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gions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are
associated with several debilitating brain disorders including Alzheimer's disease, major depression, schizophrenia,
and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through
Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the
genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association
studies of these hippocampal subregionmeasuresmayprovide additional insight. Here,we evaluated the test–retest
reliability and transplatform reliability (1.5 T versus 3 T) of the subregion segmentation module in the FreeSurfer
software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging
Study, N = 39), another elderly (Alzheimer's Disease Neuroimaging Initiative, ADNI-2, N = 163) and another
mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N = 598). We also investigated
agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the
ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety
(NESDA) (N = 221). Finally, we estimated the heritability (h2) of the segmented subregion volumes using the full
sample of young, healthy QTIM twins (N = 728). Test–retest reliability was high for all twelve subregions in the
3 TADNI-2 sample (intraclass correlation coefficient (ICC)=0.70–0.97) andmoderate-to-high in the 4 TQTIM sam-
ple (ICC = 0.5–0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC = 0.66–0.96);
however, the hippocampal fissure was not consistently reconstructed across 1.5 T and 3 T field strengths (ICC =
0.47–0.57). Between-version agreement was moderate for the hippocampal tail, subiculum and presubiculum
(ICC = 0.78–0.84; Dice Similarity Coefficient (DSC) = 0.55–0.70), and poor for all other subregions (ICC = 0.34–
0.81; DSC = 0.28–0.51). All hippocampal subregion volumes were highly heritable (h2 = 0.67–0.91). Our findings
indicate that eleven of the twelve humanhippocampal subregions segmented using FreeSurfer version6.0may serve
as reliable and informative quantitative phenotypes for futuremulti-site imaging genetics initiatives such as those of
the ENIGMA consortium.

© 2015 Published by Elsevier Inc.
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The mammalian hippocampal formation is one of the most
important brain regions for spatial navigation (O'Keefe, 1990), episodic
memory retrieval (Burgess et al., 2002), and associative learning pro-
cesses (Morris, 2006). This seahorse-shaped structure in the medial
temporal lobe is divided into a set of cytoarchitectonically heteroge-
neous subregions (Insausti and Amaral, 2004; Winterburn et al., 2013;
Pipitone et al., 2014), each associated with distinct aspects of memory
formation, among other functions. For example, the dentate gyrus
(DG) and sectors 3 and 4 of the cornu ammonis (CA) are involved in
declarative memory acquisition (Coras et al., 2014), whereas the
subiculum and CA1 are associated with disambiguation during
workingmemory processes (Newmark et al., 2013). The CA2 subregion,
long assumed to be a simple transition point between CA3 and CA1, has
recently been implicated in animal models of social memory (Hitti and
Siegelbaum, 2014) and episodic time encoding (Navratilova and
Battaglia, 2015). The subiculum, a subregion that exerts control over
the hippocampal output, has been associated with spatial memory
functions, but its ventral part may play an additional regulatory role in
inhibition of the HPA axis (O'Mara, 2006).

Neuroanatomical abnormalities within these hippocampal subre-
gions are associated with a broad range of neurological and psychiatric
disorders, from ischaemic stroke, encephalitis, temporal lobe epilepsy,
transient global amnesia and multiple sclerosis (Bartsch, 2012; Das
et al., 2011) to bipolar disorder (BPD), major depressive disorder
(MDD) and posttraumatic stress disorder (PTSD) (Sala, 2008). Some
of these malformations develop as a result of head trauma, intracranial
infection or other environmental influences, but genetic factors also
play a fundamental role (Thompson et al., 2008; van Erp et al., 2004).
Recent advances in genome-wide association (GWA) meta-analysis
and large-scale collaborative brain imaging (e.g. Enhancing Neuro
Imaging Genetics through Meta-Analysis (ENIGMA), the Early Growth
Genetics (EGG) consortium, and the Cohorts of Heart and Aging
Research in Genomic Epidemiology (CHARGE)) have helped identify
several common genetic variants associated with structural variation
in the hippocampus (Hibar et al., 2015; Stein et al., 2012; Lim et al.,
2012) as well as other brain regions including the putamen, caudate
nucleus (Hibar et al., 2015), intracranial volume (Ikram et al., 2012;
Stein et al., 2012) and head circumference (Taal et al., 2012).

International consortia like ENIGMA are now turning their attention
to specific investigations of genetic and phenotypic variation in healthy
individuals as well as those diagnosed with schizophrenia, BPD, MDD,
PTSD, epilepsy and many other brain illnesses (Thompson et al.,
2014). Among subcortical structures assessed, the hippocampus has
consistently shown the greatest effect sizes for differences between
patients and controls, in both schizophrenia (van Erp et al., 2015) and
major depression, particularly recurrent depression (Schmaal et al.,
2015). Impaired hippocampal integrity may in turn impair treatment
response, making it pivotal to detect such morphologically defined
subgroups (Frodl et al., 2008; Sämann et al., 2013).

Focusing on fine-grained phenotypic variation within small subre-
gions of the hippocampus may improve our power to localize genetic
and disease-related effects on the brain as a whole. As part of its next
major project, the ENIGMA consortium aims to delineate specific
sub-regions of the hippocampus as quantitative phenotypes for
genome-wide association and cross-sectional case:control meta-
analyses. Before these new ENIGMA initiatives can begin, we first
need to evaluate a non-invasive, reliable and relatively accessible
technique for reconstructing the human hippocampal subfields
in vivo. In turn, for future genetic mapping efforts, we must validate
these automatically reconstructed hippocampal sub-regions as quanti-
tative endophenotypes — heritable, robust brain markers that may be
closer to the molecular basis of disease than diagnostic assessments in
the clinic (Braskie and Ringman, 2011; Glahn et al., 2007; Gottesman
and Gould, 2003; Hasler and Northoff, 2011).
Please cite this article as: Whelan, C.D., et al., Heritability and reliability of
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Several manual segmentation techniques have been developed
to reconstruct hippocampal and parahippocampal subregions from
T1-weighted MRI scans acquired at 3 to 7 T field strengths (La Joie
et al., 2010; Van Leemput et al., 2009; Mueller et al., 2007; Wisse
et al., 2012; Adler et al., 2014). Although these methods typically
segment the hippocampal subregions at remarkably fine-scaled
resolution, a critical bottleneck for collaborative imaging initiatives
such as ENIGMA is the need tomanually label the subregion boundaries,
which is laborious, time-consuming and susceptible to intra- and inter-
observer variability (Van Leemput et al., 2009). Several automated pro-
tocols have been developed to address this issue, combining rules on
image intensity and geometry to delineate the boundaries between
hippocampal and parahippocampal subregions (Van Leemput et al.;
Yushkevich et al., 2009, 2010). One often-used automated technique
is provided as part of FreeSurfer, a freely available suite of neuroimaging
structural analysis tools (Fischl, 2012).

