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Abstract

Motivation: Imaging genetics is mainly used to reveal the pathogenesis of neuropsychiatric risk genes
and understand the relationship between human brain structure, functional and individual differences.
Increasingly, the brain-wide imaging phenotypes in voxels are available to test the association with genetic
markers. A challenge with analyzing such data is their high dimensionality and complex relationships.
Results: To tackle this challenge, we introduce a weighed distance correlation (wdCor) that can assess
the association between genetic markers and voxel-based imaging data. Importantly, the wdCor test
takes the voxel-based data as a whole multivariate phenotype, which preserves the spatial continuity and
might enhance the power. Besides, an adaptive permutation procedure is introduced to determine the
p-values of the wdCor test and also alleviate the computational burden in GWAS. In extensive simulation
studies, wdCor achieves much better performances compared to the original distance correlation. We
also successfully apply wdCor to conduct a large-scale analysis on data from the Alzheimer’s disease
neuroimaging project (ADNI).
Availability: Our wdCor method provides new research directions and ideas for multivariate analysis of
high-dimensional data, it can also be used as a tool for scientific analysis of imaging genetics research
in practical applications. The R package wdcor, and the code for reproducing all results in this paper is
available in Github: https://github.com/yangyuhui0129/wdcor
Contact: panwliang@mail.sysu.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

4 Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List:pdf.

1 Introduction
As research in developmental and clinical sciences has progressed in
recent decades, there has been many significant advances in technology
and methods of molecular genetics and neuroimaging. At the forefront
of imaging genetics is an experimental strategy that effectively integrates
molecular genetics and neuroimaging techniques (Munoz et al., 2009).
The technology is mainly used to reveal the pathogenic mechanism
of neuropsychiatric risk genes, and to understand the field of human
brain structure, functional and individual differences in connections.
Such understanding is critical for diagnosis, prevention, and treatment
of numerous complex brain-related disorders (e.g.,schizophrenia and
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Alzheimer’s disease). This also makes imaging genetics a useful tool for
discovering genes for mental illness risk (Hashimoto et al., 2015).

The main method currently of gene-hunting in imaging genetics is
genome-wide association study (GWAS). Several studies used a mass-
univariate linear modeling (MULM) approach. Stein et al., 2010 proposed
a voxel-based genome-wide association study (vGWAS), for pair analysis
of each single nucleotide polymorphism (SNP) and each voxel. But treating
each single voxel as a phenotype ignores the spatial continuity between
the imaging data, i.e. the strong structural connections between voxel-
based phenotypes, which are expected to share some common genetic
variations. Besides, a large number of multiple comparisons make the
vGWAS computationally intensive and they failed to find any significant
result in their analysis. To reduce the number of tests, Hibar et al., 2011
proposed the voxel-based gene-wide association study (vGeneWAS), a
method reduces the dimensionality of genome by considering voxel wise
association with each gene. In order to reduce the computational burden,
Huang et al., 2015 proposed a fast voxelwise genome wide association
analysis (FVGWAS) framework to efficiently carry out vGWAS analysis.

Other potential whole-brain, genome-wide association studies are
based on penalized and sparse regression techniques. The regression
model based on the L1 norm constraint has been successfully applied
to multivariate genetic data analysis (Kohannim et al., 2012; Yang et al.,
2015). However, these methods do not fully consider the structural
relationship between the characteristic variables. After, Silver et al., 2012
and Yuan and Lin, 2006 proposed a group version of sparse models to
solve the imaging genetic problems. Related studies are Kohannim et al.,
2011 using ridge regression and Kohannim et al., 2012 using L1 + L2

regularization. Besides, Vounou et al., 2010a proposed the sparse reduced-
rank regression (sRRR) model for the detection of genetic associations
in imaging genetics studies involving high dimensional phenotypes. This
method can simultaneously selects SNP variants and regions of association
leveraging signal sparsity, but it is limited to linear correlation.

Another method named sparse canonical correlation analysis (SCCA)
models, which is a powerful bi-multivariate analysis technique, have
been used for imaging genetic association analysis. Witten et al., 2009
developed a penalized matrix decomposition (PMD) method and applied
it to solve CCA with lasso and fuse lasso penalties. After that, Chen
and Liu, 2012 developed an algorithm for solving CCA with overlapping
group-lasso penalty and network-based fusion penalty. Besides, Lin et al.,
2014 integrated the the prior knowledge with group lasso regularizer
and SCCA model, to explore the correlation between genetic variation
and brain activity. Du et al., 2014 proposed S2CCA using group
lasso, and incorporated both the covariance matrix information and
the priori knowledge information to discover group-level bi-multivariate
associations.

