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SUMMARY

Neuroimaging data are an increasingly important part of etiological studies of neurological and psychi-
atric disorders. However, mitigating the influence of nuisance variables, including confounders, remains a
challenge in image analysis. In studies of Alzheimer’s disease, for example, an imbalance in disease rates
by age and sex may make it difficult to distinguish between structural patterns in the brain (as measured by
neuroimaging scans) attributable to disease progression and those characteristic of typical human aging or
sex differences. Concerningly, when not properly accounted for, nuisance variables pose threats to the gen-
eralizability and interpretability of findings from these studies. Motivated by this critical issue, in this work,
we examine the impact of nuisance variables on feature extraction methods and propose Penalized Decom-
position Using Residuals (PeDecURe), a new method for obtaining nuisance variable-adjusted features.
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2 S. M. WEINSTEIN AND OTHERS

PeDecURe estimates primary directions of variation which maximize covariance between partially resid-
ualized imaging features and a variable of interest (e.g., Alzheimer’s diagnosis) while simultaneously
mitigating the influence of nuisance variation through a penalty on the covariance between partially resid-
ualized imaging features and those variables. Using features derived using PeDecURe’s first direction of
variation, we train a highly accurate and generalizable predictive model, as evidenced by its robustness
in testing samples with different underlying nuisance variable distributions. We compare PeDecURe to
commonly used decomposition methods (principal component analysis (PCA) and partial least squares)
as well as a confounder-adjusted variation of PCA. We find that features derived from PeDecURe offer
greater accuracy and generalizability and lower correlations with nuisance variables compared with the
other methods. While PeDecURe is primarily motivated by challenges that arise in the analysis of neu-
roimaging data, it is broadly applicable to data sets with highly correlated features, where novel methods
to handle nuisance variables are warranted.

Keywords: Feature extraction; Image analysis; Multivariate data.

1. INTRODUCTION

The incorporation of neuroimaging data in research and clinical practice has brought new insights into how
structural and functional patterns in the brain are associated with behavioral, psychiatric, and neurological
phenotypes. For instance, structural magnetic resonance imaging (MRI) has provided a more nuanced
understanding of how changes in the brain are associated with presymptomatic markers and longitudinal
progression of Alzheimer’s disease (AD) (Frisoni and others, 2010; Ferreira and Busatto, 2011) and has
proven useful for diagnosing and evaluating treatment effectiveness for AD (Islam and Zhang, 2018;
Struyfs and others, 2020; Mueller and others, 2006).

While methodological developments over the last few decades have improved the overall quality of
neuroimaging studies, including about AD, questions about the generalizability (including reproducibility
and replicability) of research in this field have gained traction (Poldrack and others, 2017). Recent work
has brought attention to the importance of large sample sizes (Marek and others, 2022), representative
sampling (LeWinn and others, 2017), and harmonization of data across multiple sites or scanners (Fortin
and others, 2017) to improve the generalizability of neuroimaging research.

In the present work, we consider another important factor in generalizability: how confounders and
other nuisance variables are handled. In many neuroimaging applications, confounding by demographic
variables such as age and sex is ubiquitous. For instance, it can be challenging to distinguish structural
changes in the brain observed in patient populations with AD from those that are characteristic of aging in
healthy individuals (Double and others, 1996; Hua and others, 2010; Fjell and others, 2014).Additionally,
AD is more prevalent among females than males, but sex differences in the brain can also be unrelated
to Alzheimer’s (Singh and others, 2006; Fjell and others, 2009; Eskildsen and others, 2013). Without
properly accounting for sources of variability that are not of direct interest but are still correlated with
both imaging features and phenotypes of interest, generalizability and interpretability of findings from
neuroimaging studies may be severely compromised.

One common approach to handling nuisance variables in neuroimaging studies is “mass-univariate”
residualization. This typically involves first fitting a separate model (e.g., linear regression) across study
participants at each image location (e.g., voxel or vertex), where the image measurement is the depen-
dent variable and confounders such as age and sex are covariates. Estimated effects of confounders
are then subtracted from participant- and location-specific image measurements, and subsequent analy-
ses (e.g., association studies or training predictive models) are conducted using these residuals. While
mass-univariate methods underlie a number of important methods in neuroimaging analysis, including
voxel-based morphometry (Ashburner and Friston, 2000; Davatzikos and others, 2001) and statistical
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PeDecURe for feature extraction in the presence of nuisance variables 3

parametric mapping (Friston and others, 1991, 1994), it is also widely understood that these methods do
not account for the inherent spatial structure of the brain and the correlatedness of measurements derived
from neuroimaging scans. Multivariate methods, which do take this structure into account, are therefore
increasingly preferred (Habeck and others, 2008; Habeck and Stern, 2010; Westman and others, 2011).