Initial versions of the FreeSurfer algorithm (versions 5.1, 5.2 and 5.3)
produce subregion segmentations that are largely inconsistent with
brain anatomy (de Flores et al., 2015; Pluta et al., 2012; Wisse et al.,
2014). An updated version of the algorithm, to be released as part of
FreeSurfer version 6.0, uses a new statistical atlas constructed from
ultra-high resolution ex vivo MRI (Iglesias et al., 2015). This revised
algorithm produces subregion volume estimates that more closely
match volumes derived from histological investigations (Iglesias et al.,
2015). However, consensus is still lacking on the most appropriate
subregion delineation protocol to use (Yushkevich et al., 2015). Here,
using four independent samples, we set out to validate version 6.0 of
the automated FreeSurfer algorithm from three complementary
perspectives: First, we evaluated the algorithm's ‘test–retest’ reliability;
i.e. its ability to extract comparable subregion measures across multiple
time points in two independent cohorts with different image acquisi-
tion parameters and age characteristics (our two samples differ in
mean age by approximately 50 years). Second, we examined the
algorithm's ‘trans-platform’ reliability — defined as its ability to repro-
duce similar subregionmeasures across differentMRI scanner platforms
andfield strengths (for example, 3 T versus1.5 T). Third, we investigated
overall agreement between this new algorithm, which we will refer to
as ‘FS6.0’, and the older algorithm, version 5.3, which we will refer to
as ‘FS5.3’. The degree of quantitative deviation between volumes
extracted using FS5.3 and volumes extracted using FS6.0 may help
users of the former evaluate the necessity of re-processing their data
with the latter.

Validation of a reliable, automated subregion segmentation toolmay
allow ENIGMA and other imaging consortia to study hippocampal
subregions as fine-grained quantitative phenotypes in large-scale
genome-wide association meta-analyses. However, to be considered a
promising target for genetic mapping, the subregional volume esti-
mates must show evidence of heritability (h2). Quantitative genetic
analysis of automatically segmented, T1-weighted brain images from
paired twin samples has frequently been employed to estimate the
heritability of global volumetric measures. Prior estimates show that
total hippocampal volume is highly heritable in both healthy adults
(h2 = 0.66–0.71) (den Braber et al., 2013; Erp and Saleh, 2004;
Wright et al., 2002) and children (h2 = 0.64–0.72) (Swagerman and
Brouwer, 2014). However, structural variance within the whole hippo-
campus may be less heritable in elderly adults (h2 = 0.4–0.65)
(DeStefano et al., 2009; Mather et al., 2015; Sullivan et al., 2001), possi-
bly due to environmental stressors (Hedges and Woon, 2010), alter-
ations in testosterone levels (Panizzon et al., 2012) or other
endogenous biological factors. Similarly, total hippocampal volume is
only moderately heritable in schizophrenia (h2 = 0.36–0.73) (Kaymaz
and Os, 2009; Roalf et al., 2015). Thus, while the heritability of total
hippocampal volume is well established across many populations, the
heritability of structural variations in individual subregions has yet to
be delineated. Therefore, in the second part of this study, we set out to
disentangle the relative contributions of additive genetic variance and
automatically segmented human hippocampal formation subregions,

http://dx.doi.org/10.1016/j.neuroimage.2015.12.039
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environmental influences on hippocampal subregion volume in two
independent cohorts of healthy adults, andby this to assess the eligibility
of such hippocampal subregion volumes as endophenotypes for future
large-scale collaborative genetic association studies in ENIGMA.

Methods

Participants and imaging protocols

Four collections of MRI scans were analyzed in this study.

ADNI-2

Subjects. For our test–retest and between-version reliability analyses,
we analyzed publicly available data from 163 healthy control subjects
from the second phase of the Alzheimer's Disease Neuroimaging
Initiative, ADNI-2 (81 women, 82 men, age mean ± SD = 73.58 ±
6.21 years) (http://adni.loni.usc.edu/). ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer's disease (AD).
Further details of the ADNI project are given in Jack et al. (2010) and
at http://www.adni-info.org.

Imaging. T1-weighted MR images were acquired using a 3 T General
Electric (GE) Medical Systems scanner with the following parameters:
3-dimensional MP-RAGE, 8-channel head coil, voxel size 1.2 ×
1.2 × 1.2 mm, time to repeat (TR) = 400 ms, time to echo (TE) =
2.85 ms, flip angle = 11°, field of view (FOV) = 26 cm, resolution =
256 × 256 mm. A baseline and follow-up scan was acquired for all
healthy controls, with an average inter-scan interval of 3.3 months.
Family trios or siblingswere not scanned as part of the ADNI-2 protocol,
so this dataset was not included in our heritability analyses.

QTIM

Subjects. To estimate heritability and include an independent replication
cohort for our test–retest reliability analysis, we analyzed MR images
from healthy Caucasian young adults, collected as part of the Queensland
Twins Imaging (QTIM) study. QTIM is a joint effort by researchers atQIMR
Berghofer, The University of Queensland and the University of Southern
California to study brain structure and function using T1-weighted MRI,
high angular resolution diffusion imaging (HARDI) and functional MRI
in a large population of young adult twins of European ancestry. Full
details of the QTIM cohort are found in Zubicaray et al. (2008).

The heritability analysis included 728 individuals (132monozygotic
(MZ) sibling pairs and 232 dizygotic (DZ) sibling pairs; 465 women and
263menwith an agemean± SD of 22.65± 2.73 years). The test–retest
reliability analysis included a subset of the twins; 20 women, 19 men;
mean age in years (±SD) = 24.03 (±2.04), who were scanned twice,
with an average interval of 3 months between scanning sessions.

Imaging. 3-Dimensional T1-weighted images were acquired on a 4 T
Bruker Medspec scanner using an inversion recovery rapid gradient
echo protocol. Key acquisition parameters were: TI = 700 ms, TR =
1500 ms, TE = 3.35 ms, voxel size 0.94 × 0.98 × 0.98 mm, flip angle =
8°, slice thickness = 0.9 mm, 256 × 256 acquisition matrix.

Max Planck Institute of Psychiatry (MPIP)

Subjects. As part of the (i) between-version agreement and (ii)
transplatform reliability analyses, high resolution T1-weighted ana-
tomical images collected at the MPIP of Psychiatry (MPIP), Munich,
Please cite this article as: Whelan, C.D., et al., Heritability and reliability of
NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.12.039
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Germany, from 222 healthy participants and 367 patients major
depressive disorder (MDD) (334 women, 255 men, mean age ± SD =
48.4±13.5, age range: 18 to 87),were included, in addition to 20 healthy
controls who were scanned on a 1.5 T and 3 T platform

Imaging. The between-version comparison sample (total N = 589) was
acquired on a 1.5 T General Electric clinical scanner (T1-weighted SPGR
3D volume, TR 10030 ms; TE 3.4 ms; 124 sagittal slices; matrix
256 × 256; FOV 23.0 × 23.0 cm2; voxel size 0.8975 × 0.8975 × 1.2–
1.4] mm3; flip angle = 90°; birdcage resonator) with N = 186 of
the total sample scanned after a coil upgrade (Signa Excite, sagittal
T1-weighted spin echo sequence, TR 9.7 s, TE 2.1 ms). For the
trans-platform sample, one image was acquired on 3 T scanner
(General Electric MR750, 3D BRAVO, TR 6.1 s; TE minimum; TI
450 ms, 124 sagittal slices; matrix 256 × 256; FOV 25.6 × 25.6 cm2;
voxel size 1 × 1 × 1 mm3; flip angle = 12°) and a second image after
immediate repositioning in the 1.5 T scanner (General Electric MR450,
3D FSPGR, TR 7.9 s; TE minimum, TI 450 ms, 188 sagittal slices; matrix
320 × 256; FOV 24 × 24 cm2; voxel size 0.9375 × 0.9375 × 1 mm3; flip
angle = 12°).

