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Abstract: Significance testing for high-dimensional generalized linear models (GLMs) has been

increasingly needed in various applications, however, existing methods are mainly based on a

sum of squares of the score vector and only powerful under certain alternative hypotheses. In

practice, depending on whether the true association pattern under an alternative hypothesis

is sparse or dense or between, the existing tests may or may not be powerful. In this paper,

we propose an adaptive test on a high-dimensional parameter of a GLM (in the presence of

a low-dimensional nuisance parameter), which can maintain high power across a wide range

of scenarios. To evaluate its p-value, its asymptotic null distribution is derived. We conduct

simulations to demonstrate the superior performance of the proposed test. In addition, we

apply it and other existing tests to an Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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1. INTRODUCTION

data set, detecting possible associations between Alzheimer’s disease and some gene pathways

with a large number of single nucleotide polymorphisms (SNPs). We also implemented the

proposed method in R package GLMaSPU that is publicly available on GitHub and CRAN.

Key words and phrases: Adaptive tests, Generalized linear models, High-dimensional testing,

Power

1. Introduction

Generalized linear models (GLMs; McCullagh and Nelder, 1989) have been increas-

ingly used in high-dimensional settings due to the surge of high-dimensional data in

many fields, ranging from business to genetics. One topic of intensive interest is sig-

nificance testing on regression coefficients in high-dimensional GLMs. For example,

genome-wide association studies (GWASs) have led to the discovery of many genetic

variants, mostly single nucleotide polymorphisms (SNPs), associated with common

and complex diseases. Given the number of SNPs tested in GWASs, a univariate test

must meet a stringent threshold for statistical significance (with p-value < 5× 10−8)

and thus is often underpowered. When failing to identify any or a sufficient number

of associated SNPs based on the univariate test, one may be interested in directly

testing a genetic marker set with possibly a large number of SNPs to both gain

statistical power and enhance biological interpretation.

In these applications, the dimension of the parameters to be tested, p, is often
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close to or higher than the sample size, n. For low dimensional situations with

p ≪ n, traditional multivariate tests, such as the likelihood ratio test and the Wald

test, have been widely used (McCullagh and Nelder, 1989); however, the power of

both the Wald test and the likelihood ratio test tend to diminish quite rapidly as p

increases (Goeman et al., 2006). These tests even break down completely when p > n

since the maximum likelihood estimates (MLEs) of the parameters are not uniquely

determined. To deal with these difficulties, several tests for high-dimensional data

have been proposed accordingly (e.g., Goeman et al., 2006, 2011; Zhong and Chen,

2011; Lan et al., 2014; Guo and Chen, 2016). In particular, Zhong and Chen (2011)

proposed a modified F-test in high-dimensional linear regression models, allowing

p → ∞ as n → ∞; Lan et al. (2014) extended the test to GLMs with a general

random design matrix. Meanwhile, Goeman et al. (2006) proposed a test statistic

for high-dimensional linear models and Goeman et al. (2011) derived its asymptotic

distribution for a fixed p in GLMs. Guo and Chen (2016) further modified Goeman’s

test statistic (Goeman et al., 2011) to a simpler form and allowed both n and p → ∞.

In a penalized regression framework, several inference methods for a low-dimensional

sub-vector of a high-dimensional regression coefficient vector have been developed

(Van de Geer et al., 2014; Zhang and Zhang, 2014; Voorman et al., 2014), which

however differs from the goal of testing on a high-dimensional parameter here and

thus will not be further discussed.
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1. INTRODUCTION

The existing methods are mainly based on the sum-of-squares of the score vector

for the parameters of interest and are usually powerful against alternative hypotheses

with moderately dense signals/association patterns, where there is a relatively large

proportion of associated (i.e. non-null) parameters. In contrast, if the nonzero asso-

ciations are strong but sparse, the sum-of-squares-type tests lose substantial power

while a test based on the supremum of the score vector is more powerful. Importantly,

as to be shown in the simulation section, there are some intermediate situations in

which neither type of the above tests is powerful. In practice, it is often unclear

which type of tests should be applied since the underlying truth is unknown.

In this paper, we develop an adaptive test that would yield high statistical power

under various high-dimensional scenarios, ranging from highly dense to highly sparse

signal situations. The main idea is that, since we do not know which and how many

parameters being tested are associated with the response, we first construct a class

of sum of powered score tests such that hopefully at least one of them would be

powerful for a given situation. The proposed adaptive test then selects the one with

the most significant testing result with a proper adjustment for multiple testing. To

apply the proposed test, we establish its asymptotic null distribution. In particular,

we derive the joint null distribution of the individual powered score test statistics,

which converge to either a multivariate normal distribution or an extreme value

distribution. The joint asymptotic null distribution for the proposed tests is used
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to calculate asymptotics-based p-values, a more convenient and faster alternative to

other computing-intensive resampling methods such as the bootstrap.