Recently, a class of nonparametric approaches have been carried out to
resolve the problem of the correlation analysis between two multivariate
variables, with the distance covariance/correlation (dCor, SzéKely et al.,
2007) as the most prominent one. Distance covariance/correlation is
introduced to measure both linear and non-linear dependence between
two random vectors in arbitrary dimension without relying any model
assumption, making it more applicable for processing data in imaging
genetics. SzéKely and Rizzo, 2009 introduce the concept of covariance
of stochastic process, and then they extended the distance correlation
to the problem of testing the independence of random vectors in high
dimensions (SzéKely and Rizzo, 2013). Energy statistics as a statistical
distance, proposed on the basis of distance, was more general and powerful
against classical statistics (Székely and Rizzo, 2013). Besides, Székely
et al., 2014 defined the partial distance correlation statistics with the help
of Hilbert space, and develop a test for zero partial distance correlation. For
real-valued variables, the complexity of calculating distance covariance
by definition isO(n2), Huo and Székely, 2016 proposed anO(nlog(n))

algorithm and reduced the complexity of dCov calculation. Geerligs et al.,
2016 proposed a new method based on distance correlation to study the
brain-wide functional connectivity and structural covariance. Wen et al.,
2018 applied the distance covariance test to assess the dependence between
SNPs and diffusion tensor imaging phenotypes. Throughout these articles,
dCor performs well, but it only illustrates that dCor performs well in
low-dimensional scenarios. For example, Wen et al., 2018 considered the
ROI-based phenotypes and the dimension of phenotypes is 42; Geerligs
et al., 2016 analyzed the voxel-based measurements within each ROI,
which contains dozens of voxels on average. Yet for the brain-wide imaging
phenotype, the number of voxels could be thousands or even higher. Under
such high-dimensional settings, dCor might be invalid. As shown in
Reddi et al., 2015, the power of the dCor falls sharply as the dimension
increases, which implies that dCor is not suitable for brain-wide imaging
genetic data. To overcome the noted limitations of the existing methods, we
proposed a novel framework for association analysis in imaging genetics
based on a weighted distance correlation measure. In a high-dimensional
voxel-based phenotype, it is often assumed that there is only a small amount
of voxels are associated with the genetic marker(s) that we are examined
(Vounou et al., 2010b). The weighted distance correlation (wdCor) is
conducted by assigning positive weights to the true dependent voxels and
negligible weights to the remaining independent voxels, and evaluating
distance correlation based on the weighted voxels. In this way, we can
alleviate the power loss of dCor caused by the curse of dimensionality.
We summarize our contributions as following:

1. We propose an efficient method to solve the association problem
between the brain-wide voxel phenotypes and genome-wide genetic
markers.

2. Our method takes the voxel-based data as a whole multivariate
phenotype, which preserves the spatial continuity and might enhance
the detection power.

3. An adaptive permutation procedure is introduced to make the proposed
test feasible for GWAS.

The paper is organized as follows. In Section 2, we introduce the
wdCor and show its applicability in the independence test with two
permutation procedures. Section 3 evaluates the finite sample performance
of wdCor including two parts : the Type-I error and the power of
wdCor. In Section 4, we apply wdCor to analyse a large-scale data
from the Alzheimer’s disease neuroimaging (ADNI) project, and compare
its performance with dCor.

2 Methods

2.1 Overview of distance correlation

First, we will introduce the background of distance correlation, which
was proposed for measuring and testing dependence between two random
vectors X and Y . Distance correlation, which generalizes the idea of
Pearson correlation, enjoys two remarkable properties: (1)dCor(X,Y ) is
defined forX and Y of arbitrary dimensions. (2) dCor(X,Y ) = 0 if and
only ifX andY are independent. Thus, the proposed test based on distance
correlation is sensitive to all types of departures from independence,
including nonlinear or nonmonotone dependence structure.

The formal definitions of population coefficients dCor and dCov
are given in SzéKely et al., 2007. Assume X ∈ Rp and Y ∈ Rq , let
φX(t) and φY (s) be the respective characteristic functions of X and Y ,
and φX,Y (t, s) be the joint characteristic function of (X,Y ). Distance
covariance between X and Y with finite first moments is given by

dCov2(X,Y ) =
1

cpcq

∫
Rp+q

‖φX,Y (t, s)− φX(t)φY (s)‖2

‖t‖1+p
p ‖s‖1+q

q

dtds,
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where ‖ · ‖p, ‖ · ‖q stand for the Euclidean norm and cp, cq are some
constants. Analogous to Pearson correlation, distance correlation is defined
as

dCor(X,Y ) =

{ dCov(X,Y )√
dV ar(X)dV ar(Y )

, dV ar(X)dV ar(Y ) > 0,

0, dV ar(X)dV ar(Y ) = 0.

where dV ar(X) = dCov(X,X).
SzéKely et al., 2007 proposed to estimate dCor and dCov through the

usual moment estimation. To be precise, for an observed random sample
(X,Y) = {(Xi, Yi) : i = 1, . . . , n}, define

akl = ‖Xk −Xl‖p, bkl = ‖Yk − Yl‖q

for k, l = 1, . . . , n. Then compute the double-centering to the Euclidean
distance matrices (akl) and (bkl):

Akl = akl − āk· − ā·l + ā··,

Bkl = bkl − b̄k· − b̄·l + b̄··,

where āk· = 1
n

∑n
l=1 akl is the k-th row mean, ā·l = 1

n

∑n
k=1 akl is

the l-th column mean and ā·· is the grand mean of the distance matrix of
X . Analogously, b̄k·, b̄·l and b̄·· can be also defined.

