippocampal atrophy patterns but that 3 T had a

superior signal-to-noise ratio and ability to detect atrophy.

[82]

Effect of 1.5-T versus 3-T field strengths

and image registration strategy on VBM

Tested different diffeomorphic spatial registration strategies over two field strengths for

their ability to detect AD-related atrophy. Registration strategy affected the

estimation of AD-related atrophy, whereas field strengths affected assessment of

brain anatomy in the cerebellum, the precentral gyrus, and the thalamus bilaterally.

[83]

Change in 3.0-T MRI image acquisition

scheme between ADNI-1 and

subsequent grants

Used voxel-based morphometry to compare 3.0-T T1-weighted volumes obtained in

ADNI-1 and ADNI-2. The protocol used in ADNI-2 resulted in increased graymatter

and localized decreases in white matter compared to ADNI-1 images and the total

volumes of gray matter, white matter, and cerebrospinal fluid also differed. These

results should be considered when comparing images obtained during these two

protocols using VBM.

[84]

Analyzing the effect of geometric

distortions on different scanner/protocol

combinations.

Used the ADNI phantom to measure MRI image distortion. Found that the size of

distortion field varied between scanners and protocols but that corrections applied

reduced distortion to 1 mm or less.

[85]

Preprocessing

Different approaches for the normalization of

regional volumes by intracranial volume

(ICV) may influence the relationship between

hippocampus and cognition.

Tested the effect of the three methods: raw volumes, volume to ICV fractions, or

regional volumes, on the relationship between hippocampal volume and cognition.

Found that the three approaches did not alter this association but had small effects on

the prediction of diagnostic status.

[86]

Robust and accurate automatic brain

extraction across diverse subject groups.

Proposed a method combining an atlas-based approach and a deformable surface-based

approach guided by prior information on local intensities and specific populations.

Found that the method was accurate across all disease states and across human

lifespan and performed favorably compared to existing protocols.

[87]

Registration and segmentation

Selection of the most discriminative

features for deformable image

registration.

Proposed an image registration framework that uses deep learning to discover

morphological patterns in image patches. Achieved more accurate registration

results compared to state-of-the-art methods.

[88]

Development of a brain parcellation tool

based on multi-atlas algorithms that is

robust for many different imaging protocols

Used a multiple atlas, likelihood fusion algorithm to test parcellation of the entire brain

using six protocols across different manufacturers and field strengths. Found that

there was little effect of different protocols on the variability of brain volumes.

[89]

Optimal selection of the regularization parameter Presents a nonregression approach for the selection of the regularization parameter

based on the Variational-Bayesian cycle. Found this is more computationally

efficient than other methods of noise reduction.

[90]

Presents a novel method based on full Bayesian inference on a probabilistic registration

model, for inferring spatially varying regularization in nonlinear registration. The

proposed model is data driven and its spatially adaptive prior provides better

localization of regional volume change.

[91]

Test-retest reliability of automated

segmentation methods

Used FreeSurfer to process intrasession and day-to-day scans of subjects. Found that

intersession variability exceeded intrasession variability for some regions

[92]

Faster image registration Used three approaches to accelerate the image registration package elastix: (1)

parallelization on the CPU; (2) parallelization on the GPU; and (3) improvements of

the B-spline transformation model. Reported an acceleration factor of 4 to 5 fold and

that the accelerated version had similar classification accuracies to the original

version.

[93]

Accurate partial volume estimation

in tissue labeling

Proposed a fast algorithm based on a Bayesian maximum a posteriori formulation.

Algorithm enhanced diagnostic accuracy in ADNI standardized data set.

[94]

Automated segmentation of other regions Proposed a novel automated method for the segmentation of the human brainstem into

midbrain and pons called Landmark-based Automatic Brainstem Segmentation

(LABS) which uses a revised landmark-based approach integrated with a

thresholding method. LABS correlated highly with manual segmentation.

[95]

Present a novel segmentation algorithm for measuring change in MTL volume.

Baseline MTL volume is defined as an atlas image and mapped onto the

corresponding follow-up image to measure volume change. The automated approach

measured significant differences between clinical groups, unlike existing FreeSurfer

software.

[96]

(Continued )
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Table 3

Approaches for the improvement of MRI methodology (Continued )

Challenge Approach and results Reference

Longitudinal scans

Develop scoring and training methods for

BALI for the accurate quantitative and

of whole-brain structural changes

Trained raters using a step-by-step BALI process. New raters achieved.90% accuracy

following 2 weeks of training and achieved both high interrater and intrarater

correlation coefficients. Suggests that BALI is a robust method for assessing the

whole-brain health in MCI and AD patients.

[97]

Use of accelerated versus unaccelerated

scans in serial MRI to detect

longitudinal change

Used symmetric diffeomorphic image normalization (SyN) to normalize serial scans

obtained using TBM. Found that groupwise discrimination and sample size estimates

were comparable using accelerated and unaccelerated scans but that the two

protocols resulted in differences in TBM-Syn.

[98]

Compared the impact of nonaccelerated versus accelerated scans on brain atrophy using

the means normalized boundary shift interval (KN-BSI) and deformation-based

morphometry. Found differences in measured atrophy rates using scanners from

different vendors but little difference between nonaccelerated and accelerated

baseline scans and follow-up scans.

[99]

Used morphometry to compare numerical summaries of accelerated versus

nonaccelerated scans across patient groups over 6- and 12-month scanned intervals.

Scan acceleration had minimal effects on the TBM-derived atrophy measures.

[100]

Prediction of a brain image at a particular

time point given minimal longitudinal data

Presented an algorithm for the simultaneous registration of N longitudinal image pairs.

Information from each pier is used to constrain the registration of each other pair.

The use of a groupwise consistency prior can predict an image act and third time

point not included in the registration step.

[101]

Presented an algorithm to incorporate information from the entire patient group to

predict longitudinal change, as they share similar spatial distributions of volume

change. Use longitudinal registration was a groupwise coupling prior and found it

able to estimate change robustly.

[102]

Proposed a method for supplementing the lack of longitudinal information for an

individual patient with cross-sectional data from the population. Used a probabilistic

model based on James Stein estimators to improve geodesic estimation. Method

allowed prediction of brain changes of images over time.

[103]

Accounting for spatially inhomogeneous

longitudinal data

Proposed a method based on the Sandwich Estimator to account for within-subject

correlation in longitudinal data. Found that the method was flexible and fit within-

and between-subject effects on the single model in an unbalanced longitudinal

data set.

[104]

Measuring longitudinal gray-matter volume

change in the default mode network

Proposed use of a volume standardized with global gray-matter volume. Method

detected significant differences in longitudinal gray matter in the default mode

network across patient groups.

[105]

Daily changes in brain volume resulting from

physiological fluctuations may impact ability

of imaging to detect longitudinal changes

in brain volume.

Used statistical modeling of MRI images, measuring the brain parenchymal fraction to

account for variations in head size. Found a statistically significant time of day effect

on brain parenchymal fraction. Suggests that an acquisition time bias should be

accounted for in brain volumetric studies.

[106]

Improvement of the boundary shift

interval for measuring longitudinal

change in brain volume

Proposed an extension to the boundary shift interval which uses probabilistic

segmentations and then estimates a nonbinary exclusive or a region of interest to

better capture patterns of brain atrophy.

[107]

Cortical thickness estimation

Cortical thickness estimation Presented an algorithm driven by the graph spectrum and heat kernel theory to estimate

cortical thickness. Successfully detected statistical differences between patient

classes.

[108]

Tested the ability of voxel-based morphometry (VBM) to measure cortical thickness.

Found that the VBM was less sensitive to cortical atrophy as it was biased to medial

temporal lobe atrophy and that FreeSurfer was more sensitive to cortical thinning.

[109]

Morphometry

Cortical pattern analysis Proposed a multi-resolution approach which prescribes shape descriptors that

characterize the signal at eachmesh vertex.Method showed increased sensitivity and

statistical power to detect group-level differences.

[110]

Ventricular morphology analysis Presented a novel system for ventricular morphometry based on the hyperbolic Ricci

flow method and tensor morphometry statistics. The TBM statistics enhanced

surface shape analysis and the method revealed shape differences close to the

temporal lobe and posterior cingulate. Correlations were detected between

ventricular morphometry, neuropsychological measures, and metabolism.

[111]
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Table 3

Approaches for the improvement of MRI methodology (Continued )

Challenge Approach and results Reference

Representation of overall brain

morphology

Proposed a novel approach to deformation-based morphometry, regional flux analysis,

based on the scheme halts decomposition of deformations parameterized by

stationary velocity fields. The framework unifies voxel-based and regional

approaches and had good power to discover shapes deformations both cross-

sectionally and longitudinally.

[112]

Introduced BrainPrint, a fully automated framework which generates a compact

representation of brain morphology by capturing shape information from both

cortical and subcortical structures. Method was efficient and discriminative.

[113]

Presented a mass univariate framework that uses longitudinal VBM data and Bayesian

inference to analyze whole-brain structural changes over time. The probabilistic

model detects individual and group trajectories of disease progression.

[114]

Measuring patterns of brain morphological

changes in populations.

Proposed a data-driven probabilistic unsupervised framework that automatically

segments heterogeneous set of images using an atlas-based method and clusters

images into homogeneous subgroups. It constructs separate probabilistic atlases for

each cluster. Found that combining segmentation and atlas construction led to

improved segmentation accuracy and clusters generated coincided with clinical

subgroups.

[115]

Identification of shape deformation

patterns

Developed a data-driven global analysis of brain anatomy using kernel partial least

squares and a regression model to quantify shape changes that explain variations in

clinical neuropsychological measures. Method identified similar patterns in AD to

predefined ROIs as well as other new patterns of deformation.

[116]

Presented a framework for intrinsic comparison of surface metric structures and

curvatures based on a Riemannian framework. Framework was able to efficiently

detect boundaries between functionally and structurally distinct regions.

[117]

Abbreviations: MRI, magnetic resonance imaging; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; MTL, medial temporal

lobe; ROI, regions of interest.
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Collection of longitudinal data has enabled the examination
of rates of Ab accumulation and its effect on cognitive
decline [121]. Longitudinal changes in cortical florbetapir
standardized uptake value ratios (SUVRs) were more accu-
rately measured by the use of subcortical WM reference re-
gions compared with the cerebellum or pons [124]. These
reference regions also increased the power to detect longitu-
dinal increases in fibrillar Ab and significant associations be-
tween Ab increases and clinical decline over 24 months and
improved the evaluation of Ab-modifying treatment effects
in Ab1 subjects and CN APOE4 carriers [125].

Are the different Ab ligands themselves equivalent in
terms of detecting Ab? Chiotis et al. [126] compared 11C
PiB and florbetapir PET imaging and found similar mean
regional uptake patterns and strong correlations between re-
gions of interest across patient groups. Landau et al. [127]
found that cortical retention between three radiotracers,
11C PiB, florbetapir, and 18F-flutemetamol were highly
correlated. Although flutemetamol had higher WM retention
and florbetapir had lower WM retention compared with PiB,
the threshold values for Ab positivity were consistent when
the values were converted using PiB values as an interme-
diary. Thus, comparison of results obtained using different
radiotracers appears to be valid, a conclusion supported by
the comparable results using all three measures obtained
by Nosheny et al. [128] in their investigation of the effect
of Ab positivity on hippocampal atrophy. A focus of the
next phase of ADNI will be the development of the Centiloid
scale for the direct comparison of amyloid tracers [2].
4.3. Tau PET imaging

The accumulation of Ab plaques is only minimally associ-
ated with cognitive decline, which appears to be more closely
associated with neurofibrillary tangles (NFTs) formed by tau
amyloid fibrils [129]. Insoluble fibrillar species of tau
assemble into intraneuronal inclusions known as NFTs as
well as neuropil threads in neuronal processes, which repre-
sent .80% of tau pathology in AD compared with NFTs
[130]. Notably, NFTs and neuropil threads in AD brains
display all the features of amyloids [131]. Soluble tau detected
in cerebrospinal fluid (CSF) is a putative indicator of neuronal
damage as indicated by increases in CSF tau after traumatic
brain injury [132]. New developments in tracer technology
have led to the development of PET ligands that track tau
fibrillary amyloid accumulation. The inclusion of this imaging
in ADNI-3 [2] will likely help to unfold the contribution of
this pathological event to the disease process [133].
5. CSF and blood biomarkers

The study of CSF and blood biomarkers in ADNI is led by
the Penn Biomarker Core and overseen by Drs. Leslie M.
Shaw and John Q. Trojanowski. A detailed account of prog-
ress throughout ADNI-2 and future plans is given by Kang
et al. [129]. The primary goals of the Biomarker Core have
been to develop CSF and plasma biomarkers signatures to
identify AD subjects, CN to MCI progressors, and MCI to
AD progressors, and to establish the longitudinal trajectories
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of CSF and plasma biomarkers. Multimodal data analyses in
collaboration with other ADNI Cores have established the
temporal order of changes in clinical measures, imaging
data, and CSF biomarkers and allowed a greater understand-
ing of AD pathophysiology. A secondary goal has been to
develop biomarkers to detect common copathologies such
as Lewy bodies, vascular disease, TDP-43 inclusions, and
hippocampal sclerosis. Potential novel biomarkers have
been identified from genome-wide association studies
(GWAS) in collaboration with the Genetics Core and using
proteomics approaches. These biomarkers may be able to
not only detect AD pathology but also indicate the presence
of mixed pathology. Through January 2016, the Biomarker
Core received and processed a total of 10,279 biofluids
(CSF, plasma, and serum) and prepared and stored 161,301
aliquots for use by qualified investigators. They provided a
total of 2635 plasma, 1051 serum, and 3622 CSF blinded
aliquot samples to 15 investigators whose request for sam-
ples was reviewed and approved during ADNI-2 by the
Resource Allocation Review Committee. To track the longi-
tudinal progression of all biomarkers, 265 ADNI subjects
have provided series of three or more CSF samples over as
much as 8 years. A total of 1248 subjects have provided at
least three longitudinal samples of serum and plasma. These
have proven invaluable for the study of CSFAb42, t-tau, and
p-tau181 trajectories in individual subjects [129] and will
help establish the trajectories of new biomarkers such as
YKL-40, Vilip-1, total and phosphorylated a-SYN
(Ser129-a-SYN), as well as neurogranin.
5.1. Established CSF biomarkers
Fig. 4. Frequencies of different CSF and PETAb profiles in different diag-

nostic groups. Subjects were dichotomized by CSFAb42 or florbetapir PET

and classified as concordant negative (CSF2 PET2), discordant

(CSF1 PET2 and CSF2 PET1), and concordant positive

(CSF1 PET2). Abbreviations: AD, Alzheimer’s disease; CN, cognitively

normal; CSF, cerebrospinal fluid; EMCI, early MCI; LMCI, late MCI;

MCI, mild cognitive impairment; PET, positron emission tomography;

SMC, subjectivememory concern. Reproduced with permission from [141].
5.1.1. Methodological improvements
The Biomarker Core has improved standard methodolo-

gies that allow the accurate comparison of CSF biomarker re-
sults across multiple centers. They have developed fully
automated analyses of Ab42, t-tau, and p-tau181 using the ac-
curacy- and precision-based Roche Elecsys immunoassay
platform, which improves on the AlzBio3 immunoassay plat-
form. To circumvent difficulties associated with standard-
izing immunoassays across multiple centers (differences in
antibodies, matrix problems, the lack of a CSF-based stan-
dard reference material), they have validated a mass spec-
trometry (MS) assay for Ab42, Ab40, and Ab38 using a
2D-UPLC/MS-MS platform [129,134], calibrated with a
surrogate calibrator matrix prepared from artificial CSF
plus 4 mg/mL bovine serum albumin. This assay had
equivalent diagnostic utility to the AlzBio3 immunoassay
in quantifying CSF Ab42 differences between controls and
AD subjects (sensitivity 5 92.7%, specificity 5 84.5%)
[134]. This reference method was developed as part of an in-
ternational effort to develop reference methodology for Ab42
[135]. It is expected that this will strongly support ongoing
efforts to obtain harmonization across methods and platforms
used worldwide for this essential CSF AD biomarker [136].
Another methodological improvement was described by
Vidoni et al. [137] who demonstrated that the use of 24
bore atraumatic needles reduced the incidence of postlumbar
puncture headache.

5.1.2. Comparison of CSF and PET measures of Ab
CSFAb42 and amyloid PET measures are often assumed

to be equivalent, but this may not be a valid assumption
because the structure and biophysical properties of Ab fibrils
(measured by amyloid PET) and soluble Ab (measured by
CSF Ab42) differ [138]. Some CN and stable MCI subjects
have abnormally low CSF Ab measures but no evidence of
Ab amyloid deposits by PET measures, suggesting that
low CSFAb42 may not always be indicative of the accumu-
lation of PET-detectable fibrillary Ab deposits or alterna-
tively that CSF Ab42 becomes abnormal before amyloid
PET [139]. However, pathologically low CSF levels of
Ab42 were strongly associated with AD diagnosis and
cortical Ab accumulation independent of APOE genotype,
suggesting that abnormally low CSF levels of Ab42 reflect
cortical Ab deposition and not the APOE genotype [140].

However, the two measures appeared comparable in the
classification of MCI converters or AD subjects [139]
compared to CN subjects, although florbetapir PET had a
greater specificity than CSFAb42 for the latter classification.
These measures provided partly different and independent
information according to a further study by the same group
[141]. CSFAb42 was more strongly related to APOE4 geno-
type, whereas PET Ab was more strongly associated with
levels of CSF tau and ADAS-cog scores. Furthermore,
discordance between the two measures was most common
in CN and SMC subjects (Fig. 4) and concordance between
the twowas more common in late-stage AD. The results sug-
gest that CSF Ab42 is a more sensitive marker of very early
emergence of Ab pathologies and that PET Ab may better
reflect later stage AD progression.
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5.1.3. Amyloid pathway
Ab is generated by the sequential action of b-site amyloid

precursor protein (APP) cleaving enzyme 1 (BACE1), the
target of b-secretase inhibitors, and g-secretase on the trans-
membrane Ab precursor protein. This process also generates
a soluble N-terminal fragment, s-APPb, reported to be corre-
lated with BACE-1 activity [142]. Independent studies found
no differences in either activity of BACE1 [142–144] or
concentrations of s-APPb [142,143] in CSF across all
patient groups. Although these measures cannot be used to
differentiate between healthy elderly and AD individuals,
the results suggest that CSF levels of s-APPb may be used
as a surrogate for BACE-1 activity in clinical trials of b-sec-
retase inhibitors.
5.2. Other CSF and blood analytes

Beyond established CSF biomarkers, Ab, and p-tau181,
there has been much interest in alternative CSF and blood
analytes that are in some way associated with the disease
process. Some have been already identified as AD risk fac-
tors or as being linked to common copathologies. Other
novel analytes have been identified using Rules Based Med-
icine immunoassay technology and may have diagnostic or
prognostic utility.

5.2.1. Associations between known AD risk factors in CSF
and blood and AD pathology

Abnormally high blood homocysteine is a major car-
diovascular risk factor as well as a risk factor for AD
and was previously shown to be associated with lower
regional WM and GM volumes in ADNI [145]. High
levels of plasma homocysteine were associated with a
cortical signature of reduced GM thicknesses, volumes,
and surface areas in memory networks and the default
mode network (DMN) [146], both of which are suscepti-
ble to Ab deposition, metabolic disruption, and atrophy,
and consistently implicated in AD. As elevated homocys-
teine is easily treatable, this cortical biomarker signature
may have utility in assessing interventions for lowering
homocysteine.

Low plasma levels of the obesity-related hormone leptin
have been linked to AD pathogenesis. Conversely, high
levels of leptin may function in a protective manner by regu-
lating levels of Ab in neurons through the inhibition of
b-secretase activity and by modulating tau kinases to reduce
tau phosphorylation [147]. Johnston et al. [148] reported that
leptin levels in plasma reflected those in CSF, and that
women had two-fold higher plasma levels of leptin than
men in all groups. In women but not men, leptin levels
were associated with body mass index. Seventy percent of
MCI subjects, of whom half were APOE ε4 allele carriers,
had lower plasma leptin than CN subjects. Given that
reduced plasma leptin levels have been established in MCI
and AD subjects, Maioli et al. [147] examined brain leptin
levels across AD progression, including cellular localization
of leptin and leptin receptors in the hippocampus and frontal
cortex. Although they found no differences in CSF leptin
levels across all diagnostic groups, they found that leptin
localization in the brain was altered. In AD subjects, distri-
bution shifted to the hippocampus where leptin translocated
to become more abundant in reactive astrocytes and less so
in neurons. A similar translocation was observed in Ab1
and APOE ε41 mice, suggesting an impairment of leptin
signaling in AD in the presence of constant levels of the hor-
mone. Animal models of Ab accumulation indicated that
changes in leptin signaling occurred before a downregula-
tion of leptin receptors. The authors suggest a mechanism
in which APOE ε4 allele, in conjunction with Ab accumula-
tion, transiently enhances leptin signaling leading to a leptin-
resistant state over time and subsequent decrease in
cognition. Changes in leptin signaling are likely behind
the observation that increased body mass index in the middle
age is a risk factor for AD [149].

How do the gene products of major AD risk alleles exert
their effect on the brain? Several groups have used multi-
modal ADNI data to gain insight into this critical question,
bridging the gap between genetics and pathophysiology.
Three isoforms of the APOE gene product, apolipoprotein
E (ApoE), corresponding to the ε2, ε3, and ε4 alleles, are
found in CSF and blood. Plasma ApoE was mildly correlated
with CSFApoE, but not with longitudinal changes in cogni-
tion or atrophy [150], and was associated with left hippo-
campal volume in APOE41 MCI subjects [151]. The
APOE ε4 allele may increase neurodegeneration via a mech-
anism involving brain iron levels. CSF ferritin levels, reflect-
ing cortical iron levels, were strongly associated with CSF
ApoE levels in AD subjects and were elevated by the
APOE ε4 allele [152]. They were also associated with
ADAS-cog scores and greater rates of hippocampal atrophy
and ventricular expansion (Fig. 5) and predicted MCI to AD
progression [152]. Interestingly, ferritin affected cognitive
performance to a similar degree as ApoE and p-tau/Ab42.
However, the analytes differed in the level of their effect
over time; the effect of ferritin was constant, whereas the ef-
fect of both ApoE and p-tau/Ab42 increased with disease
severity resulting in a greater decrease in cognitive perfor-
mance over time. ApoE may raise the baseline iron load of
the brain and so lower the threshold for iron-mediated
neuronal loss.

Although Apo E4 appears to underlie neurodegeneration,
Apo E2 or Apo E3may exert a neuroprotective effect. In car-
riers of the APOE ε2 and ε3 alleles but not the ε4 allele,
increased levels of CSF ApoE were associated with higher
p-tau, an indicator of neuronal damage, whereas decreased
baseline levels of ApoE were associated with worse longitu-
dinal cognitive decline, MCI progression, and atrophy rate
independent of CSF p-tau/Ab42 ratio [150]. Therefore,
Apo E2 or Apo E3 may be increased in CSF in response to
neuronal injury and protect against neurodegeneration by
decreasing neuronal damage independent of tau and Ab
deposition.



Fig. 5. CSF ferritin independently predicts brain structural changes. (A–C) Longitudinal hippocampal volumetric changes based on tertiles of CSF: (A) ferritin,

(B) ApoE, (C) tau/Ab42. (D–F) Longitudinal volumetric ventricular changes based on tertiles of CSF: (D) ferritin, (E) ApoE, (F) tau/Ab42. Abbreviations: CN,

cognitively normal; CSF, cerebrospinal fluid; H, highest tertile; M, middle tertile; MCI, mild cognitive impairment. Reproduced with permission from [152].
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CLU, the gene for clusterin, has been identified and
confirmed as an AD genetic risk factor [153–155]. Deming
et al. [156] searched for additional SNPs associated with
clusterin levels and used gene ontology analyses to identify
molecular mechanisms by which CLU may exert its action.
They found that CSF, but not plasma, levels of clusterin were
significantly higher in AD subjects and were correlated with
both p-tau/Ab42 ratio and CSF ApoE, suggesting that clus-
terin and ApoE may interact to influence Ab deposition.
Clusterin may contribute to immune system changes
observed in AD or disrupt healing after neurodegeneration
[156].

5.2.2. Associations between novel CSF and blood analytes
and AD pathology

Mattsson et al. [157] selected a panel of 70 CSF proteins
involved in biological functions such as Ab metabolism, mi-
croglia activity, and synaptic/neuronal function that may be
altered in the early stages of AD. At baseline, several proteins
in addition to Ab and tau weremildly associated with atrophy
over 4 years in specific regions: apolipoprotein D, a-1-micro-
globulin, apolipoprotein CIII, apolipoprotein H, and
interleukin 6 with the middle temporal cortex; apolipoprotein
CIII, apolipoprotein D, a-1-microglobulin, apolipoprotein H,
and interleukin 16 with the inferior temporal cortex. Several
proteins (ferritin, S100b, apolipoprotein CIII, apolipoprotein
H, and hepatocyte growth factor) were associated with
atrophy rates that interacted with Ab, suggesting that they
act via an Ab-dependent mechanism, but others appear to
act via an Ab-independent mechanism. The proteins identi-
fied, if replicated, may represent novel prognostic biomarkers
of AD-related atrophy in CN subjects.

Synaptic dysfunction occurs in the early stages of AD and
is followed by neurodegeneration. Several studies have
concentrated on finding novel CSF analytes as potential bio-
markers for this process. Levels of a postsynaptic protein
neurogranin appear to reflect synaptic degeneration. CSF
neurogranin levels were significantly higher in AD subjects
and MCI converters than in CN subjects [158]. Moreover,
neurogranin levels predicted decreasedMMSE and increased
ADAS-cog scores and were correlated with longitudinal re-
ductions in cortical glucose metabolism and hippocampal
volume. Neurogranin levels were significantly increased in
Ab1 subjects, and elevated levels were detected even in non-
symptomatic subjects, suggesting that it may be an indepen-
dent novel biomarker for synaptic pathology. Paterson et al.
[159] identified several analytes using a CSF multiplex ana-
lyte panel that influence the rate of neurodegeneration in
Ab1 subjects. Low trefoil factor 3 was strongly associated
with higher rates of whole-brain atrophy, ventricular expan-
sion, and hippocampal atrophy. High cystatin predicted
higher whole-brain atrophy and hippocampal atrophy rates,
and low vascular endothelial growth factor (VEGF) and chro-
mogranin Awere associated with higher whole-brain atrophy
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rate. After adjustment for baseline volume, p-tau, age, sex,
APOE4 status, and diagnosis, trefoil factor 3 was still associ-
ated with increased hippocampal atrophy rate and may be a
valuable biomarker for decline in AD.

AD is characterized by degradation of WM tracts which
progressively disconnect cortical and subcortical regions.
Neurofilaments (NFs) are structural components of the neu-
ral cytoskeleton and are abundant in large caliber myelinated
axons of the WM tracts. Zetterberg et al. [160] investigated
the associations of its lowmolecular weight subunit, NFL, in
CSF with diagnostic status, cognitive decline, and WM
change. CSF NFL was elevated in AD subjects compared
to stable MCI and CN subjects, and correlated with acceler-
ated cognitive decline (MMSE and ADAS-cog), WM
change, and increased whole-brain atrophy, ventricular
expansion, and hippocampal atrophy in MCI subjects. These
results suggest that NFL may be a useful biomarker for
tracking axonal degeneration, where NFs are most abundant,
and this is associated with the degradation of WM tracts in
cognitive decline.

VEGF has been implicated as a neuroprotective factor in
AD, possibly neutralizing the damaging effects of the AD
pathological cascade through improvements in vascular sur-
vival. Hohman et al. [161] found that higher levels of VEGF
were associated with larger baseline hippocampal volume,
lower hippocampal atrophy over time, lower episodic mem-
ory decline, and lower executive function decline over time.
The neuroprotective effect of VEGF, which was greatest in
MCI subjects, appeared to be enhanced in the presence of
AD CSF biomarkers. In Ab1 subjects, higher VEGF levels
were associated with better memory performance, and in
tau1 subjects, higher VEGF levels were associated with
lower hippocampal atrophy, and decline in memory and ex-
ecutive function. These results suggest that angiogenic fac-
tors may be important in individuals with biomarker
abnormalities consistent with early AD. The mechanism
by which VEGF reduces risk of neurodegeneration is un-
known. Leung et al. [162] searched for CSF analytes associ-
ated with Ab positivity and also identified fatty acid binding
protein and VEGF, along with less strongly associated ana-
lytes including resistin, CD40 antigen, prolactin, lipoprotein
A, and hepatocyte growth factor. These analytes are involved
in different aspects of AD pathophysiology, including in-
flammatory response, lipid metabolism, atherosclerosis,
and insulin resistance, and are potential biomarkers that
require future validation in independent cohorts.