The rest of the paper is organized as follows. In Section 2, we review some existing

tests. In Section 3, we propose the new adaptive test and study its asymptotic prop-

erties in the contexts with and without nuisance parameters, respectively. Results

for simulation studies and real data analyses are presented in Section 4. All technical

details for proofs and more extensive simulation results are relegated to the online

supplementary material. An R package GLMaSPU implementing the proposed test

is also publicly available on GitHub and CRAN.

2. Some Existing Tests

Suppose n identical and independently distributed (i.i.d.) samples {(Yi, Zi, Xi) : i =

1, 2, . . . , n} have been collected, for which we have an n-vector response (outcome of

interest) Y , an n×q matrix Z for q covariates, and an n×p matrix X for p variables of

interest. For subject i, let Zi = (Zi1, . . . , Ziq) be the q covariates, such as age, gender,

and other clinical variables that we want to adjust for, and Xi = (Xi1, . . . , Xip) be

the p-dimensional variables of interest. Without loss of generality, we assume that

E(X) = 0 as otherwise X can be re-centered by its mean. Assuming a generalized
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linear model, we have

E(Y |X,Z) = g−1(Xβ + Zα), (2.1)

where p-vector β and q-vector α are unknown parameters, and g is the canonical link

function. We are interested in testing

H0 : β = β0 versus H1 : β ̸= β0, (2.2)

while treating α as the nuisance parameter. We target the situation with “small q,

large p and large n”.

The best-known tests for low-dimensional data are the Wald test and the likeli-

hood ratio test; however, the power of both the Wald test and the likelihood ratio test

diminishes quite rapidly as the dimension p increases (Goeman et al., 2006). More

importantly, in a high-dimensional situation with p > n, these tests break down com-

pletely since the MLEs for the parameters no longer exist uniquely. Goeman et al.

(2006) derived the following test statistic for testing hypothesis (2.2) based on the

score vector

TGoe = U⊺U − trace(I),
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where U and I are the score vector and observed information matrix for β under the

null hypothesis, respectively. Ignoring some constant, TGoe equals to

TGoe2 = n−1(Y − µ0)
⊺XX⊺(Y − µ0),

where µ0 is the expectation of Y under the null hypothesis. Goeman et al. (2006)

calculated the p-value of this test statistic via permutations or moment matching.

Goeman et al. (2011) modified TGoe with the following statistic

TGT =
(Y − µ̂0)

⊺XX⊺(Y − µ̂0)

(Y − µ̂0)⊺D(Y − µ̂0)
,

where µ̂0 and D are the maximum likelihood estimate of µ0 under the null hypothesis

and a diagonal n×n matrix equal to the diagonal of XX⊺, respectively. Goeman et al.

(2011) derived its asymptotic null distribution for fixed p. Since the denominator of

TGT increases the variance and thus adversely affects the power, Guo and Chen (2016)

proposed the following test statistic

THDGLM = n−1(Y − µ̂0)
⊺(XX⊺ − D)(Y − µ̂0),

and further derived the asymptotic normal distribution of THDGLM for diverging p →

∞ as n → ∞ under some assumptions.
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(Morgenthaler and Thilly, 2007). As to be shown in simulations, if most variables

of X are associated with the response Y with similar effect sizes and the same asso-

ciation direction, then a burden test like L(1, µ0) would yield high statistical power.

In contrast, in a situation with only moderately dense signals or with different asso-

ciation directions, L(γ, µ0) with an even integer γ ≥ 2 would be more powerful. In

particular, the supremum based test statistic, L(∞, µ0) yields high statistical power

if only few variables are strongly associated with Y (i.e. a highly sparse non-zero

components of β). In short, the power of L(γ, µ0) depends on the unknown true

association pattern (i.e. value of β), such as signal sparsity and magnitudes. To

choose the most powerful test automatically, we propose the following adaptive test

to combine the multiple tests accordingly:

TaSPU = min
γ∈Γ

PSPU(γ,µ0),

where PSPU(γ,µ0) is the p-value of L(γ, µ0) test. For simplicity, we write L(γ, µ0),

SPU(γ, µ0) and SPU(γ) exchangeably. Taking the minimum p-value is a simple and

effective way to approximate the most powerful test (Pan et al., 2014). Note that

TaSPU is no longer a genuine p-value and we need to derive its asymptotic null distri-

bution to facilitate calculating its p-value.