Netherlands Study of Depression and Anxiety (NESDA)

Subjects. To further assess the agreement between FreeSurfer versions,
we analyzed data from 64 healthy controls and 157 patients with a
diagnosis of MDD or comorbid anxiety disorder, collected as part of
the Netherlands Study for Depression and Anxiety (NESDA) (145
women, 76 men, mean age ± SD = 38.14 ± 10.33 years, age range:
18 to 57).

Imaging. Imaging data were acquired using Philips 3 T magnetic reso-
nance imaging systems (Best, The Netherlands) located at the Leiden
University Medical Center, Amsterdam Medical Center, and University
Medical Center Groningen. For each subject, anatomical images were
obtained using a sagittal 3-dimensional gradient-echo T1-weighted
sequence (repetition time, 9 ms, echo time, 3.5 ms; matrix, 256 × 256;
voxel size, 1 × 1 × 1 mm; 170 slices; duration, 4.5 min).

Full participant demographics for the ADNI-2, QTIM, MPIP and
NESDA samples are detailed in Table 1.

Image processing
T1-weighted images were processed using FreeSurfer (FS) version

5.3.0 using the software package's default, automated reconstruction
protocol described by Anders M. Dale, Bruce Fischl and colleagues
(‘recon-all’—see Dale et al., 1999; Fischl et al., 1999). Briefly, each
T1-weighted image was subjected to an automated segmentation
process involving: (i) conversion from three-dimensional nifti format,
(ii) affine registration into Talairach space, (iii) normalization for
variable intensities caused by inhomogeneities in the radiofrequency
field, (iv) ‘skull-stripping’, i.e. extraction of the skull and extra-
meningeal tissues from each image, (v) segregation into left and right
hemispheres using ‘cutting planes’, (vi) removal of the brain stem and
cerebellum, (vii) correction for topology defects, (viii) definition of
the gray/white matter and gray/cerebrospinal fluid boundaries using
surface deformation (Fischl et al., 2004a) and (ix) parcellation of the
subcortical region into distinct brain tissues, including the hippocam-
pus, amygdala, thalamus, caudate nucleus, putamen, pallidum and
accumbens (Fischl et al., 2002, 2004a, 2004b). Using FreeSurfer's native
visualization toolbox, tkmedit, we visually inspected each image for
over- or under-estimation of the gray/white matter boundaries and to
identify brain areas erroneously excluded during skull stripping.

Hippocampal subregion segmentation
After successful reconstruction of the whole hippocampus and

its neighboring subcortical regions, we used a revised version of the
automated subregion parcellation protocol previously described by
automatically segmented human hippocampal formation subregions,

http://dx.doi.org/10.1016/j.neuroimage.2015.12.039
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t1:1 Table 1
t1:2 Participant demographics.

t1:3 Cohort N Field
strength

Mean age
(years + SD)

Age range
(years)

Female/male

t1:4 ADNI-2 163 3 T 73.6 56.3–89.1 81/82
t1:5 QTIM (test–retest) 39 4 T 24.03 (3.49) 20.72–27.31 20/19
t1:6 QTIM (full)a 728 4 T 22.65 (2.73) 18.1–29.73 465/263
t1:7 NESDA 221 3 T 38.14 (10.33) 18–57 145/76
t1:8 MPIP 589 1.5 T 48.4 (13.5) 18–87 334/255

t1:9 ‘SD’ = standard deviation, MPIP = Max Planck Institute of Psychiatry, NESDA =

t1:10 Netherlands Study of Depression and Anxiety, ADNI-2=Alzheimer's Disease NeuroImaging
t1:11 Initiative, QTIM= Queensland Twins Imaging Study.
t1:12 a The QTIM cohort included 132 monozygotic twin pairs and 232 dizygotic twin pairs.
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Van Leemput and colleagues (Van Leemput et al., 2008; Van Leemput
et al., 2009) to segment specific subregions of the hippocampal formation
in the QTIM, ADNI-2, NESDA and MPIP datasets. This revised module is
compatible with FreeSurfer v5.3 (FS5.3) and will be freely distributed
with FreeSurfer v6.0 (FS6.0) (Iglesias et al., 2015). Prior versions of the
algorithm (FS5.1 to FS5.3) combined a single probabilistic atlas with
high-resolution, T1-weighted in-vivo manual segmentations to predict
the locations of eight hippocampal subregions. The new version (FS6.0)
predicts the location of twelve hippocampal subregions, using a refined
probabilistic atlas built upon a combination of manual delineations of
the hippocampal formation from 15 ultra-high resolution, ex-vivo MRI
scans and manual annotations of the surrounding subcortical structures
(e.g., amygdala, cortex) from an independent dataset of 39 in-vivo,
T1-weighted, 1 mm resolution MRI scans (Iglesias et al., 2015). This
revised algorithm features the following enhancements: (i) first-hand
knowledge of histological staining of the hippocampus by a neuroanato-
mist; (ii) a cytoarchitectural atlas of the hippocampal formation
(Rosene and Hoesen, 1987); and (iii) high-resolution, ex-vivo brain MRI
scans (120 μm3), which show definitive borders between the subregions
and greater consistencywithmanual segmentationmethods (Yushkevich
et al., 2015). Previous versions of the FreeSurfer algorithm reconstructed
eight subregions per hemisphere, including the CA1, CA2/3, fimbria,
subiculum, presubiculum, CA4/DG, hippocampal tail and hippocampal
fissure. The new algorithm provides more anatomically sensitive recon-
structions of these eight subregions as well as four new subregions: the
parasubiculum, the molecular layer, granule cells in the molecular layer
of the DG (GC-ML-DG) and the hippocampal-amygdala transitional area
(HATA).

Test–retest reliability analysis
Using FS6.0, we extracted volume estimates for the whole hippocam-

pus and its twelve subregions from (i) the ADNI-2 and (ii) the QTIM
cohorts. All QTIM and ADNI-2 images, including both test and re-test
scans, were processed in parallel. After successful subregion segmenta-
tion, we used a custom-designed Matlab code to visually inspect each
segmentation (see Fig. 1). Subregion volume estimates were exported
to SPSS (for reliability analysis) and reformatted into phenotype covari-
ance matrices (for heritability analysis described below).

Volume measures were imported into SPSS (IBM Corp., Version
21.0) and subjected to a series of two-way reliability analyses, using
Cronbach's alpha (α) (Cronbach, 1951) as a measure of internal consis-
tency. Cronbach's alpha is calculated as follows:

∝ ¼ N � c
vþ N−1ð Þ � c

where N is the number of subregion volume estimates, c-bar is the
average inter-subject covariance among these estimates and v-bar
is the average variance. The resulting α, interpreted as the intraclass
correlation coefficient (ICC), provides an estimate of how consistently
the FreeSurfer v6.0 parcellation protocol reconstructs hippocampal sub-
regions from baseline to follow-up scan. ICC ranges from 0 (indicating
Please cite this article as: Whelan, C.D., et al., Heritability and reliability of
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high variability between baseline and follow-up volume estimates)
to 1 (denoting high reproducibility between baseline and follow-up
estimates).

Between-version reliability analysis
Wecompared subregional hippocampal volumes estimates extracted

using FS5.3 and FS6.0 from three independently acquired cohorts:
(i) baseline scans of the ADNI-2 cohort (N=163), (ii) the NESDA cohort
(N = 221), and (iii) the MPIP cohort (N = 589). Volume measures
for each subregion were bilaterally ‘averaged’ across the left and right
hemispheres.