The empirical distance covariance and empirical distance variance are
defined as

d̂Cov2(X,Y) =
1

n2

n∑
k,l=1

AklBkl,

d̂V ar2(X) =
1

n2

n∑
k,l=1

A2
kl, d̂V ar2(Y) =

1

n2

n∑
k,l=1

B2
kl.

Accordingly, the empirical distance correlation can be defined as

d̂Cor(X,Y) =


d̂Cov(X,Y)√

d̂V ar(X)d̂V ar(Y)
, d̂V ar(X)d̂V ar(Y) > 0,

0, d̂V ar(X)d̂V ar(Y) = 0.

2.2 Weighted distance correlation (wdCor)

Distance covariance or distance correlation provides a new approach to
testing the independence of two random vectors. However, Reddi et al.,
2015 showed that the power of dCor drops polynomially with increasing
dimension. That is to say, dCor does not perform well in high-dimensional
cases. This may be caused by the increasing noise with the increase
dimension of X and/or Y . As the dimension of Y increases with those
dependent parts of Y remain unchanged, the proportion of the dependent
parts will become smaller and smaller. Conversely, the independent parts
turn to occupy an increasing proportion in calculating dCor, resulting in a
low power in high dimensions.

We let X ∈ R be the genetic marker of interest and Y ∈ Rq be the
imaging phenotype. In order to avoid the power of dCor falling sharply
as the dimension of Y increases, it is necessary to highlight the dependent
parts of Y when calculating dCor and to minimize the influence of the
independent parts. Therefore, we are motivated to assign different weights
according to their dependence. Specifically, when calculating dCor, the
dependent parts of Y are given a larger weight, and those independent parts
are assigned a smaller weight to relieve their influ/ence. Hence, we make
the following improvements based on the original dCor and define this
new statistic as weighted distance correlation (wdCor):

wdCor(X,Y ;ω) = dCor(X, (ω1Y1, ω2Y2, . . . , ωqYq)),

such that
∑q
i=1 ω

2
i = 1. With various values of ω = (ω1, ω2, . . . , ωq),

we obtain a class of distance correlation, including the original distance

correlation as the special case thatω = (1/
√
q, 1/
√
q, . . . , 1/

√
q). It is a

key issue to reasonably determine ω making the weights of the dependent
parts are non-zero and the weights of the independent parts are as small as
possible. However, optimizing the objection function directly to obtain the
weight functionω is very difficult due to distance correlation for the weight
function ω is nonconvex. Notice that distance correlation is a general
dependence measure of X and Yj , which can detect either linear or non-
linear dependence. Moreover, distance correlation is defined in a finite
interval with 0 ≤ dCor ≤ 1, and kind of computationally fast. So here
we consider a function of dCor(X,Yj) as weight function.

Inspired by the adaptive Lasso (Zou, 2006), we can transform the
original optimization as follows. Denote β = (β1, β2, . . . , βq), we let

βj = dCor(X,Yj), ωj =
βγj

‖βγ‖2
,

for j = 1, 2, . . . , q. Under the above transform, the value of ωj
ranges from 0 to 1. As γ increases, those parts of Y which have stronger
dependence withX will be highlighted and the those redundant of Y will
be gradually ignored in the calculation of wdCor. That is because larger
γ makes the weights of those dependent parts occupied more share in the
whole weight vector. Of all γ choices, we denote the one that maximizes
wdCor as the optimal:

γopt = arg max
γ

wdCor(X,Y ;ω)

= arg max
γ

dCor(X, (ω1Y1, ω2Y2, . . . , ωqYq)).

Hence, the optimal weight is

ωopt =
βγopt

‖βγopt‖2
. (1)

In this way, we transform the optimization problem involving q-
dimensional variable, say ω, to the univariate optimization problem of
γ. This simplified strategy highly reduces the complexity of the original
problem and keeps the efficiency of wdCor. Notice that in practice, we
cannot exhaust all possible values ofγ to find theωopt, which may increase
the computational burden. Also, we need to guarantee the efficiency of
the wdCor test. Considering these two points, we extract some SNPs
from our ADNI data set in advance and calculate the optimal γ. The
testing result shows that the optimal γ is relatively concentrated and
stable. Using these results as a reference, we define a positive integer
set Γ = {1, 3, 5 . . . , 15}, after γ traverses the set, the optimal gamma
is selected. Finally, we obtain the weighted distance correlation with the
optimal weight:

wdCor(X,Y ;ωopt) = dCor(X, (ωopt,1Y1, . . . , ωopt,qYq)),

such that
∑q
i=1 ω

2
opt,i = 1.