Another factor reported to be protective against AD,
possibly through its modulation of Ab accumulation, is
brain-derived neurotrophic factor (BDNF), a widely distrib-
uted neurotrophin with multiple functions including
neuronal differentiation, regulation of synaptic function,
and modulation of hippocampal long-term potentiation,
learning, and memory formation. Hwang et al. [163] found
a significant negative association between BDNF protein
levels in plasma and brain Ab burden, measured by PiB
PET, in the lateral temporal, inferior parietal, and inferior
frontal, anterior and posterior cingulate, and orbital frontal
regions. In a separate study [164], the Val66Met polymor-
phism which is associated with lower BDNF secretion
in vitro was not associated with hippocampal volume or
memory. Therefore, plasma BDNF levels may act as a
biomarker of Ab pathology but not of volumetric or cogni-
tive changes in the brain. Analytes identified in these studies
are summarized in Table 4.

5.2.3. CSF and plasma analytes for the detection of
copathologies

There is a growing awareness that copathologies such as
Lewy bodies, vascular disease, TDP43 inclusions, and hip-
pocampal sclerosis are common and may explain the vari-
ability in AD progression [169]. The development of
biomarkers to predict coincident pathologies that are
frequently observed in clinically diagnosed AD patients
would be of great clinical utility and may improve the diag-
nostic and prognostic abilities of established CSF bio-
markers alone [129]. One of the most common
comorbidities in AD, present in 10%–40% of AD patients,
is the presence of Lewy bodies, composed of a-synuclein
(a-syn). Symptoms of dementia with Lewy bodies include
hallucinations, visual spatial impairment, and executive
dysfunction but it is not known how reduced CSF a-syn re-
lates to AD symptoms. Mackin et al. [170] reported that 20%
of AD, 13% of MCI, and 8% of CN subjects reported hallu-
cinations and that CSF a-syn was reduced in these AD sub-
jects. Lower CSF a-syn was associated with decreases in
memory and language, as well as executive function, sug-
gesting that Lewy bodies may be related to overall cognitive
decline in addition to the characteristic hallucinations of de-
mentia with Lewy bodies.

A non-AD pathway to dementia was outlined by Alcolea
et al. [144]. They reported that preclinical subjects as well as
subjects with suspected non-Alzheimer’s pathology (SNAP)
had higher levels of YKL40, a marker of neuroinflammation,
than Ab1 subjects early in disease progression. This sug-
gests that neuroinflammation can emerge through a non–
Ab-related pathway and that it is also detectable in CSF in
preclinical stages in non-Ab degenerative disorders. The
correlation between YLK40 levels and age regardless of
APOE status suggests that low-grade inflammatory pro-
cesses are present in the brain even in the absence of Ab.
These findings suggested that CSF YKL40 levels increase
with aging, preclinical AD, and SNAP and correlate closely
with markers of neurodegeneration.
5.3. Conclusions

Considerable progress has been made in 2014 and 2015
by the ADNI Biomarker Core in improving methodologies
for measuring established CSF biomarkers and establishing
relationships between different measures of Ab. The ADNI
Biomarker Core has also emphasized the need to detect co-
pathologies, such as a-syn amyloid deposits in Lewy bodies



Table 4

Novel CSF blood biomarkers

Analyte CSF or plasma Association with AD pathology Notes Reference

a-1-microglobulin CSF Regional atrophy [157]

Apolipoprotein CIII CSF Regional atrophy [157]

Apolipoprotein D CSF Regional atrophy [157]

Brain-derived neurotrophic factor Plasma Ab Neuroprotective [165]

Brain-derived neurotrophic factor Plasma NOT HV, M Val66Met polymorphism [164]

CD40 antigen CSF Ab [162]

Chromogranin A CSF WBA Ab dependent [159]

Chromogranin A CSF MCI to AD [166]

Cystatin CSF WBA, HA Ab dependent [159]

Factor H CSF CD, VE [167]

Fatty acid binding protein CSF Ab [162]

Fatty acid binding protein CSF CN to MCI [168]

Fatty acid binding protein CSF MCI to AD [166]

Ferritin CSF Regional atrophy Ab independent [157]

Hepatocyte growth factor CSF Regional atrophy Ab independent [157]

Hepatocyte growth factor CSF Ab [162]

Interleukin 16 CSF Regional atrophy [157]

Interleukin 6 CSF Regional atrophy [157]

Lipoprotein A CSF Ab [162]

Neurofilament light CSF CS, CD, WMC WBA, C, HA [160]

Neurogranin CSF CS, C, Met, HV Ab dependent [158]

Prolactin CSF Ab [162]

Resistin CSF Ab [162]

S100b CSF Regional atrophy Ab independent [157]

Trefoil factor 3 CSF WBA, HA, VE Ab dependent [159]

Vascular endothelial growth factor CSF WBA Ab dependent [159]

Vascular endothelial growth factor CSF HV, HA, CD Neuroprotective, effect enhanced in Ab1 [161]

Vascular endothelial growth factor CSF Ab [162]

Abbreviations: CSF, cerebrospinal fluid; AD, Alzheimer’s disease; HV, hippocampal volume; M, memory; WBA, whole brain atrophy; HA, hippocampal

atrophy; CD, cognitive decline; VE, ventricular expansion; CN, cognitively normal; MCI, mild cognitive impairment; CS, clinical status; WMC, white-

matter change; Met, metabolism; C, cognition.
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which were associated with symptoms specific to AD in
addition to those characterizing dementia with Lewy bodies.
SNAP may be associated with YLK40, a marker of neuroin-
flammation. Cerebrovascular risk factors homocysteine and
body mass index, as reflected in CSF leptin levels, have been
linked to aspects of AD pathology. A number of studies have
addressed the mechanism of action of the APOE ε4 allele via
its CSF and blood ApoE protein. ApoE may modulate iron
levels leading to oxidative damage–induced neurodegenera-
tion or act in conjunction with Ab to enhance leptin
signaling. Confirmed AD genetic risk factor, CLU, may
exert its effect via immune response. Another focus has
been the use of proteomic approaches to identify primarily
CSF analytes associated with atrophy, and cortical Ab
load, WM degradation, and cognitive decline that capture
distinct information from those identified by traditional
CSF biomarkers. These include fatty acid binding protein,
apolipoproteins AII, CIII, D, and H, interleukins 6 and 16,
ferritin, and chromogranin A. Conversely, several studies
point to VEGF and BDNF as being neuroprotective.
6. Studies of genetic associations

Studies of ADNI genetics data have been instrumental in
deepening our understanding of AD pathophysiology by
bridging the gap between the genetic underpinnings and
biochemical mechanisms of the disease. The Genetics
Core, under the aegis of Dr. Andrew Saykin, has collected
blood samples at every patient visit, extracted both DNA
and RNA, and performed APOE, TOMM40, and genome-
wide array genotyping, whole-exome sequencing, and
whole-genome sequencing (the latter generously supported
by the Brin-Wojcicki Foundation and the Alzheimer’s Asso-
ciation [171]). The rich ADNI longitudinal data set contains
many biomarkers that can serve as quantitative endopheno-
types for genetic association studies, increasing the power to
detect biologically meaningful associations. In accordance
with ADNI policy, all genetics data, like other data, have
been made available to the wider scientific community, re-
sulting in well over 300 publications by 2014 that analyzed
ADNI data sets. This section describes the work of the Ge-
netics Core and the approximately 80 publications arising
from ADNI genetics data in 2014 and 2015.
6.1. Reviews

Saykin et al. [171] outlined the progress and plans of the
ADNI Genetics Core and systematically reviewed 106 arti-
cles published between 2009 and 2012. These investigations
ran the gamut from large meta-analytic case-control GWAS
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to GWAS of quantitative endophenotypes, to studies which
select genes from a particular pathway thought to be
involved in AD, to those pinpointing the effects of a
particular polymorphism or gene. GWAS conducted by a
multistudy consortia have identified and replicated approxi-
mately 20 genes in addition to APOE that confer risk or have
protective roles in AD [172]. A number of these (APOE,
BIN1, CLU, ABCA7, CR1, PICALM, MS4A6A, CD33,
MS4A4E, and CD2AP) have been identified or confirmed us-
ing ADNI data. In addition, many novel candidate risk and
protective loci cut have been identified using ADNI genetics
data and quantitative imaging, cognitive, and fluid pheno-
types (Fig. 6) [172]. However, these loci account for only
a portion of disease heritability. As AD is a multigenic dis-
order influenced by environmental factors and epistasis,
the Genetics Core has emphasized a Systems Biology
perspective in which candidate genes identified in GWAS
or from likely mechanistic biological pathways are studied
for their associations with mRNA and other phenotypes. It
is hoped that this integrative functional genomics approach
will capture the biological complexity at multiple levels
including genomic, transcriptomic, proteomic, and metabo-
lomic (Fig. 7).

ADNI genetic studies also hold promise for improving
clinical trial design and identifying therapeutic targets. Strat-
ification and subject selection, currently limited to APOE,
could likely be improved by the incorporation of combinato-
rial sets of genes that have a biologically relevant underpin-
ning such as a target pathway. In a similar way, an improved
understanding of pathways and mechanisms of association
between AD risk genes in disease will provide therapeutic
targets [171]. In the future, the ADNI Genetics Core will
collect samples for the production of induced pluripotent
stem cells. This will allow development of in vitro models
that can bridge the gap between animal models and clinical
Fig. 6. Word cloud of genes names reported in articles using ADNI genetic data.

mentioning the gene. Abbreviation: ADNI, Alzheimer’s Disease Neuroimaging In
development and that can improve phenotypic characteriza-
tion of disease heterogeneity.

ADNI genetics data have contributed to a number of
meta-analytic studies, most notably the ENIGMA con-
sortium, a global collaborative network of over 500 scien-
tists involved in neuroimaging genetics [173,174]. Using
neuroimaging data from nearly 13,000 subjects, ENIGMA
is studying 12 major brain diseases including
schizophrenia, bipolar illness, and major depression and
has identified a number of genetic loci that affect brain
volumes, and how they may act to increase the risk of
these diseases.
6.2. Genetic association studies

Two fundamentally different approaches have been used
to characterize associations between genetic loci and pheno-
types using ADNI data. Genotype approaches select candi-
date SNPs, genes, or pathways from a priori knowledge of
biological function and test for their association with
selected imaging or fluid biomarkers. Although this
approach cannot discover new genes, it can examine the ef-
fect of interactions between loci and phenotypic variation.
The main alternative approach is to begin with a phenotype
and search the genome for significantly associated loci. This
approach can discover new genes but is often hampered by
problems of ultrahigh dimensionality and multiple compar-
isons and ignores spatial information in imaging data and
correlations between genetic markers due to linkage disequi-
librium and epistatic effects. A popular hybrid approach is to
select candidate loci and then apply further biologically
informed enrichment methodologies. Genetic association
studies from 2014 and 2015 are summarized in Table 5;
confirmed and novel risk or protective loci identified from
ADNI studies during this period are detailed in Table 6.
The color and size of the gene name corresponds to the number of abstracts

itiative. Reproduced with permission from [172].



Fig. 7. Converging “multi-omics” in ADNI. This figure illustrates the landscape of multiple “-omics” domains relevant to AD and how they contribute to an

integrated Systems Biology approach to discovering the underlying genetic architecture of AD. *Data from ADNI-1. **Data from ADNI-GO/2. Abbreviations:

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative. Reproduced with permission from [171].
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6.2.1. Genotype

6.2.1.1. APOE
The APOE ε4 allele is the single locus that confers the

greatest risk for sporadic late-onset AD. Carriers of this
allele have greater hippocampal atrophy rates than noncar-
riers [175,176], significant morphological deformation of
the left hippocampus [177], accelerated rates of atrophy in
limbic and cortical areas, particularly the amygdala [176],
faster ventricular expansion, and regional patterns of
ventricle morphology [178]. Although a family history of
AD was associated with greater regional longitudinal atro-
phy rates in MCI participants, these were accounted for by
APOE4 genotype [232]. These studies suggest that there is
a genotype-specific network of brain regions associated
with the APOE ε4 allele that undergoes faster atrophy and
morphological changes. The effect of this allele is stronger
in women than in men. Sampedro et al. [179] found that fe-
male APOE4 carriers had widespread brain hypometabolism
and cortical thinning in several regional clusters compared to
female noncarriers, whereas male APOE4 carriers differed
only slightly from male noncarriers (Fig. 8). However,
male APOE4 carriers had a higher risk of cerebral cortex mi-
crobleeds then the male noncarriers, suggesting that there is
a differential sex bias of the APOE4 allele on diverse aspects
of disease pathology.
6.2.1.2. Candidate SNPs and genes

6.2.1.2.1. SNPs in confirmed risk alleles
Candidate SNPs for association studies are chosen because

of their location in confirmed AD risk alleles or in genes of
suspected importance on the basis of biological function.
SNPs in BIN1 (rs744373), CD2AP (rs9349407), and CR1
(rs3818361) (AD risk variants implicated in Ab deposition)
modulated the association between plasma ApoE levels and
cortical Ab load in different directions (Fig. 9), independent
of APOE4 carrier status, suggesting that these genes interact
with APOE to modulate Ab accumulation and clearance
[181]. Genetic variants in the recently confirmed AD risk fac-
tor, UNC5C, were associated with the atrophy rate of the left
hippocampus and right precuneus [182]. The protective A
allele of rs11771145 in EPHA1 prevented hippocampal atro-
phy in MCI subjects and was associated with lower atrophy
and greater metabolism in the temporal gyri in AD subjects
[183]. Whole-exome sequencing identified a coding missense
variant, p.S144G, in TREML2 responsible for the previously
noted protective effect against AD [184]. This functional
variant was associated with a reduced risk of AD, whereas
a missense variant in TREM2, p.R47H had the opposite effect,
independent of p.S144G. Cell-based analyses implicated the
involvement of these variants in the modulation of microglial
activation, possibly influencing Ab clearance. Minor allele G



Table 5

Studies of genetic associations

Category # Of papers Example paper

Genotype APOE alone 6

[175–180]

Sampedro et al. 2015,

Oncotarget

Female carriers of the APOE ε4 allele had widespread

hypometabolism and cortical thinning compared with female

noncarriers, whereas male carriers had a higher risk of

cerebral microbleeds, suggesting a differential sex bias of the

APOE ε4 allele.

Candidate SNPs

and genes

16

[181–195]

Lazaris et al. 2015, Neurology

Genetics

SNPs in BIN1, CD2AP, and CR1 modulated the association

between plasma ApoE and Ab load, independent of APOE4

status.

Candidate pathways 1

[196]

Biffi et al. 2014, Neurobiol

Aging

Variants in oxidative phosphorylation genes, summarized as a

genetic risk score, were associated with clinical status, and

hippocampal and entorhinal cortex volumes, suggesting an

overlap of the genetic structure of AD and stroke.

Epistatic interactions 3

[197–199]

Hohman et al. 2014, Neurobiol

Aging

Found epistatic interactions between GSK3b (tau protein kinase

1) and Ab-related genes such as APP. Combined interactions

explained up to 1.5% of the variance in Ab deposition.

Phenotype Case-control 12

[200–211]

Escott-Price et al. 2014,

PLoS One

A novel gene-wide statistical approach in a mega meta-analysis

of genome-wide data sets identified two novel loci,

TP53INP1 and IGHV1 associated with AD, and found

evidence of a gene-wide association for loci previously

identified by SNP analysis.

Structural imaging 6

[212–217]

Xu et al. 2014, PLoS One Used longitudinal structural MRI data as phenotypes in a GWAS

and identified a larger number of SNP-phenotypes

associations than from baseline data. APOE and TOMM40

were top hits; this is a novel SNP that was identified in APOE.

Ab deposition

(PET, CSF)

6

[218–223]

Ramanan et al. 2015, Brain Used longitudinal florbetapir PET data in a GWAS and identified

an intronic SNP in IL1RAP, rs12053868, significant in the

absence of APOE ε4 allele. The minor allele was associated

with greater cortical Ab burden, atrophy, rate of MCI to AD

progression, and cognitive decline. IL1RAP is involved in

microglial activation.

Fluid (CSF, blood) 3

[224,225]

Kauwe et al. 2014, PLoS Genet GWAS of panel of CSF analytes involved in a range of imported

AD processes such as endocytosis, cholesterol metabolism,

inflammatory and immune response, identified associations

with proteins involved in Ab processing or proinflammatory

signaling.

Neuropsychological

assessments

2

[226,227]

Sherva et al. 2014, Alz Dem Used longitudinal changes in ADAS-cog to identified variants in

the SPON1 gene whose minor alleles were associated with

more rapid cognitive decline. Spondin 1 inhibits APP

cleavage by BACE.

Other studies 3

[228–230]

Chen et al. 2015, Nat

Commun

ADNI one of six cohorts identifying polygenic architecture of

human cortex. Variability of cortex surface area explained by

additive effects of genome-wide SNPs with those in

evolutionary conserved areas contributing more to medial and

temporal cortices.

Abbreviations: APOE, apolipoprotein E; SNP, small nucleotide polymorphism; AD, Alzheimer’s disease; APP, Ab precursor protein; PET, positron emission

tomography; CSF, cerebrospinal fluid; GWAS, genome-wide association study; MCI, mild cognitive impairment; ADAS-cog, Alzheimer’s Disease Assessment

Scale–cognitive subscale; BACE, beta-secretase 1.
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carriers of rs2718058 in a recently confirmed preventive locus
adjacent toNME8 had higher CDR-SB scores, lower occipital
gyrus atrophy, greater metabolic rate and ventricular expan-
sion, and a lower rate of hippocampal atrophy than carriers
of the major A allele, suggesting that the minor allele may
confer its protective effect by inhibiting neurodegeneration
[185]. The G allele in rs2070045 within SORL1 was associ-
ated with increased CSF tau and hippocampal atrophy, and
a haplotype in this region was associated with higher tau
and p-tau181, suggesting that SORL1 may increase AD risk
by increasing neurodegeneration [186]. Finally, top risk
allele, CFH, but not risk alleles CR1, CD33, CLU, and
TREML2, were strongly associated with AD in a Chinese
cohort [187], suggesting that the genetics of AD may differ
among diverse populations.

The gene-gene interaction between CLU and MS4A4E
was associated with APOE42 status and may have a
possible dominant effect [188]. Lack of these risk alleles
was estimated to decrease AD incidence by 8%. CR1 and
EPHA1 interacted with cardiovascular disease risk factors
to reduce hippocampal volume [189]. Cardiovascular risk
dominated the genetic risk of these loci in terms of interac-
tion effect such that at low genetic risk, high cardiovascular
risk factors had a more detrimental effect (Fig. 10). These



Table 6

Confirmed and novel risk and protective loci identified in ADNI studies 2014 to 2015

Gene SNP Phenotype Proposed biological function Reference

APOE ε4 Hippocampal atrophy rate Modulates Ab accumulation

and clearance

[175,176]

Left hippocampal deformation [177]

Limbic region atrophy rate [176]

Ventricular expansion and morphology [178]

Females: hypometabolism, cortical thinning [179]

Males: cerebral cortex microbleeds

APOE* Minor allele Disease status [204]

APOE-BCHE rs509208 minor

G allele

Cortical Ab load Butyrylcholinesterase disrupts

synaptic functioning

[218]

APOC1 Top SNPs CSF Ab42 Synaptic transmission,

transmission of nerve impulses,

and trait class

[219]

BIN1* Plasma ApoE Interacts with APOE [181]

CBLB Minor allele Clinical status [204]

CD2AP* Plasma ApoE Interacts with APOE [181]

CETP rs5882G allele Decreased white-matter integrity Cholesteryl ester transfer

protein may increase AD risk

through the degradation of WM

[192]

CFH Not associated with AD in Chinese cohort [187]

CR1* Plasma ApoE Interacts with APOE [181]

CR1 1CVD risk factors, reduced hippocampal

volume

Increase of neurodegeneration

in presence of CVD

[189]

DAT1* rs6347C allele Decreased cognitive performance, greater

ventricular expansion, dementia risk

Regulates neurotransmission by

modulating dopamine receptors

[194]

EPHA1 rs11771145 A

allele

Lower hippocampal atrophy, greater

metabolism

[183]

EPHA11 CVD risk

factors

Reduced hippocampal volume Increase of neurodegeneration

in presence of CVD

[189]

GRIN2B Disease status Glutamate signaling [201]

HMGCR rs3846662G

allele

Delayed age of AD onset, reduced risk of AD [193]

MMP1 Minor allele Clinical status [204]

NAPRT1 Minor allele Clinical status [204]

SORL1 rs2070045G

allele

Increased CSF tau, hippocampal atrophy May increase neurodegeneration [186]

TOMM40 Minor allele Clinical status [204]

TOMM40 Top SNPs CSF Ab42 Synaptic transmission, transmission

of nerve impulses, and trait class

[219]

TREM2 Minor allele Clinical status [204]

TREML2 p.R47H Increased risk of AD [184]

CLU-MS4A4E* Gene interaction decreased AD incidence [188]

RYR3-CACNA1C Minor alleles Increased cortical Ab load Regulation of intracellular calcium

homoeostasis

[197]

GSK3b-APP rs334543 minor

allele–3SNPs

Increased cortical Ab load Tau kinases interact with APP to

increase deposition

[199]

C9-ILR6 Increased cortical Ab load Neuroinflammation may enhance

Ab deposition

[198]

UNC5C Hippocampal and precuneal atrophy Unc-5 Netrin Receptor C—triggers

apoptosis

[182]

NME8 rs2718058G

allele

Higher CDR-SB scores, lower atrophy higher

metabolism

May inhibit neurodegeneration [185]

OPRD1 rs678849 Regional brain volume differences, CSF

biomarkers

Delta opioid receptor may promote

the processing of APP

[231]

NAV2 Episodic memory scores Neuron navigator 2, neurite

outgrowth, and cell migration

[191]

TP53INP1 Disease status Proapoptotic tumor suppressor [200]

IGHV1 Disease status Unknown

ZNF827* CSF Ab42 Transcription factor [203]

ZNF628* Minor allele Disease status Transcription factor [204]

KDM2B* p-tau181 [203]

NANP* Regional atrophy
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Table 6

Confirmed and novel risk and protective loci identified in ADNI studies 2014 to 2015 (Continued )

Gene SNP Phenotype Proposed biological function Reference

OXPHOS (oxidative

phosphorylation genes)

Disease status, CN to MCI progression,

hippocampal volume, entorhinal cortex

volume

Overlap of AD and stroke genes

influence disease trajectory

[196]

AEN

ADAMTS12

PSMA5

FXN

NTM

LARP1

WDTC1

SEMA7AVKORC1L1

COL5A3

Disease status Signaling network involved

cholesterol metabolism

[202]

HOMER2 Disease status, right thalamus volume Transcription factor linked to APP [212]

PML Hippocampal shape, insular cortices [214]

STOML1 Hippocampal shape, insular cortices

SYNJ2-PI4KA Inferior lateral ventricle atrophy Inositol pathway [216]

REST* rs3796529 minor

T allele

Less hippocampal atrophy, greater medial

temporal lobe metabolism

Negative transcriptional regulator

of hippocampal neurogenesis

[207,217]

CTXN Plasma Ab42 and Ab40 Cortexin modulates Ab42 secretion [220]

ILRAP* rs12053868 minor

G allele

Longitudinal Ab accumulation Proinflammatory cytokine, activation

of microglia

[221]

SULG2* CSF Ab42, cognitive decline

FRA10AC1* Fragile site CSF Ab42, cognitive decline [222]

POT1 rs4728029 CSF p-tau181, ventricular expansion Neuroinflammatory mechanism

related to interleukin 6 receptor

[224]

Genes mediated by

miR-33

CSF p-tau181 Disruption of cellular cholesterol

homoeostasis

SPON1 Minor alleles More rapid decline on ADAS-cog Spondin 1 inhibits cleavage of

APP by BACE

[226]

EXOC4, GABRG3, VAT1L More rapid decline on ADAS-cog Neuronal maintenance,

neurotransmission, calcium

signaling

CAMK4, CYCS, NCS1,

CACNA1G

More rapid decline on ADAS-cog Homoeostasis

RNASE13 (1PTK2B,

PICALM, MS4A2, and

APP from pathway analysis)

Cognitive resilience Neuron loss, presynaptic membrane,

and postsynaptic density

[227]

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; SNP, small nucleotide polymorphism; BCHE, butyrylcholinesterase; CSF, cerebrospinal

fluid; AD, Alzheimer’s disease; WM, white matter; CVD, cardiovascular disease; APP, Ab precursor protein; CDR-SB, Clinical Dementia Rating–Sum of Boxes;

CN, cognitively normal; MCI, mild cognitive impairment; ADAS-cog, Alzheimer’s Disease Assessment Scale–cognitive subscale; BACE, beta-secretase.

*Independent of APOE status. Novel loci are in bold, and blue shaded boxes represent protective alleles.
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findings indicate that CR1 and EPHA1may contribute to the
etiology of late-onset neurodegeneration in the presence of
cardiovascular disease.

6.2.1.2.2. SNPs in genes targeted for biological function
Several studies have targeted genes with biological func-

tions implicated in AD. Rare variants of PLD3 are confirmed
AD susceptibility loci; phospholipase D3 modulates APP
processing. However, a common variant in the same gene,
rs10407447, was associated with regional metabolism and
lateral ventricular volume in CN and MCI subjects [190].
A study of SNPs found in genes preferentially expressed
in the hippocampus identified a novel locus, NAV2 (neuron
navigator 2), associated with episodic memory scores
[191]. Neuron navigator 2 is involved in neurite outgrowth
and cell migration.
Abnormal cholesterol levels increase the risk ofADand are
influenced by several common genetic variants. Increased G
allele dosage of rs5882 (p.I405V) in CETP (cholesterylester
transfer protein) was associated with measures of WM integ-
rity (lower fractional anisotropy and higher radial and mean
diffusivities) in older individuals, suggesting that high choles-
terol may increase AD risk through the degradation of WM
integrity [192]. 3-hydroxy-3-methylglutaryl-CoA reductase
plays a central role in the production of cholesterol and is the
target of statins which reduce the risk of sporadic AD by as
much as 70% in midlife. AD carriers of the G allele of
rs3846662 in HMGCR had both a delayed age of onset and a
reduced risk of AD [193]. The effect was greatest in women.
In MCI subjects, the G allele reduced progression to AD
over 3 years, even inAPOE41 subjects, providing further sup-
port for the protective role of this allele.



Fig. 8. Sex-stratified FDG analyses. Analysis between APOE4 carriers and APOE4 noncarriers (P, .005 uncorrected) in (A) females and (B) males, covaried

for age and years of education across the lateral and medial views of the cerebral cortex. As shown, female APOE4 carriers showed widespread clusters of

decreased metabolism with respect to female APOE4 noncarriers (A), whereas male APOE4 carriers only showed an isolated cluster of decreased metabolism

(P, .005) in the precuneus with respect male noncarriers (B). Abbreviations: FDG, [18F]-fluorodeoxyglucose; APOE4, apolipoprotein E ε4 allele. Reproduced

with permission from [179].
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Altered dopamine transmission affects many aspects of
brain function, including the formation of Ab, and contrib-
utes to cognitive impairment. Dopamine transporter protein,
encoded by the DAT1 gene, regulates neurotransmission by
modulating dopamine receptors. The minor C allele of
rs6347 inDAT1was associated with poorer cognitive perfor-
mance, greater ventricular expansion, and greater dementia
risk, independent of APOE genotype [194]. Although the
mechanism of action of this polymorphism is unknown,
dopamine neurotransmission may be a useful target for anti-
dementia drugs. Delta opioid receptors promote the process-
ing of APP and are implicated in various psychiatric and
neurological disorders. A common variant (rs678849) in
the OPRD1 gene was associated with regional brain volume
differences in healthy elderly and may predict levels of CSF
biomarkers [231].
6.2.1.3. Candidate pathways and epistatic interactions
The top 10 AD susceptibility genes explain only 35% of

the variability in disease risk [233]. It has become apparent
that studies of single loci are not sufficient to unravel the com-
plex genetic etiology of the disease. It is thought that the
“missing heritability” may come from the association of mul-
tiple variants in genes interacting in functional pathways.
Variation in genes involved in oxidative phosphorylation
(OXPHOS), summarized by an OXPHOS genetic risk score,
is associated with an increased risk of stroke. Stroke increases
the risk of AD, and the OXPHOS genetic risk score was asso-
ciated with AD clinical status, CN to MCI progression, and
volumes of hippocampus and entorhinal cortex in CN and
MCI, but not AD subjects [196]. This suggests that the genetic
structure of AD and stroke overlap and that OXPHOS variants
exert an early influence on disease trajectory.