Broadly defined, multivariate methods consider joint relationships across features in models studying
associations between imaging features and phenotypes (e.g., behavior or a diagnosis). In other words,
unlike mass-univariate methods, multivariate methods leverage rather than ignore relationships across
features to study joint image-phenotype associations rather than marginal associations. In neuroimag-
ing research, multivariate methods sometimes involve maintaining the full set of imaging features in
an association study or prediction model, while in other cases, feature extraction is done to reduce
both the dimensionality and redundancy of highly correlated features (Mwangi and others, 2014). To
our knowledge, only a limited number of methods using a multivariate framework have been pro-
posed to handle confounders and other nuisance variables in neuroimaging. Linn and others (2016)
proposed the inverse probability weighted support vector machine (IPW-SVM), which involves weight-
ing the slack variables of the SVM objective function with weights similar to those widely used in
the causal inference literature to control for confounding in observational studies (Hernán and Robins,
2006; Cole and Hernán, 2008). Predictions (e.g., AD classification) from the IPW-SVM model are
considered confounder-adjusted in the sense that they are based on patterns (i.e., sets of features) in
the brain that are directly related to disease progression, rather than patterns that are common among
those with the disease simply because of overlap in confounders like older age or sex. Rao and others
(2017) extended this idea, using “instance weighting” to train confounder-adjusted machine learn-
ing models for predicting continuous outcomes (e.g., clinical risk scores). More recently, More and
others (2020) considered a variety of regression and normalization-based approaches to mitigate nui-
sance variables. In association studies involving brain networks, multivariate distance matrix regression
can adjust for nuisance variables by including them as model covariates (Shehzad and others, 2014;
Simpson and Laurienti, 2015).

Notably, the existing approaches to adjust for nuisance variables in the multivariate framework preserve
the full set of imaging features. However, feature extraction methods, such as independent components
analysis, canonical correlation analysis, partial least squares (PLS), and principal component analysis
(PCA) are increasingly popular in neuroimaging (Mwangi and others, 2014), and tools for mitigating
nuisance variables in this context are needed. Outside the neuroimaging literature, there is some existing
work in this area. Lin and others (2016) propose adding a penalty term to the PCA objective function to
achieve simultaneous dimension reduction and correction for batch effects (a type of nuisance variable).
Aliverti and others (2021) propose a similar penalized decomposition approach, aiming to extract fea-
tures that are uncorrelated with variables that may introduce unfair biases into predictive models. Tabak
and others (2020) use a domain adaptation framework for dimension reduction and nuisance variable
adjustment in cellular imaging. There is also some work using adversarial learning for the removal of
confounding variables (Adeli and others, 2019; Zhao and others, 2020), highlighting the importance of
mitigating nuisance variables to achieve generalizability. While these methods vary in their applications,
they are similar in that they map a set of correlated features to a space that is free from the influence of
nuisance variables.

In the present work, we examine the challenge of feature extraction in neuroimaging when the goal
is to both adjust for nuisance variables and also to study associations with a phenotype of interest. To
address these goals, we propose a new method: Penalized Decomposition Using Residuals (PeDecURe).
PeDecURe extracts a small number of features, which can be easily incorporated into any downstream
analysis, including classical regression or machine learning models. While PeDecURe is primarily moti-
vated by methodological issues in the context of neuroimaging, it undertakes an issue that is pervasive
across many areas of applied research and can be easily applied to data in other settings.
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4 S. M. WEINSTEIN AND OTHERS

2. METHODS

2.1. Notation and previous methods

Let X be an n × p matrix of p image-derived features, such as volumes of different regions of interest
(ROIs) in the brain, for n study subjects. Let A be an n × q matrix of nuisance variables, which (on the
basis of subject area knowledge) must be adjusted for before analyzing associations between X and Y , an
outcome of interest (say, AD diagnosis). Without loss of generality, we assume each column of X , A, and
Y has been centered to have mean zero. We also assume X , A, and Y have some degree of interdependence,
which we illustrate as a Venn diagram in Figure 1(a). While A may include confounders as defined in
a traditional causal inference framework (Greenland and others, 1999), in this article, we use the term
“nuisance variables” to refer more generally to sources of variation in the data that are not of direct interest
but are correlated with variables that are of interest.