Similar to the empirical distance correlation, we can also obtain the
empirical weighted distance correlation as follows

ŵdCor(X,Y; ω̂opt) = max
γ∈Γ

ŵdCor(X,Y;ω)

= max
γ∈Γ

d̂Cor(X, (ω1Y1, . . . , ωqYq)).

2.3 Permutation procedure for the wdCor test

As shown in SzéKely et al., 2007, the asymptotic distribution of distance
covariance under null hypothesis is hard to compute in practice and a
permutation procedure is introduced to estimate it. Motivated by this, we
here introduce a permutation procedure to determine the null distribution
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of the proposed wdCor statistic. In specific, for any significance level
α ∈ (0, 1), the α-level test is conducted in the following manner:

Algorithm 1. Permutation procedure for the wdCor test

1. Given a sample (X,Y) = {(Xi, Yi), i = 1, . . . , n}, calculate
the test statistic ŴD , ŵdCor(X,Y; ω̂opt) on the given
sample.

2. For a sample (X,Y), we randomly permute the indices
{1, . . . , n}, denoted the permuted indices as {i1, . . . , in}, and
determine the permuted sample by (X,Y∗), where Y∗ =

{Yi1 , . . . , Yin}. Compute the permutation test statistic ŴD
∗
,

ŵdCor(X,Y∗; ω̂∗opt).

3. Repeat step 2 for T times to get ŴD
∗(1)

, . . . , ŴD
∗(T )

. For a
pre-specified significant level α, calculate the empirical p-value

p̂ =
1

T

T∑
i=1

I(ŴD
∗(i)
≥ ŴD),

where I(·) is the indicator function.
4. Reject H0 if p̂ ≤ α.

For data in a large-scale GWAS, the permutation time in the above
procedure should be larger than millions, i.e., T ≈ 106, to avoid failure
in the Type-I error control. Moreover, the procedure is applied for each
SNP, which aggravates the computation burden and might be infeasible in
GWAS. Thus a computationally efficient algorithm is urgent. In GWAS, it
is assumed that the vast majority of SNPs are non-causal/independent to
the phenotype. Identifying these SNPs early in permutation testing could
reduce the total number of permutation times. An intuitive idea is that
we may terminate the permutation at an early stage if there is little or
even no evidence towards alternative based on the wdCor statistic, while
perform exhaustive permutations for strongly dependent features (Besag
and Clifford, 1991).

Here, we propose an adaptive permutation strategy by using
an appropriate permutation time T bases on the dependence level.
Specifically, we first apply Algorithm 1 withT = T0 (say 10) to calculate
a rough p-value for each SNP, and screen out those SNPs with larger p-
values. Then we apply Algorithm 1 with T = T1(> T0) to update
the p-values for the remaining SNPs. The above procedure is applied
with gradually increasing permutation times, say {T0, T1, . . . , Tk}, and
stops when there is no SNPs left. We summarize the adaptive permutation
procedure for testing independence in high-dimensional studies having a
large number of tests as follows:

Algorithm 2. Adaptive permutation procedure for the wdCor statistic

1. Determine the number of independent tests (m) and the remaining
set (RS = {1, . . . ,m}). Initialize the number of permutations T0

and the threshold α0.
2. While RS is not empty,

• For each SNP, run Algorithm 1 with T = T0 and denote the
output p-value as {p̂1, . . . , p̂m}.

• Screen out the SNPs with their p-values larger thanα0 and update
RS. That is, RS = {j, p̂j ≤ α0}.

• Determine α0 = α0/10 and T0 = 10× T0.

In practice, we can initialize as T0 = 10 and α0 = 1/T0. Notice
that the adaptive permutation is much faster than the standard permutation
and provides good estimates of p-values, and thus it is computationally
feasible for GWAS.

3 Simulation
In this section, we compare the performance of our proposed tests (wdCor)
with the dCor test proposed by SzéKely et al., 2007. To be fair, we use the
permutation procedure to calculate the p-values for both methods. Here,
we set T = 200, m = 500, the nominal level of significance at 0.05.

The genetic marker X ∈ R consists of n i.i.d. random variables
from Binomial distribution with size 2 and probability p. The noise
E = (Eij)n×q = (E1, . . . , Eq) is generated from multivariate normal
distribution N(0,Σ), where Σ = (σij) and σij = ρ|i−j|. For the
imaging phenotype Y = (Y1, Y2, . . . , Yq), we consider the following
five cases:

Case 1: Yj = Ej , j = 1, 2, . . . , q.