Fig. 9. Significancemaps displaying the associations between cortical Ab binding (Pittsburgh compound B) and plasmaApoE protein. Plasma apoE levels were asso-

ciated with Pittsburgh compound B SUVR in the pooled sample in all brain regions apart from the sensorimotor and entorhinal cortex (top panel). Plasma apoE levels

were associated with Pittsburgh compound B SUVR in BIN1 rs 744373 minor allele carriers (second panel) and in CD2AP rs 9349407 and CR1 rs 38118361 minor

allele noncarriers (third and fourth panel, respectively). Abbreviation: SUVR, standardized uptake value ratio. Reproduced with permission from [181].
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Fig. 10. Effect of interactions between CR1 or EPHA1 and cardiovascular

disease risk factors on hippocampal volume. The estimated interaction ef-

fect on hippocampal volume for both risk genes is dominated by high car-

diovascular disease risk. High genetic risk appears to reduce the

interaction effect in the presence of high cardiovascular disease risk, sug-

gesting that cardiovascular disease risk factors are more detrimental under

low genetic risk. Abbreviations: CVD, cardiovascular risk; G, genetic

risk. Reproduced with permission from [189].
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Epistatic interactions may also account for some of the
risk variability of AD. Koran et al. [197] investigated genes
from AD pathways, including Ab processing, apoptosis, cal-
cium homoeostasis, free radical production, and mitochon-
drial dysfunction, defined by the Kyoto Encyclopedia of
Genes and Genomes database. An interaction between mi-
nor alleles in RYR3 (ryanodine receptor 3) and CACNA1C
(aC subunit of voltage-dependent L-type calcium channels)
was associated with a higher Ab load and explained 6% of
Ab load variance. Both genes encode proteins involved in
the regulation of intracellular calcium homoeostasis. As rya-
nodine receptor–driven calcium release has been associated
with increased Ab levels, and Ab modulates the function of
L-type calcium channels, the authors suggest that interaction
between these two variants may increase intracellular cal-
cium levels by disrupting calcium homoeostasis and lead
to increased Ab production and deposition. Ab accumula-
tion was also associated with two SNP-SNP interactions be-
tween C9 (complement 9) and ILR6 (interleukin 6r),
suggesting that neuroinflammation may exert its effect on
AD by enhancing Ab deposition [198].

According to the amyloid hypothesis, Ab deposition pre-
cedes tau pathology. However, it is possible that the two pa-
thologies arise independently due to upstream genetic
interactions and that genes that confer risk for tau pathology
also confer risk for Ab pathology via complex epistatic rela-
tionships. Hohman et al. [199] searched for epistatic interac-
tions between genes for tau kinases and genes involved in Ab
deposition associated with Ab load. They found three inter-
actions between rs334543 inGSK3b and different Ab genes.
A minor allele that interacted with APP was related to high
levels of Ab deposition. The combined interactions ex-
plained between 1.2% and 1.5% of the Ab deposition vari-
ance, suggesting that Ab burden may be increased by a
combination of GSK3b and APP-related genes.
In a genome-wide search of all possible SNP-SNP inter-
actions that affect regional brain volumes, one interaction
between an SNP in a region encoding two transcription fac-
tors (rs1345203) and an intergenic SNP (rs1213205) ex-
plained 1.9% of the variance in temporal lobe volume
[195]. The biological relevance of this interaction has yet
to be determined.
6.2.2. Phenotype
A great strength of ADNI is its wealth of quantitative phe-

notypes that can be leveraged to identify novel susceptibility
loci in GWAS, and more recently, gene-based GWAS.

6.2.2.1. Case-control studies
Complex patterns of the association may not be reflected

solely in single SNPs. Amegameta-analysis of genome-wide
data sets, including ADNI’s, as part of the International Ge-
nomics of Alzheimer’s Disease Consortium, identified two
novel loci, TP53INP1 and IGHV1 [200]. The first locus en-
codes a proapoptotic tumor suppressor of interest due to
the inverse association between cancer and AD, whereas
the function of the latter locus is unknown. A similar analysis
evaluated single gene associations in a network context, then
use gene ontology and pathway enrichment methods to iden-
tify biologically plausible interactions [201]. Genes involved
in the glutamatergic synapse, includingGRIN2B, appeared to
be overrepresented in AD subjects. Glutamate signaling reg-
ulates many biological processes such as learning, memory,
and synaptic plasticity, and glutaminergic neurons located
in the hippocampus and other brain areas are affected by
Ab plaques and tau tangles. Top genes identified by the
computation of a multimarker genetic score associated with
disease status (AEN, ADAMTS12, PSMA5, FXN, NTM,
LARP1, WDTC1, SEMA7A, VKORC1L1, and COL5A3)
were integrated into a hypothetical signaling network incor-
porating a priori protein-protein interaction data, which high-
lighted their function in cholesterol metabolism [202].

Genetic subtypes of AD may have specific molecular
mechanisms of pathogenesis. A GWAS in APOE4 noncar-
riers identified three novel loci located in three haplotype
blocks, ZNF827 (zinc finger protein 827), KDM2B (lysine-
specific demethylase 2B), and NANP (N-acetylneuraminic
acid phosphatase), which were associated with CSF Ab42,
p-tau181, and brain atrophy, respectively [203].

Some of the missing heritability of complex diseases may
be accounted for by rare variants; low-frequency allele var-
iants have a higher probability of functional significance. A
gene-based analysis of alleles with frequencies lower than
3% identified one novel association between ZNF628 (zinc
finger protein 628) and AD that reached genome-wide sig-
nificance after adjustment for APOE4 [204]. The study
also identified minor alleles in APOE, TOMM40, MMP1,
TREM2, CBLB, andNAPRT1 that may contribute to AD her-
itability. The zinc finger proteins identified in these studies
suggest that transcriptional regulationmay play an important
role in pathogenesis.
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6.2.2.2. Structural imaging phenotypes
The use of structural MRI quantitative phenotypes in

identifying genetic variants associated with AD has
continued to be a powerful strategy. The development of ma-
chine learning approaches has facilitated previously chal-
lenging tasks such as the selection of imaging features
with power to detect genetic associations. A polygenic
approach using a penalized regression method to select
109 brain wide regional measures identified a novel marker,
HOMER2, associated with right thalamus volume and with
AD clinical status [212]. Homer2 is a transcription factor
which may be linked to APP processing or the trafficking
of APP to the cell surface. A GWAS of GM density data
[205] jointly considered the effects of all polymorphisms,
how they fit into biologically defined pathways, and the
functional relationships of 20 genes involved in SNP-SNP
interactions. Enrichment analysis identified visual percep-
tion, DNA repair and replication, and olfactory pathways.
A statistically significant synergistic interaction between
two SNPs in an olfactory gene cluster suggested that this
pathway may be involved in AD. Using a subset of imaging
features able to discriminate between CN and AD subjects as
quantitative phenotypes, genetic variation in a relatively
small number of genes (ESR1, BIN1, LDLR, SORCS1,
APP, LRAT, and TF) was found to be associated with ventric-
ular enlargement, hippocampal atrophy, and cortical atro-
phy, suggesting that these loci could have potential in
diagnostic classification [213]. Another study selected neu-
roimaging biomarkers associated with disease state on the
basis of global shape analysis and found differential associ-
ations between SNPs and regional volumes at different dis-
ease stages [214]. Notably, in MCI subjects, SNPs in PML
(promyelocytic leukemia) and STOML1 (stomatin-like 1)
were associated with shapes of the hippocampi and insular
cortices.

Although most GWAS analyses focus only on baseline
phenotypes, two studies used ADNI’s longitudinal neuroi-
maging data that, by capturing rates of change, have greater
statistical power to detect genetic associations. Longitudinal
structural MRI data identified a much larger number of SNP-
phenotype associations than cross-sectional data [215]. A
second study used longitudinal change in ventricular volume
as a quantitative phenotype for a pathway-based gene-gene
interaction analysis [216] and identified a novel interaction
between SYNJ2 (synaptojanin 2) and PI4KA (phosphatidyli-
nositol-4 kinase) that was associated with inferior lateral
ventricle atrophy. Both proteins are involved the synthesis
of phosphatidylinositol, and the authors suggest that these
genes might modulate its synthesis leading to deficits in neu-
roprotective mechanisms.

Awhole-exome sequencing study by Nho et al. [217] us-
ing DNA from ADNI-1 and an extreme phenotype approach
identified a functional exonic single nucleotide variant that
was associated with a slower rate of hippocampal atrophy
in MCI subjects. The minor T allele of the missense variant
rs3796529 in REST, a negative transcriptional regulator of
adult hippocampal neurogenesis [206], conferred a protec-
tive effect on hippocampal loss in MCI and AD subjects.
A subsequent study showed that carriers of this minor allele
had greater medial temporal lobe metabolism compared to
noncarriers, independent of APOE4 status [207] and that it
was associated with reduced AD risk and did not confer sus-
ceptibility to AD [208]. However, a meta-analytic study us-
ing the ENIGMA cohort did not find that the variant
conferred a significant effect on six subcortical regions
including the hippocampus [209]. Further investigation is
required to determine the relative enrichment of the variant
in diagnostic groups and whether it protects against hippo-
campal atrophy in CN subjects.

Most ADNI studies are concerned with late-onset AD.
However, the cohort contains a small number of subjects
aged 55 to 65 years who have a relatively early onset form
of the disease and who are characterized by much lower fre-
quencies of amnestic MCI [234]. Early onset AD is most
commonly autosomal dominant, caused by mutations in
the APP, PS1, and PS2 genes [235], but some subjects lack
these risk alleles. Moon et al. [210] used the LONI pipeline
[211] to identify 20 neuroimaging shape and atrophy
changes specific to MCI subjects aged 55 to 65 years, for
use as GWAS quantitative phenotypes. These included not
only hippocampal volumes but precuneus atrophy and shape
changes, consistent with previous studies of early onset AD.
A set of 15 SNPs best able to discriminate between early-
onset MCI and early-onset AD subjects was associated
with the volumetric and shape changes. The most significant
loci, located in the genes for Janus kinase and microtubule
interacting protein-1 and neuropilin 1, differed from those
identified in the late onset form of the disease.

6.2.2.3. Measures of Ab deposition
GWAS using either amyloid imaging data or fluid levels

of Ab have furthered our understanding of the genetic basis
of Ab deposition. Using florbetapir data, the minor G allele
of rs509208 located upstream of butyrylcholinesterase
(BCHE) and the APOE loci together accounted for 15% of
the variance in baseline cortical Ab load (Fig. 11) [218].
BCHE is a biologically plausible gene; decreased activity
of butyrylcholinesterase, which is enriched in Ab plaques
and the target of cholinesterase inhibitors, increases acetyl-
choline levels and disrupt synaptic functioning eventually
leading to neurodegeneration. A gene-set enrichment anal-
ysis performed on top SNPs identified in a GWAS of CSF
levels of Ab42, including those located in TOMM40 and
near APOC1, revealed two clusters associated with synaptic
transmission, transmission of nerve impulses, and trait class,
and identified eight novel polymorphisms [219]. A subse-
quent gene-gene interaction network analysis identified
GRIN2A as interacting with the most AD genes, followed
by APOC1 and TOMM40 (Fig. 12). AGWAS of plasma con-
centrations of Ab40 and Ab42 identified 18 suggestive loci,



Fig. 11. The effects of APOE ε4 and rs509208 (BCHE) on cortical Ab

levels. The APOE ε4 allele and the minor allele (G) of rs509208 of

BCHE exerted independent and additive effects on cortical Ab burden.

Bars represent mean cortical Ab levels 6 standard errors. Abbreviations:

BCHE, butyrylcholinesterase; SUVR, standardized uptake value ratio. Re-

produced with permission from [218].
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the most strongly associated of which was CTXN3 (cortexin
3) [220]. Pathway enrichment analysis identified a variety of
canonical pathways including some directly associated with
Ab peptide properties. Cortexin was found to modulate Ab42
secretion.

Although Ab deposition is strongly linked to APOE4 and
nearby genes in linkage disequilibrium (TOMM40, APOC1),
Ab deposition is still observed in APOE4 noncarriers.
Fig. 12. Genome-wide CSFAb42 associations. GeneMANIA networks showing th

(C) Novel polymorphisms identified in study. Abbreviation: CSF, cerebrospinal fl
A GWAS of longitudinal Ab accumulation in these subjects
[221] reported that the minor G allele of an intronic SNP
(rs12053868) in interleukin 1 receptor accessory protein
(IL1RAP) accounted for 7.1% of the phenotypic variance
(Fig. 13). Deep sequencing of IL1RAP identified additional
rare variants associated with the rate of change in Ab burden.
Gene- and pathway-based GWAS identified pathways
related to cell adhesion and immune response, consistent
with the role of IL1RAP as a proinflammatory cytokine
involved in the activation of microglia. The minor G allele
was associated with higher rates of atrophy in the temporal
cortex, a higher rate of MCI to AD progression, and faster
cognitive decline. Other novel loci identified in GWAS of
CSFAb42 levels in APOE42 subjects are SULG2 (GTP-spe-
cific b-subunit, succinyl-CoA ligase), which accounted for
10.7% of the variance in Ab42 levels in these subjects
[222], and variants in the FRA10AC1 fragile site and in the
intergenic 15q21 locus [223]. FRA10AC1 encodes a nuclear
phosphoprotein of unknown function.

6.2.2.4. Other CSF and blood phenotypes
A GWAS of CSF tau levels identified rs4728029 in pro-

tection of telomeres 1 (POT1), which modified the relation-
ship between p-tau181 and ventricular expansion [224]. This
novel locus explained 2.6% of the variance in p-tau181 and
modified the relationship between p-tau181 and both ven-
tricular dilation and memory performance. As this SNP
was related to levels of interleukin 6 receptor, it may exert
its effect via a neuroinflammatory mechanism. This
e interaction results of (A) associated genes and (B) highly associated genes.

uid. Reproduced with permission from [219].



Fig. 13. Association and the effect of ILRAP rs12053868-G on longitudinal

change in cortical Ab PET burden. The minor G allele of rs12053868 in

ILRAPwas associated with higher rates of amyloid accumulation compared

to the major A allele. Mean annualized percent change and global cortical

18F-florbetapir SUVR6 standard error. Abbreviation: SUVR, standardized

uptake value ratio. Reproduced with permission from [221].
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GWAS also enriched targeted genes mediated by miR-33,
which regulates lipid metabolism genes and disrupts cellular
cholesterol homoeostasis.

A complementary approach to GWAS of CSF Ab42 and
tau [225] instead used CSF analytes involved in the pro-
cesses such as endocytosis, cholesterol metabolism, and in-
flammatory and immune responses that are recognized to
play important roles in AD pathogenesis beyond Ab and
tau pathology. This study identified five genetic associations
between CSF proteins and angiotensin-converting enzyme,
chemokine (C-C motif) ligands 2 and 4, interleukin 6 recep-
tor, and matrix metalloproteinase 3. All identified proteins
are involved in Ab processing or proinflammatory signaling.

6.2.2.5. Neuropsychological assessments
In addition to neuroimaging and fluid biomarker mea-

sures, neuropsychological assessments offer another route
to understanding AD genetics. Variants in the spondin 1
(SPON1) gene whose minor alleles were associated with
more rapid progression were identified using longitudinal
changes in ADAS-cog as a phenotype for a GWAS [226].
Spondin 1 inhibits cleavage of APP by BACE. Other signif-
icant associations were reported in genes involved in
neuronal maintenance and neurotransmission, and calcium
signaling (EXOC4, GABRG3, VAT1L), and homoeostasis
(CAMK4, CYCS, NCS1, CACNA1G). Mukherjee et al.
[236] investigated the genetic basis of cognitive resilience,
observed in patients whose cognitive function is better
than predicted by neuroimaging and fluid biomarkers. The
top hit in their gene-based GWAS was RNASE13, and subse-
quent pathway analysis identified pathways involved in
neuron loss, presynaptic membrane, and postsynaptic den-
sity. These included genes associated with AD such as
PTK2B, PICALM, MS4A2, and APP.

6.2.3. Other association studies
Imaging genetic studies using ADNI data have not only

focused on AD. Two meta-analytic GWAS identified vari-
ants influencing human subcortical structures [228] and
cortical surface area [229]. Polymorphisms in the dopamine
D2 receptor gene, which increases genetic risk for addictive
disorders, altered regional brain volumes in areas implicated
in addiction [230].
6.3. Methods

The biological insights that we have gained from these ge-
netic association studies, particularly those using neuroimag-
ing data, would not have been possible without a foundation
of statistical methodologies. These have progressed from uni-
variate analysis in standardGWAS to a variety ofmultivariate
regression approaches, as well as ways to detect epistatic in-
teractions or to discover associations at the gene or pathway
level. Univariate analysis comparing single SNPs with single
traits suffers from problems of high dimensionality and type-
I errors and may not reveal significant associations without
meta-analytic approaches. ADNI studies have assessed the
extent of these problems [237,238], improved the
computational efficiency of mass univariate analyses
[239–242], and developed methods for the selection of the
most informative SNPs or quantitative features to improve
power to detect associations [243–247]. Two studies have
developed summary measures representing associations
between selected SNPs and traits of interest [202,248]. Nho
et al. [249] developed specific methodologies for the analysis
of whole-genome sequencing data, and several groups have
developed methodologies for identifying and visualizing ge-
netic interactions [189,205,250–253]. Finally, two groups
described methods to select discriminative SNPs to
improve diagnostic classification or prediction of future
decline [254,255]. The studies are summarized in Table 7.
6.4. Conclusions

Much of the heritability of AD remains elusive, reflecting
both the polygenic nature of the disease and the influence of
environmental factors. The ADNI Genetics Core adopted a
Systems Biology perspective and approaches that integrate
multiple “omics” to characterize biological complexity on
multiple levels [171]. ADNI genetics studies from 2014
and 2015 were notable for moving beyond simple GWAS us-
ing one-SNP-simple phenotype univariate analyses to an
expanded array of increasingly sophisticated biologically
informed approaches, such as pathway enrichment, network
analysis, and gene set enrichment, aimed at bridging the gap
between genetic information and biochemical disease mech-
anisms. The concomitant development of a wide range of



Table 7

Approaches for the improvement of genetic studies

Challenge Approach and results Reference

Avoiding biased interference when

using secondary phenotypes

Tested whether a standard analysis of secondary phenotypes encountered problems such as type-I

errors and reduced power for association testing. Although the analysis was generally valid,

authors recommend caution when analyzing these types of data.

[237]

Improving computational efficiency of

mass univariate analyses

Presented a functional mixed-effects modeling framework to jointly analyze high-dimensional

imaging data with genetic markers and clinical covariants. Tested associations of candidate

genes (CR1, CD2AP, PICALM) with MRI brain regions. Detected regional clusters of voxels

associated with candidate genes and different patient groups. Method was computationally

efficient.

[239]

Presented a fast voxelwise genome-wide association analysis framework able to search for sparse

signals while controlling for family-wise error rate. When tested on ADNI data with 708

subjects, 193,275 voxels, and 501,584 SNPs, the total processing timewas 203,645 seconds for a

single CPU, a substantial improvement over traditional methods.

[240]

Presented modifications to mass univariate analyses by using dimensionality reduction techniques

on both MRI imaging data and genomics data, and a new multiple testing adjustment method.

Experiments suggest procedure has more power to detect associations.

[241]

Presented a method based on a generalization of the partial least squares correspondence analysis

which can simultaneously analyze behavioral and genetic data.

[242]

Selecting most informative SNPs or

quantitative features

Presented method that uses tree-guided sparse learning to learn the most informative SNPs and

MRI measures and that models the a priori hierarchical grouping structure among SNPs.

Experiments suggest method can identify informative SNPs.

[243]

Adopted a generalized estimation equations methodology to test the association between single

SNPs and multiple quantitated traits. Found the method was general and flexible when tested on

ADNI data using seven MRI-derived multivariate traits. Outperformed principal component

analysis or canonical correlation analysis for dimensionality reduction.

[244]

Presented a sparse projection regression modeling framework. Incorporates two novel heritability

ratios to simultaneously perform dimensionality reduction, response selection, estimation, and

testing.

[245]

Evaluated several sparse canonical correlation analysis methods that can reveal complex multi-

SNP, multiquantitative trait associations. Suggest that the estimation of covariate structure is

limited in these methods.

[246]

Tested three Bayesian network supervised learningmethods on awhole-genome sequencing data to

identify causal AD SNPs and the gene-SNP interactions. Reported that Markoff blanket-based

methods outperformed both na€ıve Bayes and tree-augmented na€ıve Bayes methods in selecting

SNPs strongly associated with AD from top-ranked susceptibility genes.

[247]

Developing a summary measure of

associations between multiple

SNPs and traits of interest

Adapted the Rasch model to compute a multimarker genetic summary score which accounts for

statistical issues such as inflated false-positive rates, linkage disequilibrium. Genetic summary

score can then be used for association analysis.

[202]

Developed a summary score based on an asymptotically normal and consistent estimate of the

parameter vector to be tested and its covariance matrix. The derived score vector extended

several score-based tests to mixed-effects models.

[248]

Accurately calling multisample

variants for whole-genome sequencing

Compared two multisample variant-calling methods for the detection of small nucleotide variants

and short on solutions and deletions using a whole-genome sequencing data from ADNI

subjects. Found that the JOINT method, which first calls variants individually and then

genotypes the variant files for all samples, outperformed the second method, REDUCE.

[249]

Identifying interaction effects Combined kernel machine regression and kernel distance covariance to identify associated genetic

markers with multidimensional phenotypes. Identified SNPs in FLJ16124 that exhibit pairwise

interaction effects correlated with volumetric changes.

[250]

Proposed a general kernel machine-based method to jointly detecting genetic and nongenetic

variables and their interactions. Framework consists of a genetic kernel to capture epistasis, and

a nongenetic kernel which can model the joint effects of multiple variables.

[189]

Proposed a new Bayesian generalized low-rank regression model to characterize the association

between genetic variants and brain imaging phenotypes, while accounting the impact of other

covariance. Tested using 20 most significant SNPs from ADNI and identified loci associated

with brain regions.Methodwasmore computationally efficient and less noisy because it reduced

the number of parameters to be sampled and tested.

[251]

Presented a method to consider joint effects for polymorphisms in a biologically defined pathway.

Determines SNP-SNP interactions using a quantitated multifactor dimensionality reduction

technique, infers functional relationships between selected genes, and uses gene-set enrichment

analysis to determine whether genes and functional network occur more frequently than

expected by chance and biological pathways defined by gene ontology.

[205]

[252]
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Table 7

Approaches for the improvement of genetic studies (Continued )

Challenge Approach and results Reference

Proposed a versatile likelihood ratio test to detect mean and variance heterogeneity present in loci

due to biological disruption, gene by gene or gene by environment interactions or linkage

disequilibrium.

Visualizing genetic interaction networks Used 3D printing to visualize a statistical epistasis network of 34 significant SNPs. Suggest that a

3D physical model may make interpretation of data easier than from a digital representation.

[253]

Imputing common APOE SNPs missing

from genome-wide genotyping arrays.

Compared directly genotyped SNPs versus SNPs imputed via reference panel compiled by the

Thousands Genome Project. Reported that the imputation method is highly accurate.

[238]

Learning predictive models

or progression profiles

Applied three feature selection methods (multiple kernel learning, high-order graph matching–

based feature selection, sparse multimodal learning) to classification challenges using

multidimensional imaging genomics data and biochemical markers. Found that higher order

graph matching–based feature selection gave best results.

[254]

Used the principal component analysis to select most important SNPs associated with clinical

diagnosis and used these data along with hippocampal surface information to predictMCI to AD

progression.

[255]

Abbreviations: MRI, magnetic resonance imaging; ADNI, Alzheimer’s Disease Neuroimaging Initiative; SNP, small nucleotide polymorphism; AD,

Alzheimer’s disease; MCI, mild cognitive impairment.
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statistical methodologies supported these efforts (Table 7).
An excellent example of the power of these integrative ap-
proaches to place genetic results in biologically plausible
context can be seen in the hypothetical signaling network
constructed by Wang et al. [202] from their application of
a Rasch genetic multimarker model to ADNI case-control
GWAS data (Fig. 14).

Genetic association studies begin either with a genotype,
such as an SNP, gene, or a sets of genes in a pathway of in-
terest, or with a phenotype (Table 5). Several GWAS notably
capitalized on longitudinal phenotypes from ADNI’s rich
data set to increase the power to capture significant associa-
tions [215,216,221]. Strategies for finding the “missing
heritability” of the disease included searching for epistatic
interactions, examining the associations of low-frequency
variants, and extending analysis from a target gene to genes
in the same biological pathway. The APOE ε4 allele was
associated with atrophy and shape changes in the hippocam-
pus and other regions [176–178] and was found to have
differential effects in males and females [179]. Studies of
APOE ε4 noncarriers identified loci responsible for disease
phenotypes such as Ab deposition in these subjects
[188,222,223] (Table 6). Novel protective and risk loci asso-
ciated with atrophy, metabolism, Ab load, CSF biomarkers,
and cognitive decline and with early onset AD in the absence
of established autosomal-dominant genes were identified
(Table 6). Risk genes lay in pathways involved in APP pro-
cessing andAb clearance, apoptosis, cholesterol metabolism,
neurotransmission, immune and inflammatory responses, mi-
croglial activation, and other cellular processes. Interestingly,
stroke and AD risk genes appeared to overlap, implicating
WM disease in AD pathology. Identified protective genes
were involved in the inhibition of neurodegeneration and
cholesterol metabolism, and cancer. Finally, ADNI genetics
data have contributed to understanding other diseases with
the inclusion of the cohort in various meta-analyses [228–
230] and in the ENIGMA consortium [173].
7. Disease progression

A better understanding of the AD pathological pathway
is central to ADNI’s goal of developing biomarkers for
the improvement of clinical trials. AD is pathologically
characterized by amyloid plaques composed largely of
fibrillar forms of Ab, and neurofibrillary tangles, composed
of hyperphosphorylated tau (p-tau181) that is associated
with synapse loss and neurodegeneration. The amyloid
cascade hypothesis [256] has dominated research over the
last two decades, to the point that diagnostic criteria for
AD now include Ab abnormalities. The amyloid hypothesis
states that incorrect processing of the APP to form Ab,
together with an imbalance in the clearance of Ab accumu-
lation, triggers a cascade of events: the formation of Ab pla-
ques, the accumulation of fibrillar tau in cells as NFTs and
neuropil threads, neuronal death and synaptic dysfunction,
disruption of glucose metabolism, atrophy, and eventual
cognitive decline. However, although cortical hypometabo-
lism is largely linked to global amyloid burden, regional
amyloid plaque deposition has little or no association with
regional hypometabolism [257]. Jack et al. [258] proposed
a hypothetical model describing the order in which bio-
markers become abnormal during disease progression
which largely follows this cascade of events (Fig. 15).
The Biostatistics Core has been instrumental characterizing
longitudinal trajectories of biomarkers through their biosta-
tistical analyses that integrate data across the breadth of
ADNI studies [259]. Numerous studies of ADNI data
have supported this model and have been described in a pre-
vious review [1].

However, mounting evidence suggests that AD progres-
sion is a far more complicated tale. At autopsy, a substantial
number of subjects have copathologies such as Lewy bodies,
hippocampal sclerosis, and transactive response DNA bind-
ing protein 43 kDa (TDP-43) inclusions [260] (Fig. 15). The
ADNI Biostatistics Core concluded that although Ab



Fig. 14. Hypothetical signaling network integrating top genes identified through Rasch analysis. A Rasch model was applied to the genes of ADNI GWAS data

and supports APOE as a major susceptibility gene for AD, and functionally links other top genes (AEN, ADANTS12, PSMA5, FXN, NTRN, LARP1, WDTC1,

SEMA7A, VKORC1L1, COL5A3) to AD. A hypothetical signaling network was generated from a pathway analysis of these genes based on known protein-

protein, functional, and phenomenological interactions. Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative;

ARC, activity-regulated cytoskeleton-associated protein; EEF2K, eukaryotic elongation factor-2 kinase, activated by GRM5 receptor, regulates global protein

synthesis; HDAC3, histone deacetylase; MDM2, negative modulator of TP53 tumor suppression gene; PLXNC1, plexin C1 receptor for semaphorins; PTK2:

FAK, kinase implicated in integrin signaling; FYN, src family tyrosine kinase, downstream target of GRM5 receptor; RPTOR, regulatory protein associated

with MTORC1 complex. Reproduced with permission from [202].
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positivity accelerates the progression from MCI to AD and
subsequent cognitive decline, there is substantial evidence
for alternative pathways to this end point [259]. The purpose
of this section, therefore, is to outline evidence for the amy-
loid cascade hypothesis, primarily gained from studies of
Ab1 subjects, and for other possible pathways to dementia.
7.1. Disease progression in Ab-positive subjects

In an increasingly complex view of AD progression, the
pathway from presymptomatic CNAb2 to CN Ab1 to pre-
dementia MCI Ab1 to AD Ab1 remains the backbone of
the process. Moreover, a patient may transition from a nega-
tive to a positive Ab status at any time (Fig. 16). In dissecting
out different pathways of disease progression, a number of
studies have dichotomized subjects on the basis of Ab posi-
tivity, defined either on the basis of a CSF Ab42 levels, or
from cortical Ab load determined by amyloid PET. In this
way, investigators have begun to tease out, even in those
with normal cognition, the associations between Ab deposi-
tion, and other factors in the disease such as metabolism, at-
rophy, APOE4 status, cerebral blood flow, and WM
architecture. These studies have profound implications for
our understanding of AD progression.