Using this notation, the objective functions of PCA and PLS are expressed in Figure 1(b). Briefly, each
method estimates vj (j = 1, ..., p∗ for p∗ ≤ p), which are directions of variation or primary components

Fig. 1. Visualization of decomposition methods considered in this article. (A) How we broadly assume interdepen-
dence between the observed features (X ), outcome of interest (Y ), and nuisance variables (A). (B) Objective functions
for three existing methods and illustrates the portions of the data whose covariance will be explained by vj . In particu-
lar, for j = 1, . . . , p∗ (p∗ ≤ p), PCA finds vj which maximize covariance of X ,AC-PCA solves a similar maximization,
but in a subspace that is (nearly) orthogonal to A (as controlled by a tuning parameter λ), and PLS finds vj which
maximize the covariance between X and Y (equivalent to the eigenvectors of the covariance of X T Y ). Panel C illus-
trates our proposed method, where we find vj that simultaneously maximizes associations between X and Y —but
not the portions of X that are also associated with A (hence using the residual X ∗ instead of the original X ))—and
minimizes covariance between X and A—without penalizing portions of X that are also associated with Y (hence the
residual X̃ ).
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PeDecURe for feature extraction in the presence of nuisance variables 5

(PCs) that maximize the covariance of X (PCA) or covariance between X and Y (PLS), subject to orthog-
onality to previously estimated PCs (as well as other potential constraints). Figure 1(b) also illustrates
that the portion of observed data whose covariance is maximized in both PCA and PLS include regions of
overlap with A. To address this problem in the context of PCA, Lin and others (2016) propose AC-PCA,
which maximizes covariance of X while penalizing covariance between X and A (to an extent determined
by a tuning parameter λ). As we illustrate in Figure 1(b), AC-PCA may result in the loss of information
about Y , which is of interest.

2.2. Proposed method: PeDecURe

In settings where the outcome of interest Y is observed, a natural extension of Lin and others (2016)’s
AC-PCA would be to find directions of variation which maximize the covariance between X and Y (as in
PLS), subject to the same constraint as in AC-PCA:

argmax
vj

(
vT

j X T YY T X − λvjX
T AAT Xvj

)
s.t. vj ⊥ vj−1 ⊥ · · · ⊥ v1. (2.1)

However, given interdependence between X , Y , and A, it is conceivable that directions of variation derived
from solving (2.1) may still be driven by associations with A or have diluted associations with Y . To avoid
this possibility, we propose using residualized features in the proposed objective function.

Similar to mass-univariate residualization, we first fit the following linear model at each image location:

X (j) = 1β
(j)
0 + Yβ

(j)
Y + Aβ

(j)
A + ε j = 1, . . . , p, (2.2)

where X (j) is an n-dimensional vector of image measurements at the jth location or image unit (e.g.,
voxel), 1 is an n-dimensional vector of 1’s, β(j)

0 is the location-specific intercept parameter, β(j)
Y represents

the effect of Y on the jth image feature (conditional on A), β
(j)
A is a q × 1 vector of the effects of each

column of A on the jth image feature (conditional on Y ), and ε is a normally distributed error term. In the
present work, we assume the normality of each imaging feature in (2.2), as this has been the assumption
in voxelwise models of neuroimaging features (Friston and others, 1994; Ashburner and Friston, 2000;
Davatzikos and others, 2001; Oakes and others, 2007). However, depending on the imaging modality and
covariates, or in nonimaging extensions of our method, other types of models could be substituted.

Parameter estimates from each location-specific model (2.2) are used to compute the following partial
residuals for each feature:

X (j)∗ = X (j) − Aβ̂
(j)
A , (2.3)

and X ∗ = [
X (1)∗ X (2)∗ . . . X (p)∗] denotes the matrix of these residuals—that is, the result of removing

the effects of nuisance variables A from each feature (X (j)), conditional on Y . We also define the partial
residuals that remain when we remove Y from X (j) conditional on A:

X̃ (j) = X (j) − Y β̂
(j)
Y , (2.4)

and X̃ = [
X̃ (1) X̃ (2) . . . X̃ (p)

]
denotes the matrix of this second set of residuals.