Case 2:

Yj =

{
βX + Ej , j = 1, 2, . . . , q1,

Ej , otherwise.

Case 3:

Yj =


βX2 + Ej , j = 1,

βX + Ej , j = 2, . . . , q1,

Ej , otherwise.

Case 4:

Yj =


sin(πX/6) + Ej , j = 1,

βX + Ej , j = 2, . . . , q1,

Ej , otherwise.

Case 5:

Yj =


βX2 + Ej , j = 1,

sin(πX/6) + Ej , j = 2, 3,

βX, j = 4, . . . , q1,

Ej , otherwise.

Case 6:

Yj =



tan(X/2) + Ej , j = 1,

ln(X + 1) + Ej , j = 2,

0.2X + Ej , j = 3,

0.1 + 0.1X + 0.1X2 + Ej , j = 4,

βX + Ej , j = 5, . . . , q1,

Ej , otherwise.

Case 1 considers the situation when the genetic marker X and the
phenotypeY are independent. In Cases 2-6, the phenotypeY is dependent
with the genetic marker X . There is linear dependence between X and
the first q1 coordinates of Y in Case 2. In Case 3-4, there are also linear
dependence between X and the 2 − q1 coordinates of Y , but there are
nonlinear dependence betweenX and the first coordinate ofY compared to
Case 2. In particular, there is quadratic and sine dependence in Case 3 and
Case 4, respectively. In Case 5, the dependence contains both quadratic
and trigonometric function. The most complicated dependence is shown
in Case 6, with tangent, logarithmic, exponential function and polynomial
are applied.

3.1 Proper definition of weights

In this section, we assess whether the weights defined in Equation (1) can
identify the true dependent parts of the phenotypeY . We fix the coefficient
β to be 0.3 and ρ = 0. The sample size n is 200 and the number of true
dependent coordinates in Y is q1 = 10. We choose the dimension of Y
as q = 10 for Case 1 and q = 10, 20, 50, 100, 200 for Cases 2-6. The
average of the optimal weights between X and the first 10 coordinates of
Y are presented in Supplementary Figure 1.

For Case 1 with q = 10, it can be seen from the left panel of
Supplementary Figure 1 a that the weights stay almost the same for all
dimensions inY . Besides, the statistic values from wdCor is not significant
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different from those from dCor. This is expected becauseX is independent
with Y and wdCor reduces to dCor in this case.

From the top panels of Supplementary Figure 1 b, we can see that
the weights of the true dependent indexes, say 1, . . . , q1, are basically
identical and considerably larger than those of independent indexes.
Furthermore, their gaps increase as the dimension of Y increases, or the
sparsity of Y increases. When all dimensions in Y are dependent with
X (q = 10), the wdCor statistic is slightly larger than the dCor statistic.
This indicates the superiority of our proposed wdCor over dCor in the
high-dimensional scenarios.

Supplementary Figure 1 c presents the average weights for the first q1
dimension ofY in Cases 3-6. Although the first q1 weights is not the same,
their values are much larger than the remaining values. It is not surprising
but reassuring that the weights from those independent indexes become
close to 0 as the sparsity of Y increases regardless of linear or nonlinear
cases. It suggests that our proposed weights allocation strategy is able to
distribute non-zero weights to the true important indexes.

3.2 Type-I error

In Case 1,X andY are independent and thus the type-I error is calculated.
We choose the sample size as n = 100, 200, 300, and the dimension of
Y as q = 10, 50, 100, 200, 400, 600. For ρ, we set it to be 0 and 0.5 for
uncorrelated and correlated scenarios, respectively.

The empirical p-values are given in Supplementary Table 1. It can be
seen from Supplementary Table 1 that the estimated p-values of the two
tests are controlled fairly well around 0.05 for all cases. This implies that
the null distributions of the wdCor statistic and the dCor statistic are well
approximated from the permutation procedure.

3.3 Statistical power

In this section, we will compare the power of dCor andwdCor especially
in the ultra-high dimension situations. Cases 2-6 consider the genetic
marker X that has linear or nonlinear dependence with the phenotype
Y . We choose the sample size n = 100, 200, set the dimension of Y
as q = 100, 200, 400, 600, 800, 1000, and use the same setting ρ as in
Section 3.2. For the coefficient β, we set it to be a fixed value 0.3 or a
random value generated from N(0, 0.4).

The power for dCor and wdCor under different settings were
presented in Supplementary Table 2. It can been seen that the empirical
p-values of thewdCor is larger than those of the dCor in all cases, which
suggests the necessity of introducing weights into the distance correlation.