Remark 2. The optimal value of γ for the test statistic L(γ) to achieve the highest
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power depends on the specific alternative. We aim to choose a Γ set to maintain high

power of the aSPU test under a wide range of scenarios. The supremum based test

statistic for high-dimensional two-sample testing has been studied in Cai et al. (2014);

from their Theorem 2, the power of the supremum based test converges to 1 if the

signal is strong with a high sparsity level; see also related discussions in Donoho and

Jin (2015) and Jin and Ke (2014). When the signal is dense with a constant effect

size, L(1) is most powerful (Xu et al., 2016). L(2) is a sum-of-squares-type test that

has been widely used and studied. By default, we recommend include γ = 1, 2,∞

and a small subset of moderate values of γ in Γ. More generally, as recommended

in Xu et al. (2016), we use Γ = {1, 2, . . . , γu,∞} with a γu such that L(γu) gives

similar results to that of L(∞); we find in the simulation studies that often γu = 6

or 8 suffices and the performance of the aSPU test is robust to such a choice of γu.

Remark 3. Our proposed test is an extension of the original aSPU test (Pan et al.,

2014) to high-dimensional GLMs; the original aSPU test was proposed for analysis of

rare variants with large n and small p. For simplicity, we use the same name “aSPU”

for our proposed test here. Since the asymptotic properties of the adaptive aSPU

test for GLMs have not been studied, we derive its asymptotic null distribution in

a high-dimensional setting, based on which the asymptotic p-values of L(γ, µ0) and

TaSPU can be calculated.

Next we derive the asymptotic properties under the null hypothesis. For two
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sequences of real numbers {an} and {bn}, we write an = O(bn) if there exists some

constant C such that |an| ≤ C|bn| holds for all n ≥ N , and write an = o(bn) if

limn→∞ an/bn = 0. Under H0 : β = β0, we first derive some asymptotic approxima-

tions to the mean and the variance of L(γ, µ0) for γ < ∞, and then establish the

asymptotic distribution of L(γ, µ0). The following assumptions are needed.

C1. The eigenvalues of Σ are bounded, that is, B−1 ≤ λmin(Σ), λmax(Σ) ≤ B

for some finite constant B, where λmin(Σ) and λmax(Σ) denote the minimum and

maximum eigenvalues of matrix Σ, respectively. Moreover, the absolute value of

any corresponding correlation element is strictly smaller than 1; in other words,

max1≤i̸=j≤p |σij|/
√
σiiσjj < 1− ξ for some constant ξ > 0.

C2. Given a set of multivariate random vectors W = {W (j) : j ≥ 1}, for integers

a < b, let χb
a be the σ-algebra generated by {W (m) : m ∈ [a, b]}. The α-mixing

coefficient αW (s) is defined as sup{|Pr(A ∩ B) − Pr(A)Pr(B)| : 1 ≤ t < p,A ∈

χt
1, B ∈ χ∞

t+s}. We assume W = {W (j) = (Sij, i = 1, . . . , n) : j ≥ 1} is α-mixing such

that αW (s) ≤ Mδs, where δ ∈ (0, 1) and M is some constant.

C3. Under H0 : β = β0, E [(Sij)
3] = 0 for 1 ≤ j ≤ p.

C4. (log p)/n1/4 = o(1).

C5. There exist some constants η and K > 0 such that E [exp {η(Sij)
2/σjj}] ≤ K

for 1 ≤ j ≤ p.
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3. NEW METHOD

testing with nuisance parameters. The methods described in the following subsection

can be used for calculating the p-values for testing without nuisance parameters by

replacing µ̂0 with µ0.

3.2 Testing With Nuisance Parameters

In this subsection, we consider testing on a high-dimensional regression coefficient

vector in the presence of a low-dimensional nuisance parameter, which is a common

task in practice. For example, in a study of complex disease, we usually have both

SNP data and other demographic variables, which may confound the association

between the SNPs and the outcome of interest. One may be interested only in

genetic effects while adjusting for demographic variables, hence the coefficients for

demographic variables are treated as low-dimensional nuisance parameters, which

have to be estimated. Here, we are interested in testing hypothesis (2.2) under GLM

(2.1).

Let µ0(α) = µ0 = g−1(Zα + Xβ0) and µ̂0 = g−1(Zα̂ + Xβ0), where the MLE α̂

is obtained under the null hypothesis. Since µ0 is unknown, we use µ̂0 and the test

statistic L(γ, µ̂0) accordingly. To derive its asymptotic distribution, the following

additional assumptions are needed.