The objective function for our proposed method is as follows. For j ≤ p, we solve:

argmax
vj

(
vT

j X ∗T YY T X ∗vj − λvjX̃
T AAT X̃ vj

)
s.t. vj ⊥ vj−1 ⊥ · · · ⊥ v1. (2.5)
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6 S. M. WEINSTEIN AND OTHERS

In words, PeDecURe identifies PCs which maximize covariance between X ∗ and Y , while simultaneously
penalizing the covariance between X̃ and A. As we illustrate in Figure 1(c), by using the residuals X ∗ and
X̃ , we aim to control the influence of A on our estimated PCs while preserving the influence of Y , except for
the portions of Y that overlap with A. While the primary analyses in this paper will compare PeDecURe
to PCA, PLS, and AC-PCA, we also provide a comparison to penalized PLS without residualization
(Equation (2.1)) in Section S1 of the Supplementary material available at Biostatistics online based on
the simulation settings described below.

Features (or PC scores) extracted using each method, including PeDecURe, are calculated as the matrix-
vector product PCj = Xvj. We note that the same feature matrix X is used to estimate PC scores across all
methods considered in this article; that is, even though PeDecURe’s objective function involves residuals
(from a model that requires that both A and Y have been observed in the sample used for estimating the
directions of variation, vj), the features estimated using PeDecURe’s vjs are based on the original, not
residualized, X .

2.2.1. Selection of tuning parameter λ. The tuning parameter λ in PeDecURe (2.5) is based on a similar
idea as in Lin and others (2016)’s AC-PCA, where the goal is to select λ in order to balance in the extent to
which we penalize associations with nuisance variables versus maximize covariance involving variables of
interest. In PeDecURe, we select a λ which, on average (across nuisance variables and PCs), maximizes
the difference between the absolute value of partial correlations between PC scores with Y and those
between PC scores with A1 and A2. Out of a set of prespecified candidate λs, we consider the following
maximization:

λbest = argmax
λ

1

q

q∑
j=1

p∗∑
k=1

αk∑p∗
k∗=1 αk∗

(
| Cor(Xv(λ)

k , Y | Aj) | − | Cor(Xv(λ)

k , Aj | Y ) |
)

, (2.6)

where q is the number of nuisance variables, p∗ (≤ p) is the number of PCs that we estimate, αk is the
eigenvalue corresponding to the kth PC, and Xv(λ)

k is the kth PC score from PeDecURe, estimated when
the tuning parameter is set to λ. We use the proportion of variation explained by each PC ( αk∑p∗

k∗=1 αk∗
) to up-

weight earlier components in this maximization. In Figure S1.1 of the Supplementary material available at
Biostatistics online, we illustrate for the two simulation settings described below that PeDecURe appears
robust to the specific choice of λ.

3. PARAMETRIC SIMULATION STUDIES

3.1. Simulation setting

Using the framework and notation introduced above, we conduct a parametric simulation study to compare
PeDecURe to PCA,AC-PCA, and PLS.We simulate 1000 data sets, each with sample size n = 200 and p =
1000 observed features and q = 2 observed nuisance variables per participant. The observed feature matrix
X is constructed as a linear combination of W (a matrix of underlying patterns of interest) and A (a matrix
of nuisance variables). We simulate the outcome Y as a function of both W and A, and a preferred method
would extract features that are correlated with Y and uncorrelated with A. A detailed description of the
simulation setup is provided in Section S2 of the Supplementary material available at Biostatistics online.

We apply each method to 70% of each simulated sample and reserve the remaining 30% for testing.
Partial Pearson correlations between the top three PC scores from each method and Y (conditional on A1

and A2), A1 (conditional on Y and A2), and A2 (conditional on Y and A1) are calculated. We consider a
method to perform well if the distribution of the absolute values of partial correlations between the first
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PeDecURe for feature extraction in the presence of nuisance variables 7

Fig. 2. Parametric simulation results in 1000 random training and testing samples. Groups of boxplots under each
method for primary component (PC) scores 1-3 indicate associations with the outcome variable (Y (first group, in
green)) or one of the two nuisance variables (A1 (second group, in purple), A2 (third group, in orange)), conditional
on the other variables. In the training sample (white boxes) PeDecURe is the only method where we observe a high
distribution of absolute values of partial correlations between the first PC score and Y and low distributions of partial
correlations between all three PCs and each nuisance variables. In testing samples (shaded boxes), the distribution of
absolute values of partial correlations between PC1 and Y is not substantially higher than it is between PC1 and the
nuisance variables.