To better portray the decays tendency of the empirical p-values as
dimension increases, Figure 1 plots the power versus the dimension q for
both the dCor and wdCor methods. It can be seen that the gaps in the
empirical p-values between the two tests increases with the dimension q
increase. What’s more, when given sufficient sample (in our simulation
n = 200), the declining speed is much slower for the wdCor test
compared to the dCor test. For both tests, the performance in Cases 3 and
5 is much better than those in Cases 2 and 4. This is because the distance
correlation tends to perform better in detecting the quadratic dependence
compared to the trigonometric dependence. Yet even in handling such weak
association, our proposal still has detection power no less than 0.6 in Case
2 and 0.7 in Case 4. Case 6 includes some nonlinear dependence that are
not contained in Case 2-5. Among them, the strongest dependence is from
the tangent function, and the weakest is from the polynomial function.Even
though, the polynomial function still have stronger dependence than the
linear function.

4 ADNI data analysis
Alzheimer’s disease (AD) is a common degenerative disease of the central
nervous system. It mainly occurs in the elderly over 65 years old. Clinical
manifestations are often memory impairment, cognitive deficit, language
decline and so on, which seriously affect people’s life and health.

The genome-wide association study has greatly promoted the study
of the genetic traits of AD and detected a large number of candidate
genes of AD. Labeling AD-related genes with SNPs has become a new
breakthrough in the study of AD. At the same time, imaging techniques
are also applied to the study of brain structure and function. Thus by
combining neuroimaging and genomics, it is more likely to discover the
underlying biological pathogenesis of the disease, and to identify genes
associated with AD.

4.1 Data processing

To illustrate the usefulness of the proposed method, the brain MRI
data were used as phenotypes in GWAS and were obtained from ADNI
database (adni.loni.usc.edu). The ADNI was launched in 2003 by the
National Institute on Aging, National Institute of Biomedical Imaging and
Bioengineering, Food and Drug Administration, private pharmaceutical
companies and non-profit organizations as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography,
other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended to aid
researchers and clinicians in developing new treatments and monitoring
their effectiveness, as well as lessening the time and cost of clinical trials.
The principal investigator of this initiative is Michael W. Weiner, MD,
at the VA Medical Center and University of California, San Francisco.
ADNI is the result of efforts of many coinvestigators from a broad range
of academic institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The goal was to
recruit 800 subjects, but the initial study (ADNI-1) has been followed by
ADNI-GO and ADNI-2. To date, these three protocols have recruited over
1500 adults, ages 55 to 90, to participate in the research, consisting of
cognitively normal older individuals, people with early or late MCI, and
people with early AD. The follow-up duration of each group is specified
in the protocols for ADNI-1, ADNI-2 and ADNI- GO. Subjects originally
recruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www. adni-info.org.

In this study, 362 MRI scans obtained from ADNI database were
used. The scans from 164 AD and 198 healthy controls were performed
on a 1.5T MRI scanners with some individual protocols. The typical
protocol includes the following parameters: repetition time (TR) = 2400
ms, inversion time (TI) = 1000 ms, flip angle = 8o, and field of view (FOV)
= 24 cm with a 256× 256× 170 acquisition matrix in the x−, y−, and
z− dimensions, which yields a voxel size of 1.25× 1.26× 1.2 mm3.

We process the MRI data by using the following steps: anterior
commissure and posterior commissure correction, skull-stripping,
cerebellum removal, intensity inhomogeneity correction, segmentation,
and registration (Shen and Davatzikos, 2004). After segmentation, we
segment the brain data into four different tissues: gray matter (GM),
white matter (WM), ventricle (VN), and cerebrospinal fluid (CSF). We
use the deformation field to generate RAVENS maps (Davatzikos et al.,
2001a) to quantify the local volumetric group differences for the whole
brain and each of the segmented tissue type (GM, WM, VN, and CSF),
respectively. Moreover, we automatically label 93 ROIs on the template
and transferred the labels following the de-formable registration of subject
images (Davatzikos et al., 2001b). To simplify the analysis of each ROI,
we first select the labeled ROIs and their corresponding voxel sites on the
template, and extract the voxels on the identical sites as the template on the
register image of each subject to obtain the same voxel number for each
subject.