C6. The dimension of nuisance parameters α, q, is fixed, and each covariate in Z

is bounded almost surely. We assume E(Xij|Z) ̸= 0 only holds for j ∈ P0 with the
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size of P0, p0, satisfying p0 = O(pη) for a small positive η. We further assume the

consistent and asymptotic normal MLE α̂ under the null hypothesis (Fahrmeir and

Kaufmann, 1985).

C7. There exist some positive constants K1 and K2 such that K1 < E[ϵ20i|Z = z] <

K2 almost everywhere for z in the support of the probability density of Z, where

ϵ0i = Yi − µ0i, 1 ≤ i ≤ n. We further assume E[ϵ0i|X,Z] = 0.

C8. We assume p/n2 = o(1).

C9. The conditionally α-mixing coefficient αW |F(s) is defined as sup{|Pr(A∩B|F)−

Pr(A|F)Pr(B|F)| : 1 ≤ t < p,A ∈ χt
1, B ∈ χ∞

t+s}, where F is a sub-σ-algebra of W .

We assume W = {W (j) = (Xij, i = 1, . . . , n) : j ≥ 1} is conditionally α-mixing given

Z such that αW |σ(Z)(s) ≤ Mδs, where δ ∈ (0, 1) and M is some constant.

Remark 6. Assumption C6 states that the dimension of nuisance parameters, q,

is fixed as n → ∞, which is appropriate in many applications, including GWASs of

interest here. However, this assumption may not be appropriate in some applica-

tions. For example, in testing gene-environmental interactions, the main effects are

treated as nuisance parameters, which may be high-dimensional (Lin et al., 2013).

Note that, we assume that each Xj is already centered and has sample mean 0, par-

tially making it reasonable to assume E[Xij|Z] ̸= 0 only for j ∈ P0 with the size of

P0 in a small order of p (i.e. p0 = O(pη)). This assumption is technically needed to

prove Theorem 2. For finite γ, we can relax the assumption to p0 = O(p1/2−δ), where

Page 17 of 40



3. NEW METHOD

δ is a small constant. If we are concerned about the validity of this assumption,

we can regress each Xj on Z and use its residuals as the new Xj to approximately

satisfy E[Xij|Z] = 0 for any j = {1, 2, . . . , p}. Assumption C7 is common in GLMs,

for instance, as assumption G in Fan et al. (2010) and assumption 3.3 in Guo and

Chen (2016). Assumption C8 is an updated version of C4 and somewhat restrictive,

which however is technically needed to prove Theorem 2. Note that, instead of con-

sidering only the sum-of-squares-type statistic (with γ = 2) similar to the HDGLM

(Guo and Chen, 2016), here we derive the asymptotic distributions for any finite γ

and γ = ∞, for which a stronger assumption is therefore used. However, this as-

sumption may be relaxed: as to be shown in simulations, the asymptotic distribution

still performed well for more general high dimensional situations, and we leave this

interesting problem to future work. Conditionally α-mixing is introduced by Rao

(2009) and assumption C9 is an updated version of C2 to adjust the case of nuisance

parameters.

Although the estimated parameter α̂ does complicate the derivations, we still

have the following theorem similar to Theorem 1.

Theorem 2.Under assumptions C1–C9 and the null hypothesis H0, we have:

(i) For set Γ′ = Γ\{∞}, [{L(γ, µ̂0)−µ(γ)}/σ(γ)]⊺γ∈Γ′ converges weakly to the normal

distribution N(0, R) specified in Theorem 1 as n, p → ∞.
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(ii) When γ = ∞, let ap = 2 log p − log log p, for any x ∈ R, Pr{L(∞, µ̂0) − ap ≤

x} → exp{−π−1/2 exp(−x/2)}.

(iii) [{L(γ, µ̂0)− µ(γ)}/σ(γ)]⊺γ∈Γ′ is asymptotically independent with L(∞, µ̂0).

Remark 7. In a GLM, conditional on Z and X, we usually have Cov[Sik, Sij|Z,X] ̸=

Cov[Si′k, Si′j|Z,X] for i ̸= i′. In our derivations, we treat Z and X as random and

assume the data are independently and identically distributed, which makes σkj well

defined (unconditionally); and we derive the unconditional version of the asymptotic

null distribution.