Volume measurements from FS6.0 are given in mm3, whereas
volume measurements in FS5.3 are returned on the basis of 0.5 mm
isotropic. Therefore, the latter set of volume estimates was divided
by a factor of 8 in order to transform them to mm3 measurements.

Volume estimates for the eight sub-regions extracted using FS5.3
were imported into SPSS alongside eight of the twelve possible subre-
gions extracted using FS6.0. Volume estimates for the parasubiculum,
molecular layer, GC_ML_DG and HATA (extracted using FS6.0) had no
direct corresponding subregions in FS5.3 and were not included in this
between-version analysis. We conducted eight sets of two-way mixed
reliability analyses, using the same statistical model applied for our
prior test–retest comparison (Cronbach's alpha). This produced a series
of ICC valuesmeasuring the agreement between the old (FS5.3) and new
(FS6.0) versions of the FreeSurfer subregion segmentation algorithm.

As a second measure of reproducibility and spatial overlap between
FS5.3 and FS6.0, we employed a custom-designed Matlab code to extract
a series of Dice similarity coefficients (DSC) for each hippocampal subre-
gion. The DSC, first proposed by Dice (1945), provides a validationmetric
for evaluating reproducibility and has previously been used to assess
spatial overlap between automated MRI reconstructions (Zou et al.,
2006). DSC values range from 0 (indicating no spatial overlap between
two sets of binary segmentations) to 1 (full overlap between binary
segmentations).

DSCs were calculated by dividing the sum of volumes segmented
using FS5.3 and volumes segmented using FS6.0 by twice the volume
of the intersection between these segmentations; i.e.

DSC A;Bð Þ ¼ 2 A∩Bð Þ= Aþ Bð Þ

where A is the first hippocampal subregion (reconstructed using FS5.3),
B is the second hippocampal subregion volume (reconstructed using
FS6.0) and ∩ is the intersected space between the two subregions.

Trans-platform reliability analysis
20 pairs of T1-weighted images were acquired on a 1.5 T and a 3 T

scanner system to investigate the stability of both FS5.3 and FS6.0 across
platforms. The repositioning between the end of the first acquisition
and the start of the second acquisitionwas performed as fast as possible,
usually taking 2–3min. Both subregional segmentation tools (FS5.3 and
FS6.0) were employed on the 2 × 20 images. Subregional volume
estimates were imported into SPSS (to extract ICC values) and Matlab
(to estimate DSC scores) respectively. All ICC analyses were conducted
using the same statistical models previously described for the test–re-
test analysis.

Heritability of hippocampal subregion volumes
Heritability, defined here as the fraction of the phenotypic variability

attributable to genetic variation, was calculated for each hippocampal
subregion volume using a variance components model, as implemented
in version 7.2.5 of the Sequential Oligogenic Linkage Analysis Routines
(SOLAR) software package (http://www.nitrc.org/projects/se_linux)
(Almasy and Blangero, 1998). Methods to estimate heritability in SOLAR
are detailed elsewhere (Kochunov et al., 2010; Winkler et al., 2010).

Briefly, SOLAR implements a maximum likelihood variance decom-
position method, expanding on prior algorithms developed by Amos
automatically segmented human hippocampal formation subregions,
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Fig. 1. Color-coded illustration of 11 hippocampal subfields in sagittal (top left), axial (bottom left) and coronal (top right) views. Subfield volumes for each participant were overlaid on
their whole-brain T1-weighted image (‘nu.mgz’) and visually inspected for over- or under-estimation of the hippocampal subfields. In the above rendering, a representative subject from
the QTIM cohort was de-identified by blurring around the edges of the skull and face. The image was generated using FreeSurfer's high-resolution visualization tool, FreeView (https://
surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/).
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(1994). The algorithm decomposes phenotypic variance (σ 2
P) into a

genetic (σg
2) and a residual component (σe

2) — the latter represents
variation not accounted for by the genetic component (i.e., random
environmental variation and/or experimental error). Mean volumes for
the whole hippocampus and twelve of its subregions were extracted
from all twin pairs in the QTIM sample (N = 132 MZ pairs and N =
232 dizygotic pairs) and reformatted into a phenotype covariancematrix.
Each covariate matrix was adjusted to include sex, age, and age ∗ sex
interactions as covariates. The covariance matrix, Ω, for each pedigree of
individuals was then integrated into the following expression:

Ω ¼ 2Φσg
2 þ Iσe

2

where Ω represents covariance between one relative and another, Φ is
the pair-wise kinship coefficient representing the relationship between
these relatives (0.5 for full siblings), σg

2 represents the additive genetic
component of phenotypic variance, I is the identity matrix and σe

2

is residual non-genetic variation (i.e., individual-specific environmental
variance).

Heritability (h2) was computed from this model by comparing the
observed covariance matrix for phenotypic variance (σp

2) with the
observed covariance matrix for additive genetic effects (σg

2), i.e.,

h2 ¼ σ2
g=σ2

P:

Here, h2 is a value between 0 and 1 representing total additive genetic
heritability, ranging from0 (no genetic contributions) to 1 (all phenotypic
variance reflects a genetic effect). Significance of heritability was
estimated by computing a model in which σ2

g was constrained to
zero, computing a second model in which σ2

g was estimated, and
computing twice the difference between the first and secondmodels'
log-likelihoods. For our analysis, we employed a polygenic model that
calculated the effects of specific variables (additive genetic variation,
and covariates including age, sex and sex ∗ age interactions) in explaining
each subregion's volumetric variance within the QTIM population. Three
main test statistics were then recorded for each subregion volume: its
h2 estimate, the significance (p-value) of this heritability estimate and
Please cite this article as: Whelan, C.D., et al., Heritability and reliability of
NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.12.039
E
Dits standard error. All test statistics were compared to an adjusted alpha

level of p ≤ 3.84 × 10−3 to reduce the probability of type 1 errors arising
from multiple measurements (N = 13).

Results

Test–retest reliability

Test–retest reliability estimates from ADNI-2, a cohort of 163
healthy, elderly adults scanned three months apart at 3 T, revealed
good reliability for all automatically segmented subregion volumes.
Larger hippocampal regions (mean volume N 90 mm3) showed highest
ICC values from baseline to follow-up session. These regions included
the whole hippocampus (ICC ≥ 0.94), CA1 subregion (ICC ≥ 0.91), CA3
subregion (ICC ≥ 0.88), CA4 subregion (ICC ≥ 0.9), molecular layer
(ICC ≥ 0.93), subiculum (ICC ≥ 0.91), presubiculum (ICC ≥ 0.9), granule
cells (ICC ≥ 0.91), hippocampal tail (ICC ≥ 0.93), hippocampal fissure
(ICC ≥ 0.88) and fimbria (ICC ≥ 0.89). Automated segmentation was
also stable for smaller subregions, including the HATA (ICC ≥ 0.78) and
parasubiculum (ICC ≥ 0.75) (see Table 2).

Similarly, in the smaller QTIM sub-sample, consisting of 39
young, healthy adults scanned on average three months apart at
4 T, we found strong test–retest reliability for large subregions
(mean volume N 90 mm3). These subregions included the CA1
(ICC ≥ 0.86), CA3 (ICC ≥ 0.78), CA4 (ICC ≥ 0.75), molecular layer
(ICC≥0.86), subiculum(ICC ≥0.8), granule cells (ICC ≥0.78), hippocampal
tail (ICC ≥0.72), hippocampalfissure (ICC ≥0.7) andfimbria (ICC ≥ 0.8), as
well as the whole hippocampus (ICC ≥ 0.85). Test–retest reliability of the
presubiculum varied considerably from the left (ICC = 0.89) to the right
hemisphere (ICC = 0.65). Volume estimates were moderately
reproduced for the parasubiculum (ICC ≥ 0.68) and the HATA subregion
(ICC ≥ 0.5).