PC score and Y is higher than the distribution of absolute partial correlations between all PC scores with
A1 and A2.

3.2. Simulation study results

Results from our parametric simulation study are plotted in Figure 2. Scores on PCA’s first and second PCs
and PLS’s first PC have high magnitudes of partial correlations with A1 (purple boxplots) and scores on
PCA’s first and second PCs and PLS’s first and third PCs have elevated magnitudes of partial correlations
A2 (orange). The absolute values of partial correlations between PC scores derived using AC-PCA and Y
(green), A1, and A2 are all low, which corroborates the intuition behind a method that combines strengths
of PLS (which preserves associations with Y ) and AC-PCA.

PeDecURe’s distributions of absolute values of partial correlations between PC scores and A1 and A2 are
low, while distributions of partial correlations between PeDecURe’s PC1 are high in training and remain
slightly elevated in testing, although they are not substantially higher than the distributions involving
the two nuisance variables. Figure S1.2 of the Supplementary material available at Biostatistics online
provides a comparison between PeDecURe and the penalized PLS approach without residualization (2.1).

4. APPLICATION TO STRUCTURAL MRI DATA

4.1. Experiments using data from the ADNI

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private
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8 S. M. WEINSTEIN AND OTHERS

Fig. 3. Preprocessing of data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and sampling of training
and testing samples for plasmode simulation study. Note in Panels C and D that each testing sample is drawn before
the corresponding training sample, as the test sample preserves the distribution of the original ADNI study, while each
training sample is selected through a biased sampling procedure to ensure that the age distribution for individuals
with AD is higher than for those in the CN group that and females are more likely to have AD than males (see Section
4.1). AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitively normal; M/F,
males/females; MCI, mild cognitive impairment; ROIs, regions of interest.

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, positron emission tomography, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive impairment
and early AD.

In this study, we apply feature extraction methods to ROI volumes (X ) derived from baseline structural
MRI scans in the ADNI study (The ADNI team, 2021). Extracted features are then used to evaluate
associations with and predict a variable of interest (AD diagnosis, Y ), while controlling for age (A1) and
sex (A2). Both age and sex confound the relationship between brain structure and AD diagnosis, and
controlling these sources of variation is a necessary intermediate step to allow for the generalizability of
association studies or predictive models of AD diagnosis.

Preprocessing steps are summarized in Figure 3. Briefly, we applied Doshi and others (2016)’s multi-
atlas segmentation pipeline to estimate volumes for p = 137 ROIs for n = 840 ADNI participants. We also
applied ComBat (Fortin and others, 2017) to correct for batch effects associated with different scanner
manufacturers (adjusting for diagnosis, sex, and age). We then restricted our sample to n = 422 participants
who, based on baseline cognitive assessments, were classified as “cognitively normal” (CN, n = 225) or
met the criteria for an AD diagnosis (n = 197).

4.2. Plasmode simulation setting

Since models that ignore or inadequately control for nuisance variables pose threats to generalizability,
our simulation study involving the ADNI data uses a flexible procedure to sample training and testing
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PeDecURe for feature extraction in the presence of nuisance variables 9

samples, such that the distribution of age and sex differs between these samples. Thus, our assessment
of method performance in the testing sample should provide insight into each method’s generalizability.
We first set aside each testing sample, including n = 80 participants randomly subsetted from the 422
ADNI participants who met our inclusion criteria (Figure 3(a) and (b)). Thus, the typical testing sample
preserves the same age and sex distributions across the disease group that is present in the original ADNI
data (Figure 3(c)). We then sample n = 200 individuals from the remaining 342 participants using a biased
sampling procedure to induce imbalance in both age and sex in each testing sample, which would reflect
confounding patterns by age and sex, an exaggeration of we would expect in a random sample of adults
(Figure 3(d)).