Since µ(γ), σ(γ), and R can be approximated according to Propositions 1–3,

respectively, the p-values for individual L(γ, µ̂0) can be calculated via either a normal

or an extreme value distribution. We illustrate how to calculate the p-value for

aSPU. Define LO = [{L(γ, µ̂0) − µ(γ)}/σ(γ) : odd γ ∈ Γ′] and LE = [{L(γ, µ̂0) −

µ(γ)}/σ(γ) : even γ ∈ Γ′]. By Proposition 3, Cov(L(t), L(s)) is a small order term if

t + s is odd, implying LO and LE are asymptotically uncorrelated. By Theorem 2,

LO and LE converge jointly and weakly to a multivariate normal distribution as n,

p → ∞, implying LO and LE are asymptotically independent. Further, by Theorem

2, L(∞, µ̂0) is asymptotically independent of both LO and LE. Then we can calculate

the p-value for aSPU via the following procedure.

Step 1 Define tO = maxodd γ∈Γ′ |{L(γ, µ̂0)−µ(γ)}/σ(γ)| and tE = maxeven γ∈Γ′ {L(γ, µ̂0)−
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tO tE pO = Pr[max γ∈Γ′ |{L(γ, μ̂0)− μ(γ)}/σ(γ)| > tO]

pE = Pr[max γ∈Γ′{L(γ, μ̂0)−μ(γ)}/σ(γ) > tE]

pO

pE

p∞ L(∞, μ̂0)

p = 1− (1− pmin)
3 pmin = min{pO, pE, p∞}

Σ

Σ

α σij |i − j|

Σ

S = (sij) sij =
1

n−1

∑n
k=1(Yk − μ̂0k)

2XkiXkj

kn Σ̂kn = (sijI(|i − j| ≤ kn))

kn Σ̂kn



kn

kn

μ̂(γ) σ̂2(γ)

Σ̂kn μ̂(γ) = {1+o(1)}μ(γ)

σ̂2(γ) = {1 + o(1)}σ2(γ) kn = o(n1/2)

σ̂2(γ)

p

μ̂(γ) σ̂2(γ) R H0 μ̂0i =

Ê(Yi|Zi, H0) Y
(b)
i

b = 1, 2, . . . , B

Y
(b)
i ∼ (1, μ̂0i) {Y (b)

i : i = 1, 2, . . . , n}

L(γ, μ̂0)
(b) μ̂(γ) =

∑B
b=1 L(γ, μ̂0)

(b)/B

σ̂2(γ) =
∑B

b=1(L(γ, μ̂0)
(b) − μ̂(γ))2/(B − 1) R̂ = (L(Γ, μ̂0))

B B

p B μ̂(γ) σ̂2(γ) R

p
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p-values, hence are called asymptotics-based methods in the following. In contrast,

we can also simply use the parametric bootstrap to calculate the p-values (without

direct use of the asymptotic results), which will be more time-consuming (requiring

a large B for a highly significant p-value) but may perform better for finite samples;

in the sequel, by default, the parametric bootstrap refers to this way of calculating

the p-values.

Remark 8. The optimal value of γ for the test L(γ, µ̂0) to achieve the highest

power depends on the true alternative. As to be shown in the numerical results, when

the signal β is highly dense with the same sign, L(1, µ̂0) is more powerful than the

competing tests. L(2, µ̂0) performs similarly to the tests of Guo and Chen (2016)

since they have similar test statistics. There are some other situations, under which

L(2, µ̂0) is not as powerful as other L(γ, µ̂0) tests, and therefore in these cases, the

proposed test is more powerful than the competing tests. When the signal is strong

and highly sparse, L(∞, µ̂0) is more powerful. Due to the nature of its adaptiveness,

the power of the aSPU test is often either the highest or close to the highest.
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4. Numerical Results

4.1 Simulations

We conducted extensive simulations to compare the performance of the proposed

adaptive test with two existing methods, the HDGLM (Guo and Chen, 2016) and

the GT (Goeman et al., 2011), due to their popularity and the availability of their

computer code.

We set the sample size n = 200 and the dimension of β p = 2000, though other

values were also considered. We generated a data matrix Xn×p from a multivariate

normal distribution; that is, we had independent Xi ∼ N(0,Ξ) for i = 1, 2, . . . , n.

We show the results with unit variances and a blocked first-order autoregressive

correlation matrix Ξ = (Ξij) with Ξij = 0.4|i−j| if |i− j| ≤ 3 and 0 otherwise. Other

simulation results with other covariance structures are presented in the supplementary

material.