Fig. 15. Schematic outlining of the current understanding of the hypothetical timeline for the onset and progression of AD neurodegeneration and cognitive

impairments. Age is indicated at the bottom, whereas the green, blue, and red bars indicate the time at which preventive, disease-modifying, and symptomatic

interventions, respectively, are likely to be most effective. Within the aqua bar, milestones are shown in the pathobiology of AD that culminate in death and

autopsy confirmation of AD. The proposed ADNI model of the temporal ordering of biomarkers of AD pathology relative to stages in the clinical onset and

progression of AD is shown in the insert at the upper right based on Jack et al. [258], whereas the insert at the left illustrates the defining plaque and tangle

pathologies of AD and common comorbid pathologies including Lewy body pathology (SYN), TDP-43, and hippocampal sclerosis. In the insert on the right,

clinical disease is on the horizontal axis and it is divided into three stages: CN,MCI, and dementia. The vertical axis indicates the range from normal to abnormal

for each of the biomarkers and the measures of memory and functional impairments. Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease

Neuroimaging Initiative; CN, cognitively normal; CSF, cerebrospinal fluid; FDG, [18F]-fluorodeoxyglucose; MCI, mild cognitive impairment; MRI, magnetic

resonance imaging; PET, positron emission tomography. Reproduced with permission from [129].
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7.1.1. Ab and the ordering of biomarkers
Ab status clearly affects disease progression. A cross-

sectional study [261] found that levels of CSF t-tau and
p-tau181 only became abnormal in Ab1 subjects and that tra-
jectories of the CSF biomarkers across disease stages were
distinct in the dichotomized groups (Fig. 17). Young et al.
[262] developed an event-based model which used distribu-
tions of biomarker values rather than predetermined
biomarker cut points to determine the sequence in which
AD biomarkers become abnormal. In Ab1 or APOE4 par-
ticipants, the first CSF biomarker to become abnormal was
Ab42, followed by t-tau and p-tau181, the order predicted
by the Jack model. In Ab1 subjects, several studies
[261–264] reported an ordering of biomarkers consistent
with the Jack model: levels of CSF Ab42 becoming
abnormal in the preclinical stage, tau reaching maximum
abnormality in the MCI stage, and imaging and cognitive
markers beginning to decline in the asymptomatic stage
but accelerating with advanced clinical stage [261,264].
These studies favor the concept of abnormal Ab deposition
as a prequel for tauopathy in AD.

7.1.2. Ab and brain atrophy
Several studies support a link between Ab positivity and

increased regional atrophy in the brains of CN subjects. Hip-
pocampal atrophy, a nonspecific characteristic of AD, accel-
erates throughout the disease process but also occurs in
normal aging. Nosheny et al. [128] found that Ab positivity
contributed to, but did not entirely account for, hippocampal
atrophy rate in CN participants (Fig. 18). Furthermore, atro-
phy preceding that in medial temporal regions has been de-
tected by several groups, specifically in the precuneus [265];



Fig. 16. Model for Ab status in disease progression. Illustrating the view of

progression from presymptomatic Ab negative to presymptomatic Ab pos-

itive to MCI Ab positive to AD Ab positive as the primary pathway to AD,

with the switch to Ab positivity also occurring anywhere in the progression.

A small percentage of clinically diagnosed AD patients lack Ab pathology

at autopsy. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive

impairment.
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the right supramarginal/inferior parietal gyrus [261]; and the
posterior cingulate, amygdala, putamen, precuneus, and
brainstem (before the Ab42 cut point of 192 ng/mL insula)
[266] (Fig. 19).

Cholinergic neurons in the basal forebrain regulate the
supply of acetylcholine to areas of the temporal cortex and
to the amygdala thereby influencing memory and attention,
and their degeneration is regarded as a key event in AD path-
ogenesis. Ab burden has been associated with basal fore-
brain degeneration independent of APOE4 status in
emergent Ab1 asymptomatic subjects [267–269].
Moreover, basal forebrain volume classified preclinical
patients as Ab1 or Ab2 more accurately than
hippocampal volume [269]. In MCI subjects, basal forebrain
degeneration was more associated with impaired memory
and attentional control, whereas hippocampal atrophy was
more associated with memory deficits. This association
was mediated by hypometabolism in domain-specific
cortical networks and was not affected by Ab status [27].
These studies support cholinergic basal forebrain neurode-
generation and the concomitant deposition of Ab as early
events in AD.
Fig. 17. Differential trajectories of CSF biomarkers in Ab1 and Ab2 subjects acro

of (A) CSFAb42; (B) CSF p-tau; (C) CSF p-tau181 are shown. In Ab2 groups, the le

stage, whereas in Ab1 subjects, CSF p-tau and t-tau, but not Ab, increased across d

Ab1, subjects with abnormal brain Ab; Ab2, subjects without abnormal brain A

mentia; iMCI, (incipient) mild cognitive impairment; m-Dem, (mild) dementia. R
Two studies place glucose hypometabolism as an inter-
mediary event between Ab positivity and atrophy in accor-
dance with the Jack model for the temporal ordering of
biomarkers [258]. Kljajevic et al. [133] examined baseline
FDG PET and structural MRI scans of Ab1 CN, EMCI,
and late MCI (LMCI) subjects compared with Ab2 CN
elderly subjects. Glucose hypometabolism originated in
the posterior parietotemporal regions before atrophy which
originated in medial temporal regions (Fig. 20). Araque Ca-
ballero et al. [265] also reported that atrophy originated in
the medial temporal lobe in MCI Ab1 subjects and, further-
more, that this pattern of atrophy correlated with patterns of
hypometabolism, suggesting that by the time the first cogni-
tive symptoms arise, both these kinds of neurodegeneration
are spatially associated. Although Kljajevic et al. [133] posit
that abnormal Ab deposition may affect synaptic activity
leading to subsequent neuronal loss and hypometabolism,
the results from Dowling et al. [270] suggest that this is an
earlier event in pathogenesis and therefore more weakly
related to changes in hypometabolism and subsequent
changes than intraneuronal neurofibrillary degeneration.
7.1.3. Ab and cognitive deficits
The relationship between Ab positivity and cognition

may be more complex than the causal sequence of patholog-
ical events implied by the Jack model in which altered levels
of CSF peptides exert a neurotoxic effect which impairs cell
function and leads to decreased glucose metabolism, ulti-
mately resulting in cognitive decline. First, Ab positivity
may affect cognition at a far earlier stage than previously
thought. Susanto et al. [261] reported that CN Ab1 subjects
had impairments in executive functioning/processing speed
which was accompanied by atrophy at the right supra mar-
ginal/inferior parietal gyrus. Mattsson et al. [271] reported
that CNAb1 subjects had lower memory scores and smaller
GM volumes in several regions including the hippocampus.
Both studies reported that MCI Ab1 subjects had wide-
spread atrophy and impairments to multiple cognitive
domains.
ss disease progression. The means (62 standard error of the mean) in ng/mL

vels of all three CSF biomarkers did not significantly increase across disease

isease stages. Abbreviations: a-MCI, (advanced) mild cognitive impairment;

b; CN, cognitively normal; CSF, cerebrospinal fluid; i-Dem, (incipient) de-

eproduced with permission from [261].



Fig. 18. Hippocampal atrophy rate in Ab1 and Ab2CN andMCI subjects. The percentage of hippocampal atrophy rate attributable to Ab status was calculated

from the difference in hippocampal atrophy rate between Ab1 and Ab2 subgroups. Ab was measured using florbetapir PET. *P , .01, **P , .001, and

***P , .0001. Abbreviations: NC, normal cognition; MCI, mild cognitive impairment; PET, positron emission tomography. Reproduced with permission

from [128].
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Second, Ab positivity may exert its effect on cognition
via multiple pathways. Mattsson et al. [271] used a media-
tion analysis to investigate the role of atrophy and hypome-
tabolism in mediating the effect of Ab on episodic memory
in MCI patients. Hippocampal atrophy mediated approxi-
mately 25% of this association, and approximately 40%
was mediated by a combination of hippocampal atrophy
and hypometabolism (Fig. 21). Interestingly, the fact that
60% of the association between Ab and memory was not
mediated by hypometabolism and/or atrophy suggests that
other mechanisms must exist. A study by Byun et al. [272]
supports this idea. In subjects with significantly lower CSF
Ab42 levels compared to controls, they identified four sub-
types of AD characterized by different patterns of regional
brain atrophy and rates of progression: primarily hippocam-
pal atrophy (19%), primarily cortical atrophy (17.7%), both
hippocampal and cortical atrophy (41.1%), and neither re-
gion (10.4%). They found that subtypes characterized by pri-
marily hippocampal atrophy exhibited more severe
impairment of the memory domain (ADNI-Mem), whereas
executive function (ADNI-EF) was more impaired in sub-
types with predominantly cortical atrophy (Fig. 22). The
finding that heterogeneous atrophy patterns exist with
different rates of progression in the presence of Ab neuropa-
thology was also reported by Mattsson et al. [273] who
found that a subset of CN participants with normal baseline
levels of CSF Ab42 that decreased over time, or with
reduced baseline levels of CSF Ab42, had increased frontal
and parietal cortical atrophy but no accelerated temporal
atrophy longitudinally. Byun et al. [272] postulated that
these subtypes correlate with distribution of neurofibrillary
tangles, suggesting a closer relationship between tau neuro-
pathology and cognition than Ab neuropathology and cogni-
tion, a hypothesis supported by two further studies. First,
Fortea et al. [274] used correlation analysis to determine
that p-tau-dependent cortical thinning was found only in
Ab1 subjects and not in Ab2 subjects. In the absence of
abnormal p-tau, abnormal CSF Ab42 was related to cortical
thickening. The authors posited a two-phase phenomenon
in which there is initial cortical thickening as Ab levels
become abnormal followed by cortical thinning as p-tau rea-
ches pathological levels. Second, Dowling et al. [270] used a
mediation analysis to examine changes in brain glucose
metabolism, longitudinal changes in global cognition, their
association over time, and the impact of baseline CSF mea-
sures on these associations. Glucose hypometabolism in all
AD-associated brain regions mediated the relationship be-
tween CSF indicators of neuronal damage (t-tau, p-tau181,
and their ratios), and cognitive decline. In contrast, only hy-
pometabolism in the middle inferior temporal gyrus medi-
ated the effect of baseline levels of Ab42 on cognition.
Overall, there is general (but not universal) agreement that
initial development of Ab plaques accelerates development
of tau tangles which leads to synapse loss and neurodegener-
ation. However, TF-fMRI activity is disrupted in CN elders
who are Ab1 [275], suggesting that Ab plaques alone may
affect brain function before significant accumulation of tau
tangles. Hopefully, the use of both amyloid and tau PET in



Fig. 19. Regions of Ab-related atrophy ordered by acceleration and stabilization points. Regions, including the insula, posterior cingulate, amygdala, putamen,

andprecuneus, showearly signs of atrophy before the hippocampus and entorhinal cortex. Parietal regions appear to have a shorter transition compared to temporal

lobe regions with respect to Ab. Red, yellow, and black dots represent significant (P, .05), marginally significant (.10. P, .05), and nonsignificant (P. .10)

acceleration or deceleration, respectively. Scale is pg/mL CSFAb42. Abbreviation: CSF, cerebrospinal fluid. Reproduced with permission from [266].
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future studies including ADNI-3 will shed more light on this
matter.

Disease progression in subjects dichotomized by APOE4
status appears to be similar to that in subjects dichotomized
by Ab status: the two groups have the same defined sequence
of CSF biomarkers [262] as well as faster trajectories of CSF
t-tau, and p-tau [276], and faster hippocampal atrophy [128].
But the APOE4 allele may actually modulate disease pro-
gression in Ab1 subjects. Susanto et al. [261] reported
that MCI and AD carriers of this allele had more severe at-
rophy of the medial temporal lobe and worse memory
impairment but higher executive functioning/processing
speed than noncarriers, suggesting that APOE4 modulates
trajectories of both cognition and atrophy.

7.1.4. Ab and cerebral blood flow
Mattsson et al. [277] determined the association of Ab

with variations in cerebral blood flow, a measurement of
brain activity, across the cognitive spectrum. With all sub-
jects, brain Ab was associated with reduced cerebral blood
flow in temporoparietal regions, but with increased cerebral
flow in the posterior cingulate suggesting a compensatory
mechanism for Ab neurotoxicity in the latter region. Dichot-
omization of subjects by Ab status revealed reduced cerebral
blood flow is in several regions in Ab1 compared to Ab2
participants. Ab load was more associated with reduced
cerebral blood flow than atrophy in CN subjects but the
opposite was true in LMCI or AD patients. In keeping
with the Jack model of disease progression [258], these re-
sults suggest Ab is more associated with functional and syn-
aptic loss leading to reduced cerebral blood flow early in
disease progression and more associated with GM loss lead-
ing to atrophy later in disease progression.
7.2. Alternative pathways to dementia?

Beckett et al. [259] concluded that although Ab positivity
accelerates the progression fromMCI to AD and subsequent
cognitive decline, there is substantial evidence for alterna-
tive pathways to this end point. In their data-driven model



Fig. 20. Hypometabolism originates earlier than atrophy in Ab1 subjects. CNAb1 subjects displayed significant hypometabolism in medial parietal and bilat-

eral parietal temporal regions compared to Ab2 subjects, whereas there was no difference in GM volume between these two groups, indicating that hypome-

tabolism precedes atrophy in Ab1 subjects (A) hypometabolism (red) and (B) atrophy (blue). Abbreviations: Ab1, subjects with abnormal brain Ab deposition;

Ab2, subjects without abnormal brain Ab deposition; CN, cognitively normal; EMCI, early mild cognitive impairment; GM, gray matter; LMCI, late mild

cognitive impairment. Reproduced with permission from [133].
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of biomarker changes in AD, Young et al. [262] observed
that in the pooled samples, t-tau was the first biomarker to
become abnormal, followed by p-tau181 and Ab42; only in
Ab1 or APOE41 subjects was Ab42 first biomarker to
become abnormal, as predicted by the Jack et al. model
[258]. Furthermore, trajectories of CSF biomarkers across
disease stages in Ab2 subjects were distinct from Ab1 sub-
jects and did not feature the stereotypical decreased Ab42
and increased p-tau181 and t-tau [261]. These results imply
that a substantial proportion of ADNI subjects have atypical
disease progression.

7.2.1. Heterogeneity of diagnostic groups

7.2.1.1. Subtle cognitive impairment
The appearance of subtle cognitive impairment (SCI),

defined using 5th percentile cutoffs of composite memory
and/or executive function scores, follows stereotypical
sequential changes in Ab and neurodegeneration bio-
markers. A newly identified group, accounting for 5% of
CN subjects, had SCI without neuronal injury in the pres-
ence or absence of abnormal Ab [278]. Toledo et al. [279]
reported that 27.6% of ADNI healthy controls had SCI and
further defined three categories within this group—memory,
executive, andmultidomain—that differed in biomarker pro-
files and in the rate of progression to MCI and AD. The
multidomain group, characterized by having the fastest pro-
gression to MCI, the most abnormal levels of Ab42, atrophy,
and greatest posterior cingulate FDG PET hypometabolism,
was most related to AD. The memory group, characterized
by slightly abnormal Ab42 and increased atrophy, had a
slower progression to MCI and the executive group had
the slowest progression to MCI.

7.2.1.2. MCI
Several studies identified MCI subtypes using cluster

analysis of neuropsychological data [280–282]. An
amnestic subtype characterized by isolated memory
impairment and abnormal CSF biomarkers, representing
“typical” AD, was identified in all studies (summarized in
Table 8). However, this cluster comprised only 25.7% to
58.6% of MCI subjects. The remaining MCI subjects were
clustered into a number of different groups, most commonly
a dysexecutive/mixed group typically characterized by sig-
nificant deficits predominantly in executive function,
elevated p-tau181, and the fastest progression to AD
(12.4%–33%, identified in 4/5 studies), and a normal group,
comparable to CN controls (31.3% to 41.3%, identified in 3/
5 studies). The normal group had the lowest rate of progres-
sion to AD (10.7% at follow-up), and a significant rate of
regression to normalcy (9.2% at follow-up), suggesting
that ADNI MCI criteria may have a high rate of false-
positive diagnostic errors leading to misclassification of sub-
jects [280]. These criteria include a subjective memory
concern reported by either the subject or a study partner, a
single memory score (delayed recall of Story A from the
Wechsler Logical Memory II test), and a global CDR score
of 0.5 that may not capture variability in cognitive



Fig. 22. Longitudinal changes in cognition in subtypes of Ab1 cognitively

normal subjects. Identified subtypes of cognitively normal subjects con-

sisted of those with predominantly hippocampal atrophy, predominantly

cortical atrophy, hippocampal and cortical atrophy combined, or neither

type of atrophy. Baseline, 1-year, and 2-year follow-up data on (A)

MMSE indicating global cognition, (B) ADNI-Mem indicating memory

function, and (C) ADNI-EF indicating executive function are plotted,

with means and standard errors. Abbreviations: ADNI, Alzheimer’s Disease

Neuroimaging Initiative; BI, both impaired; BS, both spared; CA, cortical

atrophy only; EF, executive function; HA, hippocampal atrophy only;

Mem, memory domain; MMSE, Mini–Mental State Examination. Repro-

duced with permission from [272].

Fig. 21. Hippocampal volume and hypometabolism mediate the effect of

Ab on longitudinal change in Logical Memory Delayed Recall. Path anal-

ysis showing how hippocampal volume and angular FDG PET mediate

the effect Ab of on longitudinal change in Logical Memory delayed recall.

(A) The direct effects of Ab on memory; (B) hippocampal volume medi-

ating the effects of Ab on memory; (C) angular FDG PET mediating the ef-

fects of Ab on memory; and (D) the combination of hippocampal volume

and FDG PET mediating effects of Ab on memory. The figure includes

the following standardized regression coefficients: a, the effects of Ab on

hippocampal volume or FDG PET; b, the effects of hippocampal volume

or FDG PETon the memory when adjusting for Ab; c, the direct association

between Ab and memory (without adjusting for hippocampal volume or

FDG PET); c0, the association between Ab and memory when adjusting

for hippocampal volume and/or FDG PET; and c-c0, the mediated effect

on memory (with % mediation). *P, .05. Abbreviations: FDG, [18F]-fluo-

rodeoxyglucose; PET, positron emission tomography. Reproduced with

permission from [271].
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phenotype. Subjective memory impairment was overesti-
mated by MCI subjects in the normal cluster but underesti-
mated by MCI subjects in the amnestic group, suggesting
that subjective memory concerns are not reliable in making
an MCI diagnosis [282]. The false-positive diagnostic errors
are also consistent with reports of high reversion rates of
MCI subjects to cognitively normal [281].

The observation that MCI reverters differed little from
CN subjects in levels of CSF biomarkers, APOE4 status,



Table 8

Cluster-derived MCI subtypes from ADNI studies

Cluster-derived MCI subtypes (% of MCI group)

Edmonds et al. [282] Edmonds et al. [281] Peter et al. [283] Bondi et al. [280], Actuarialy Bondi et al. [280], ADNI criteria

Amnestic (typical AD) 25.7 34.9 32.0 58.6 56

Dysexecutive/mixed 33.0* 12.4 - 12.9 19.7

Normal 41.3 34.2 - - 31.3

Language/naming impaired - 18.5 17 21 -

Visuospatial impaired - - 42 - -

Focal intrusions - - 9 - -

Abbreviations: MCI, mild cognitive impairment; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AD, Alzheimer’s disease.

*Included impairments in naming.
yClassified 401 subjects as MCI (compared to 846 using conventional ADNI criteria).
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hippocampal volume, hypometabolism, and other measures
but differed substantially from other MCI subjects supports
this idea [284]. Bondi et al. [280] reported that MCI subjects
classified using an alternative actuarial method (which diag-
nosed fewer ADNI subjects with MCI) did not contain the
cluster-derived normal group. Interestingly, 3/5 studies iden-
tified a group with language or naming impairments (17%–
21%), and one study identified a large cluster (42%) charac-
terized by visuospatial impairments and a small cluster (9%)
characterized by a focal intrusions (recalled items which
were not part of the list) [283]. The language impairment
group was characterized by fast progression to AD and a
high frequency of APOE4 [281,283]. Language deficits
may reflect neuronal loss in the left hemisphere. Pravata
et al. [285] found greater atrophy in the Brodmann area 20
of the left fusiform gyrus 12 months before progression,
and in the left hemisphere GM 12 months after progression
in MCI converters with language impairment compared to
those without.

Cluster analysis of MCI subjects on the basis of baseline
MRI, CSF, and serum biomarkers identified four clusters
with distinct biomarker patterns [286]. Like studies based
on neuropsychological data, one group (44%) appeared to
have “typical AD” characteristics (and a small group ap-
peared to be pre-AD), and another was similar to normal
controls (14%). However, the latter group also had pro-
nounced memory deficits and smaller hippocampal volume,
although they rarely converted to AD, and the authors sug-
gest that the stable group may be undergoing a non-AD pro-
cess such as hippocampal sclerosis. The final group (37%),
characterized by severe ventricular expansion, hippocampal
atrophy, and progression to AD but near normal levels of tau
and Ab, also appeared to be on a different path to dementia.
Although further investigation is required to refine MCI sub-
types, these studies imply that multiple pathological path-
ways underlie the substantial heterogeneity of this group.

7.2.1.3. Cortical atrophy
Patterns of atrophy differ in subjects stratified by Ab sta-

tus (Section 7.2.2) but also differ across patient groups. Ven-
tricular expansion reflects cortical atrophy in regions
associated with early AD. Madsen et al. [287] reported
that 2-year ventricular expansion was associated with
baseline cortical volume and thickness in combined patient
groups and with thinning in areas of temporal, frontal, and
parietal cortices affected by AD in MCI participants.
Distinct patterns of cortical atrophy were present in three
neuropathologically defined subtypes of AD [163].
Compared with AD subjects with a diffuse pattern of cortical
thinning, AD subjects with a pattern of medial temporal thin-
ning had more glucose hypometabolism in hippocampus and
bilateral frontal cortices, and worse memory performance,
and AD subjects with thinning in predominantly parietal re-
gions were younger, had more glucose hypometabolism in
parietal and occipital cortices, and showed Ab accumulation
in most regions [163]. No differences in CSF Ab42 or tau
levels were seen in any groups. Cortical atrophy patterns
may reflect differing underlying pathologies.

7.2.1.4. Significant memory concerns
Current MCI diagnostic criteria include a significant

memory concern (SMC) from either the patient, clinician,
or someone close to the patient in addition to quantitative ev-
idence of cognitive impairment with relative preservation of
functional abilities [288]. ADNI-2 enrolled an additional
cohort of subjects who were clinically evaluated as CN but
who had SMCs in the interest of capturing the earliest cogni-
tive decline. By most measures—cognitive performance,
hippocampal volume, Ab deposition, and metabolism—
these subjects were indistinguishable from normal controls
[259]. However, one study reported increased frontal atro-
phy in this group [279], and a cluster analysis of both
SMC and CN subjects revealed three distinct groups
(Fig. 23) [259]. The first cluster had normal levels of Ab,
normal metabolism, a low frequency of the APOE ε4 allele,
but evidence of hippocampal atrophy. The second cluster ap-
peared normal by all measures, and the third cluster aligned
with biomarkers of “typical AD,” having abnormal Ab, a
high-frequency of the APOE ε4 allele, and slight hippocam-
pal atrophy. Two studies examined SMCs in MCI subjects,
one reporting that these concerns were only related to verbal
episodic learning performance and not to neuroimaging bio-
markers, executive functioning, language, or other cognitive
domains [289], and the other suggesting that these concerns
were only weakly associated with objective functioning
[282].



Fig. 23. Heterogeneity of the subjective memory concern cohort. Cluster analysis identified three distinct subgroups in both the normal cognition (NC) and

subjective memory concern (SMC) groups. The first subgroup (1) had elevated brain amyloid, decreased CSFAb, and substantially reduced hippocampal vol-

ume; the second subgroup (2) was similar to group 1 but with less hippocampal atrophy and was thought to correspond to the Jack sequence for early signs of

AD, and the third group (3) was normal by all measures. Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; ICV, intracranial volume; SUVR,

standardized uptake value ratio. Reproduced with permission from [259].
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7.2.2. SNAP
Cluster analyses consistently identify a group character-

ized by signs of neuronal injury such as elevated p-tau181
or atrophy and accelerated progression to AD. This cluster
is consistent with a group, comprising around a quarter of
CN and MCI subjects, that typically has neurodegeneration
in the absence of Ab pathology and low frequencies of the
APOE ε4 allele, recently been termed suspected non-
Alzheimer’s pathology (SNAP) [290,291] (Fig. 24,
Table 3). Over 7 years, more than half (12/19) of MCI pro-
gressors with SNAP developed AD; 5/19 progressed to a
frontotemporal dementia, and 2 to Lewy body dementia
[291]. It is possible that SNAP subjects who progressed
to AD were misdiagnosed initially as being Ab2 due to
limitations in the CSF Ab42 assay or to Ab levels being
close to the cut point for amyloid positivity used (Amyloid
positivity is defined either on the basis of a CSF Ab42 level
of greater than 192 pg/mL [292] or from cortical Ab load
determined by amyloid PET using the radiotracers Pitts-
burgh compound B or florbetapir [293]. Ab1 subjects
have levels of amyloid above either or both of these
threshold values, and Ab2 subjects have levels of amyloid
below the threshold values).

Cognitive deterioration in SNAP subjects appeared
more related to neuronal damage than to Ab pathology.
Medial temporal tau pathology may underlie SNAP and
is referred to as primary age-related tauopathy (PART). It
is possible that SNAP represents an aging process separate
from AD [290]. The inclusion of tau PET imaging in
ADNI-3 may help to resolve the involvement of PART in
SNAP subjects. SNAP subjects also had higher levels of
YKL40, a marker of neuroinflammation, than Ab1 pre-
symptomatic subjects [144], supporting the idea. Although
the pathophysiology of this group is not yet known, it may
involve Ab unrelated pathologies such as hippocampal
sclerosis, argyrophilic grain disease, Lewy body disease,
or frontotemporal degeneration, with a variety of different
pathologies found at autopsy. Caroli et al. [291] proposed a
further subdivision of SNAP subjects into a subgroup with
severe cortical damage and no hippocampal atrophy with



Fig. 24. Biomarker abnormality in A2 N2, A1 N2, SNAP, and A1 N1
MCI patient groups, disaggregated by progressive cognitive deterioration.

MCI subjects were grouped on the basis of absence or presence of abnormal

levels of amyloid and neurodegeneration. SNAP subjects were neurodegen-

eration positive but amyloid negative. All four groups significantly differed

in CSFAb42 concentrations, hypometabolism on FDG PET, and hippocam-

pal volume. SNAP subjects were characterized by more severe hippocampal

atrophy than other groups in the absence of abnormal amyloid. Triangles

denote progressors, whereas circles denote nonprogressors. Abbreviations:

AD, Alzheimer’s disease; A2 N2, amyloid negative neurodegeneration

negative; A1 N2, amyloid positive neurodegeneration negative;

A1 N1, amyloid positive neurodegeneration positive; CSF, cerebrospinal

fluid; FDG, [18F]-fluorodeoxyglucose; MCI, mild cognitive impairment;

PET, positron emission tomography; SNAP, suspected non-Alzheimer’s pa-

thology. Reproduced with permission from [291].
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underlying frontotemporal degeneration, and a second sub-
group with preserved cortical metabolism but hippocampal
atrophy with underlying hippocampal sclerosis or argyro-
philic grain disease.
7.2.3. The role of WM disease
One source of biological heterogeneity in AD may be

small-vessel cerebrovascular disease [1,54]. WM lesions
are highly prevalent in AD and may represent
microvascular ischemic and/or demyelinating changes
linked to cerebrovascular disease [294]. Recognition of the
contribution of cerebrovascular disease to AD is reflected
in NIA-AA criteria for AD that include a diagnosis of
possible AD dementia in circumstances where patients
have an etiologically mixed presentation including a severe
burden of white-matter hyperintensities (WMHs), a widely
accepted measure of small-vessel cerebrovascular disease
[294]. However, asWMmicrostructural and cerebrovascular
disruptions are observed in both elderly and demented sub-
jects, the threshold separating WM lesion burden in these
two patient groups has yet to be determined and the specific
WM disease contribution to AD remains unclear. Is WM dis-
ease a factor that increases AD risk and clinical severity in-
dependent of the prevailing pathogenic models, or does it
promote AD neurodegenerative changes? ADNI publica-
tions over the last 2 years have begun to address these issues
and to integrate the role of WM disease in AD into current
models of disease progression.