The SNP data were genotyped using the Human 610-Quad BeadChip
(Illumina, Inc., San Diego, CA). Quality control and SNP screening were

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa612/5866978 by U

niv of Southern C
alifornia user on 26 O

ctober 2020
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a .Case 2 (X ∼ (0, 1, 2))

b .Case 3 (X ∼ (0, 1, 2))

c .Case 4 (X ∼ (0, 1, 2))

d .Case 5 (X ∼ (0, 1, 2))

e .Case 6 (X ∼ (0, 1, 2))
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Table 1. Top 10 SNP-ROI paris identified by wdCor and dCor

ROI SNP CHR BP p.value wdCor dCor Gene

wdCor
posterior limb of internal capsule rs12721364 12 48231430 2.0e-08 0.340 0.229 LINC02354
posterior limb of internal capsule rs2765588 13 103863278 4.0e-08 0.317 0.253 None
right amygdala rs2075650 19 45395619 4.0e-07 0.305 0.275 TOMM40
right medial occipitotemporal gyrus rs8095770 18 53093724 4.0e-07 0.346 0.251 TCF4
left precuneus rs7933176 11 100052221 5.0e-07 0.314 0.226 CNTN5
right medial frontal gyrus rs924598 5 35267238 5.0e-07 0.342 0.236 None
left superior parietal lobule rs11201974 10 88067925 6.0e-07 0.326 0.206 GRID1
left parahippocampal gyrus rs2622927 1 47861163 7.0e-07 0.319 0.237 LINC01389
left superior occipital gyrus rs9864595 3 4420255 8.0e-07 0.323 0.189 SUMF1
left uncus rs2075650 19 45395619 8.0e-07 0.299 0.247 TOMM40

dCor
right amygdala rs2075650 19 45395619 2.0e-07 0.305 0.275 TOMM40
right occipital pole rs8076012 17 47101989 2.0e-07 0.317 0.276 IGF2BP1
left parietal lobe white matter rs17565737 10 93361825 3.0e-07 0.308 0.283 HECTD2-AS1
right lateral ventricle rs713532 16 71371993 5.0e-07 0.284 0.263 None
right temporal lobe white matter rs7088910 10 6030194 5.0e-07 0.281 0.281 None
right temporal lobe white matter rs713532 16 71371993 6.0e-07 0.291 0.282 None
left anterior limb of internal capsule rs17565737 10 93361825 7.0e-07 0.277 0.262 HECTD2-AS1
left subthalamic nucleus rs1157531 4 13882785 2.0e-06 0.299 0.266 LINC01182
left amygdala rs2075650 19 45395619 2.0e-06 0.285 0.266 TOMM40
right caudate nucleus rs12077089 1 85298014 3.0e-06 0.285 0.271 LPAR3

conducted on the SNP data as introduced in a previous study (Huang et al.,
2015). Moreover, the remaining missing genetic data were imputed as the
modal value. After these procedures, we retain 362 subjects, and each
subject had 501675 SNPs.

4.2 Data Analysis and Results

We treat the 93 ROIs as different functional phenotypes, and perform
chromosome-wide tests separately. Before analysis, we perform multiple
linear regression analysis to adjust the confounding effects from covariates
including gender, age, whole brain volume, and the top 5 principal
component scores in SNPs, and the resulting residual matrix is stored
for the next step.

For each ROI, there only exist a few strong-associated SNPs, screening
out those weakly associated SNPs can greatly reduce unnecessary
calculation. Since the SNP having larger value of wdCor tends to have
stronger dependence with the ROI, we calculate the empirical weighted
distance correlation for each SNP with the ROI, denoted by ŴDk for
k = 1, 2, . . . , p, where p is the total number of SNPs. Then we keep the
stronger associated SNPs and let the active set A be

A = {k : ŴDk ≥ γ, k = 1, 2, . . . , p},

where the thresholding parameter γ is to distinguish the active SNPs from
the inactive ones. Then we borrow the idea of random decoupling in Barut
et al., 2016 to determine the γ, the procedure is described as follows.

We generate a set of pseudo-predictors Z by randomly permuting the
rows of each SNP, and compute the empirical weighted distance correlation
forZ and the ROI, denoted by ŴDp+k fork = 1, 2, . . . , p. The γ̂max =

maxk=1,2,...,pŴDp+k can be seen as a cutoff value to distinguish the
active SNPs from the inactive ones. According to Barut et al. (2016), a
more practical approach is to choose the γ̂(q) as cutoff value, γ̂(q) is the

the qth quantile of {ŴDp+k, k = 1, 2, . . . , p}, where 0 ≤ q ≤ 1. Thus
we repeat this procedure B times and compute the mean of {γ̂b

(q)
}Bb=1,

denoted by γ̂∗
(q)

. Consequently, the active set A is

Â = {k : ŴDk ≥ γ̂∗(q), k = 1, 2, . . . , p}.

Following from Barut et al. (2016), the useful range for q is [0.95,1]. In
our method, we take B = 10 and q = 0.99, which exhibit reasonable
performance of the thresholding rule.

Next, we apply the wdCor statistic to test the association between
each SNP and each voxel-based ROI respectively. We also include the
results based on the dCor statistic for comparison. To be fair, the p-values
from both tests are obtained via the adaptive permutation procedure as in
Algorithm 2.