We further generated a data matrix with two covariates Z from a normal distri-

bution N(0, 0.5). The outcome Y was generated from a logistic regression model as

in GLM (2.1) with a logit link function, α = (1, 1)⊺, and β = 0 or ̸= 0, corresponding

to the null hypothesis H0 or an alternative hypothesis H1 respectively. Here, we

mainly focused on the results for a binary outcome since in our real data application

the response is binary and it is generally more challenging than that for a continuous
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outcome. Under H1, ⌊ps⌋ elements of β were set to be non-zero, where s ∈ [0, 1]

controlled the degree of signal sparsity. We varied s to mimic varying sparsity levels,

covering from highly sparse signals at s = 0.001 to less sparse and then to moderate

dense at s = 0.1, finally to dense and highly dense signals at s = 0.7, respectively.

The indices of non-zero elements in β were assumed to be uniformly distributed in

{1, 2, . . . , p}, and their values were constant at c. We varied s, c, n and p to evaluate

the performance of the new method under various situations. We used the paramet-

ric bootstrap (Pan et al., 2014) to obtain a ‘bronze-standard’ (slightly inferior to a

‘gold standard’, where the true p-value is known) analysis, to which we compared the

asymptotic results based on Theorem 2. In all simulations, we treated Σ as unknown

and thus estimated Σ, then calculated the means and covariances of the SPU test

statistics according to Propositions 1–3. For each set-up, we simulated 1,000 data

sets and averaged the testing results of these 1,000 data sets. The nominal signifi-

cance level was set to α = 0.05. For the aSPU test, the candidate set of γ was by

default set to be Γ = {1, 2, . . . , 6,∞}.

Table 1 shows the type I error rates and power for s = 0.1. The results outside

and inside parentheses in Table 1 were calculated from asymptotics- and parametric

bootstrap-based methods, respectively; the results based on the two methods were

very close to each other, confirming the results in Theorem 2. We further studied

the performance of the asymptotics-based method under different sparsity levels (s =
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0.001, 0.05, 0.7) and dimension p = 4000. The results for those simulation settings

were similar to Table 1 and were relegated to the supplementary Tables S1–S5.

Table 1: Empirical type I error rates and power (%) of various tests in simulations
with n = 200 and p = 2000. The sparsity parameter was s = 0.1, leading to 200
non-zero elements in β with a constant value c. The results outside and inside paren-
theses were calculated from asymptotics- and parametric bootstrap-based methods,
respectively.

c 0 0.03 0.05 0.07 0.1 0.15
SPU(1) 5 (5) 33 (32) 59 (59) 73 (74) 84 (86) 92 (92)
SPU(2) 6 (5) 18 (15) 44 (39) 65 (61) 81 (78) 91 (89)
SPU(3) 4 (5) 28 (30) 58 (59) 76 (76) 89 (90) 96 (96)
SPU(4) 4 (6) 11 (14) 33 (36) 55 (58) 74 (75) 87 (87)
SPU(5) 4 (5) 15 (18) 37 (41) 59 (62) 78 (81) 88 (89)
SPU(6) 3 (6) 7 (11) 18 (24) 36 (43) 53 (59) 70 (72)
SPU(∞) 5 (5) 7 (7) 8 (9) 13 (16) 19 (22) 21 (25)
aSPU 5 (5) 22 (25) 53 (57) 75 (77) 90 (90) 96 (96)

Figure 1 shows the empirical power for different methods under high-dimensional

scenarios. When the signals were extremely sparse at s = 0.001, as expected, the

supremum-type test SPU(∞) and aSPU performed much better than the competing

tests, the GT and the HDGLM, in terms of power. When the signal non-sparsity

increased from 0.001 to 0.05, the aSPU test performed similarly to the sum-of-squares-

type tests, such as the GT and the HDGLM, and it was much more powerful than

the supremum-type test SPU(∞). As the signals became more dense at s = 0.1,

the aSPU test was the most powerful, closely followed by the SPU(1) and SPU(2)

tests. At s = 0.7, the aSPU test remained to be the winner, and the SPU(1) test was

more powerful than the sum-of-squares-type and supremum-type tests. Under all the
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To further study the impact of covariance structures, we considered the following

two other covariance structures as used in Cai et al. (2014). The first was a block

diagonal structure: Ξ = (σ∗
i,j) with σ∗

i,i = 1, σ∗
i,j = 0.8 for 2(k − 1) + 1 ≤ i ̸= j ≤ 2k

and k = 1, . . . , [p/2], and σ∗
i,j = 0 otherwise. The second was a non-sparse structure:

let Ξ+ = (σ+
i,j) with σ+

i,i = 1 and σ+
i,j = |i − j|−5/2 for i ̸= j and let D = (di,j) be a

diagonal matrix with diagonal elements di,i following a uniform distribution between

1 and 3 for i = 1, . . . , p. Then Ξ = D1/2Ξ+D1/2. For these two covariance structures,

the results of the asymptotic approximation and power comparison were similar to

those in Table 1 and Figure 1, thus were relegated to the supplementary Tables S6–

S13 and Figures S1–S2. Finally, we also considered a continuous outcome Y ; again,

the results were similar (supplementary Table S14).