Although subjects with hemispheric infarctions at base-
line are excluded from ADNI, subject assessment includes
several neuroimaging biomarkers for small-vessel pathol-
ogy. T2-weighted or FLAIR MRI sequences are used to
detect WMHs, and cerebral microbleeds are visualized using
a T2* gradient echo MRI sequence [54]. The extent of cere-
brovascular disease in the ADNI cohort was investigated by
Ramirez et al. [295] who reported that the ADNI-1 sample
had a significantly lower WMH burden relative to other
elderly and dementia cohort studies. Despite their conclu-
sion that ADNI-1 sample can be considered a relatively
pure cohort with little to no vascular burden compared
with community populations, ADNI studies investigating
the role of WM disease suggest that a low burden may still
have a significant impact on disease progression.

7.2.3.1. Vascular disease and risk factors are associated
with cognitive decline and worsening clinical outlook

Numerousmeasures reflecting vascular disease have been
associated with worsening clinical outlook. Greater baseline
WMH volume was associated with lower processing speed
[296] and rapid cognitive decline (.6 points/year MMSE)
[297]. A vascular index score (summarizing past or present
hypertension, hyperlipidemia, diabetes, myocardial infarc-
tion, atrial fibrillation, smoking, and stroke) was associated
with greater memory impairment [296], and metabolic syn-
drome (obesity, hyperglycemia, hyperlipidemia, and hyper-
tension) increased the risk of AD and was associated with a
faster decline in WM volume [298]. Higher homocysteine
levels were associated with lower processing speed [296];
higher cholesterol was associated with a greater rate of in-
crease in global cognition and memory impairment [296];



Fig. 25. Effect of interaction of smoking history and APOE ε4 genotype on amyloid level and hypometabolism. ADNI participants were grouped on the basis of

smoking history and APOE4 status. Smoking status interacted with APOE ε4 carrier status such that APOE4 smokers had higher levels of amyloid and worse

hypometabolism than other groups. (A) Florbetapir retention level across groups. Higher values indicate greater Ab level. Levels above the horizontal line indi-

cate Ab positivity. Mean6 standard error of the mean. (B) Composite glucose uptake level across groups. Higher values indicate greater glucose metabolism.

Mean6 standard error of the mean. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; FDG, [18F]-fluorodeoxyglucose; SUVR, standardized

uptake value ratio. Reproduced with permission from [302].
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hyperglycemia was associated with cognitive decline,
whole-brain volume decline, and rate of progression to AD
[299]; past or present hypertension predictedWMH volumes
in CN subjects [300]; and a history of cigarette smoking
(associated with oxidative stress and small hippocampal vol-
ume [301]) was associated with lower performance on
cognitive tests [302]. An alternativemarker of cerebrovascu-
lar dysfunction, physiological fluctuations in white matter
(PFWM), was associated with glucose metabolism and com-
posite memory but not ventricular or hippocampal volume,
executive function, or CSF biomarkers [303]. Peripheral in-
sulin resistance was differentially associated with either hy-
pometabolism or hypermetabolism in different areas
depending on whether subjects progressed to AD or not, sug-
gesting that it may increase AD risk by affecting glucose
Fig. 26. The effect of stroke risk on hippocampal volume and memory performanc

mingham Stroke Risk Profile, was associated with decreased baseline hippocam

subjects. Worst performance on both measurements was observed in subjects with

fidence intervals. Abbreviations: ADNI-MEM, Alzheimer’s Disease Neuroimaging

ume. Reproduced with permission from [306].
metabolism [304]. Vascular burden may be evident at very
early stages of cognitive decline as several associations
were found in CN as well as MCI subjects
[296,298,300,305].

Considerable evidence suggests that cardiovascular risk
factors may accelerate neurodegeneration and subsequent
cognitive decline via Ab independent pathways. In CN sub-
jects, Ab deposition was more associated with APOE4 pos-
itivity than with a history of cigarette smoking, although
APOE41 smokers had the lowest glucose metabolism and
poorest learning and memory scores of all groups, suggest-
ing that cerebrovascular disease may worsen the effects of
the APOE ε4 allele (Fig. 25) [302]. Similarly, stroke risk,
comprising cardiovascular factors such as hypertension
and cigarette smoking, was most related to hippocampal
e in Ab-positive and Ab-negative subjects. Stroke risk, assessed by the Fra-

pal volume and decreased memory performance in both Ab1 and Ab2
both abnormal amyloid and high stroke risk. Error bars represent 95% con-

Initiative–memory domain; CSF, cerebrospinal fluid; ICV, intracranial vol-
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volume and memory performance in the absence of Ab pa-
thology (Fig. 26) [306]. Finally, the association between
type-II diabetes mellitus and regional-reduced cortical thick-
ness was modulated by levels of p-tau181, but not by cortical
Ab load [307].

Vascular disease may act synergistically with neurode-
generation to accelerate cognitive decline. Tosto et al.
[297] reported that low baseline entorhinal cortex volume,
a marker of neurodegeneration due to AD, and high baseline
WMH volume independently predicted rapid cognitive
decline of a similar magnitude. Moreover, individuals with
high entorhinal cortex volume and low WMH burden had
a significantly lowered risk of rapid cognitive decline
(Fig. 27).

7.2.3.2. WM disease and morphological changes in disease
progression

Two distinct factors in AD subjects were identified in a
factor analysis study of hippocampal volume, AD signature
cortical thickness, ventricular volume, total WM volume,
and volume of WM changes [308]. The first was associated
with diffusivity, total volume of WM changes, and ventricu-
lar expansion. A second factor was more strongly related to
MMSE and cortical thickness changes typical of AD and
was associated with worse parahippocampal WM micro-
structure. These results imply that there are two sets of inde-
Fig. 27. Cumulative survival of individuals based on their high entorhinal

cortex volume (ECV) and level of white-matter hyperintensities (WMHs).

ADNI MCI subjects were dichotomized according to the median split of

their ECV and levels of WMH. Individuals with high ECV and low WMH

had low likelihood of rapid decline, whereas subjects with low ECV and

low WMH or low ECV and high WMH appear to progress most rapidly.

Solid line indicates high ECV, low WMH; dashed line indicates high

ECV, high WMH; dotted line indicates low ECV, low WMH; dash-dotted

line indicates low ECV, high WMH. Abbreviations: ADNI, Alzheimer’s

Disease Neuroimaging Initiative; MCI, mild cognitive impairment. Repro-

duced with permission from [297].
pendently covarying degenerative changes: age-related
vascular changes that are associated with ventricular expan-
sion and volume ofWM lesions, andWM changes in the par-
ahippocampal gyrus that are associated with hippocampal
atrophy and the classical patterns of AD neurodegeneration.
WM burden may be more than a simple comorbidity due to
vascular disease and may play a specific role in the latter
pathway that is not considered in traditional models. Further
evidence to support this comes from a study of changes in
the quality of WM signal abnormalities. Accelerated before
and after MCI progression to AD and echoed the accelera-
tion of hippocampal atrophy at this time [309].

7.2.3.3. How doWM abnormalities interact with Ab and tau
deposition?

Clearly, cerebral WM disease influences disease trajec-
tory. Do WMHs act independently of or interactively with
CSF biomarkers? WM changes in the elderly have been
linked to cognitive deficits but the relationship between the
cerebral Ab deposition and WM microstructure is not well
understood. Wolf et al. [310] investigated the relationship
between Ab deposition and WM microstructure in CN sub-
jects using DTI. They found that the relationship between
Ab deposition and DTI metrics of WM integrity (fractional
anisotropy, mean diffusivity, radial diffusivity, and axial
diffusivity) was not linear. In fact, at lower levels of Ab
burden, increasing Ab load was associated with increases
in fractional anisotropy and decreases in mean diffusivity
and radial diffusivity, suggesting an improvement in WM
integrity. At higher Ab burden, increases in Ab load were
associated with DTI measures indicating the opposite. At
low Ab burden, compensatory mechanisms may act to pre-
serve cognitive functioning, but these may be overcome by
higher Ab burden leading to damage toWM structure, which
may, in turn, initiate cognitive decline.

In some instances, Ab load may be correlated with WM
lesions. Past or present hypertensive CN subjects had greater
WMH volumes at a given burden of Ab (Fig. 28) [300].
Although the extracellular Ab deposition measured by
FLAIR MRI in this instance is not directly correlated with
cerebral Ab angiopathy, these results support the idea that
Ab accumulation within blood vessels could exacerbate ce-
rebrovascular injury processes that contribute to WMHs. Ab
load in the medial prefrontal cortex and posterior cingulate
cortex was correlated with WM lesion load in CN subjects
in periventricular and frontal regions, suggesting a link be-
tween microvascular damage and Ab pathology at the early
stages of disease [311]. The location of cerebral microbleeds
was differentially associated with CSF Ab and p-tau181
levels. Lobar microbleeds at the cortico-subcortical junc-
tion, which reflect Ab angiopathy, and not microbleeds in
deep GM, which reflect subject hypertension, were associ-
ated with abnormal levels of CSF Ab and p-tau181 [312].
Furthermore, subjects with cortical microbleeds were more
likely to carry the APOE4 allele, suggesting that WM dam-
age at this location is associated with typical AD pathology.



Fig. 28. The effect of hypertension and Ab status on estimated trends of

white-matter hyperintensities (WMHs) volume as a function of age.

WMH volumes were predicted for the population average intracranial vol-

ume by age, exposure to elevated blood pressure, and CSF Ab42 burden.

High blood pressure increases WMH over time in both Ab1 and Ab2 sub-

jects, but the greatest effect in Ab1 subjects. Abbreviation: CSF, cerebro-

spinal fluid. Reproduced with permission from [300].
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Do WMH levels modify the effect of tau in neurodegen-
eration? Subjects with low baseline t-tau and higher frontal
and parietal WMH volumes had greater entorhinal cortex at-
rophy than subjects with lower baseline t-tau and lower
regional WMH volumes [313]. In addition, elevated
WMH, particularly in the parietal lobes, predicted MCI to
AD progression, and risk of progression increased in sub-
jects with high levels of tau [313]. Thus, WMH burden
Fig. 29. Conceptual model linking white-matter hyperintensities to clinical prog

directly (a), affect regional atrophy and clinical progression directly (b), andmodify

WMHs and Ab has yet to be elucidated. Abbreviation: AD, Alzheimer’s disease.
may act as the “second hit” that is required, in addition to
abnormal levels of CSF biomarkers, to produce neurodegen-
erative and cognitive changes associated with AD (Fig. 29).

Taken together, these studies offer an intriguing glimpse
into how the effect ofWM disease may be integrated into the
traditional model for AD progression. Vascular risk factors
may enhance cognitive decline by interacting with Ab in
the early disease stages to increase WM abnormalities.
Regional WM abnormalities may then act as a “second
hit” to augment the effects of tau abnormalities and neurode-
generation, thus accelerating the remaining disease process.
The fact that these findings are from the ADNI cohort which
has been characterized as having far lower burden of WM
disease than other community samples [295] suggests that
the contribution of WM abnormalities to dementia in the
wider population may be even more profound.
7.3. AD as a disconnection syndrome

Several investigators have suggested that AD is a discon-
nection syndrome, based on the progressive synaptic and
neural degeneration across the continuum of the disease
[314,315]. Considerable evidence exists that specific
structural and functional brain networks are increasingly
disturbed, hypothetically due to neuronal injury caused by
the abnormal deposition of Ab and/or tau [275,316,317].
The different underlying biological substrates of these
structural and functional networks, namely WM fiber tract
networks, cortical thickness networks, and resting-state
functional networks, can be mapped by applying graph theo-
retical analyses to different imaging modalities in the bur-
geoning field of “connectomics” [318]. Graph theory uses
“nodes” to designate brain regions thought of as hubs, and
“edges” to represent the connections between them to
construct a topological map of the connectome and to
ression of AD. Regional white-matter hyperintensities (WMHs) affect tau

the effect of tau on disease progression (c). The interaction between regional

Reproduced with permission from [313].
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generate measures (strength, weighted local efficiency,
weighted clustering coefficient, and characteristic path
length) that describe the organization of the network
[319,320]. The inclusion of diffusion MRI for studying
WM tract geometry, and TF-fMRI for mapping functional
networks, in the ADNI-2 protocol has produced a set of lon-
gitudinal data across the disease spectrum that is central to
number of studies targeted at understanding the role of brain
network disruptions in AD.

7.3.1. Structural connectivity
Diffusion MRI can be used to study WM fiber integrity

and microstructure based on measures of local water diffu-
sion such as fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (DA), and radial diffusivity (DR)
which respectively reflect the degree of myelination, cell
death and edema, axonal injury and demyelination, and
loss of oligodendrocytes and reactive astrocytosis [321].
The trajectory and structural connectivity of axonal fibers
can be inferred using tractography based on DTI data.
Studies of the ADNI cohort have found both global and local
changes to WM tracts during disease progression. Sun et al.
[322] found increased global DA and increased DR in pro-
dromal patients, and a further increase in these measures,
along with decreased global FA, in demented subjects,
consistent with widespread WM damage. Reduced WM fi-
ber integrity may be associated with GM atrophy. Deteriora-
tion in WM integrity may decrease GM volume, particularly
in the hippocampus. Simultaneous changes in GM volume
and FA values were reported in AD subjects compared to
CN subjects primarily in the temporal lobe/hippocampus-
cingulum, frontal/cingulate gyrus–corpus callosum, and
temporal/occipital/parietal lobe–corpus callosum/corona ra-
diata [323]. However, there was no correlation between
MMSE score and diffusion indices in regions known to
affect memory [324] implying that memory loss is an event
Fig. 30. Visualization of neuronal fibers touching limbic system ROIs in typica

cognitive impairment. Reproduced with permission from [326].
considerably downstream of network deterioration. Changes
in WM structure have been observed in regions of the brain
involved in known mechanisms of disease pathology—WM
tracts known to be connected to areas of AD pathology
appear most prone to deterioration. MCI subjects had
increased DR and DA in the external capsules of the lateral
cholinergic pathway, a finding consistent with the degenera-
tion of cholinergic neurons of the basal forebrain as a distinct
neuropathological feature of AD [322]. AD and MCI sub-
jects had increased total diffusivity and DR and decreased
FA in the optic nerves and optic tract, consistent with com-
mon visual deficits observed in AD despite relative lack of
damage to the visual cortex, and suggesting that the visual
pathway from eye to brain may be damaged [325]. The num-
ber of nerves fibers of limbic system touching the hippocam-
pus, thalamus, and amygdala decreased from CN to EMCI to
LMCI, and this metric was able to distinguish between
EMCI and LMCI subjects (Fig. 30) [326]. The cingulum
angular WM bundles, connected to the hippocampus,
showed progressive deterioration in MCI and AD subjects,
and their integrity was associated with hippocampal volume
[321]. However, controlling for hippocampal volume did not
remove all group differences, suggesting that WM damage
additionally contributes to AD through an alternative
mechanism.

AD also appears to affect the topology of the structural
connectome. This is characterized by small-world properties
such as a high mean clustering coefficient reflecting the con-
centration of highly connected brain regions (“hubs”) and
low characteristic path length representing the WM fibers
connecting them [320]. Significant group differences in
these metrics were reported by Prescott et al. [327] indi-
cating that the AD structural connectome undergoes pro-
gressive deterioration with disease progression. Another
attribute of the structural connectome, described by the
rich club coefficient, is that its hubs are more interconnected
l early MCI (left) and late MCI (right) patients. Abbreviation: MCI, mild



M.W. Weiner et al. / Alzheimer’s & Dementia 13 (2017) e1-e85e44
than predicted by chance and play a central role in network
communications [320]. Daianu et al. [328] used whole-brain
tractography to reconstruct structural brain connectivity net-
works and to map connections between cortical regions. In
MCI and AD subjects, there was a progressive disruption
of global measures of network integrity (nodal degree, clus-
tering coefficient, characteristic path length, and efficiency)
but a relative preservation of the rich club coefficient. Thus,
network disruptions were primarily in peripheral areas of
low connectivity and left the highly connected rich club
core, consisting of hubs in the superior frontal, insular, pos-
terior cingulate, precuneus, and superior parietal region,
relatively undisturbed (Fig. 31). Higher baseline character-
istic path length and lower baseline mean clustering coeffi-
cient values were correlated with greater volumetric
changes over 6 months in a preliminary study of MCI sub-
jects [329]. Decreased clustering in the right pars opercula-
ris, left superior parietal node, and left pericalcarine node
was significantly associated with patterns of volumetric
changes. Lower betweenness centrality (a measure of the
number of short communication paths a node participates
in) in the right temporal lobe was associated with greater at-
rophy, suggesting that this hub facilitates integration be-
tween anatomically unconnected regions. These studies
suggest that the degree of integration across distributed brain
regions and locally within regions decreases with disease
progression as the small-world architecture of the brain is
disturbed.

Both APOE4 and Ab positivity appear to influence the
structure of the connectome. The number of APOE ε4 alleles
was negatively correlated with the number of WM fibers
touching the hippocampus, thalamus, and amygdala [326].
The shortest path length was increased and global efficiency
decreased in preclinical Ab1 compared to Ab2 participants,
with no concomitant differences in either hippocampal
Fig. 31. Average brain networks showing common connections at 90% of healthy

Although individual connections (red edges) erode with disease progression, cent

These hubs are in the superior frontal (SF), insula (I), posterior cingulate (PC),

AD, Alzheimer’s disease; MCI, mild cognitive impairment. Reproduced with per
volume or metabolism [330]. These WM changes were spe-
cific to network structure and were not explained by changes
in global WM integrity. The degree of Ab burden was more
strongly associated with changes in graph theoretical mea-
sures than with diagnostic group and affected large-scale
structural networks more severely in CN subjects than in
MCI or AD subjects [327]. The decreasing effect of accumu-
lating Ab burden with time may be because there are fewer
viable connections to degenerate [327]. Both studies suggest
that damage to the structural connectome may occur very
early in pathophysiological development of AD, perhaps
closely following Ab deposition.

7.3.2. Functional connectivity
In addition to structural connectivity, the human brain

possesses functional connectivity which reflects signaling
and communication events that unfold within the underlying
structural network [320]. Functional networks are derived
from statistical descriptions of time series data reflecting
changes in blood flow measured as a blood-oxygen-level
dependent (BOLD) signal on TF-fMRI. They differ from
structural networks in that they are transitory, modulated
by task, and link many structurally unconnected node pairs.
Major functional hubs with high connectivity to other re-
gions are located in the ventral and dorsal precuneus, poste-
rior and anterior cingulate gyrus, ventromedial frontal
cortex, and inferior parietal regions, and these have signifi-
cant overlap with the DMN, which consists of an anatomi-
cally defined set of hubs and subsystems located in the
cingulate cortex [320]. As the DMN is implicated in the pro-
cess of encoding new memories, and AD impairs memory
function, AD pathology may specifically target this func-
tional network [331]. Increased WM lesion load was corre-
lated with decreased functional connectivity of the DMN,
and reduced neuronal activity in the temporal cortex [311].
controls (CN), MCI, and AD participants at k5 20 nodal degree threshold.

rally positioned hubs (light blue nodes) are preserved in diagnostic groups.

precuneus (P), and superior parietal cingulate regions (SP). Abbreviations:

mission from [328].
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Changes in functional connectivity appear to occur early
in the disease process and can distinguish between EMCI
and LMCI subjects. The magnitude of these changes in the
posterior cingulate cortex, precuneus, right lingual gyrus,
thalamus, and right parahippocampal gyrus increased
across patient groups and was related to cognitive
performance (MMSE) and the Geriatric Depression Scale
[332]. Decreased functional connectivity in the thalamo–
hippocampus, thalamo–temporal, thalamo–visual, and
thalamo–DMN networks was observed between EMCI and
LMCI subjects [333], highlighting the importance of the
thalamus, a crucial brain area believed to coordinate
communication (e.g., memory, attention, and perception).
Interestingly, there were areas of increased functional con-
nectivity between the thalamus and left fusiform gyrus, right
middle occipital gyrus, left and right precuneus, right middle
temporal gyrus, and left inferior temporal gyrus in amnestic
MCI subjects, suggesting that they may be able to use addi-
tional brain resources to compensate for loss of cognitive
function.

APOE4 may modulate brain functional connectivity in
early stages of the disease. APOE4 noncarriers had the stron-
gest functional connectivity, whereas EMCI subjects who
were APOE4 carriers had the greatest dysfunction [334].
The pattern of functional connectivity disruptions in EMCI
subjects overlapped to a large degree with that of APOE4
subjects. However, only the EMCI group, and not the
APOE4 group, had decreased connectivity in the prefrontal
cortex areas, suggesting a more multidimensional pathology
in EMCI than is accounted for by the presence of an APOE
ε4 allele alone [334].

Grothe et al. [335] used multimodal imaging data to assess
the relationships between seven previously defined major
functional connectivity networks (the DMN, frontoparietal-
control network, dorsal- and ventral attention networks,
limbic network, visual network, and somatomotor networks
[Fig. 32]) and Ab deposition, hypometabolism, and GM atro-
phy. Ab deposition was widely distributed across the cerebral
cortex, with the highest deposition in the DMN and
frontoparietal-control network. This pattern did not change
Fig. 32. Overview of intrinsic connectivity networks. The figure shows standardi

surface and a midsagittal section of the reference template. This map estimates t

on resting state functional conductivity projected on the cortical surface and amidsa

cyan, somatomotor network; green, dorsal attention network; pink, ventral atten

frontoparietal-control network. Reproduced with permission from [335].
significantly across subject groups, consistent with Ab depo-
sition being an early event in AD progression. Atrophy
occurred primarily in the anterior limbic network, followed
by the DMN. The pattern of hypometabolism was a mixture
of both Ab- and atrophy-related profiles. The distribution of
atrophy and hypometabolism increased with disease progres-
sion (Fig. 33). These results suggest that despite the high
vulnerability of the DMN for changes in imaging abnormal-
ities, distinct pathologic markers of AD have differential
network specificities targeting different neuronal networks.

A study by Jones et al. [336] replicated many of the afore-
mentioned results and offered a model describing how
microscale proteinopathy affects macroscale brain networks
to ultimately result in clinical symptomatology. Their multi-
modal study tracked the evolution of connectivity changes
within and between the ventral, posterior, anterior ventral,
and anterior dorsal subsystems of the DMN (Fig. 34) across
the course of the disease. They found both increased and
decreased connectivity in different regions, consistent with
a previous study [332]. Connections within the posterior
and ventral subsystems decreased linearly, whereas connec-
tions between posterior and ventral, and posterior and ante-
rior dorsal subsystems, increased linearly across disease
course. Decreasing posterior subsystem connectivity was
marginally associated with elevated Ab levels but not with
hippocampal volume, whereas increased connectivity be-
tween the posterior and ventral DMN subsystems was asso-
ciated with elevated Ab levels and decreased hippocampal
volume. Like McKenna et al. [334], they found that
APOE4 positivity had specific effects on network connectiv-
ity. In CN Ab2 subjects, APOE4 was associated with lower
posterior DMN connectivity only, suggesting that failure of
this network may be the earliest critical event in pathophys-
iology, preceding Ab deposition. Finally, the decrease in
connectivity in the medial temporal lobe–ventral DMN
was associated with decreased memory performance.

The results support a model (Fig. 35) in which pathophys-
iology, possibly instigated by the APOE ε4 allele, originates
in the posterior subsystem of the DMN. This results in a tran-
sient increase in connectivity between the posterior DMN
zed maps of seven intrinsic conductivity networks projected on the cortical

he functional conductivity architecture of the human cerebral cortex based

gittal section of the reference template. Abbreviations: blue, limbic network;

tion network; purple, visual network; red, default mode network; yellow,



Fig. 33. Severity of AD-related imaging abnormalities within intrinsic connectivity networks. Plots depict means and 95% confidence intervals of averaged Z

scores of Ab deposition (top), hypometabolism (middle), and gray-matter atrophy (bottom)within the distinct intrinsic connectivity networks for each AD stage.

The widespread distribution of amyloid deposition across the cerebral cortex appeared similar in all patient groups with highest amyloid load in the DMN and

FPN. Hypometabolismwasmost pronounced in the AD group and occurred acrossmost ICNs except the VIS and SMN. Likewise, atrophywasmost pronounced

in the AD group, which displayed a different relative pattern of atrophy severity across ICNswith atrophymost pronounced in the LIN followed by the DMN and

relative sparing of the FPN. Abbreviations: blue, limbic network (LIN); cyan, somatomotor network (SMN); green, dorsal attention network (DAN); pink,

ventral attention network (VAN); purple, visual network (VIS); red, default mode network (DMN); yellow, frontal parietal control network (FTN); AD, Alz-

heimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment. Reproduced with permission from

[335].
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Fig. 34. Subsystems of the default mode network. Nodes within the default

mode network segregate into distinct subsystems. Abbreviations: aMPFC,

anterior or medial prefrontal cortex; blue: dorsal medial prefrontal cortex

system; dMPFC, dorsal medial prefrontal cortex; green, medial temporal

lobememory system; yellow, midline core regions; PCC, posterior cingulate

cortex; Rsp, retrosplenial cingulate. Reproduced with permission from

[336].
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networks and other systems that are associated with Ab depo-
sition and hippocampal atrophy. The increased connectivity
may indicate high processing burden or inefficient synaptic
communications and requires high metabolism which may
trigger a cascade of downstream of molecular events associ-
ated with AD. The processing burden may then proliferate to
downstream networks. Highly connected regions in the brain
may be particularly vulnerable to Ab deposition because of
their increased synaptic activity, according to the “nodal
stress” hypothesis [335,337]. Indeed, the authors postulated
that the shifting of processing burden may lead to APP
processing changes and Ab deposition. Overloading of
specific networks may also exacerbate preexisting primary
age-related tauopathy in the medial temporal lobe and
thereby accelerate tau-mediated neurodegeneration.

7.3.3. Structural covariance networks
A complementary approach to diffusion-based and TF-

fMRI studies compares patterns of structural covariance of
GM volume within selected structural correlative networks.
Ab1 AD subjects had decreased structural association in the
medial temporal lobe subsystem of the DMN (Fig. 35), with
specific decreases between the entorhinal cortex and themedial
prefrontal and dorsolateral prefrontal cortices, and in the
midline core DMN subsystem [338]. The results suggest that
these early structural disruptions between the heteromodal as-
sociation cortices and the entorhinal cortex may isolate the hip-
pocampus leading to memory loss. Concomitant increased
connectivity was observed in other areas such as the salience
and executive control networks [338], consistent with the Jones
et al. model [336]. Both the salience and executive control net-
works affect frontal regions of the brain and are likely affected
in AD rather than in earlier stages of the disease. The results
support the concept of AD as a disconnection syndrome target-
ing specific large-scale brain networks.

7.3.4. Metabolic connectivity
Metabolic connectivity and the topological organization

of metabolic brain networks can be surmised by the analysis
of metabolic covariance between node regions, using FDG
PET, which, like TF-fMRI BOLD measurements, reflects
the brain’s metabolism.APOE41CN,MCI, and AD subjects
had decreased metabolism in the parahippocampal gyrus and
increased metabolism in the medial frontal gyrus and inferior
frontal gyrus compared to APOE42 subjects [339]. The
metabolic networks of both groups had small-world proper-
ties, but APOE41 subjects had lower clustering coefficients
and significant decreases in nodal centrality, a measure of the
number of connections maintained by each hub, in six hub
brain regions. APOE41 subjects also had abnormally
increased local short distance and decreased long-distance
interregional correlations. The results suggest that APOE
ε4 allele carriers have a less optimal metabolic network
than noncarriers. A second study reported that theMCI group
had higher clustering coefficients, shorter characteristic path
length, and lower betweenness centrality than control sub-
jects, supporting the idea that the small-world characteristics
of hub nodes are affected during disease progression [340].
Hub nodes targeted by AD progression were identified in
the left anterior cingulum, right superior parietal, left fusi-
form, right inferior temporal gyrus, and right cuneus.