We first evaluate each method’s performance based on the distribution of partial correlations in training
and testing samples between each PC score and Y , A1, and A2, similar to our evaluation of parametric
simulation results. Second, we consider the prediction of the disease group in each test sample. Since the
first direction of variation captures the largest percentage of variation (of some covariance matrix, which
differs across methods), we consider the prediction of Y , A1, and A2 based on the PC1 score from each
method using simple logistic (for Y and A2) or linear (for A1) regression models. In practice, we would
consider a method to perform well if there is high predictive accuracy for AD status (as measured by
area under the curve [AUC]) and poor prediction of both age (as measured by root mean squared errors
[RMSE]) and sex (as measured by 1−AUC). We also compare distributions of these prediction metrics
to those obtained from cross-validated models trained using the n = 422 ADNI participants meeting the
inclusion criteria described above. Unlike the samples used to train the models used for prediction in our
plasmode simulation setting, the sample of 422 ADNI participants has a balanced distribution of age and
sex across disease groups.

Finally, since the PC loadings (e.g., v1) are each vectors with dimension p = 137, the number of ROIs,
it is possible to interpret these loadings anatomically in the brain. For example, the estimated value in
the jth position of v1 may be interpreted as a weight indicating the relative importance of that ROI. To
identify the most important combination of ROIs according to each feature extraction method, we conduct
an exploratory analysis where we identify the ROIs with weights exceeding the 95th percentile of weights
(all the values in v1 from a given training sample and method).After identifying the top 5% of ROIs for each
simulation, we identify which ROIs meet these top 5% criteria for at least 50% of all simulations. Finally,
we visualize and compare the top ROIs from the first direction of variation across methods. To facilitate
interpretation in this exploratory analysis, we also identify the top 5% of ROIs in PC1 estimated by each
method in the ADNI sample of n = 422. Since the ADNI sample of n = 422 participants has a balanced
distribution of age and sex across disease groups, the top 5% of ROIs estimated in this sample may reflect
which subset of ROIs would be most important for explaining variation in the data in a setting that is,
in theory, free from the nuisance variation that we induced into each training sample in our plasmode
simulation setting.

4.3. Results from ADNI plasmode simulations

Distributions of the absolute values of partial correlations are plotted in Figure 4(a) and suggest that in both
training and testing samples, PeDecURe performs as expected. Specifically, associations between the PC1
score and diagnosis (Y , green) are the highest for PeDecURe compared to PCA, AC-PCA, and PLS in both
the training and testing samples. While there is a higher variability in the partial correlation distributions
in the test samples, the same trend is present, which supports PeDecURe’s out-of-sample generalizability
given the different sampling procedure used for training and testing (Figure 3(c) and (d)). Furthermore,
PeDecURe’s scores on all of the first three PC scores have low distributions of absolute partial correlations
with both nuisance variables (age (A1, purple) and sex (A2, orange)), while PCA, AC-PCA, and PLS have
noticeably higher distributions for at least one PC.
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10 S. M. WEINSTEIN AND OTHERS

Fig. 4. Results from plasmode simulation studies using data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). (A) Groups of boxplots under each method are labeled with primary component (PC) scores 1-3 and show
distributions of partial correlations with Alzheimer’s disease status (Y (first group of boxes, in green), conditional on
age (A1) and sex (A2)), age (second group of boxes, in purple), conditional on disease and sex, and sex (third group of
boxes, in orange), conditional on age and disease. Distributions from 1000 training samples of n = 200 participants
each are plotted next to those from 1000 testing samples of n = 80 participants each. Note that the distribution of age
and sex across disease groups differs in the training and testing samples, allowing us to evaluate the generalizability
of each method. PeDecURe is the only method with high distributions of partial correlations between the PC1 score
and Y and low distributions of partial correlations between all three PC scores and each nuisance variable, in both
training and testing samples. (B) Prediction of disease group (Y , left) age (A1, center), and sex (A2, right) in 1000
testing samples using only the first PC score from each method. Predictive performance is evaluated using area under
the curve (AUC) for disease group, root mean squared error (RMSE) for age, and one minus AUC (1−AUC) for
sex, so that higher values on each y-axis correspond to more desirable performance, given that we would prefer a
method with high predictive accuracy for disease and low predictive accuracy for age and sex. Horizontal dotted lines
shown with each distribution show prediction based on 5-fold cross-validation in models trained using a subsample
of n = 422 from ADNI, which is balanced across disease group with respect to age and sex (while the actual training
data was imbalanced with respect to these nuisance variables).