In summary, due to the nature of its adaptiveness, the aSPU test either achieved

the highest power or was close to the winner under various scenarios, validating its

consistently good performance across a wide range of scenarios.

4.2 Real Data Analysis

Alzheimer’s disease (AD) is the most common form of dementia, affecting many mil-

lions around the world. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

is a longitudinal multisite observational study of healthy elders, mild cognitive im-

pairment (MCI), and AD (Jack et al., 2008). It is jointly funded by the National
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Institutes of Health (NIH) and industry via the Foundation for the NIH and the

Principal Investigator of this initiative is Michael W. Weiner, VA Medical Center

and University of California. The major goal of ADNI is to test whether serial MRI,

positron emission tomography (PET), and other biological markers can be combined

to measure the progression of MCI and early AD. ADNI has recruited more than

1, 500 subjects, ages range from 55 to 90, to participate in the research. For latest

information, see www.adni-info.org.

One objective of ADNI is to elucidate genetic susceptibility to AD. Due to a rel-

atively small sample size and usually small genetic effect sizes, applying a univariate

test to the ADNI data failed to identify any SNP passing the genome-wide signifi-

cance level at 5 × 10−8 (Kim et al., 2016), and even a much larger meta-analysis of

74,046 individuals only identified very few genome-wide significant SNPs (Lambert

et al., 2013). Hence, it is natural to consider possible associations at the pathway

or even chromosome level, which may be more powerful through effect aggregation

and a reduced burden of multiple testing, and shed light on the underlying genetic

architecture.

We ran quality control steps first. To be specific, we filtered out all SNPs with

a minor allele frequency < 0.05, those with a genotyping rate < 0.95, and those

with a Hardy-Weinberg equilibrium test p-value < 10−5. For testing polygenic effects

(on chromosome level), we pruned SNPs with a criterion of linkage disequilibrium
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r2 > 0.1 using a sliding window of size 200 SNPs and a moving step of 20. For

pathway-level analysis, we pruned SNPs with a criterion of linkage disequilibrium

r2 > 0.8 using a sliding window of size 50 SNPs and a moving step of 5. We imputed

the missing SNPs via a Michigan Imputation Server (Das et al., 2016) with the 1000

Genomes Project European ancestry samples as the reference panel. For covariates,

we included gender, years of education, handedness, age, and intracranial volume

measured at baseline. To better demonstrate the possible power differences among

the different tests, we applied the tests at either the chromosome or pathway level.

First, we conducted polygenic testing at the chromosome level. The family-wise

nominal significance level was set at 0.05, yielding a 0.05/22 ≃ 0.0023 significance

cutoff for each chromosome after the Bonferroni adjustment. Table 2 shows some

representative results for both asymptotics and parametric bootstrap-based p-values

for each test. Most asymptotic p-values of the proposed SPU and aSPU tests were

close to their parametric bootstrap-based ones, indicating good approximations by

asymptotics. The aSPU test gave significant p-values (< 0.0023) for 5 chromosomes.

In contrast, The HDGLM (Guo and Chen, 2016) yielded significant p-values for only

two chromosomes. As expected, the p-values of HDGLM were close to that of SPU(2)

since the two test statistics are similar. Perhaps due to dense and weak signals on

these chromosomes, the supremum type test SPU(∞) was not significant in any

chromosome while the burden test SPU(1) was often more significant. However, in
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some situations, SPU(γ) with a larger γ might perform better. For example, for

chromosome 5, perhaps due to moderately sparse and weak signals, SPU(3) gave the

most significant p-value. Another example was for chromosome 14, SPU(3) yielded a

significant result, while HDGLM gave a non-significant one. A meta-analysis of 74,046

individuals identified 2 SNPs at the genome-wide significance level on chromosome 14

(Lambert et al., 2013), validating that chromosome 14 was not a false positive finding

by SPU(3). Due to its adaptiveness, the aSPU test often yielded more significant

results than the HDGLM across the chromosomes.

Table 2: The p-values of various tests for ADNI data. The results outside and inside
parentheses were calculated from the asymptotics- and parametric bootstrap-based
methods, respectively.