Hypometabolism in the posterior cingulate cortex is an
early marker of AD. Teipel et al. [341] hypothesized that
decreased metabolism in the posterior cingulate cortex is
related to disrupted input from connected regions, such as
the hippocampus, that undergo early atrophy. In CN and
EMCI subjects, they found that posterior cingulate cortex
hypometabolism was exclusively associated with remote
hippocampal atrophy. In LMCI subjects, it was associated
with both hippocampal atrophy and local atrophy within
the posterior cingulate cortex, as well as with Ab load. In
AD subjects, posterior cingulate cortex hypometabolism
was solely associated with local atrophy. These results
may result from a diaschisis-like mechanism in which loss
of function of the posterior cingulate cortex is caused by
connection to the damaged hippocampus and are consistent
with a progressive disconnection of the posterior cingulate
cortex from subcortical brain regions.

7.3.5. Models for the spread and propagation of Ab and tau
along brain networks

Recent neuropathological evidence supports a “prion-like”
spreading mechanism for AD pathology in which misfolded
pathological proteins trigger the misfolding of adjacent same
species proteins and cascade along neuronal pathways via



Fig. 35. Schematic of the proposed cascading network failure model of Alzheimer’s disease. Phase 0: The posterior DMN (pDMN) serves as the central hub

processing and integrating association cortices and is highly metabolically active. Independently, the medial temporal lobe (MTL) has accumulated age-related

damage from neocortical processing of a different kind contributing to primary age-related tauopathy (PART) in these regions. Phase 1: Declining posterior

DMN transfers information-processing duties to the neocortical regions including the ventral DMN and/or the anterior dorsal DMN. Aberrant between-

neocortical network synaptic activity leads to dysregulated amyloid precursor protein (APP) processing promoting Ab plaque formation in neocortical layers.

Phase 2: Given that the hippocampus is continually processing information from the same regions, noise in these cortical systems is propagated down to the

hippocampus. This increased burden on the hippocampus accelerates the preexisting PART. Phase 3: Neurodegeneration expands to adjacent systems. This

creates a detrimental positive feedback loop because degeneration lowers the noise-handling capacity of the system leading to further degeneration. MCI phase:

Posterior brain regions supporting memory succumb to the degenerative feedback loop as hippocampal regions increases processing. Later, the frontal brain

regions begin to bear the high connectivity burden. Early Alzheimer’s disease phase: The high frontal connectivity firmly establishes the neurodegenerative

feedback loop in these systems before declining as Alzheimer’s disease progresses. Abbreviations: DMN, default mode network; MCI, mild cognitive impair-

ment. Reproduced with permission from [336].
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trans-synaptic or trans-neuronal spread [342,343]. The initial
misfolding of these proteins and their subsequent propagation
along structural brain networks is postulated to result in
hypometabolism, atrophy, and ultimately cognitive decline.
Two ADNI studies have developed or tested models based on
this idea. Raj et al. [344] found that their earlier model
describing a prion-like diffusive progression along the fiber
pathways defined by the brain connectivity network [345]
accurately predicted future patterns of atrophy and hypometab-
olism based on baseline volume and metabolism. These pat-
terns were in agreement with the stereotypical progression of
atrophy from temporal to parietal to frontal regions. They
also found that Ab positivity predicted a faster rate of progres-
sion. Iturria et al. [346] developed a model based on similar as-
sumptions for the spread of Ab pathology, namely that the
spread of Ab as an infectious agent is constrained by the brain’s
connectional architecture. Their stochastic epidemic spreading
model also incorporated the brain’s clearance response to mis-
folded proteins and reproduced the characteristic patterns of
Ab deposition across the disease process (Fig. 36). They found
that the Ab clearance rate was inversely correlated both with
worsening clinical diagnosis and increasing number of APOE
ε4 alleles and that it partially accounted for variance in CSF
t-tau and p-tau181 levels, supporting the idea of an interrelated
pathway between Ab pathophysiology and tauopathy. In addi-
tion, the model identified the posterior and anterior cingulate
cortices as the most likely starting seed regions for the propa-
gation process. The negative relationship between regional
Ab deposition patterns and effective anatomical distances
from these regions suggested that the propagation of misfolded
proteins from outbreak regions is modulated by the topology of
the WM tracts in the brain.
7.4. Conclusions

ADNI studies in 2014 and 2015 have provided ample ev-
idence to support not only the traditional view of an Ab
deposition-instigated cascade of events leading to dementia



Fig. 36. Characteristic regional Ab deposition patterns in healthy and pathological brains. An epidemic spreadingmodel that predicts propagation/deposition of

Ab reproduces the characteristic Ab deposition patterns in the ADNI cohort. (A) PET-based mean regional Ab deposition probabilities in cognitively normal

healthy controls (HC), earlyMCI (EMCI), lateMCI (LMCI), andAD groups. Nodes correspond to 78 regions covering all the brains graymatter, with node sizes

proportional to the associated Ab burden. The progressive expansion of Ab deposition starts mainly from the DMN regions and expands to the rest of the brain.

(B) Correspondence between the estimated and PET-based mean regional Ab deposition probabilities for the different clinical groups. Abbreviations: AD, Alz-

heimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; DMN, default mode network; MCI, mild cognitive impairment; PET, positron emission

tomography. Reproduced with permission from [346].
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but also the complexity of disease progression which may
involve copathologies or alternative pathways with as yet
unidentified underlying pathology.

Cluster analysis of both MCI and CN subjects consis-
tently identify a subtype with attributes of “typical” AD:
abnormal levels of CSF biomarkers, hippocampal atrophy,
regional hypometabolism, and impaired memory
[279,281,283,305]. This group appears to largely overlap
with Ab-positive subjects, who have been identified in
ADNI-2 by amyloid imaging and extensively characterized
and who appear to follow “typical” AD progression in which
biomarkers become abnormal in the sequence defined by
Jack et al. [258]. The APOE ε4 allele may act to modulate
this trajectory [128,261,262,276]. Novel findings indicated
that atrophy may begin in the presymptomatic phase in
areas outside the hippocampus such as the basal forebrain
[267,268], precuneus [265,266], parietal gyrus [261], and
posterior cingulate [266]. This is an agreement with observa-
tions from connectomics experiments which view AD as a
disconnection syndrome with the earliest disruptions to
metabolic connectivity occurring in the posterior cingulate
cortex [328,332]. The model of Jones et al. [336] of a
cascading network failure which begins in the posterior sub-
system of the DMN, and which propagates connectivity
changes along the WM tracts of the structural connectome,
provides a provocative framework for functionally linking
the many observations of “typical” AD progression. The
observation that the APOE ε4 allele may instigate the pro-
cess or modulate in some way the structural and functional
connectome [310,326,327,334,336] also is consistent with
studies of Ab1 subjects. Models of a prion-like mechanism
[344,346] by which misfolded Ab induces further
pathological misfolding along structural brain networks
predict patterns of Ab deposition, hypometabolism, and
atrophy and provide a mechanistic basis for network
failure. The association of WM changes caused by
cerebrovascular disease with abnormal Ab and with
markers of neurodegeneration may also be viewed in the
light of these models. The association of Ab positivity
with increased cerebral blood flow in the posterior
cingulate [277], and with improvements in global measures
ofWM integrity at low Ab burden [310], may be evidence of
the initial compensatory changes in connectivity predicted
by the model of Jones et al. [336]. Ab pathology and
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microvascular damage may be linked at the early stages of
disease [311], and WM changes in the parahippocampal gy-
rus were associated with hallmarks of AD decline [308].
Degradation of specific, disease-related regions of the struc-
tural connectome by cerebrovascular disease may exacer-
bate disconnection, consistent with the theory that WM
damage causes a “second hit” in disease progression. How-
ever, WM changes do not always lead to AD; the total vol-
ume of WM changes was found to be more related to age-
related vascular changes [308].

Most MCI and CN subjects were not identified by cluster
analysis as following “typical” AD progression. In fact, a
substantial proportion were normal by most measures
[280–282,286], suggesting that there is a high rate of false
diagnostic positives in MCI subjects. Various other
subtypes were identified, chief among them a group
typified by deficits in executive function and abnormal tau,
but having normal Ab [280,281]. These subjects may be
related to Ab2, neurodegeneration positive SNAP
subjects, who were found to progress to frontotemporal
dementia and Lewy body disease in addition to AD [291].
Conversely, a subtype of Ab1 patients had primarily
cortical atrophy and deficits in executive function which
correlated with the distribution of neurofibrillary tangles
[157,272]. These individuals likely had atypical forms of
AD characterized by predominantly isocortical tau
pathology. Finally, most of the associations between Ab
and memory were mediated by neither hypometabolism
nor atrophy, further implicating p-tau in the process. The
tale of tau has yet to be told; the inclusion of tau PET
imaging in ADNI-3 promises to shed light on this conun-
drum.

The studies have had a profound impact on how we
consider the disease process, which, in turn, has many im-
plications for the development of AD preventive treatments
and clinical trial design. Many questions remain to be
answered: what is the underlying pathology of the Ab2
subtypes? How does abnormal Ab mechanistically prompt
tau propagation? How does tau propagate in the absence of
Ab? How does WM damage in different regions affect
structural, functional, and metabolic connectivity? What
is a genetic contribution to these different pathways? The
answers will undoubtedly lie in the consideration and inte-
gration of results from multiple approaches. The breadth
and depth of ADNI positions it ideally at the cusp of dis-
covery.
8. Improvement of clinical trials

The overall goal of ADNI is to validate biomarkers for
AD clinical trials. A large body of recent ADNI publications
describes improved approaches for diagnostic classification,
the prediction of future decline and the selection of trial par-
ticipants likely to decline, and development of outcome
measures sensitive to early changes wrought by the disease.
To some extent, progress in this area dovetails with advances
in our understanding of disease progression; recognition of
the heterogeneity and pathophysiology underlying MCI
and now even CN participants, and of the wide variety of
clinical trajectories, informs many aspects of clinical trial
design. As trials move to presymptomatic cohorts, bio-
markers will be crucial in identifying those with preclinical
AD. Furthermore, biomarkers may provide more sensitive
and specific markers of progression. Certainly, this is one
of the major hopes for tau PET [347]. Knowledge of how
sources of disease heterogeneity influence biomarker
changes will enable the selection and monitoring of subjects
most likely to benefit from a targeted therapy. These ad-
vances improve statistical power to detect a slowing of clin-
ical decline in predementia populations, a major challenge
which has plagued AD clinical trials to date.
8.1. Diagnosis and prediction

8.1.1. Use of established modalities

8.1.1.1. Multimodal classifiers
Clinical trial design fundamentally depends on the ability

to accurately diagnose the clinical group to which a subject
belongs and to predict their likelihood of measurable pro-
gression within the time frame of the trial. As no single mo-
dality has been shown to be effective in all classification or
prediction challenges, researchers have continued to focus
on the use of multiple modalities. Optimum combinations
of modalities differ between challenges. Although MRI
and PET (FDG and florbetapir) were roughly equivalent in
their ability to discriminate between AD and CN subjects
and between AD and MCI subjects, changes in cortical
thickness outperformed other measures for EMCI and CN
subjects and may be an early indicator of neurodegeneration
[348]. A systematic appraisal of the diagnostic and prog-
nostic abilities of hippocampal volume and CSF biomarkers,
alone and in combination, in both APOE4 carriers and non-
carriers found that their multimodal classifier outperformed
either single modality [349]. Ab42 levels contributed to
discriminating between CN and MCI or AD subjects but
not between MCI and AD subjects. Conversely, p-tau181, a
marker of neurodegeneration, played a role in discriminating
between AD and MCI or CN subjects but not between MCI
and CN subjects [349].

8.1.1.2. Prediction of CN to MCI progression
Biomarkers that predict cognitive decline in CN subjects

also reflect disease progression. Based on the hypothetical
AD model [258], successive preclinical AD stages have
been proposed comprising firstly Ab deposition (stage 1),
followed by evidence of neuronal injury biomarkers (stage
2), and finally subtle cognitive impairment (stage 3) [278].
Consistent with the stages, Ab42, but not p-tau181, predicted
CN to MCI, but not MCI to AD progression [350]. A cut
point of ,220 pg/mL Ab42, well above the established cut
point for Ab positivity of 192 pg/mL [292], was the best
CSF predictor of decline on ADAS-cog in CN subjects,
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although t-tau and p-tau181 alone and their ratios with Ab42
at modified cut points were also good predictors [350]. A
combination of all CSF biomarkers using the modified cut
points predicted progression to MCI with an accuracy of
65% [350]. In another study, volumetric changes and t-tau/
Ab42 were associated with a higher risk of progression in
CN subjects, and lower baseline memory measures were
the strongest predictors of progression [278]. It is important
to note that although neuronal injury is included as a diag-
nostic criterion in AD, different markers of neuronal injury
(hippocampal volume, regional glucose metabolism, levels
of CSF p-tau181) were not found to be equivalent [278,351].

8.1.1.3. Prediction of MCI to AD progression
Predictors of MCI progression to AD also reflect the

biomarker changes occurring at that stage of disease pro-
gression. Combinations of regional volumetric, glucose
metabolism, and cortical deposition measures predicted pro-
gression with accuracies of 72% [352] and 76% [353]. Neu-
ropsychological measures alone (clock drawing 1 AVLT)
[354], or in combination with hippocampal volume [355],
reached similar accuracies. A point-based tool with a range
of 0 to 9 which included scores from the Functional Activ-
ities Questionnaire (FAQ), ADAS-cog and Clock-drawing
tests, middle temporal cortical thinning, and hippocampal
atrophy also had good predictive accuracy: 91% ofMCI sub-
jects with 7 to 9 points converted to ADwithin 3 years [356].
The primary drivers of prediction in the Disease State Index
[357] wereMRI features; additional neuropsychological and
CSFmarkers improved accuracy only slightly [358]. A com-
parison of effect sizes of neuropsychological, MRI, FDG
PET, and CSF measures for cognitive decline over 4 years
in MCI nonconverters and converters (Fig. 37) [354] illus-
trates the relative importance of these measures, particularly
atrophy in temporal regions, functional and memory impair-
ment, and changes in glucose metabolism compared to CSF
biomarkers in this transition.

8.1.1.4. The effect of APOE4 status on the prediction of
progression

Inclusion of APOE4 status substantially improved the
prediction of MCI progression. In APOE41 subjects, a hip-
pocampal volume classifier had an accuracy of 76% [349],
and a classifier based on FDG PETand volumetricMRImea-
sures had an accuracy of 86.8% [359]. In APOE4 subjects,
the best predictor of progression was a CSF classifier
including p-tau181 that achieved 78% accuracy [349], sug-
gesting that APOE4 plays a role in modulating disease tra-
jectory, and may account for a portion of the observed
disease heterogeneity.

8.1.1.5. Cognitive and clinical factors in prediction and
diagnosis

Although multimodal classifiers currently predict future
decline with the best overall accuracy, the use of cognitive
or clinical factors that can be determined at a clinical visit
can reduce cost, avoid invasive lumbar puncture procedures,
and save time. A brief clinical index which included being
female, several neuropsychiatric symptoms, and measures
of cognition and functional dependence classified subjects
into low (14% converted over 3 years), moderate (51% con-
verted), and high-risk groups (91% converted) and had a
Harrell’s c-statistic of 0.71, a predictive power similar to
other commonly used prediction indexes such as the Fra-
mingham cardiovascular risk indicator (Fig. 38) [360]. Spe-
cific cognitive tests may be effective predictors. Clock
drawing and RAVLT trial 5 were equally predictive of
MCI to AD progression (AUC 0.78) as other single cogni-
tive, FDG PET, structural MRI, and CSF biomarkers
[354]. Two items on the FAQ (paying attention and under-
standing TV program, paying bills/balancing checkbook)
predicted greater hazard of progression from CN to MCI.
Similarly, the Everyday Cognition scale item “keeping
mail and papers organized” predicted CN to MCI progres-
sion with hazard ratio of 2.27 [361]. These studies support
the idea that simple questions regarding function can predict
progression to MCI in CN elderly.

8.1.1.6. MRI biomarkers in prediction and diagnosis
MRI, although more costly than cognitive tests, is nonin-

vasive and accessible in most settings. Automatic MR imag-
ing analysis may assist a clinician in making an initial
diagnosis. An automatic medial temporal lobe atrophy mea-
surement predicted progression from SMC toMCI, and from
MCI to AD with sufficient accuracy for clinical utility
(AUCs of 0.904 and 0.810, respectively) [362]. Two studies
have investigated use of the established Visual Rating Scale
which obviates the need for research-oriented volumetric
segmentation methods such as FreeSurfer. The entorhinal
cortex visual rating system outperformed other visual rating
systems against FreeSurfer for the AD versus CN classifica-
tion (AUCs of 0.87 and 0.86, for entorhinal cortex and Free-
Surfer, respectively) and for the MCI versus CN
classification (AUCs of 0.73 and 0.75, for entorhinal cortex
and FreeSurfer, respectively) [363]. Both visual rating sys-
tems and volumetric measures were good predictors of
MCI to AD progression, with the entorhinal cortex visual
rating system outperforming both the hippocampal visual
rating system and volumetric analysis of the entorhinal cor-
tex [363]. The visual rating scale for medial temporal atro-
phy outperformed equivalent visual rating scales of global
cortical atrophy and posterior atrophy, achieving AUCs of
0.838 and 0.624 for the classification of AD versus CN,
and MCIc versus MCInc, respectively, when optimized cut-
offs for specific age ranges were used [364]. Visual rating
scales may also have clinical utility in detecting sources of
disease heterogeneity. A visual rating scale, the frontal sub-
scale of the global cortical atrophy scale, reliably detected
frontal atrophy and reductions in cortical volume and thick-
ness that characterize the executive subtype of AD [365].

Further gains in the predictive ability of MRI, particularly
in CN subjects, have come from new approaches which can
identify changes in subtle structural features that occur



Fig. 37. Patterns of decline of the different classes of markers. The greatest effect sizes for MCI converters were for functional measures (Functional Activities

Questionnaire [FAQ]) and for cognitive measures such as the ADAS-cog. Effect sizes for volumetric and CSF biomarker measures were much smaller. Panel 1:

effect sizes for the difference in cognitive and functional measures between baseline and each one of the follow-ups frommonths 12–48: (A)MCI converters, (B)

stable MCI. Panel 2: effect sizes in MRI morphometry, FDG PET HCI, and CSF biomarkers between baseline and months 12–36 follow-ups: (C) MCI con-

verters, (D) stable MCI. Abbreviations: ADAS-cog, Alzheimer’s Disease Assessment Scale–cognitive; CSF, cerebrospinal fluid; FDG, [18F]-fluorodeoxyglu-

cose; HCI, hyperbolic convergence index; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; PET, positron emission tomography.

Reproduced with permission from [354].
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Fig. 38. Observed versus predicted progression from amnestic MCI to AD

over 3 years by Brief Clinical Index point score. The solid line shows the

proportion of subjects predicted to progress from amnestic MCI to AD

over 3 years as a function of the Brief Clinical Index point score. The dotted

line shows the actual proportions that progressed at each point score value

based on 3-year Kaplan-Meier estimates. The vertical bars showed the num-

ber of individuals at each point score value (right vertical axis). Abbrevia-

tions: AD, Alzheimer’s disease; MCI, mild cognitive impairment.

Reproduced with permission from [360].
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before hippocampal atrophy. For example, hippocampal
texture in the absence of hippocampal volume loss ac-
counted for cognitive impairment in MCI subjects [28]. A
hippocampal grading score which detected subtle patterns
of neurodegeneration predicted progression to AD with an
accuracy of 72.5% 7 years in advance of this transition
[366]. Other features with prognostic potential include
changes in the hippocampal subfield and presubiculum vol-
umes [367], shape changes and atrophy rate of the corpus
callosum [368], greater WM signal intensity ratio [369],
and signal and texture-related features [370]. Data-driven
feature selection outperformed region of interest (ROI)-
based approaches in the prediction of MCI progression
[371], suggesting that the subtle relationships between
different brain areas detected by methods such as recursive
feature elimination are highly effective predictors (Table 9).

8.1.2. Novel CSF and blood biomarkers

8.1.2.1. Novel CSF biomarkers
Proteomic approaches have identified numerous potential

novel AD biomarkers in both CSF and blood. Potential AD
biomarkers can be identified using a multiplex panel of
selected CSF analytes that reflect the brain proteome. The
p-tau181/Ab42 ratio, a strong predictor of progression from
CN to MCI over a 3- to 4-year period, was used as a contin-
uous variable and endophenotype for AD to identify novel
CSF analytes from a proteomic panel [168]. The most signif-
icantly associated analyte was heart fatty acid binding pro-
tein (FABP), which was comparable to p-tau181/Ab42 in its
ability to predict progression from CN to impaired cognition
over 4 years. Other significant predictors were macrophage
migration inhibitory factor and VEGF. A panel of 24 CSF
analytes outperformed a combination of MRI and CSF mea-
sures in predicting MCI progression to AD (accuracy 94.1%
vs. 76.5%) and included FABP, chromogranin A, matrix
metalloproteinase 2, and pancreatic polypeptide as the stron-
gest predictors [166]. The panel also discriminated between
MCI and CN subjects with an accuracy of 91.5%, a sensi-
tivity of 87.7%, and a specificity of 94.3%. Markers of
inflammation, complement 3 and factor H, were associated
with increasing ADAS-cog scores and lateral ventricular
volume over time, suggesting they may have prognostic,
but not diagnostic, utility [167].

MS is an alternative proteomics technology to multiplex
immunoassay panels that can increase the speed, sensitivity,
and quantitative precision of biomolecule analysis limited to
a subset of analytes. The Foundation for the National Insti-
tutes of Health Biomarkers Consortium identified CSF-
based AD biomarkers using a Multiple Reaction Monitoring
MS panel of analytes selected for their relevance to AD and
from previous multiplex immunoassay findings. The most
significant peptides able to differentiate between MCIc
and MCInc subjects were the blood proteins, hemoglobin
A, hemoglobin B, and superoxide dismutase, consistent
with the hypothesis that the blood brain barrier is leaky in
AD. FABP was the top peptide for discriminating between
MCI or AD and CN subjects, consistent with findings from
immunoassay approaches. The top peptides predicting
MCI to AD progression were putative markers of synaptic
loss and neuronal injury/degeneration, neuronal pentraxin
2, VEGF, and secretogranin-2 (AUC 0.79).

8.1.2.2. Blood-based biomarkers
Because a blood-based test for AD is less costly and less

invasive than a CSF-based test, there has been considerable
effort in identifying blood-based diagnostic and prognostic
AD biomarkers. Although CSF proteins are generally
thought to reflect the brain proteome, the relationship be-
tween proteins in plasma and CSF is not clear. The cell
bound fraction of Ab42 was associated with left hippocampal
and left entorhinal cortex volumes, suggesting that blood
Ab42 at least partially reflects Ab production and/or clear-
ance in the brain [421]. A blood biomarker–based signature
comprising chemokine ligand 13, immunoglobulin M-1,
interleukin 17, pancreatic polypeptide, and vascular cell
adhesion protein-1 predicted neocortical Ab burden with a
sensitivity of 79% and a specificity of 76% [422]. These
two studies suggest that Ab accumulation in the blood is
associated with neocortical Ab burden and characteristic
AD atrophy and that blood-based assessment of Ab burden
could have clinical utility.

Changes in plasma levels of bone morphogenetic protein
6, selectin, matrix metalloproteinase 10, and neuronal cell
adhesion molecule were correlated with atrophy in temporal
lobe structures, the posterior cingulate cortex, and thalamus,
and diagnosed ADwith a sensitivity of 93% and a specificity
of 92% [423]. A panel of plasma proteins including inter-
leukin 16, thyroxine-binding globulin, and peptide YY
were predictive of MCI progression (accuracy 62.5%)
[423]. Redox-reactive antiphospholipid autoantibodies



Table 9

Summary of classification and prediction methods

Modality

Feature selection/

dimensionality

reduction Classifier N

Classification challenge

Unique approach ReferenceAD versus CN MCI versus CN

MCI versus

AD

MCIc versus

MCInc Other

MRI Multi-atlas SVM 459 ACC

SEN

SPE

AUC

91.6

88.6

93.9

0.87

ACC

SEN

SPE

AUC

72.4

72.1

72.6

0.67

Subjects registered to multiple

atlases, features selected

from each atlas, then jointly

selected

[372]

MRI Multi-atlas SVM 459 ACC

SEN

SPE

90.7

87.6

93.0

ACC

SEN

SPE

73.7

76.4

70.8

Joint learning of optimum

representation of features

from multiple atlases and

classifier using maximum

margin approach

[373]

MRI Multitemplate SVM 459 ACC

SEN

SPE

93.3

92.8

95.7

ACC

SEN

SPE

80.9

86.0

78.4

Inherent structure-based

multiview learning

(ISML) clusters subjects

within a specific class into

subclasses based on features

learned using multiple

templates

[374]

MRI Independent

component

analysis

SVM 818 ACC

SEN

SPE

86.4

88.3

84.0

ACC

SEN

SPE

70.2

72.9

67.5

ACC

SEN

SPE

69.8

73.4

66.2

Uses novel ICA-based feature

extraction method and linear

SVM for classification

[375]

MRI Spatially weighted

principal

component

analysis

SVM 390 Average

misclassifi-

cation

%: 0.216

Incorporates spatial structure by

using both global and local

spatial weights for feature

selection to improve on

PCA alone

[376]

MRI Circular harmonic

function 1 principal

component analysis

SVM NA ACC

SEN

SPE

83.8

88.2

79.1

ACC

SEN

SPE

69.5

74.8

62.5

ACC

SEN

SPE

62.1

75.1

49.0

Uses circular harmonic functions

to extract local features from

the hippocampus and posterior

cingulate cortex and PCA for

dimensionality reduction

[377]

MRI Gaussian process

models

415 AUC 0.94 AUC 0.91 Generates quantitative maps of

z-scores for WM, GM, and

CSF abnormalities for clinical

decision support

[378]

MCIc versus

CN

MRI Manifold learning:

relevant variable

selection (learned

ROIs)

MRI disease

state score

363

ADNI-GO

ACC

SEN

SPE

61

50

72

Novel MRI disease state score

(MRI DSS). Also used to

predict MMSE scores and

achieved separation between

CN, EMCI, MCInc, MCIc,

and AD groups

[379]

EMCI versus

CN

SVM 511

ADNI

ACC

SEN

SPE

86

86

85

ACC

SEN

SPE

71

75

67

ACC

SEN

SPE

82

81

83

MCIc versus

CN

MRI Manifold learning:

self-organizing

map

SVM 818 ACC

SEN

SPE

AUC

90

87

92

0.92

ACC

SEN

SPE

AUC

84

82

87

0.84

Uses self-organizing map to select

maximally discriminative

ROIs and computes relative

importance measure for

each ROI

[380]
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MRI Manifold learning:

local binary map

1 custom masks

SVM 363 ACC

SEN

SPE

AUC

82.8

80.4

82.7

0.87

ACC

SEN

SPE

AUC

61.5

61.5

63.5

0.64

Uses local binary maps to

directly select disease-

specific patterns on a

voxelwise basis without

nonrigid registration. Also

uses seven knowledge-

based ROIs

[381]

MRI Multivariate regression:

elastic net

Low density

separation

834 AUC 0.73 Used a semisupervised learning

method, low density

separation, which uses

unlabeled data to improve

prediction of progression

over supervised methods

[382]

MRI Multivariate regression:

Ordinal regression

ORCHID score:

probabilistic

(not binary)

564 ACC

AUC

91

0.95

ACC

AUC

70

0.75

Models all clinical groups

simultaneously as a

continuum of disease,

generates a summary score,

ORCHID (Ordinal Regression

Characteristic Index

of Dementia)

[383]

MRI Multivariate regression:

knockout strategy

Random Forests 245 SEN 98.0 Iterative multivariate knockout

algorithm that uses Random

Forests to construct set of

relevant features

[384]

MRI Tree-structured

sparse learning

SVM 830 ACC

SEN

SPE

90.2

85.3

94.3

ACC

SEN

SPE

70.7

56.2

80.9

ACC

SEN

SPE

87.2

80.1

92.2

Uses new tree construction

method to cluster similar

discriminative voxels, then

a tree-structured sparse

learning step and SVM

classifier

[385]

MCIc versus

CN

MRI FreeSurfer to select

ROIs, cortical

thickness measures

v-one class SVM 814 ACC 84.3 ACC 54.4 Focuses on detection of outliers

who have abnormal brain

patterns in a cognitively normal

group. Trained on CN. Produces

a brain abnormality index.