As shown in Figure 4(b), PeDecURe also outperforms the three other methods for disease group
prediction. Not surprisingly, as PLS is the only other method that prioritizes maximizing covariance with
the outcome, its PC1 score is also more highly predictive of diagnosis than both PCA and AC-PCA.
It is conceivable that the higher AUC distribution we obtain from a model involving PeDecURe’s PC1
score compared with a model involving PLS’s PC1 score may be due to the lack of nuisance variable
adjustment in estimating PLS’s directions of variation. In addition, although PeDecURe has a similar
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PeDecURe for feature extraction in the presence of nuisance variables 11

RMSE distribution for age prediction as PCA and AC-PCA, and PeDecURe also has a similar 1−AUC
distribution for sex prediction as AC-PCA and PLS, our method’s favorability over the other methods
is apparent in that its prediction of Y exceeds that of other methods and its prediction of confounding
variables is no worse than others.

The results in Figure 4(b) also suggest that PeDecURe’s out-of-sample performance is similar to its
in-sample performance, as the 5-fold cross-validated AUC for predicting disease group based on a sample
with a balanced distribution of age and sex across disease groups is close to the distribution of AUCs
in a similarly balanced test sample (Figure 3(c), even though each method was trained in a sample with
substantial imbalance by sex and age (Figure 3(d)).

Similar to the parametric simulation setting, we also compare PeDecURe to penalized PLS without
residualization (2.1), with results provided in Section S1 of the Supplementary material available at
Biostatistics online. In theADNI simulation setting, PeDecURe’s PC1 has a higher distribution of absolute
partial correlations with Y (Figure S1.3 (a) of the Supplementary material available at Biostatistics online)
and more highly predictive of Y (Figure S1.3(b) of the Supplementary material available at Biostatistics
online) compared to penalized PLS without residualization.

4.4. Exploratory pattern interpretation

Finally, we consider patterns extracted from each method by comparing the top ROIs from the 1000
plasmode simulation training samples to the top ROIs identified when each method was applied to the n
= 422 ADNI participant subsample whose age and sex distributions were balanced across disease groups.

It is interesting to note that the top 5% of ROIs identified by both methods that involve maximizing
the covariance of X (PCA and AC-PCA) are the same in the imbalanced simulation and balanced analysis
settings. Specifically, the same set of top ROIs we identify using PCA in the plasmode simulation setting
and in the balanced ADNI sample of n = 422 (Figure 5, left and right panels of the first row are the same).
The same is true for AC-PCA (Figure 5, left and right panels of the second row are the same). We also
note that the same is not true for PLS and PeDecURe (i.e., left and right panels differ in the last two rows
of Figure 5), suggesting that the selection of ROIs for feature extraction methods which prioritize shared
variation in Y may be more sensitive to changes in the sampling distribution, even though PeDecURe’s
prediction of and correlations with Y were consistent across training and testing samples (Figure 4). This
will be interesting to explore in greater detail in future work.

Since our simulations using the ADNI data suggested PeDecURe outperformed all other methods
(Figure 4), it seems plausible that PeDecURe may be best at identifying the specific combination of ROIs
that balance attenuated associations with nuisance variables but are still jointly associated with disease
group. Nevertheless, across all methods, the top ROIs identified in both the plasmode simulations and
analysis of the full ADNI subsample of n = 422 are consistent with those found in previous structural
neuroimaging-based studies of AD (Magnin and others, 2009; Habeck and others, 2008; Westman and
others, 2011; Jiang and others, 2014). In future work, it will be helpful to develop hypothesis testing
methods to conduct a more rigorous assessment of these exploratory findings.

5. DISCUSSION

In this article, we proposed PeDecURe, a new feature extraction method with built-in nuisance variable
adjustment. By combining the strengths of previous methods, PeDecURe extracts features that are not only
uncorrelated with nuisance variables but that also preserve strong associations with a variable of interest.
Through simulation studies and real data analyses, we showed that features derived using PeDecURe can
be used to conduct association studies and train generalizable predictive models.
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Fig. 5. Top regions of interest (ROIs) according to the first primary component (PC) loadings from each method.
ROIs above 95th percentile of PC1 for at least 50% of ADNI plasmode simulations are shown on the left, where the
training data are imbalanced with respect to age and sex across disease groups. On the right, we show the top 5% of
ROIs after applying each method to a balanced ADNI sample of n=422 (after applying exclusion criteria outlined in
Figure 3). L/R, left/right; WM, white matter.