Between-version agreement

In the MPIP cohort (N = 589, 3 T) we found strong agreement
between versions 5.3 and 6.0 of the FreeSurfer segmentation algorithm
automatically segmented human hippocampal formation subregions,
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for the subiculum (0.857). We observed moderate agreement between
the following subregions: (i) the hippocampal tail (ICC = 0.778), (ii)
the fimbria (ICC = 0.78), (iii) the hippocampal fissure (ICC = 0.78)
and (iv) the presubiculum (ICC = 0.797). Agreement between the
three major sectors of the cornu ammonis (CA1, CA2_3 and CA4) varied
considerably; for example, the CA1 (extracted using FS6.0) showed
strong agreement with the CA4/Dentate (extracted using FS5.3;
ICC = 0.872) and CA2_3 (extracted using FS5.3; ICC = 0.817) but only
moderately correlated with its direct counterpart, CA1 (extracted
using FS5.3; ICC = 0.645). Similarly, the CA4 subregion extracted
using FS6.0 only moderately correlated with the combined CA4-DG
from FS5.3 (ICC = 0.66), whereas the CA3 extracted using FS6.0 corre-
lated poorly with its closest counterpart in FS5.3, the CA2_3 (ICC =
0.383) (see Table 3).

The second set of ICCs, examining between-version agreement using
volume estimates from the ADNI-2 cohort (N = 163, 3 T), revealed
strong agreement between versions 5.3 and 6.0 for (i) the hippocampal
tail (ICC= 0.839), (ii) the fimbria (ICC= 0.805), (iii) the presubiculum
(ICC = 0.825) and (iv) the subiculum (ICC = 0.833). Between-version
agreement was moderate for the hippocampal fissure (ICC = 0.628)
and the CA4 (ICC = 0.633). The CA1 subregion (segmented using
FS6.0) showed greater correspondence with FS5.3 reconstructions of
the CA4_DG (ICC = 0.872) and CA2_3 (ICC = 0.817) than its direct
anatomical counterpart, the CA1 (ICC = 0.645). Similarly, the CA3
(showed poor correlation between FS5.3 and FS6.0 (ICC = 0.344),
although correlations were higher between the CA3 (extracted using
FS6.0) and other subregions from FS5.3, including the CA1 (ICC =
0.523) and CA4_DG (ICC = 0.567) (see Table 4).

The third set of ICCs examined between-version agreement using
values extracted from the NESDA cohort (N = 221, 3 T). This analysis
revealed strong agreement between FS5.3 and FS6.0 for the subiculum
(ICC = 0.815) and moderate agreement for the following subregions:
(i) hippocampal tail (ICC = 0.778), (ii) fimbria (ICC = 0.758) and (iii)
presubiculum (ICC = 0.783). CA1 volumes extracted using FS6.0
correlated moderately with CA1 volumes extracted using FS5.3 (ICC =
0.698), but correlated more highly with CA4_DG volumes extracted
U
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C
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Table 2
Test–retest intra-class coefficients, dice similarity coefficients and mean volumes for the ADNI-

Region Hemi QTIM
4.0 T Bruker Medsc

Mean volume (mm

Whole hippocampus Left
Right

3494.56
3565.37

CA1 Left
Right

653.08
676.32

Molecular layer Left
Right

572.70
593.24

Hippocampal tail Left
Right

510.04
511.88

Subiculum Left
Right

407.45
411.34

Granule cells in the molecular layer of the DG (GC-ML-DG) Left
Right

315.69
326.69

Presubiculum Left
Right

297.3
291.18

CA4 Left
Right

271.82
283.69

CA3 Left
Right

227.13
239.38

Hippocampal fissure Left
Right

159.59
162.1

Fimbria Left
Right

99.83
96.64

Hippocampal-amygdaloid transition area (HATA) Left
Right

77.19
72.48

Parasubiculum Left
Right

62.23
62.24
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using FS5.3 (ICC = 0.856). Similarly, CA4 volumes extracted using
FS6.0 correlated moderately with CA4_DG volumes from FS5.3 (ICC =
0.592), but correlated more highly with CA1 volumes from FS5.3
(ICC = 0.729). Further, the CA3 subregion extracting using FS6.0 corre-
lated poorly with the CA2_3 subregion extracted using FS5.3 (ICC =
0.334), but correlated moderately with the CA1 (0.679) and CA4_DG
(0.545). Between-version agreement was poor for the hippocampal fis-
sure (ICC = 0.321) (see Table 5).

A complementary analysis of spatial overlap and reproducibility (as
measured by the Dice Similarity Coefficient, DSC) revealed high spatial
overlap across the ADNI-2, MPIP and NESDA cohorts for the whole
hippocampus (DSC = 0.82–0.85). Between-version agreement was
moderate for the hippocampal tail across the three cohorts (DSC =
0.67–0.70). Between-version agreement was poor-to-moderate for the
CA4_DG (DSC = 0.49–0.51), fimbria (DSC = 0.45–0.53), presubiculum
(DSC = 0.57–0.62) and subiculum (DSC = 0.55–0.58). Between-
version agreement was poor for the CA1 (DSC = 0.39–0.4) and the
CA2_3 (DSC = 0.28–0.30; see Table 6).

Trans-platform reliability

We conducted two sets of intraclass correlations, testing reliability
across two MRI scanner platforms – 1.5 T and 3 T – using (i) FS5.3 and
(ii) FS6.0, respectively. The subregion segmentation algorithmprovided
as part of FS5.3 produced stable volume estimates across scanning
platforms for the following regions: (i) the whole hippocampus
(ICC = 0.855), (ii) the CA2_3 (ICC = 0.856), (iii) the CA4/dentate
(ICC = 0.892), (iv) the presubiculum (ICC = 0.818), (v) the subiculum
(ICC = 0.866), (vi) the hippocampal tail (ICC = 0.875), (vii) the CA1
(ICC = 0.725) and (iix) the fimbria (ICC = 0.720). Volume estimates
were not reliably reproduced across scanner platforms for the hippo-
campal fissure (ICC = 0.465) (see Table 7).