[386]

Labeled as outliers. In control group,

ACC 5 67.5%

MRI Recursive feature elimination significance

(p) maps from SVM weights

509 AUC 0.92 AUC 0.74 AUC 0.69 AUC 0.61 Uses p-maps of SVM weights as

selection features in a wrapper

method

[387]

MRI Recursive feature elimination—SVM 370 ACC 95.1 Wrapper method based on

recursive feature elimination

and SVM selected GM and

WM ROIs for classification

with no need for dimensionality

reduction step

[388]

MRI (VBM) Probability distribution

function based

SVM 260 ACC

SEN

SPE

AUC

89.7

87.7

91.6

0.95

Extracts statistical patterns at

multiple levels including

use of probability distribution

function of VOIs to represent

statistical patterns

[389]

(Continued )
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Table 9

Summary of classification and prediction methods (Continued )

Modality

Feature selection/

dimensionality

reduction Classifier N

Classification challenge

Unique approach ReferenceAD versus CN MCI versus CN

MCI versus

AD

MCIc versus

MCInc Other

MRI Hierarchical fusion of multilevel classifiers 652 ACC

SEN

SPE

92.0

90.9

93.0

ACC

SEN

SPE

85.3

82.3

88.2

Divides classification of high

dimensional features into

multiple low-dimensional

classification problems and

integrates features

hierarchically

[390]

MRI Predefined ROIs and

routine feature

ranking (Pearson

Correlation

Coefficient)

Distance informed

metric learning

321 ACC

SEN

SPE

83.1

75.0

91.2

ACC

SEN

SPE

71.6

77.6

65.6

Semisupervised metric learning

framework that uses pairwise

constraints that specify the

relative distance between a

pair of patients, according

to their classification group

[391]

MRI Graph-based multiple

instance learning

SVM 834 ACC

SEN

SPE

89.2

85.1

92.6

ACC

SEN

SPE

69.3

66.7

71.2

Extracts local intensity patches

as features and uses a novel

graph-based multiple instance

learning approach to assign

disease labels to patches

[392]

MRI t-tests of predefined

cortical thickness

measures

C4.5 decision

tree

364 SEN

SPE

80.0

80.0

Encodes selected features into

an ontology and uses C4.5

algorithm for clinical

decision support

[393]

MRI Pseudo-Zernike

moments

Neural network 500 ACC

SEN

SPE

97.3

96.6

97.8

ACC

SEN

SPE

95.6

95.9

95.3

ACC

SEN

SPE

94.9

94.2

95.6

Uses Pseudo-Zernike

moments (30) for feature

selection and neural

network scaled conjugate

gradient back propagation

algorithm as classifier

[394]

fMRI Sparse inverse covariance

estimation matrix 1
Kernel-based PCA

SVM 82 ACC 73.2 Uses a sparse inverse

covariance estimation technique

to model brain connectivity

[395]

Note: EMCI

fMRI Sparse learning using

dictionary learning

algorithm

SVM 210 ACC 94.1 ACC 92.0 ACC 92.3 Functional features are

represented in a weighted

dictionary matrix

[396]

Note: SMC

FDG PET Spatially weighted principal component

regression

196 Average

misclassi-

fication

0.117%

Spatially weighted selection of

both individual features and

neighboring patterns

[397]

FDG PET Voxel-based longitudinal SVM 233 ACC 92.6 ACC 70.2 Extension of [398] using

whole-brain voxel approach

for longitudinal analysis

of FDG PET

[399]

FDG PET Multi-channel pattern

analysis 1 3D Gabor

wavelets feature

extraction

SVM 369 MAP 56.3 MAP 76.2 Multi-channel approach integrates

multiple patterns of

hypometabolism from

different patient groups using

different analysis tools

[400]
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FDG PET Gaussian mixture model SVM 84 ACC

SEN

SPE

89.1

92.0

86.0

ACC

SEN

SPE

63.2

65.0

61.0

ACC

SEN

SPE

80.2

80.0

80.0

Semi–data-driven approach to

feature selection defines

clusters of ROIs from an

NC image and uses these to

extract features from scans

of MCI and AD patients

[401]

FDG PET Optimization of

preprocessing

steps for SPM8

t-sum score 108 ACC

SEN

SPE

AUC

68.0

70.0

68.0

0.83

Modified preprocessing steps

using motion correction,

custom FDG template,

different regions for intensity

scaling and varied smoothing.

[402]

MRI

APOE4

demographics

Recursive feature

elimination

Random

Forests

575 ACC

SEN

SPE

89.6

90.7

82.9

SEN 78.0 Compares efficacy of Random

Forest classifiers in several

datasets including ADNI. RF

model outperformed SVM,

best model combined

volumetric and cortical

thickness measures with

APOE

[403]

Note:

12-month

progression

MRI

Cognitive

Regularized logistic

regression

Low density

separation

(SVM)

825 AUC 0.90 Uses semisupervised learning to

construct an aggregate

biomarker by leading a

separate MRI biomarker

first and subsequently

combining it with age and

cognitive measures

[404]

MRI

PET

CSF

Multivariate regression:

LASSO

based 1 novel loss

function

SVM 202 ACC

SEN

SPE

AUC

95.9

95.7

98.6

0.99

ACC

SEN

SPE

AUC

82.0

98.0

60.1

87.0

ACC

SEN

SPE

AUC

72.6

48.5

94.4

0.79

Uses a novel loss function

combined with a group

lasso method for joint

feature selection.

Multimodal classification

outperformed single

modalities

[405]

MRI

HC shape

longitudinal

Multivariate regression:

fused LASSO 1
LDDMM

SVM 103 SEN

SPE

NPV

PPV

84.0

48.0

0.93

0.27

Comparison of spatial

regularization techniques

for detecting longitudinal

hippocampal shape

changes in MCI progression

[406]

MRI

APOE4

Cognitive

Demographics

Multivariate regression:

weak hierarchical

LASSO

Random

Forest

293 ACC

SEN

SPE

74.8

66.7

81.4

Uses hierarchical constraints

and sparsity regularization

to capture underlying

interactions between

biosignatures

[407]

MRI

FDG PET

Multitask learning::

K means clustering

1 l 2,1 regression

SVM 202 ACC

SEN

SPE

AUC

95.1

94.0

96.3

0.96

ACC

SEN

SPE

AUC

79.5

88.9

62.0

0.78

Uses a novel clustering

approach to discover

mulitpeak data distributions.

These are accounted for in a

subsequent a multitask

learning step in a l 2,1
regression framework

[408]

MRI

FDG PET

CSF

Multitask learning:

K means clustering

1 l 2,1 regression

SVM 202 ACC

SEN

SPE

AUC

94.3

94.0

94.3

0.96

ACC

SEN

SPE

AUC

80.1

86.8

67.3

0.82

ACC

SEN

SPE

AUC

74.6

46.7

89.0

0.72

Similar approach to [408].

NOTE: MCI versus AD

classification uses ONLY

MRI 1 PET data

[409]

(Continued )
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Table 9

Summary of classification and prediction methods (Continued )

Modality

Feature selection/

dimensionality

reduction Classifier N

Classification challenge

Unique approach ReferenceAD versus CN MCI versus CN

MCI versus

AD

MCIc versus

MCInc Other

MRI

FDG PET

Multitask learning:

relational function

1 l 2,1 regression

SVM 202 ACC

SEN

SPE

AUC

95.7

96.6

98.2

0.98

ACC

SEN

SPE

AUC

79.9

97.0

59.2

0.85

ACC

SEN

SPE

AUC

72.4

49.1

94.6

0.83

Introduces a function to conserve

information about

feature-feature relations,

response-response relations,

and sample-sample relations

while jointly solving both

classification and prediction

of continuous variables

[410]

MRI

FDG PET

Multitask learning:

label-aligned

regularization

SVM 202 ACC

SEN

SPE

AUC

95.6

95.1

96.5

0.97

ACC

SEN

SPE

AUC

80.3

85.0

70.8

0.81

ACC

SEN

SPE

AUC

69.8

66.7

71.4

0.69

Uses a label-aligned regularization

term in multitask learning

step to use relationships

across subjects, as well as

across modalities in the

feature selection step

[411]

MRI

FDG PET

CSF

Multitask learning: graph-guided 1 latent

LASSO

group penalty

199 ACC 93.0 ACC 80.0 Uses new latent group LASSO

penalty combined with an

undirected graph approach

to select correlated features

that can jointly predict class

label and clinical scores

[412]

MRI,

demographics,

clinical, APOE4,

PICALM

Statistical learning embedded in SVM-based

multiple kernel framework

213 ACC

SEN

SPE

91.0

95.0

80.0

Longitudinal, multimodal data are

leveraged by an embedded

novel statistical learning

approach in a multikernel

framework.

[413]

MRI

FDG PET

CSF

Domain transfer

feature and

sample selection

SVM 202 ACC

SEN

SPE

AUC

76.5

81.2

71.9

0.84

Uses both target domain (MCI)

and auxiliary domains (CN

and AD) to extract features

from imaging and CSF

modalities in domain

transfer method. Fuses

selected features with a

domain transfer SVM

[414]

MRI

FDG PET

CSF

Multimodal manifold-regularized transfer

learning

202 ACC

SEN

SPE

AUC

80.1

85.3

73.3

0.85

Uses auxiliary domain

information (as in [414]).

Integrates kernel-based

maximum mean discrepancy

criterion and a manifold

regularization function into

single learning algorithm

for both feature selection

and classification

[415]

MRI

FDG PET

CSF

Multimodal canonical correlation analysis 103 ACC 95.1 Used canonical correlation

analysis to fuse data in

multimodal classification

as it preserves intermodal

relationships.

[416]
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MRI

PET

CSF

Deep architecture 1
multitask learning

SVM 202 ACC

SEN

SPE

95.1

92

98.3

ACC

SEN

SPE

80.193.9

53.7

ACC

SEN

SPE

74.1

50.5

92.7

Uses novel deep learning

architecture that discards

uninformative features

in a hierarchical manner

during multitask learning

[417]

MRI/PET/

CSF

MRI/PET MRI/PET

MRI

PET

Deep learning with

Deep Boltzman

Machine

Hierarchical

SVM

398 ACC

SEN

SPE

AUC

95.4

94.7

95.2

0.99

ACC

SEN

SPE

AUC

85.7

95.4

65.9

0.88

ACC

SEN

SPE

AUC

75.9

48

95.2

0.75

Uses deep learning with a

Boltzman Machine to find

hierarchical feature

representation from MRI

features and then fuses

these with complementary

information from PET

[418]

MRI

PET

CSF

Demographics

PCA/LASSO

1 multitask

deep learning

with dropout

technique

SVM 202 ACC 91.4 ACC 77.4 ACC 57.4 Uses dropout technique as

method of regularization

for deep learning with

small data

[419]

MRI

Demographics

Independent

component

analysis

Discriminant

classification

analysis

320 ACC

SEN

SPE

94.3

94.9

94.0

ACC

SEN

SPE

83.3

76.7

89.1

ACC

SEN

SPE

84.1

86.1

73.0

ACC

SEN

SPE

80.0

78.3

81.5

Derived GM covariates patterns

using independent component

analysis and used for diagnostic

classification in combination

with cognitive performance

[304]

MRI

PET

Stacked auto-encoder

1 multitask deep

learning with

zero-mask strategy

Softmax logistic

regression

331 ACC

SEN

SPE

91.4

92.3

90.4

ACC

SEN

SPE

82.1

60.0

92.3

Uses stacked autoencoders to

extract high-level features

and a zero-masking strategy

to extract synergy between

modalities

[420]

Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment; MCIc, mild cognitive impairment converters (progressive MCI); MCInc, mild cognitive impairment non-

converters (stable MCI); MRI, magnetic resonance imaging; SVM, support vector machine; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the receiver operating curve; ICA, independent

component analysis; PCA, principal component analysis; WM, white matter; GM, gray matter; CSF, cerebrospinal fluid; ADNI, Alzheimer’s Disease Neuroimaging Initiative; EMCI, early mild cognitive impair-

ment; ROI, regions of interest; VBM, voxel-based morphometry; fMRI, functional magnetic resonance imaging; SMC, subjective memory concern; FDG PET, 18F-flurodeoxyglucose positron emission tomog-

raphy; MAP, mean average precision; APOE4, apolipoprotein ε4 allele; PET, positron emission tomography; HC, hippocampus; LASSO, least absolute shrinkage and selection operator; LDDMM, large

deformations via diffeomorphisms.
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may be increased early in disease due to neurodegenerative
changes in cell membranes, and APOE4 may act by
increasing redox-reactive Fe during disease progression
[152]. Elevated levels of redox-reactive autoantibodies
against phosphatidylserine, phosphatidylethanolamine, and
phosphatidylcholine were elevated in MCI compared to
CN subjects, and a panel of these autoantibodies discrimi-
nated between MCI and CN with a sensitivity of 80% and
a specificity of 83.3% [424].

In conclusion, at the time of this review, no established
validated blood test for AD exists. However, there is a press-
ing need for a test with relatively good sensitivity (even if
lacking some specificity) to identify subjects at high risk
for AD, who would then undergo further testing such as
Ab PET for diagnosis. There is a great deal of work going
on in this field, and the availability of ADNI plasma samples
hopefully will provide material for further investigation.

8.1.2.3. Combinations of CSF and blood biomarkers
A combination of both CSF and blood analytes may

have even greater predictive power than either fluid alone.
Lehallier et al. [425] examined multiple groups of vari-
ables—clinical, genetic, volumetric, cognitive, and CSF
and plasma analytes—to identify a biomarker signature
that could predict the time to progression from MCI to AD
1 to 6 years before clinical diagnosis. Variables from
different categories were differentially associated and
appeared to carry complementary information about the dis-
ease (Fig. 39). For example, CSF and plasma “communi-
comes” containing proteins involved in intracellular
communication were highly associated with each other but
not with established CSF biomarkers, whereas genetic fac-
tors (APOE4, TOMM40) were predominantly associated
with AD CSF biomarkers. Predictive models for each pro-
gression time point in 6- or 12-month intervals identified
six variables as top predictors in most models: CDR-SB,
CSF tumor necrosis factor–related apoptosis-inducing
ligand receptor 3 (TRAIL-R3), plasma apolipoprotein A-II
(ApoAII), and CSF fibroblast growth factor 4 (FGF-4).
Most analytes had the highest accuracies in predicting pro-
gression within 2 to 3 years. A final model consisting of
two plasma (ApoAII, cortisol), and four CSF (FGF-4,
FABP-H, calcitonin, and TRAIL-R3) analytes predicted
MCI progression within 3 years with a sensitivity of 88%
and a specificity of 70%. A comparison of this model with
other groups of variables is shown in Fig. 40 and supports
the idea that novel plasma and CSF biomarkers may outper-
form modalities traditionally used for prediction such as
MRI volumes, cognitive scores, or AD CSF biomarkers
and APOE status.
8.1.3. Arterial spin labeling
Hypoperfusion of brain tissue, detected by arterial spin la-

beling MRI, precedes atrophy and may therefore be a useful
biomarker for early changes in the disease process. Cerebral
blood flow was marginally outperformed by structural MRI
(AUCs of 0.87 compared to 0.89) in the classification of AD
versus CN subjects [426], but the technique may have more
utility in classifications such as MCI versus CN or in predict-
ing cognitive decline in subjects with normal cognition.

8.1.4. Network connectivity measures
The concept of AD as a disconnection syndrome posits

that some of the earliest changes in disease progression are
disruptions to network connectivity. Network connectivity
measures, which have been shown to differ between patient
groups [321–323,329,333], may therefore have prognostic
and diagnostic utility.

8.1.4.1. Structural connectivity measures
A variety of structural connectivity measures have been

tested for their diagnostic or prognostic abilities. These
include connectivity measures of WM fiber pathways
[427], the tensor–based Fiber Assignment by Continuous
Tracking algorithm [428], a new tractographic feature,
average tract length [429], and a novel flow-based measure
of brain connectivity [430]. The results were variable with
accuracies ranging from 71.25% [428] to 97% [429] for
the AD versus CN challenge, and from 57.3% [428] to
59.2% [430] for the MCI versus CN challenge. One diffi-
culty in using structural connectivity measures is the high
dimensionality of WM tracts. Nir et al. [431] used a novel
maximum density pathway algorithm to find the shortest
path between probabilistic ROIs and made a compact repre-
sentation ofWM tracts from whole-brain tractography. They
used their low-dimensionality representation for classifica-
tion, achieving accuracies of 84.9% and 79% for the AD
versus CN, and MCI versus CN challenges, respectively.

8.1.4.2. Functional connectivity measures
Progressive deterioration of functional connectivity ap-

pears to be characteristic in AD and is reflected in changes
to the network small-world properties and other measures.
MCI subjects had lower clustering coefficients and longer
characteristic path length than CN subjects in one study,
and alterations in these properties in the DMN discriminated
between EMCI and CN with an accuracy of 79.7% [432]. A
topological metric, compression flow, derived from network
centrality criteria, outperformed individual small-world
metrics alone. It monotonically followed impairment pro-
gression in each patient group, and discriminated between
all patient groups (CN, EMCI, LMCI, and AD) [433]. Other
studies developed a novel multifractal feature [434] and
created a compact representation of the brain network
[395] for classification purposes. Machine learning tech-
niques were used for dimensionality reduction and the selec-
tion of the most discriminative regions.

8.1.4.3. Cortical atrophy networks
Cortical atrophy networks which capture the spread of at-

rophy have been used for classification in several studies.
Surface connectivity maps describing the center of each
cortical region affected, the individual volume loss of these



Fig. 39. Associations between 249 variables shown by a circular visualization of correlation plot. Data from 928 patients with mild cognitive impairment were

used to produce a network visualization of the complex relationships between and within variables in ADNI. Lines represent the Spearman rank correlation

coefficient j(r)j5 .3 between two variables. 1—sex, 2—years education, 3—age, 4—MMSE, 5—ADAS total score, 6—ADAS modified, 7—CDR composite

score, 8—CDR-SOB composite score, 9—FAQ, 10—GDS, 11—Hachinski Ischemic Scale score, 12—NIQ total score, 13—brain volume, 14—intracranial

volume, 15—ventricular volume, 16—hippocampal volume, 17—inferior lateral ventricular volume, 18—middle temporal volume, 19—inferior temporal vol-

ume, 20—fusiform cortical volume, 21—entorhinal cortex volume, 22—APOE4 carrier, 23—no. of APOE4 alleles, 24—TOMM40 polyT allele one, 25—

TOMM40 polyT allele 2, 26—8-Iso-PGF, 27—8,12-iso-IPFa, 28—CSF white blood cell count, 29—CSF red blood cell count, 30—CSF total protein concen-

tration, 31—CSF glucose level, 32—total plasma homocysteine level, 33—plasma Ab40 level, 34—plasma Ab42 level, 35—plasma Ab40:AB42 ratio, 36—

CSFAb42 level, 37—CSF t-tau level, 39—CSFAb42:t-tau ratio, 40—CSFAb42-p-tau ratio, 41—CSF p-tau:t-tau ratio, 42 to 115—74 CSF analytes measured

by multiplex assay, 116 to 249—hundred and 34 plasma analytes measured by multiplex assay. Abbreviations: ADAS, Alzheimer’s Disease Assessment Scale;

ADNI, Alzheimer’s Disease Neuroimaging Initiative; CDR-SOB, Clinical Dementia Rating–Sum of Boxes; CSF, cerebrospinal fluid; FAQ, Functional Activ-

ities Questionnaire; MMSE, Mini–Mental State Examination. Reproduced with permission from [425].

M.W. Weiner et al. / Alzheimer’s & Dementia 13 (2017) e1-e85 e61
regions, and how they move apart were used to define func-
tional regions of the brain [435]. This approach outper-
formed whole-brain or hippocampal volume in predicting
the progression of MCI subjects and achieved AUCs of
0.88, 0.78, and 0.77 for AD versus CN, MCI versus CN,
and MCI versus AD classifications, respectively. Instead of
solely finding connectivity between areas of cortical atrophy,
Friedman [436] developed a new approach, Directed Pro-
gression Networks (DPNets), based on the idea of a prion-
like spread of the AD pathology along axonal tracts in a
characteristic and systematic pattern. DPNets found the di-
rection of connections between network hubs to capture
the temporal progression of brain disease and outperformed
undirected networks in the classification of AD versus CN
subjects, achieving an AUC of 0.87. Interestingly, the
network generated by this method did not have the small-
world properties observed in almost all other brain networks
probably because this network reflects the spread of disorder
in the brain, and not computation.

8.1.4.4. Future directions
The use of connectivity measures in classification and pre-

diction is still in its infancy. A studywhich combinedmetabolic
and structural connectivity patterns by constructing networks
from both FDG PET and structural MRI data was able to
discriminate between AD and CN, MCI and CN, and MCI
and AD subjects with AUCs of 0.96, 0.91, and 0.88, respec-
tively [437]. The results for classifications involving MCI
compare favorably with other state-of-the-art multimodal ap-
proaches, hinting at the potential power of multimodal network



Fig. 40. Prediction of progression from mild cognitive impairment to Alz-

heimer’s disease within 3 years. Markers in plasma or CSF predicted pro-

gression with a relatively high sensitivity compared to standard AD CSF

biomarkers, regional MRI volumes, or cognitive scores. Prediction includes

seven models combining different subsets of variables. Correct classifica-

tion rate of the top 20 variables was estimated on the test data set after

1000-fold resampling of the learning and test data sets. Sex and age were

included in all models. APOE4 indicates apolipoprotein ε4. Abbreviations:

AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MRI, magnetic reso-

nance imaging. Reproduced with permission from [425].
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connectivity approaches. Methodological improvements will
aid in the development of this exciting new area. Technical is-
sues were found to influence interpretation of graph theory
measures [438] and may be overcome by the standardization
of connectomics methods. One study improved classification
sensitivity and specificity by including a more modern group-
wise DTI registration step [439] and likely represents just the
initial phase of improvements in this area.

8.1.5. Single nucleotide polymorphisms
For the first time, ADNI studies demonstrated that diag-

nostic classification and the prediction of future clinical
decline could be improved by the addition of selected
SNPs to other modalities. One hundred eighty-nine SNPs
selected for their discriminative ability improved classifica-
tion accuracy by 5% and 3% for the MCI versus CN, and
AD versus MCI classifications, respectively [254]. Top hits
included CTNNA3 and PON2, but not APOE. SNPs did not
improve the AD versus CN classification in combination
with any other modality. The addition of 101 top SNPs
from a GWAS to MRI features such as hippocampal volu-
metric and surface morphology data improved prediction of
MCI to AD progression over 48 months, achieving an AUC
of 0.95 [255]. The SNP markers selected for prognosis
differed from those associated with increased disease risk,
suggesting that genes underlying the MCI to AD progression
differ from those that increase disease risk. This is an exciting
advance and holds much promise for the incorporation of
similar data to improve stratification and subject selection.
8.2. Diagnosis and prediction methods

A plethora of novel machine learning approaches to diag-
nosis and prediction have been developed and tested using
ADNI data in 2014 and 2015, leading to an overall improve-
ment in classification and prediction accuracy. The use of
standardized ADNI data sets has, in some cases, facilitated
comparison of results. Deep learning algorithms that use
multiple processing layers to model high-level data abstrac-
tions have proved exceptionally successful in selecting and
combining optimal features from multiple modalities. In
combination with some form of dimensionality reduction
and a classifier such as a support vector machine or tree-
based algorithm, either as sequential steps or as an embedded
wrapper algorithm, deep learning has improved the effective-
ness of MRI as a single modality to the point where it rivals
multimodal approaches for classification accuracy. Several
studies reported MRI-based methods that could discriminate
between AD and CN subjects with accuracies between 92%
and 97% [374,387,388,394] or predict MCI progression to
AD with accuracies exceeding 80% [374]. Notably, Gorji
et al. [394] used pseudo-Zernike moments, powerful shape
descriptors used in image recognition, to characterize global
and local pattern shapes and select discriminative features
that were used by a supervised neural network for classifica-
tion. Their results were comparable with other state-of-the-
art methods for the AD versus CN classification but substan-
tially outperformed other methods, including multimodal ap-
proaches, for the more challenging problems of MCI versus
CN (sensitivity 95.9%, specificity 95.3%, and accuracy of
95.6%), and AD versus MCI (sensitivity 94.2%, specificity
95.6%, and accuracy 94.9%) classification. This publication
illustrates the vast potential of neural networks in tackling
these classification problems, and further rapid improvement
in this area is likely concomitant with the burgeoning devel-
opment of this area of machine learning.

However, the best classifiers generally still incorporated
multimodal information; deep learning approaches
improved feature selection, in part by preserving intermodal
relationships. The best multimodal classifiers for the AD
versus CN, and MCI versus CN challenges reached accu-
racies of .95% [405,408,410,411,416–418] and .82%
[304,405,417,420], respectively. An approach which
incorporated longitudinal multimodal data, and which
notably included PICALM status, predicted progression of
MCI subjects to AD with an accuracy of 91% [413]. It is
beyond the purview of this review to detail all of these ef-
forts; they are instead summarized in Table 10. Instead of bi-
nary classification, one study used machine learning of
structural MR images of a normative population to define
a brain abnormality index [386], and others tackled multi-
class classifications such as AD versus MCI versus CN
(Table 11). Finally, a number of publications focused on ad-
dressing technical problems such as incomplete or imbal-
anced data in multimodal classification or problems with
imperfect reference tests (Table 12).
8.3. Subject selection and outcome measures

With the transition of AD preventive and treatment clin-
ical trials to preclinical and presymptomatic populations, the



Table 10

Prediction of continuous variables

Modality

Feature selection/

dimensionality

reduction Classifier N

Classification challenge

Unique approach ReferenceADAS-cog MMSE RALVT

MRI

Cortical surface

Multivariate

regression:

l 2,1 norm

SVM 718 RMSE 0.7663 6 0.0375 0.8325 6 0.0399 0.9167 6 0.0471 Propose sparse multitask learning

model Group-Sparse Multi-task

Regression and Feature

Selection (G-SMuRFS) to

select cortical surface markers

[440]

CC 0.6438 6 0.0258 0.5277 6 0.0539 0.3985 6 0.0533

MRI

PET

Multitask learning:

relational

function

1 l 2,1 regression

SVM 202 CC (AD

vs. MCI)

0.680 0.682 Introduces a function to conserve

information about feature-

feature relations, response-

response relations, and

sample-sample relations

while jointly solving both

classification and prediction of

continuous variables

[410]

CC (MCI

vs. CN)

0.520 0.508

CC (MCIc

vs. MCInc)

0.591 0.622

MRI

FDG PET

Canonical

correlation

analysis 1
novel sparse

multitask learning

SVM 202 CC 0.740 6 0.18 0.675 6 0.23 Uses canonical correlation

analysis to determine

correlations between

features of different

modalities

Note: for AD vs. MCI vs. CN

[441]

MRI

FDG PET

Canonical correlation

analysis 1 novel

sparse multitask

learning

SVM 202 RMSE 4.201 6 0.82 2.110 6 0.41 Similar to [441]

Note: for AD vs. MCI vs. CN

[442]

CC 0.719 6 0.81 0.655 6 0.31

MRI

FDG PET

CSF

Multitask learning: graph-guided 1 latent

LASSO group penalty

199 CC 0.740 6 0.002 0.745 6 0.002 Uses new latent group LASSO

penalty combined with an

undirected graph approach

to select correlated features

that can jointly predict class

label and clinical scores.

[412]

MRI Multivariate

regression:

sparse model

Sparse

Bayesian

393 CC 0.767 0.758 Models cognitive scores as

nonlinear functions of

neuroimaging variables;

models correlations between

regression coefficients. Derives

sparse Bayesian learning

algorithm for learning.

[443]

MRI (TBM)

HC shape,

Clinical,

APOE4,

baseline

MMSE

Multivariate TBM

1 Convex Fused

Sparse Group

LASSO

Prediction of

continuous

variables:

ADAS-cog

616 Prediction of ADAS-cog scores (RMSE) Uses Convex Fused Sparse

Group LASSO for multitask

learning using multivariate

TBM data to predict ADAS-cog

scores at 6, 12, 24, 36, and

48 months.

[444]

Months 6 12 24 36 48

w/o mTBM 5.259

6 0.87

5.653 6 1.14. 5.532 6 1.03 4.777

6 0.83

4.367 6 1.18

With mTBM 4.534

6 0.88

4.989 6 1.13 4.885 6 1.09 4.055

6 1.02

3.164 6 1.09

Abbreviations: ADAS-cog, Alzheimer’s Disease Assessment Scale–cognitive subscale; MMSE, Mini–Mental State Examination; RAVLT, Rey’s Auditory Verbal Learning Test; MRI, magnetic resonance im-

aging; SVM, support vector machine; RMSE, root mean square error; CC, correlation coefficient; PET, positron emission tomography (FDG and Ab); AD, Alzheimer’s disease; MCIc, mild cognitive impairment

converters (progressive MCI); MCInc, mild cognitive impairment nonconverters (stable MCI); FDG PET, 18F-flurodeoxyglucose positron emission tomography; MCI, mild cognitive impairment; CSF, cerebro-

spinal fluid; CN, cognitively normal; TBM, tensor-basedmorphometry; HC, hippocampus;APOE4, apolipoprotein ε4 allele; mTBM,multivariate tensor-basedmorphometry; LASSO, least absolute shrinkage and

selection operator.
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Table 11

Multiclass classification

Modality

Feature selection/dimensionality

reduction Classifier N

Cross-

validated Classification challenge Unique approach Reference

MRI

PET

Canonical correlation analysis

1 novel sparse multitask

learning

SVM 202 Y Multiclass classification Uses canonical correlation analysis

to determine correlations between

features of different modalities.