The top 10 SNP-ROI pairs identified by the wdCor and dCor tests
for all ROIs and chromosomes are reported in Tables 1. It is hard to
choose the threshold due to the dependence of the tests, thus we consider
the threshold 5.0e−8 commonly used in GWAS. SNP rs12721364 (p-
value=2.0e−8) and SNP rs2755588 (p-value=4.0e−8) are significantly
associated with the posterior limb of internal capsule (PLIC) via wdCor
test. Hall et al., 2016 showed the structural damage of PLIC is related to
executive dysfunction, attention deficit, visual space defect, memory loss
and cognitive impairment, and most of these symptoms are consistent with
the clinical symptoms of AD.

Besides, wdCor test detects several SNP-ROI pairs with strong
association. The SNP rs7933176 on gene CNTN5 is highly associated
with the left precuneus (p-value=5.0e−7). The precuneus is involved in
source memory, and Karas et al., 2007 found the disproportionate atrophy
in the precuneus of patients with early-onset AD. The gene CNTN5 was
also identified to be of heightened interest with AD (Biffi and Alessandro,
2010). The SNP rs2075650 on TOMM40 was detected to have a strong
correlation with 2 ROIs. The p-values obtained bywdCor test are 4.0e−7

for the right amygdala and 8.0e−07 for the left uncus. Moreover, the
rs2075650–right amygdala pair is also detected intensively associated via
dCor test (p-value=2.0e−7). Huang et al., 2016 and Michal et al., 2018
pointed out that the polymorphism of rs2075650 on TOMM40 may be an
independent risk factor of developing AD. Liu et al., 2018 also explained
the relationship between rs2075650 and AD. The amygdala is related
to aberrant motor behavior and potentially associated with anxiety and
irritability. Several studies found considerable shrinkage of amygdala of
AD patients (Knafo, 2012; Poulin et al., 2011; Denys et al., 1993).
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Compared with the FVGWAS proposed by Huang et al., 2015, our
method can detect more SNPs with small p-values. Huang et al., 2015
carried out FVGWAS for the whole-brain data but did not detect any
significant SNP with p-value < 5.0e−08, while our wdCor method
detects two significant SNPs. Besides, eight strong associated SNPs (p-
value=e−07) are detected in our method, compared with only four in
Huang et al., 2015. Supplementary Figure 3 presents the spatial distribution
of the optimized weights of three strong associated SNP-ROI pairs by the
wdCor test respectively.

5 Discussion
We present the wdCor test for voxel-based imaging genetic association,
and test it extensively on simulated and ADNI dataset. The wdCor is
much powerful than the dCor, in that is has comparable performance
on low-dimensional data and improved performance on high-dimensional
data.

The main insight wdCor uses is that the independent coordinates
of phenotypes are removed from the test statistic by assigning ignorable
weights to the corresponding dimensions. The original dCor puts
equal weights to each dimension and thus might occur the curve of
dimensionality in dealing with voxel-based phenotypes. To determine
the p-values of the wdCor test, a traditional permutation procedure is
introduced in general and an adaptive permutation procedure is proposed
to alleviate the computational burden in genome-wide association analysis.

The simplicity of thewdCor statistic makes it more flexible and more
easily adapted to different circumstances. Inherited from dCor, wdCor
does not rely on any model or distribution assumptions, and is easy to
implement. Moreover, wdCor can detect the both linear and non-linear
dependence between two random variables of any finite dimensions.

We show the rationality and superiority of introducing weights by
extensive simulation studies. The proposed wdCor test overwhelmingly
improved the statistical power compared the dCor test, especially when
the dimension is hundreds or even higher.

We applywdCor to test the independence between 93 ROI phenotypes
and SNPs from the ADNI datasets. Our proposed method detects two
significant SNP-ROI pairs, while the dCor test cannot detect any
significant SNP.

There are two substantial issues to be addressed in our future research.
First, since our wdCor is still a single SNP analysis framework,
there exists unobserved dependence between SNPs, such as the causal
relationship between SNPs, dependence between adjacent SNPs, and the
interaction between SNPs. All these unobserved SNP-SNP interactions
may undermine the power of wdCor. Alternative methods for testing
the dependence between a single SNP set and an individual phenotype
have been shown to be useful for improving the efficacy of GWAS (Ge
et al., 2012; Thompson et al., 2013). Therefore, it is of great importance
to generalize our wdCor test for multi-multi dimensional correlation
analysis to map the association between a SNP set and a functional
neuroimaging phenotype. Second, in order to improve the power of
wdCor, we add the parameter γ to the weight vector and choose the
optimal values from a list of candidate values. This does give us a higher
statistical power, but at the same time it loses computational efficiency.
To alleviate this problem, we have optimized the R code using C++
with Rcpp package, the R package –wdcor– are available on GihHub
(https://github.com/yangyuhui0129/wdcor).
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