The subregion segmentation algorithm provided as part of FS6.0
produced high ICC estimates for the following regions: (i) the whole
hippocampus (ICC = 0.942), (ii) the subiculum (ICC = 0.858), (iii)
the CA1 (ICC = 0.915), (iv) the presubiculum (ICC = 0.853), (v) the
2 and QTIM samples.

ape, N = 39

3) ICC CI upper CI lower Mean volume (mm3) ICC CI upper CI lower
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automatically segmented human hippocampal formation subregions,
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t3:2 Intra-class correlation coefficients for between-version agreement (MPIP cohort, N = 589, 3 T).
t3:3

Region (bilateral) Version 5.3 →

Version 6.0 ↓ Tail CA1 CA2_3 CA4_DG Fimbria Fissure Presubiculum Subiculum

Tail 0.778 – – – – – – –

CA1 – 0.645 0.817 0.872 – – – –

CA3 – 0.607 0.383 0.594 – – – –

CA4 – 0.673 0.405 0.661 – – –

Fimbria – – – – 0.780 –

–

– –

Fissure – – – – – 0.716 –

Presubiculum – – – – – – 0.797 –

–

Subiculum – – – – – – – 0.857
t3:5t3:5

t4:1

t4:2
t4:3

t4:5t4:5
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molecular layer (ICC=0.932), (vi) the granule cells of the dentate gyrus
(ICC = 0.932), (vii) the hippocampal tail (ICC = 0.863), (iix) the CA3
(ICC = 0.827), (ix) the HATA (ICC = 0.801), (x) the CA4 (ICC =
0.792) and (xi) the fimbria (ICC = 0.721). Volume estimates
were moderately correlated between scanning platforms for the
parasubiculum (ICC = 0.659) and the hippocampal fissure (ICC =
0.575) (see Table 7).
T
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Heritability of hippocampal subregion volumes

Fig. 2 shows the proportion of structural variance attributable to
genetic factors for the whole hippocampus and its subregions in the
QTIM sample. All regions exhibited high heritability, between 0.56 and
0.88. The highest heritability estimates (h2 ≥ 0.7) were observed for
large regions with mean volumes of 220 mm3 or greater (i.e., the
whole hippocampus, molecular layer, CA1, CA3, CA4, hippocampal tail,
granule cell layer, subiculum and presubiculum). Smaller subregions
(mean volume: 60–165 mm3) showed moderate-to-high heritability
(0.55 b h2 b 0.7) (see Fig. 2). Table 8 shows the heritability estimates
alongside their significance values and standard errors. Using a
combination of FreeSurfer subregion labels and TrackVis (http://
trackvis.org/), we constructed a three-dimensional visualization of each
heritability estimate, this shows how large, posterior subregions (i.e., the
hippocampal tail) were most heritable, whereas smaller, anteromedial
U
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Table 4
Intra-class correlation coefficients for between-version agreement (ADNI-2 cohort, N = 163, 3

Region (bilateral) V

Version 6.0 ↓ Tail CA1 CA2_3 CA4_DG

Tail 0.839 – – –

CA1 – 0.661 0.774 0.901

CA3 – 0.523 0.344 0.567

CA4 – 0.598 0.372 0.633

Fimbria – – – –

Fissure – – – –

Presubiculum – – – –

Subiculum – – – –

Please cite this article as: Whelan, C.D., et al., Heritability and reliability of
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subregions (parasubiculum, presubiculum and fimbria) were less
influenced by genetic factors (see Fig. 3).

Discussion

Here we evaluated a series of automatically segmented volumetric
measures from the hippocampus and twelve of its major subregions
as reliable, heritable quantitative phenotypes for future large-scale
imaging genetics studies. We had four main findings. First, the most
recent version of a widely employed FreeSurfer segmentation protocol
(FS6.0) showed good test–retest reliability, both at 3 T and 4 T in healthy
young and older adults. Spatial overlap between segmentations pro-
duced at baseline and follow-up time points was moderate-to-high for
all subregions, with the exception of the hippocampal fissure. Second,
segmentations produced using FreeSurfer v6.0 showed strong repro-
ducibility from 1.5 T to 3 T field strengths. Third, subregional volume
estimates varied between prior and revised versions of the FreeSurfer
algorithm, with some subregions (e.g. the hippocampal tail) remaining
stable, and others (e.g. the cornu ammonis) diverging notably from one
version to the next. Fourth, genetic factors significantly affected the
volume of the human hippocampus and its twelve major subregions
in a sample of healthy, adult twins. Multi-site genetic analysis may
therefore be feasible for automatically extracted subregion measures,
building on prior studies that detected common variants associated
with overall hippocampal volume (Stein et al., 2012; Hibar et al., 2015).
T).

ersion 5.3 →

Fimbria Fissure Presubiculum Subiculum

– – – –

– – – –

– – – –

– – – –

0.805 – – –

– 0.628 – –

– – 0.825 –

– – – 0.833

automatically segmented human hippocampal formation subregions,
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t5:1 Table 5
t5:2 Intra-class correlation coefficients for between-version agreement (NESDA cohort, N = 221, 3 T).
t5:3

Region (bilateral) Version 5.3 →

Version 6.0 ↓ Tail CA1 CA2_3 CA4_DG Fimbria Fissure Presubiculum Subiculum

Tail 0.778 – – – – – – –

CA1 – 0.698 0.694 0.856 – – – –

CA3 – 0.679 0.334 0.545 – – – –

CA4 – 0.729 0.343 0.592 – – – –

Fimbria – – – – 0.758 – – –

Fissure – – – – – 0.321 – –

Presubiculum – – – – – – 0.783 –

Subiculum – – – – – – – 0.815
t5:5t5:5

t6:1

t6:2

t6:3

t6:4

t6:5

t6:6
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FreeSurfer v6.0: Reliable test–retest segmentations of eleven hippocampal
subregions

Automated parcellation algorithms are essential neuroimaging tools,
as they facilitate the harmonized, time-efficient and precise reconstruc-
tion of brain regions across multiple sites. The automated subcortical
segmentation protocol included in the FreeSurfer software package has
been employed in several important imaging collaborations, leading to
the discovery of genetic polymorphisms associated with subcortical
and intracranial volumes (Hibar et al., 2015; Ikram et al., 2012; Stein
et al., 2012) and the identification of robust subcortical alterations in
large populations of people with schizophrenia (Van Erp et al., 2015)
and major depressive disorder (Schmaal et al., 2015). FreeSurfer has
been validated as a reliable method to reconstruct and measure larger
brain regions (Jovicich et al., 2006; Wonderlick et al., 2009), but early
versions of its hippocampal subregion segmentation module were
criticized by some as anatomically inaccurate, overly reliant on low-
resolution images and not yet validated against manual tracing
techniques (de Flores et al., 2015; Pluta et al., 2012; Wisse et al.,
2014). Here, we found that a revised version of the FreeSurfer subregion
segmentation tool, due to be released with FreeSurfer v6.0, produces
reliable segmentations for eleven of the twelve hippocampal subregions
at 3 T and 4 T field strengths. The most reliably reconstructed sub-
regions included the hippocampal tail, CA1, CA4, presubiculum and
subiculum. These subregions showed excellent test–retest reliability in
two independent tests (ICC and DSC analysis) and in two unrelated
cohorts (ADNI and QTIM).

Other subregions, including the dentate gyrus, CA3, fimbria, HATA
and parasubiculum, showed strong test–retest reproducibility at 3 T
field strength, but a wider range of test–retest reproducibility at 4 T
field strength. This discrepancymay be explained, in part, by the smaller
sample size of the 4 T cohort (QTIM;N=39) compared to the 3 T cohort
(ADNI-2; N = 163). ICC estimates extracted from the 4 T cohort were
associated with larger confidence intervals (CIs), many of which
overlapped with CIs from the 3 T cohort (see Table 2). Voxel size
differences between ADNI-2 (1.2 × 1.2 × 1.2 mm) and QTIM
(0.94 × 0.98 × 0.98 mm) may have also contributed towards these
Table 6
DICE coefficients for between-version spatial overlap in the ADNI-2, NESDA and MPIP cohorts.

Tail CA1 CA2_3 CA4_DG Fimb

ADNI-2 0.68 0.40 0.30 0.50 0.45
NESDA 0.67 0.39 0.28 0.51 0.53
MPIP 0.70 0.40 0.30 0.49 0.51

Please cite this article as: Whelan, C.D., et al., Heritability and reliability of
NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.12.039
E
D
 P

R
Odiscrepancies: FreeSurfer resamples MR images to 1 mm isotropic voxel

size during its automated reconstruction process and this interpolation
procedure may produce variable resolutions in datasets that are
‘down-sampled’ (i.e. ADNI-2) compared to those that are ‘up-sampled’
(i.e. QTIM).