Our proposed method differs from other approaches to handling nuisance variables in neuroimaging,
including methods which train predictive models based on the full set of imaging features (Linn and
others, 2016; Rao and others, 2017) or transform the original set of features to be adjusted for confounders
without any dimension reduction (More and others, 2020). Our present work also differs from previous
work in confounder-adjusted feature extraction outside neuroimaging, including Lin and others (2016)’s
AC-PCA, which adds a penalty term to the PCA objective function (similar to the penalty term in our
proposed method). In particular, results from our simulations suggest that an unintended consequence of
AC-PCA is the loss of information relevant about an outcome of interest. While AC-PCA has a number
of important strengths, features derived using this method may not be suitable for outcome prediction.

We also found that it was not sufficient to implement a penalized PLS using the AC-PCA penalty term
without residualizing features (2.1). Notably, in simulations using data from the ADNI, we showed that
compared with features derived using penalized PLS without residualization, PeDecURe’s features have
higher magnitudes of partial correlations with the disease group (Figure S1.3(a) of the Supplementary
material available at Biostatistics online) and higher AUCs for predicting disease (Figure S1.3(b) of the
Supplementary material available at Biostatistics online).

Our method has several limitations that warrant further discussion. Like PLS and unlike PCA and
AC-PCA, PeDecURe can only be applied in samples where the outcome of interest Y is observed, and in
this sense, it is a supervised method. However, like PLS, the directions of variation that we estimate with
PeDecURe can be flexibly applied in external testing samples where Y is unobserved, since there is no
need to residualize the testing data, as we calculate PC scores using the original features (X ). The results
from ourADNI simulation study suggested that PeDecURe’s performance is robust in testing samples with
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a different sampling distribution from the training sample. As concerns regarding the generalizability of
neuroimaging studies have transpired in recent years (Marek and others, 2022; LeWinn and others, 2017),
a feature extraction method that both adjusts for nuisance variables and performs well out-of-sample is
appealing.

In addition, while imaging data are often high-dimensional, in this paper we considered settings with
at most 1000 features per participant. As we show in Section S3 of the Supplementary material avail-
able at Biostatistics online, PeDecURe’s run-time is reasonable in moderate-dimensional settings with
p > n, despite its computational complexity. However, our method has not yet been extended to high-
dimensional settings (p >> n), where standard eigendecomposition-based methods may not be feasible
due to computational cost. A sparse PLS-based adaptation of PeDecURe is one possible approach, which
may improve the viability of our method in high-dimensional settings. Another limitation of PeDecURe
is that by maximizing and penalizing covariance (as in PLS) as opposed to correlation (as in canonical
correlation analysis (CCA)), our method is not scale-invariant. A CCA-based adaptation of PeDecURe
would be both a useful and natural extension of PeDecURe, which may be more relevant in the context
of unstructured imaging modalities (Krishnan and others, 2011; Zhuang and others, 2020).

Another important extension of this work will be to consider alternative models for estimating the
residuals (X ∗ and X̃ ). While researchers routinely assume normality in models of structural neuroimaging
measurements (Friston and others, 1994; Ashburner and Friston, 2000; Davatzikos and others, 2001;
Oakes and others, 2007), and we make this assumption when we fit models to estimate residuals for
PeDecURe, there are settings where this assumption may not be suitable (e.g., functional MRI), and more
flexible models that account for temporal or nonlinear aspects of the data may be preferred. It would also
be interesting to consider multivariate approaches to residualization, as our current approach involves
fitting a separate model at each image location.

Lastly, it will be important to evaluate the stability of PeDecURe (Helmer and others, 2021; Marek
and others, 2022), including quantifying the possible trade-off between improvements in generalizability
offered by PeDecURe through nuisance variable adjustment and the possible loss of generalizability in
small-sample or higher-dimensional settings. These limitations present abundant opportunities for future
research.

6. SOFTWARE

An R package with code for implementing PeDecURe is publicly available at https://github.com/smweinst/
PeDecURe.

SUPPLEMENTARY MATERIAL

Supplementary material is available at online http://biostatistics.oxfordjournals.org.
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