Test Chromosome (number of SNPs)
5 (3445) 13 (2071) 14 (1878) 21 (840)

SPU(1) 0.01 (0.01) 2×10−4 (6×10−4) 0.002 (0.002) 1×10−4 (2×10−4)
SPU(2) 0.03 (0.04) 0.11 (0.10) 0.25 (0.22) 0.15 (0.14)
SPU(3) 0.004 (0.003) 7×10−5 (7×10−4) 5×10−4 (2×10−3) 5×10−4 (2×10−3)
SPU(4) 0.11 (0.09) 0.14 (0.13) 0.30 (0.28) 0.33 (0.02)
SPU(5) 0.01 (0.02) 5×10−4 (3×10−3) 0.001 (0.005) 6×10−3 (0.01)
SPU(6) 0.32 (0.29) 0.22 (0.20) 0.28 (0.25) 0.38 (0.32)
SPU(∞) 0.95 (0.87) 0.66 (0.57) 0.07 (0.12) 0.27 (0.23)
aSPU 0.02 (0.03) 3×10−4 (9×10−4) 0.003 (0.006) 7×10−4 (5×10−4)
HDGLM 0.04 (0.04) 0.14 (0.12) 0.29 (0.25) 0.20 (0.17)

Next we conducted a pathway-based analysis. We retrieved a total of 214 path-

ways from the KEGG database (Kanehisa et al., 2009). As in practice (Network

et al., 2015), we restricted our analysis to pathways of at most 200 genes and at least

10 genes, and excluded the pathways with less than 1000 SNPs, leading to 141 path-
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ways for the following analysis. We set a 0.05/141 ≃ 3× 10−4 significance cutoff for

each pathway after the Bonferroni adjustment. Figure 3 compares the p-values of the

asymptotics- and parametric bootstrap-based methods, showing that the p-values of

the former method were close to those of the latter, validating the good performance

of the asymptotic results in Theorem 2 for real data analyses. The Pearson correla-

tions of the p-values between the two methods ranged from 0.965 to 0.998. Table 3

shows 10 KEGG pathways with p-values less than 3× 10−4 by either aSPU or GT or

HDGLM. The three tests identified 10, 0, 1 significant pathways, respectively. The

KEGG Alzheimer’s disease pathway (hsa05010) can be treated as a true positive since

the common variant in the APOE gene (one gene in the KEGG Alzheimer’s disease

pathway) alone explains 6% of total AD phenotypic variance (Ridge et al., 2013). For

HSA05010 pathway, only the aSPU test gave a signficant p-value < 3 × 10−4, how-

ever, not by either GT (p-value= 0.0038) or HDGLM (p-value= 0.0014). Sporadic

amyotrophic lateral sclerosis (ALS) is an age-associated disease and there are some

evidence showing that ALS and AD are triggered by some common factors (Wang

et al., 2014), while acute myeloid leukemia has been discovered to be associated with

AD by other studies (Satoh, 2012), lending some support for other two identified

pathways (HSA05014 and HSA05221). Perhaps due to very strong but sparse signals

in these three pathways, aSPU could identified these three pathways while GT and

HDGLM failed.
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5. DISCUSSION

In summary, the two real data applications here demonstrate that our proposed

aSPU test was competitive and can be potentially useful in practice due to its adap-

tiveness.

5. Discussion

We have proposed a highly adaptive association test on a high-dimensional parameter

in a GLM in the presence of a low-dimensional nuisance parameter. Its asymptotic

null distribution is established, facilitating its asymptotic p-value calculations. At the

first glance, the technical details of proving Theorems 1 and 2 are similar to those

in a previous paper (Xu et al., 2016), however, the problem is more challenging here

due to the presence of nuisance parameters.

As shown in both simulations and real data analyses, the proposed aSPU test

is powerful across a wide range of scenarios considered. In comparison, two other

existing tests, HDGLM (Guo and Chen, 2016) and GT (Goeman et al., 2011), based

on the sum of squares of the score vector, performed similarly to SPU(2), all of

which were powerful only in situations with moderately dense signals, but less pow-

erful than some other SPU tests when the signals were either highly dense or highly

sparse. In contrast, by combining multiple SPU tests, the aSPU test maintained

high power across various scenarios. In addition to polygenic testing, we also applied

the proposed aSPU test to pathway or gene set analysis, demonstrating its potential
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usefulness in practice. An R package GLMaSPU implementing the proposed test is

publicly available on GitHub and CRAN; to facilitate its use, we have also created

an online website at http://wuchong.org/GLMaSPU.html.

Supplementary Material

The online supplementary material includes proofs of the theoretical results and

additional simulation results.
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