Of the twelve subregionswe investigated, only one – the hippocampal
fissure – produced unreliable volume estimates between baseline and
follow-up acquisitions. The hippocampal fissure is a vestigial sulcus
located between the molecular layer of the hippocampus and the
dentate gyrus. Several neuroanatomical and methodological variables
may contribute to the inconsistent segmentation of this subregion. Its
relatively small size and complex cytoarchitectural morphometry may
make the subregion more susceptible to partial volume effects caused
by changes in the subject's head positioning, variable tissue contrast
profiles or even small, undetected changes in the MR signal (Morey
et al., 2010). The relatively arbitrary boundary between the fissure
and extrahippocampal cerebrospinal fluid (CSF) (Iglesias et al., 2015)
may have also contributed towards its poor reproducibility.

Prior appraisals of the FS5.3 segmentation algorithmnoted its incon-
sistent delineations of the hippocampal head and tail (Yushkevich et al.,
2010). This new algorithm – FS6.0 – which relies upon a refined atlas
built upon high-resolution ex vivo MRI data (Iglesias et al., 2015), ap-
pears to reconstruct the hippocampal tail and parts of the hippocampal
head (CA1, CA2/3) with a high degree of spatial overlap and test–retest
reproducibility. Segmentations of the dentate gyrus have also been crit-
icized in FS5.3, as they appear to mismatch with known anatomical
boundaries (Wisse et al., 2012), In FS6.0, the dentate is reconstructed
as three individual subregions, namely; the hilar region (CA4), the
granule cells (GC-DG) and, partially, the molecular layer. Our study
showed stable test–retest reliability in all three subregions.

Prior evaluations of the FS5.3 algorithm also noted that the CA1 is
the smallest of the three cornu ammonis segmentations (CA1, CA2 &
CA3), despite post-mortem studies contradictorily indicating that the
CA1 is the largest and the CA2&3 are the smallest subfields (Wisse
et al., 2014). This neuroanatomical inconsistency may yield misleading
clinical interpretations: For example, FreeSurfer-based investigations
of the human hippocampal subregions have associated neurological
ria Fissure Presubiculum Subiculum Whole

0.30 0.60 0.56 0.85
0.33 0.57 0.55 0.82
0.32 0.62 0.58 0.83
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t7:1 Table 7
t7:2 Trans-platform reliability across 1.5 T and 3 T field strengths, using estimates extracted
t7:3 from using FreeSurfer v5.3 and v6.0 (MPIP cohort, N = 10, 3 T).

t7:4 Region (bilateral) ICC (FS 5.3) ICC (FS 6.0)

t7:5 Whole hippocampus 0.855 0.960
t7:6 CA1 0.725 0.915
t7:7 CA2_3 0.856 0.871
t7:8 CA4_DG 0.892 0.792
t7:9 Fimbria 0.720 0.721
t7:10 Fissure 0.465 0.575
t7:11 Presubiculum 0.818 0.853
t7:12 Subiculum 0.866 0.858
t7:13 Tail 0.875 0.863
t7:14 Parasubiculum – 0.659
t7:15 GC-ML-DG – 0.828
t7:16 Molecular_layer_HP – 0.932
t7:17 HATA – 0.801

t7:18 Median cross-platform reliability ICC across values = 0.855 (FreeSurfer 5.3), 0.853
t7:19 (FreeSurfer 6.0).

t8:1Table 8
t8:2Heritability estimates for hippocampal subfield volumes, calculated using FreeSurfer v6.0
t8:3(QTIM cohort, N = 728, 4 T).

t8:4Region QTIM

t8:5h2 Std. error p-Value

t8:6Hippocampal fissure 0.56 0.06 1.90 × 10−14

t8:7Parasubiculum 0.57 0.05 6.16 × 10−17

t8:8Fimbria 0.64 0.05 3.06 × 10−19

t8:9HATA 0.67 0.04 2.76 × 10−24

t8:10CA3 0.75 0.03 4.23 × 10−33

t8:11Subiculum 0.76 0.03 5.02 × 10−32

t8:12CA4 0.79 0.03 1.27 × 10−38

t8:13Presubiculum 0.72 0.04 6.80 × 10−30

t8:14CA1 0.84 0.02 2.54 × 10−47

t8:15Granule cells of DG 0.82 0.03 5.66 × 10−41

t8:16Molecular layer of DG 0.85 0.02 2.56 × 10−49

t8:17Whole hippocampus 0.88 0.01 1.19 × 10−54

t8:18Hippocampal tail 0.84 0.02 3.28 × 10−44
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conditions such as MCI or Alzheimer's disease with atrophy of the
CA2&3 (Hanseeuw et al., 2011; Lim et al., 2012), whereas anatomical
studies have reported the most profound atrophy in the CA1 (Simic
et al., 1997; Rossler et al., 2002). Ourfindings suggest that this anatomical
inconsistency appears to be resolved in FS6.0; the CA1 is now the largest
and most reliably reconstructed of the three subfields (see Table 2).
Future in-vivo investigations of the human hippocampal subregions
should therefore prioritize the use of the revised algorithm, FS6.0, as
our results show that FS6.0 reliably reproduces eleven major hippocam-
pal subregions across two independent cohorts (QTIM and ADNI-2),
despite differences in age, scanning interval and image acquisition
method. Clinical findings reported using the algorithm's predecessor,
FS5.3, should be interpreted with caution.

Between-version agreement and trans-platform reliability: Implications for
imaging consortia

International consortia like ENIGMA typically involve large-scale
implementation of harmonized segmentation protocols across diverse
U
N
C
O

R
R
E

Fig. 2. Heritability of the whole hippocampus and its re
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networks of research laboratories. Many of these laboratories may
have already processed their T1-weighted images through older
versions (v5.1–5.3) of the FreeSurfer subregion segmentation tool,
raising questions about the need to process their data through a new
version of the algorithm. Here, we found strong agreement between
older (v5.3) and newer (v6.0) versions of the tool for the hippocampal
tail, presubiculum and subiculum. However, versions 5.3 and 6.0
produced variable volume estimates for the cornu ammonis, fimbria,
and hippocampal fissure. These discrepancies were expected, due to
the algorithm's revised definitions of subregional borders (Iglesias
et al., 2015). FS6.0 also produced four new subregions with no directly
corresponding structures in FS5.3 (the parasubiculum, molecular
layer, granule cells of the dentate and HATA). Furthermore, version 6.0
produced slightly more consistent estimates across lower (1.5 T) and
higher (3 T) MRI scanner field strengths. Overall, these findings suggest
that the latest version of the FreeSurfer subregion segmentation
algorithm is a more reliable, versatile and anatomically accurate tool
than its predecessors (Iglesias et al., 2015). International consortia
such as ENIGMA may benefit by encouraging all participating sites to
spective subfields in the QTIM cohort (N = 728).

automatically segmented human hippocampal formation subregions,
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Fig. 3. Three-dimensional visualization of narrow-sense heritability within twelve subfields of the human hippocampal formation, using the average heritability estimates calculated from
the QTIM cohort. Heritability is represented as a heat map, with the most heritable subregions depicted in red (see: the hippocampal tail) and moderately heritable subfields colored in
green/yellow (see: the hippocampal fissure and parasubiculum). The first image (on the left) is a full reconstruction of the hippocampal formation, showing the most lateral subfields
including the CA1, CA3, hippocampal tail (‘hippo. tail’), fimbria and hippocampal-amygdaloid transition area (‘HATA’). The middle image removes some lateral substructures, including
the fimbria and CA3, in order to display mid-lying subfields including the hippocampal fissure (‘hippo. fissure’), molecular layer and granule cells of the DG (‘ML-DG’) and CA4. The
third image (on the right) further removes these subfields in order to display three remaining medial sub-regions, including the subiculum, presubiculum and parasubiculum. This
rendering represents bilateral h2 estimates, although only the left hippocampus is shown here. Image generated using TrackVis (http://trackvis.org/).
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process their imaging data with the revised segmentation tool (FS6.0).
The combination of volume estimates acquired using previous (FS5.3)
and revised (FS6.0) algorithms is not recommended.

