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Accurate detection of the regions of Alzheimer’s disease (AD) lesions is critical for early

intervention to effectively slow down the progression of the disease. Although gray

matter volumetric abnormalities are commonly detected in patients with mild cognition

impairment (MCI) and patients with AD, the gray matter surface-based deterioration

pattern associated with the progression of the disease from MCI to AD stages is largely

unknown. To identify group differences in gray matter surface morphometry, including

cortical thickness, the gyrification index (GI), and the sulcus depth, 80 subjects from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were split into healthy

controls (HCs; N = 20), early MCIs (EMCI; N = 20), late MCIs (LMCI; N = 20), and

ADs (N = 20). Regions-of-interest (ROI)-based surface morphometry was subsequently

studied and compared across the four stage groups to characterize the gray matter

deterioration during AD progression. Co-alteration patterns (Spearman’s correlation

coefficient) across the whole brain were also examined. Results showed that patients

with MCI and AD exhibited a significant reduction in cortical thickness (p < 0.001) mainly

in the cingulate region (four subregions) and in the temporal (thirteen subregions), parietal

(five subregions), and frontal (six subregions) lobes compared to HCs. The sulcus depth

of the eight temporal, four frontal, four occipital, and eight parietal subregions were also

significantly affected (p < 0.001) by the progression of AD. The GI was shown to be

insensitive to AD progression (only three subregions were detected with a significant

difference, p < 0.001). Moreover, Spearman’s correlation analysis confirmed that the

co-alteration pattern of the cortical thickness and sulcus depth indices is predominant

during AD progression. The findings highlight the relevance between gray matter surface

morphometry and the stages of AD, laying the foundation for in vivo tracking of AD

progression. The co-alteration pattern of surface-based morphometry would improve

the researchers’ knowledge of the underlying pathologic mechanisms in AD.
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FIGURE 7 | Surface morphometric co-alteration patterns among different cortical subregions. For cortical subregion indices, please refer to Table 2. (A) Binarized

Spearman’s correlation matrices estimated from the ROI-based surface morphometric metrics, including cortical thickness, GI, and sulcus depth. The correlation

matrices were thresholded at the value of 1. The value of 1 indicates that the related subregions share the same decreased trend in surface morphometry (B) Binary

networks correspond to the Spearman’s correlation matrices in (A). (C) Degree of each cortical subregion estimated from (A).

and patients with AD, with a combination of functional and
anatomic connectivity estimation.

A novel aspect of this study is the assessment of the
ROI-based surface morphometric alteration across HC, EMCI,
LMCI, and AD groups. The findings are basically in line
with the literature showing the associations of gray matter
volume morphometry with MCIs and ADs. This might suggest

a greater sensitivity of surface estimates in detecting MCI-
and AD-related neurodegeneration compared with gray matter
voxel-based morphometry. However, the results in this study
have several limitations to be interpreted with caution. First,
this study was limited by a relatively small sample size.
Although we were able to detect effects with this sample size,
a larger sample would be optimal for surface morphometry
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analysis. Second, there is an increased risk for false-positive
results because we used uncorrected (p < 0.001) thresholds
for surface morphometry analysis due to our sample size.
Third, brain parcellation may influence the characterization of
surface morphometry during AD progression (Messe, 2019; Wu
et al., 2019), which deserves further study. Last, the education
information of participants and neuropsychological markers are
not available in the ADNI database, so they have not been
taken into account in the statistical analysis in this study.
Despite these limitations, to our knowledge, this is the first
report to show the association of brain regional gray matter
surface complexity with AD progression. Further, multimodal
neuroimaging studies are needed to investigate associations
between regional structural brain atrophy and cognition declines
in patients with AD. More rigorous methods to combine
multimodal MRI brain imaging (structural MRI, diffusion MRI,
and functional MRI) may be required. Combining structural
brain imaging and connectivity for in vivo tracking of AD-
related lesions in the asymptomatic stages may be a promising
method, facilitating an understanding of how the co-alteration
patterns found in this study were constrained by structural or
functional connectivity.

CONCLUSION

This study reported the ROI-based surface morphometry
of gray matter across HC, EMCI, LMCI, and AD groups
and identified characteristic alteration patterns in surface
morphometry during AD progression. Patients with MCI and
patients with AD showed considerable reduction in cortical
thickness and surface complexity indices. These parameters
could potentially serve as biomarkers for the prediction of
AD progression. Future longitudinal studies should determine
whether these markers are able to detect gray matter changes
with therapies aimed at slowing the disease progression. The
possibility of combining structural brain imaging and anatomical
or functional connectivity for in vivo tracking of AD-linked
lesions in the asymptomatic stages is worth further exploration.
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