Applies to multiclass classification

problem.

[441]

AD versus

MCI

versus

CN

AD versus

MCIc

versus

MCInc

versus NC

ACC 71.9 ACC 61.9

MRI

PET

Canonical correlation analysis

1 novel sparse multitask

learning

SVM 202 Y ACC 68.6 ACC 56.2 Similar to [441]. [442]

MRI

PET

Linear discriminant analysis

1 locality preserving

projection

SVM 202 Y ACC 76.4 ACC 61.1 Combines two subspace learning

techniques, linear discriminant

analysis and locality preserving

projection for feature selection

and applied to multiclass and

binary classification problems.

[445]

MRI

FDG PET

CSF

Deep architecture 1 multitask

learning

SVM 202 Y ACC 62.5 ACC 52.5 Uses novel deep learning architecture

that discards uninformative features

in a hierarchical manner during

multitask learning.

[417]

Abbreviations: MRI, magnetic resonance imaging; PET, positron emission tomography; SVM, support vector machine; AD, Alzheimer’s disease; MCI, mild

cognitive impairment; CN, cognitively normal; MCIc, mild cognitive impairment converters (progressive MCI); MCInc, mild cognitive impairment

nonconverters (stable MCI); NC, normal cognition; ACC, accuracy; CSF, cerebrospinal fluid; FDG PET, 18F-flurodeoxyglucose positron emission tomography.
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selection of subjects likely to decline in the near future, and
the selection of clinical end points able to detect a treatment
effect, are of paramount importance. Inclusion criteria
include Ab positivity, tau pathology, hippocampal atrophy,
or combinations of these and genetic markers and are funda-
mentally guided by the need to decrease heterogeneity in the
trial population. Both prognostic enrichment (selecting pa-
tients likely to progress) and predictive enrichment (select-
ing patients likely to respond to the therapy being trialed)
need to be considered. Cognitive end points must be sensi-
tive to early cognitive changes such as delayed recall, func-
tion, and attention, and imaging end points must also detect
early changes. Once again, selection of inclusion criteria and
outcome measures are informed by knowledge of disease
progression. Understanding how covariates influence dis-
ease progression, even in an enriched MCI population,
aids in selecting populations likely to progress.

A model predicting cognitive decline on the CDR-SB in
MCI subjects found that the rate of disease progression was
influenced by current CDR-SB score, baseline levels of CSF
biomarkers, and baseline Delayed Logical Memory and
Trails A scores [459]. Subjects selected for either low or
high p-tau181/Ab42 progressed at different rates, and the
model identified a subpopulation with low likelihood of dis-
ease progression based on this ratio (Fig. 41). A different
model found that baseline severity measured by CDR-SB,
baseline hippocampal volume, and APOE4 predicted shorter
times the clinical worsening [460] and estimated N80s of
around 550 CN subjects using either low hippocampal vol-
ume or APOE4 positivity as an enrichment strategy for a
2-year trial. However, baseline values of biomarkers may
not be sufficiently informative to predict clinical decline.
Longitudinal biomarker progressions predicted substantially
more variability in cognitive decline than baseline measures;
ventricular expansion explained 40% of variability
compared to a mere 8.7% of variability explained by base-
line ventricular volume in MCI subjects [461]. Therefore,
the use of longitudinal biomarker progressions for enrich-
ment could improve the statistical power of clinical trials.

8.3.1. Enrichment biomarkers
Ab positivity is currently used as an inclusion criterion

for CN participants in the anti-Ab A4 secondary prevention
trial which aims to slow cognitive decline in CN elders using
solanezumab [462]. Improvement of quantitative accuracy
of amyloid PET scans by refinement of acquisition protocols
and tracer administration, subject management, and image
quality control and processing could reduce sample sizes
for trials of intervention effects [463]. Prediction of Ab pos-
itivity by florbetapir PETwas improved by the determination
of a cutoff value of 1.24 based on three regions of interest
(posterior cingulate cortex, precuneus, medial frontal cor-
tex) which achieved an accuracy of 98.5% [464]. Visual in-
spection of florbetapir PET images was as effective as SUVR
in determining Ab positivity [465]. Alternative automated
methods such as Syngo-PETAb Plaque [466], and a method
based on a two-point correlation metric, wS2 [467], were
comparable to SUVR and offered some advantages such as
the ability to detect subtle changes in patterns of Ab deposi-
tion [468].



Table 12

Methods that address technical problems in classification and prediction

Problem Approach Results and conclusions Reference

Variance in validation strategies

can make comparison of the

performance of supervised

classification algorithms difficult.

Use of an empirical estimator that performs

validation on two disjoint sets and comparison

with different variance estimators in an AD

versus CN classification experiment.

Proposed estimator is constant with sample size

and is unbiased with regard to training set size.

Recommend against the use of leave one out

cross-validation because of its high variance.

[446]

Estimation of the sensitivity of a

biomarker to the early diseased

stage based on its performance

on the fully diseased stage.

Use of empirical likelihood-based (ELB)

confidence intervals.

ELB method is more robust than parametric

methods and more accurate than nonparametric

methods of confidence interval estimation.

[447]

Lack of a method for selecting

diagnostic cut points in a

multistage

disease that is not dependent

on correct classification rates.

Developed new measure, maximum absolute

determinant for diseases with k stages,

which selects cut points using all available

classification data.

When applied to ADNI biomarker data, the

proposed method more accurately selected

cut points for the early diseased stage than

existing methods.

[448]

Patterns of atrophy in normal aging

can confound multivariate

models of atrophy in AD.

Compared two age correction approaches on

AD versus CN classification and prediction

of MCI to AD progression: (1) using age as

a covariate in MRI-derived measures; (2)

linear detrending of age-related changes

based on CN measures.

Both models improved classification and

prediction accuracy. Analysis of incorrectly

classified subjects suggested that the

influence of cognitive impairment,

APOE genotype, and gender is partially

masked by age effects.

[449]

Errors in reference test for AD

biomarkers (clinical diagnosis

or Ab PET in the absence of a

gold standard) cause bias in their

diagnostic accuracy.

Uses Bayesian method to determine diagnostic

accuracy of AD biomarkers taking

imperfectness of reference test into account.

Proposed methodology improved estimates

of exact diagnostic values of three CSF

biomarkers in the AD versus CN

classification.

[450]

Imperfect reference test can lead to

bias in accuracy of a combination

of diagnostic biomarkers.

Uses Bayesian method to select combination of

biomarkers that maximizes the AUC while taking

imperfectness of reference test into account.

Proposed methodology improved estimates

of AUCs of AD biomarkers over traditional

logistic regression model.

[451]

Incomplete/imbalanced data biases

estimation of diagnostic accuracy

of AD biomarkers.

Novel approach uses augmented weighted

estimator for covariate-specific time-dependent

receiver operator curves using information from

subjects with incomplete data.

Proposed estimator corrected bias and

improved efficiency of classification in

incomplete data sets over other estimators.

[452]

Incomplete/imbalanced data in

multimodal classification.

Extensive and systematic analysis of

effectiveness of combinations of sampling

techniques (undersampling, oversampling,

and a combination), six common feature

selection algorithms, and Random Forest

and SVM classifiers on AD/MCIc versus

AD and MCI versus CN classification

problems.

K-Medoids undersampling technique gave

best results on imbalanced data sets. Sparse

logistic regression with stability selection

was best feature selection technique.

[453]

Novel approach based on collection of feature

values into a large incomplete matrix, and

subsequent matrix shrinkage and completion

using a multitask learning algorithm.

Improved classification accuracy over two

recent methods for accounting for missing

data (including Incomplete Multi-Source

Feature Learning [454]).

[455]

Novel approach, Multi-Task Linear

Programming Discriminant analysis which

decomposes the classification problem into

different classification tasks, adaptively

chooses different feature subsets for each

task, then solves them jointly.

Improved classification accuracy of MCIc

versus MCInc classification over Incomplete

Multi-Source Feature Learning [454].

[456]

Novel approach (3D-CNN) based on a

convolutional neural network that can

estimate missing data in an output modality

(PET images) using data from an input

modality (MR images).

3D-CNN approach used on incomplete data

sets achieved similar classification accuracies

to using complete data sets in AD versus

CN, MCI versus CN, and MCIc versus

MCInc tasks and outperformed two commonly

used missing data estimation methods.

[457]

Conventional false discovery rate

procedures for voxel level multiple

testing ignore correlations between

neighboring voxels.

Novel approach extends the local significance

index procedure with a Markov random field

model to consider spatial correlations along

neighboring voxels.

When method was applied to ADNI FDG

PET data, it outperformed other false

discovery rate procedures.

[458]

Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; ADNI, Alzheimer’s Disease Neuroimaging Initiative; MCI, mild cognitive impairment;

MRI, magnetic resonance imaging; CSF, cerebrospinal fluid; AUC, area under the receiver operating characteristic; SVM, support vector machine; MCIc, mild

cognitive impairment converters (progressive MCI); MCInc, mild cognitive impairment nonconverters (stable MCI); MR, magnetic resonance; PET, positron

emission tomography.
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Fig. 41. Nonlinear disease progression model capturing longitudinal Clinical Dementia Rating–Sum of Boxes (CDR-SB) scores. Visual predictive check sim-

ulations suggest that the model describes longitudinal progression of CDR-SB scores in both late MCI and mild AD subjects. Stratification using p-tau181/Ab42
ratio reveals a lack of disease progression in biomarker negative subgroups. The upper, middle, and lower profiles indicated by the open circles represent the

95th, 50th, and 5th percentiles of the observed data, respectively. The upper, middle, and lower curves indicated by the lines are the median model–based pre-

dictions for the 95th, 50th, and 5th percentiles, respectively. The shaded areas are the 90% confidence intervals of the corresponding percentiles of the simu-

lations based on the model. Abbreviations: AD, Alzheimer’s disease; LMCI, late MCI; MCI, mild cognitive impairment. Reproduced with permission from

[459].
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Hippocampal volume is the first imaging biomarker to be
qualified by the European Medicines Agency to select am-
nestic MCI subjects at risk of imminent rapid clinical dete-
rioration for clinical trials [469]. As hippocampal volume
is an established biomarker of AD, it can help to differentiate
between the approximately two thirds of subjects who have
MCI attributable to AD and the approximately one third of
MCI subjects on a different disease pathways not necessarily
attributable to Ab pathology. Yu et al. [470] describes the
systematic operationalization of hippocampal volume as
an enrichment biomarker by defining specific cut points of
hippocampal volume, comparing different commonly used
algorithms for hippocampal volume quantification (FreeSur-
fer, HMAPS, LEAP, NeuroQuant), and considering three
cognitive end points, MMSE, ADAS-cog, and CDR-SB.
Hippocampal volume, calculated by any of the quantifica-
tion methods, reduced sample sizes for all cognitive out-
comes by 40% to 60%, with the greatest reduction in
sample sizes at a cut point of 10% of normal volume. Trial
costs were estimated to be reduced by 30% to 40% over a
range of hippocampal volume cut points, although little ef-
fect on trial duration was predicted, regardless of cognitive
end point (Fig. 42). Designed to guide clinical trial design,
this analysis illustrates the trade-off between statistical and
practical considerations.

Deep learning algorithms may also have great potential
for selecting inclusion criteria that increase statistical power
and reduce sample sizes in clinical trials. Ithapu et al. [471]
described a new method of enrichment using inclusion
criteria derived from FDG PET, florbetapir PET, and



Fig. 42. Implications of hippocampal volume–based enrichment for clinical trials of amnestic MCI subjects. Estimates of trial costs and total duration for sce-

narios in which patients are enriched or not enriched with hippocampal volume are given for different outcome measures. (A–C) Trial cost and (D–F) trial

execution time, as a function of cut point for (A and D) MMSE, (B and E) ADAS-cog, and (C and F) CDR-SB. Results are expressed as fractions of the un-

enriched scenario and are shown for four different hippocampal volume computational algorithms. Variance due to test-retest variability is shown as the shaded

area for one of the four algorithms (LEAP). Abbreviations: ADAS-cog, Alzheimer’s Disease Assessment Scale–cognitive; CDR-SB, Clinical Dementia Rating–

Sum of Boxes; MCI, mild cognitive impairment; MMSE, Mini–Mental State Examination. Reproduced with permission from [470].

M.W. Weiner et al. / Alzheimer’s & Dementia 13 (2017) e1-e85 e67
structural MRI features learned using their novel random-
ized denoising auto-encoder marker. Using CDR-SB scores
as an outcome measure, this method reduced MCI sample
sizes at least fivefold compared with no enrichment (N80s:
281 vs. 1586) and improved on enrichment with hippocam-
pal volume alone (N80: 389) for a 2-year trial, suggesting
that the learning algorithm can capture data from different
modalities most representative of changes during disease
progression.

8.3.2. Outcome measures
As clinical trials move to presymptomatic subjects, the

development of outcome measures which can detect a subtle
treatment effect is vital. Some investigations have focused
on developing a clinical measure sensitive to very early
cognitive changes; others have developed candidate bio-
markers as potential surrogate outcome measures. A com-
posite score developed from existing clinical end points
and consisting of Word Recall, DelayedWord Recall, Orien-
tation, 13-item CDR-SB, and FAQ had greater sensitivity to
detect change in MCI subjects enriched with APOE4, hippo-
campal volume, and CSFAb42 than either CDR-SB alone or
ADAS-cog [472]. The primary outcome measure in the A4
study is the Alzheimer’s Disease Cooperative Study Preclin-
ical Alzheimer’s Cognitive Composite, comprising Total
Recall, Delayed Recall, Digit Symbol Substitution, and
MMSE [473]. Ab1 CN participants had greater decline in
this measure than Ab2 participants on this measure across
different cohorts. With a cohort size of 500, it was predicted
that the A4 study would be able to detect treatment benefit of
about 0.5 units of the measure at 80% power over 3 years
[473], suggesting that the measure is sufficiently sensitive
and specific to detect Ab-related decline in this trial
population.



M.W. Weiner et al. / Alzheimer’s & Dementia 13 (2017) e1-e85e68
The quest for a surrogate outcome measure with greater
power to detect decline than cognitive measures has pro-
gressed with several systematic studies comparing the effi-
cacy of various biomarkers. Imaging biomarkers,
especially MRI, have been of particular interest as longitudi-
nal changes in them can be precise and reproducible. Caroli
et al. [474] compared the power and performance of MRI
and FDG PET biomarkers, and ADAS-cog, and found that
for a 2-year trial with yearly biomarker assessment, a mea-
sure of the longitudinal whole-brain atrophy, KN-BSI
[475], had the greatest power, with N80s of 48 and 85 for
MCI subjects selected for Ab positivity, or hippocampal at-
rophy, respectively. In comparison, they calculated N80s of
approximately 1000 using ADAS-cog as an outcome mea-
sure with either enrichment strategy. Longer trials, but not
more frequent biomarker assessments, increased power.
Although measures of atrophy such as KN-BSI are well es-
tablished, theymay be outperformed bymachine learning al-
gorithms that are optimized for power to detect brain change.
Gutman et al. [476] extended a previous data-driven feature
selection approach [477] to maps of whole-brain volume
change derived from TBM measures and combined this
with ventricular surface measures to generate one summary
atrophy score. This outperformed either measure alone and
statistically defined ROIs in 1- or 2-year trials in both AD
and MCI subjects, with calculated N80s of 31 for AD, and
56 for MCI subjects for a 2-year trial.

A systematic comparison of selection criteria and cogni-
tive end points in CN elderly [478] found that a combination
of the composite measure comprising the 11-point ADAS-
cog, Delayed Recall on AVLT, and Trails B, and subject se-
lection with three or four abnormal biomarkers (from
APOE4, Ab1, tau1, or hippocampal atrophy1) reached
79% power with N 5 1500 participants per arm over a 3-
year trial, assuming a 25% effect size of treatment
(Fig. 43). Trial durations of longer than 4 years were
required to achieve greater than 80% power using this com-
bination of enrichment criteria and cognitive outcome mea-
sure. Recruiting subjects with multiple pathologies
increased the power to detect change by 15% to 20%, but
this strategy would also increase costs and limit the pool
of eligible participants. A structural MRI surrogate outcome
measure may improve the feasibility of clinical trials in CN
subjects by lowering costs and increasing the power to detect
disease progression and may be especially suited to trials of
therapies that aim to repair brain tissue rather than clear Ab.
Hua et al. [479] investigated the utility of longitudinal TBM
biomarkers for tracking brain changes, comparing the power
of single numerical summary of brain atrophy scores reflect-
ing disease-related change in the temporal lobe (temporal-
ROI) [480], statistically defined ROIs, or over the whole
brain over different trial lengths, and with different subject
groups, enrichment biomarkers, and scan intervals. The
whole-brain measure and statistically defined ROI measure
produced N80s of 127 and 241, respectively, for CN sub-
jects, 141 and 314, respectively, for EMCI subjects, and 72
and 162, respectively for LMCI subjects for a 2-year trial us-
ing a 12-month scan interval. Both measures are training-
based approaches which select regions with the most consis-
tent and detectable change. Enrichment using APOE4 or Ab
further reduced sample sizes to around 100 subjects regard-
less of diagnostic group (Fig. 44). Of 10 AD risk alleles
tested as enrichment criteria, only APOE4 produced any
gains in statistical power. Both statistically defined ROIs
and the whole-brain measure based on linear discriminant
analysis are training approaches which differ in training
sample size and region selected; statistically defined ROI re-
quires a small training set and selects regions such as the
temporal lobe which are likely to be affected in AD but
has low statistical power, whereas the whole-brain approach
requires a larger training set and may not select patterns of
brain change germane to the treatment but has higher perfor-
mance and statistical power. Trade-offs between end-point
measures and selection biomarkers will ultimately represent
a balance of cost and power and will reflect the drug
mechanism.
8.4. Other improvements to clinical trials

The use of a placebo arm in addition to the treatment arm
in clinical trials raises ethical issues. The Placebo Group
Simulation Approach [481] models the placebo group based
on baseline data of the treatment group and forecasts the dis-
tribution of quantified outcomes in MCI subjects. A compar-
ison of empirically observed and simulated data suggested
that the model approximated placebo data well. Of the base-
line variables, cognitive performance predicted the trajec-
tory of cognitive decline most accurately.
8.5. Conclusions

The overarching theme of publications focused on
improving clinical trials from 2014 and 2015 has been a shift
to optimizing enrichment strategies and developing outcome
measures suited to trials in CN cohorts. Knowledge of dis-
ease progression has guided this development; the effective-
ness of established biomarkers at diagnostic and prognostic
challenges reflects their position in the temporal ordering of
biomarkers as described by the first model of the patholog-
ical cascade [482]. The prediction of imminent decline in
CN participants may require adjustment of established cut
points of CSF biomarkers, the use of subtle changes to
MRI features instead of atrophy measures, or measures of
cognitive domains first affected in the disease. Multimodal
approaches remain the most effective at prediction and clas-
sification, and the addition of novel modalities such as
selected SNPs or network connectivity measures may
improve accuracy even further. Panels of CSF and/or blood
biomarkers now rival established multimodal biomarkers for
diagnostic and prognostic utility. A substantial number of
machine learning approaches have been tested using ADNI
data and illustrate the potential power of neural networks



Fig. 43. Ability of cognitive end points to detect change in cognitively normal subjects selected for multiple pathologies. Composite cognitive tests were more

able to capture decline in cognitively normal (CN) subjects over 7 years than any measure of a single cognitive domain or ADAS-cog alone. Enrichment with

three or more pathologies optimally enhanced this effect. Groups with 0, 1, 2, or 31 pathologies (APOE4, Ab1, tau1, or hippocampal atrophy1) plotted for

each standardized cognitive measure with 7 years of follow-up. Composite #1: ADAS-11, Trails B, and Logical Memory II. Composite #2: ADAS-11, Trails B,

and dALVT. Abbreviations: ADAS, Alzheimer’s Disease Assessment Scale; ADAS-cog, Alzheimer’s Disease Assessment Scale–cognitive; dAVLT, delayed

Rey Auditory Verbal Learning Test. Reproduced with permission from [478].
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in selecting highly discriminative features in single modal-
ities, and in detecting optimum intermodal relationships us-
ing multiple modalities. The greatest gains in accuracy have
been made in the more difficult classification (MCI vs. CN,
AD vs. MCI) and prediction (CN to MCI, MCI to AD) chal-
lenges. Systematic studies of enrichment biomarkers,
outcome measures, and combinations of the two have pro-
vided critical guidance to inform clinical trial design.
Enrichment strategies aim to reduce the heterogeneity of
trial cohorts and select populations both at risk of imminent
decline and likely to respond to the trial treatment. Some
studies refined cognitive measures as outcome measures,
whereas others developed surrogate outcome measures us-
ing MRI approaches. Combinations of subject selection
using multiple inclusion criteria and MRI longitudinal mea-
sures as surrogate outcomes had the greatest power to detect
treatment effect and the most feasible sample sizes for early
intervention trials in CN subjects.
9. Summary

Studies using ADNI data have produced an unprece-
dented body of research in 2014 and 2015. What then are
the fundamental conclusions from this work? If you have
read this entire review, hearty congratulations on your perse-
verance; if not we offer the following summary. ADNI
studies have been supported by the continued development
and standardization of methodologies, sample collection



Fig. 44. The effect of clinical trial enrichment usingAPOE4 status or brain Ab load. After screening participants for APOE4 status or brain Ab load, sample size

requirements are around 100 subjects for a 2-year trial. Sample size estimates (n80s) after trial enrichment using APOE4 status (A), brain Ab load at screening

(B), or both combined (C). Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cogni-

tive impairment. Reproduced with permission from [479].
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and distribution, and curating and sharing of data by the
various ADNI Cores. The longitudinal data extending now
over a decade and the breadth of modalities represent a
unique resource to the scientific community that has been
used in a myriad of ways to expand and deepen our knowl-
edge of AD progression and to inform AD clinical trial
design.

Studies of subjects selected for Ab positivity have largely
confirmed the order in which biomarkers become abnormal
during disease progression and have suggested that APOE
modulates disease progression through Ab clearance mech-
anisms. However, there appears to be variability in this rela-
tively well-defined process. For example, Ab1 subjects with
predominantly cortical atrophy had impaired executive func-
tion, whereas those with predominantly hippocampal atro-
phy had impaired memory function. Cluster analysis
studies of CN and MCI subjects also consistently identified
an executive function-impaired subtype, in addition to the
more typical memory–impaired amnestic subtype, and dif-
ferences in underlying atrophy patterns may result in to
diverse neuropsychiatric symptoms observed in AD. These
subtypes may correspond to differing distributions of neuro-
fibrillary tangles. Multiple lines of evidence suggest that
deposition of abnormal Ab alone does not result in memory
impairments typical of AD. Instead, Ab deposition may be a
prequel for the development of neurofibrillary tangles which
may be more strongly associated with cognition. The precise
role of tau fibrillar Ab is unknown, and the introduction of
tau PET imaging in ADNI-3 is expected to shed light on
the issue. Regional WM abnormalities, increased by
vascular risk factors acting in conjunction with Ab, may
additionally augment the effects of tau abnormalities, accel-
erating the AD disease process.

Two diverse approaches attempted to integrate knowl-
edge from disparate facets of AD research. The concept of
AD as a disconnection syndrome was enabled by the inclu-
sion of diffusion imaging and TF-fMRI in the ADNI-2 pro-
tocol to track perturbations to structural, functional, and
metabolic, and cortical atrophy networks during AD pro-
gression. Network changes were observed in presymptom-
atic subjects and support the earliest pathological changes
occurring in the posterior cingulate cortex, consistent with
MRI studies of CN subjects in which initial atrophy was
observed in areas outside the hippocampus, such as the pre-
cuneus. Models for the spread of pathology based on a prion-
like misfolding of Ab along WM tracts predicted patterns of
cortical Ab deposition, glucose hypometabolism, and atro-
phy. Likewise, a Systems Biology approach integrating ge-
nomics, transcriptomics, proteomics, and metabolomics
has begun to capture the biological complexity of AD engen-
dered in part by its polygenic nature. Biologically informed
strategies have allowed insights into how genetic underpin-
nings of AD are associated with biochemical mechanisms.
The search for the “missing heritability” of AD has identi-
fied novel risk alleles and highlighted the involvement of
processes such as inflammation, synaptic function, cell
migration, cholesterol metabolism, and calcium signaling.

CN and MCI groups have proven to be highly heteroge-
neous; a sizeable portion of MCI subjects was virtually
indistinguishable from CN subjects in all regards, and
conversely, many CN subjects harbored pathology predic-
tive of future clinical decline and were more aligned with
the MCI group. This likely reflects the fact that MCI, even
amnestic MCI, can be associated with a variety of pathol-
ogies, one of which is AD. It also implies that pathological
events have already occurred in a portion of presymptomatic
subjects. A group ofMCI subjects with neurodegeneration in
the absence of abnormal Ab deposition appeared to be on a
different pathway to dementia. The development of bio-
markers of common comorbidities observed at autopsy
such as Lewy bodies (a-SYN) and hippocampal sclerosis
(TDP-43) will help future researchers to untangle the com-
plex and seemingly intertwined trajectories to dementia.

Technological advances in machine learning such as the
use of neural networks for feature selection have substan-
tially improved the ability to discriminate between CN and
MCI subjects, and MCI and AD subjects, and the ability to
predict cognitive deterioration in CN and MCI subjects.
Multimodal approaches to classification and prediction of
future decline remain powerful, especially with the addition
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of new network connectivity measures or SNP data. Howev-
er, the application of improved machine learning approaches
to single modalities such as structural MRI has achieved ac-
curacies rivaling state-of-the-art multimodal methods, and a
cost-effective, widely available, and noninvasive approaches
such as this may ultimately prove preferable for diagnosis.

Improvement of clinical trials of AD therapies, the over-
arching goal of the ADNI study, has been guided by a deeper
understanding of AD progression and subject group hetero-
geneity. As AD therapies began to target presymptomatic pa-
tients, the choice of inclusion criteria that select subjects at
risk of imminent decline, and outcomemeasures that are suf-
ficiently sensitive to detect treatment effect within a feasible
time frame is critical. Systematic studies have examined
combinations of subject selection criteria such as APOE4
status, Ab positivity, and hippocampal volume, together
with cognitive and imaging outcome measures. Subject se-
lection on the basis of a single pathology improves trial po-
wer; selection on the basis of multiple pathologies results in
further gains in power. The sensitivity of cognitive end
points to detect a subtle treatment effect in early phases of
the disease has improved. However, surrogate outcome bio-
markers such as longitudinal imaging have been predicted to
significantly reduce sample sizes, trial duration, and trial
cost and thus improve the feasibility of trials in presymptom-
atic subjects.

The remarkable advances described in ADNI papers over
the course of 2 years have fundamentally altered our view of
AD progression and offered significant guidance for clinical
trial design. As the pace of discovery accelerates with the
accumulation and sharing of an increasingly diverse longitu-
dinal data set, ADNI will undoubtedly make even greater
contributions to the field in the coming years.
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RESEARCH IN CONTEXT

1. Systematic review: The authors identified publica-
tions using data from the Alzheimer’s Disease Neu-
roimaging Initiative from their submission to the
Data and Publications Committee, by traditional
sources (PubMed and Google Scholar) and by per-
sonal communication with authors.

2. Interpretation: Substantial progress was made in
2014 and 2015 in improving biomarkers for clinical
trials of Alzheimer’s disease (AD) therapies and
the understanding of AD progression. Subtle struc-
tural and functional changes occur in presymptom-
atic subjects. Subjects positive for abnormal b-
amyloid deposition progress according to the amy-
loid cascade hypothesis; other groups of mixed pa-
thology may have different trajectories. Models of
prion-like spreading b-amyloid pathology along
white-matter tracts predict aspects of disease pro-
gression and emphasize the importance of structural,
functional, and metabolic connectivity in AD. A
Systems Biology approach identified novel risk gene
loci. Diagnostic and prognostic accuracies improved
using deep learning strategies.

3. Future directions: This knowledge will inform and
improve clinical trial design.
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