Validating the human hippocampal subfields as quantitative phenotypes
for genetic mapping

In the second part of thismanuscript, we used SOLAR to calculate the
heritability of all twelve automatically segmented hippocampal subre-
gions. The greatest genetic effects were observed in larger subregions,
particularly within the granule cells of the DG, molecular layer and the
hippocampal tail (h2 = 0.74–0.91). Smaller subregions such as the
hippocampal fissure and parasubiculum produced strong but lower
heritability estimates (h2 = 0.56–0.57). This pattern of heritability has
previously been reported across the wider collection of subcortical
structures, with larger regions (such as the thalamus) showing higher
heritability than smaller regions (such as the amygdala) (see Hibar
et al., 2015). These heritability fluctuations may be explained by the
reduced measurement errors associated with larger segmentations.
However, biological factors may also play a role. For example, the
cornu ammonis is among the earliest brain regions to develop prenatally
(Taupin, 2007), whereas the subiculum and CA2 are the first hippo-
campal subregions to mature postnatally (Jabès et al., 2011). The
DG and hippocampal tail show accelerated patterns of neurogenesis
after the first postnatal year (Insausti et al., 2010). In adult life,
hippocampal neurons continue to proliferate from precursor cells
in the DG (Kempermann et al., 2004). Given the early development
of the CA subregions (Taupin, 2007) and hippocampal tail (Insausti
et al., 2010) and the keymemory-processing role of the DG in adulthood
(Coras et al., 2014), it is likely that genetic factors significantly influence
each region. Total hippocampal volume was also significantly heritable
(h2 = 0.86–0.88) — supporting prior estimates from healthy popula-
tions; this further shows the impact of genetic factors on the structure as
a whole (den Braber et al., 2013; van Erp and Saleh, 2004; Swagerman
and Brouwer, 2014; Wright et al., 2002).

Our main aim here was to identify reliable quantitative phenotypes
that can be used in future collaborative genetic mapping efforts. A bio-
marker must satisfy several explicit criteria before it can be considered
an endophenotype (Gottesman and Gould, 2003). First, it should be
associated with illness in the population. Structural changes in the hip-
pocampal subregions are implicated in a wide range of brain disorders,
Please cite this article as: Whelan, C.D., et al., Heritability and reliability of
NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.12.039
E
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 Pfrom Alzheimer's disease to epilepsy and schizophrenia (Bartsch, 2012;

Sala, 2008). Second, a useful quantitative endophenotype must be
heritable. In this study, all major subregions of the hippocampus
were highly influenced by additive genetic effects, with heritability
estimates ranging from h2 = 0.56 to h2 = 0.91. All subregions, with
the exception of the hippocampal fissure (which shows inconsistent
volume estimates across image acquisition time points and field
strengths), could therefore be considered as reliable and robust
quantitative phenotypes for future genetic mapping studies.

Limitations and future directions

In this collaborative investigation, we evaluated a revised version
of the FreeSurfer subregion segmentation tool using data collected and
analyzed at multiple, independent sites (ADNI-2, QTIM, MPIP and
NESDA) at two different field strengths (3 T and 4 T) across large samples
of healthy (QTIM, ADNI-2) and affected populations (MPIP, NESDA). We
found that the revised algorithmproduces heritable and reliable segmen-
tations for eleven human hippocampal subregions, but future users
should note some limitations. First, the algorithm has yet to be validated
against manual segmentations. A recent quantitative comparison of 21
manual segmentation protocols, including the protocol used to generate
manually annotated training data for the revised FreeSurfer algorithm,
revealed significant variability among the labels used to define subre-
gions, how boundaries were placed between labels, and the overall
extent of the hippocampal formation that is labeled across protocols
(Yushkevich et al., 2015). FS6.0 is already a reliable, accessible tool for
automated subregion segmentation, but it continues to evolve alongside
on-going efforts to harmonize hippocampal subfield protocols (The
Hippocampal Subfields Group (HSG), 2014; see hippocampalsubfields.
com). As such, it is inevitably subject to revisions as the field
develops. Second, although the revised algorithm can segment T1-
and T2-weighted images (and their combination; Iglesias et al., 2015),
the results presented here are inferred from standard resolution,
T1-weighted data only, which is more commonly available across
large consortium efforts, such as ENIGMA. Test–retest reliability
estimates were extracted using a series of 1.2 mm3 and ~0.95 mm3

isotropic images, respectively, possibly introducing measurement
errors for smaller subregions like the fimbria (mean volume:
98.24 mm3), HATA (mean volume: 74.84 mm3) and parasubiculum
(mean volume: 62.23 mm3) (see Table 2). Future versions of the
automatically segmented human hippocampal formation subregions,
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FreeSurfer segmentation algorithm may yield more robust estimates for
low resolution data (b1 mm3) by combining smaller subfields such as
the subiculum and CA2/3. Third, while we observed good reliability
between subregion segmentations acquired at 1.5 T and 3 T field
strengths, test–retest reproducibility estimates were not established
at 1.5 T.

Despite these limitations, the present study supports the utility of
eleven automatically segmented hippocampal subregion volumes as
quantitative endophenotypes for future imaging genetics collaborations.
Progressing from macro-level investigations of large brain regions
towards more fine-grained maps of specific hippocampal subregions
may add more precise localization to GWAS effects. The ENIGMA
consortium is now conducting related, finer-grained efforts using diffu-
sion tensor imaging (Jahanshad et al., 2013; Kochunov et al., 2015) and
shape analysis (Thompson et al., 2014). Here, we evaluated the auto-
mated reconstruction of hippocampal subregion volumes as another
useful intermediate biomarker for genome-wide association. As multi-
center consortium efforts continue to discover genes associated with
brain measures, future quantitative genetic investigations of specific
hippocampal subregions may point to a more mechanistic understand-
ing of these genes, and how they affect cognition, behavior and neuro-
logical illness.

Conclusion

The hippocampal formation is one of themost profoundly disrupted
brain regions in many neurological and psychiatric illnesses. As the
present study illustrates, it is now possible to reconstruct eleven major
subregions of the hippocampus using almost fully automated brain
imaging methods, to a high degree of accuracy and reliability within
and across populations. All eleven subregions are highly influenced by
genetic factors. As the field of imaging genetics and large-scale imaging
consortia continue to successfully identify genes associated with
measures from the livinghumanbrain, our resultsmayhelp these initia-
tives stratify their traits of interest and better understand the mecha-
nisms of gene action.
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