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a b s t r a c t 

How will my face look when I get older? Or, for a more challenging question: How will my brain look 

when I get older? To answer this question one must devise (and learn from data) a multivariate auto- 

regressive function which given an image and a desired target age generates an output image. While 

collecting data for faces may be easier, collecting longitudinal brain data is not trivial. We propose a 

deep learning-based method that learns to simulate subject-specific brain ageing trajectories without re- 

lying on longitudinal data. Our method synthesises images conditioned on two factors: age (a continuous 

variable), and status of Alzheimer’s Disease (AD, an ordinal variable). With an adversarial formulation 

we learn the joint distribution of brain appearance, age and AD status, and define reconstruction losses 

to address the challenging problem of preserving subject identity. We compare with several benchmarks 

using two widely used datasets. We evaluate the quality and realism of synthesised images using ground- 

truth longitudinal data and a pre-trained age predictor. We show that, despite the use of cross-sectional 

data, our model learns patterns of gray matter atrophy in the middle temporal gyrus in patients with 

AD. To demonstrate generalisation ability, we train on one dataset and evaluate predictions on the other. 

In conclusion, our model shows an ability to separate age, disease influence and anatomy using only 2D 

cross-sectional data that should be useful in large studies into neurodegenerative disease, that aim to 

combine several data sources. To facilitate such future studies by the community at large our code is 

made available at https://github.com/xiat0616/BrainAgeing . 

© 2021 Elsevier B.V. All rights reserved. 

1

g

s

a

t

m

a

R

c

m

t

t

i

i

2

m

2

c

i

a

i  

2

n

r

v

a

h

1

. Introduction 

The ability to predict the future state of an individual can be of 

reat benefit for longitudinal studies ( Ziegler et al., 2012 ). However, 

uch learned phenomenological predictive models need to capture 

natomical and physiological changes due to ageing and separate 

he factors that influence future state. Recently, deep generative 

odels have been used to simulate and predict future degener- 

tion of a human brain using existing scans ( Ravi et al., 2019a; 

achmadi et al., 2019; 2020 ). However, current methods require 

onsiderable amount of longitudinal data to sufficiently approxi- 

ate an auto-regressive model. Here, we propose a new condi- 

ional adversarial training procedure that does not require longi- 

udinal data to train. Our approach (shown in Fig. 1 ) synthesises 

mages of aged brains for a desired age and health state. 
∗ Corresponding author. 

E-mail address: tian.xia@ed.ac.uk (T. Xia). 
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Brain ageing, accompanied by a series of functional and phys- 

ological changes, has been intensively investigated ( Zecca et al., 

004; Mattson and Arumugam, 2018 ). However, the underlying 

echanism has not been completely revealed ( López-Otín et al., 

013; Cole et al., 2019 ). Prior studies have shown that a brain’s 

hronic changes are related to different factors, e.g. the biolog- 

cal age ( Fjell and Walhovd, 2010 ), degenerative diseases such 

s Alzheimer’s Disease (AD) ( Jack et al., 1998 ), binge drink- 

ng ( Coleman Jr et al., 2014 ), and even education ( Taubert et al.,

010 ). Accurate simulation of this process has great value for both 

euroscience research and clinical applications to identify age- 

elated pathologies ( Cole et al., 2019; Fjell and Walhovd, 2010 ). 

One particular challenge is inter-subject variation: every indi- 

idual has a unique ageing trajectory. Previous approaches built 

 spatio-temporal atlas to predict average brain images at differ- 

nt ages ( Davis et al., 2010; Huizinga et al., 2018 ). However, indi-

iduals with different health status follow different ageing trajec- 

ories. An atlas may not preserve subject-specific characteristics; 

hus, may preclude accurate modelling of individual trajectories 

nd further investigation on the effect of different factors, e.g. age, 

https://doi.org/10.1016/j.media.2021.102169
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102169&domain=pdf
https://github.com/xiat0616/BrainAgeing
mailto:tian.xia@ed.ac.uk
https://doi.org/10.1016/j.media.2021.102169
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Fig. 1. Left: The input is a brain image x i , and the network synthesises an aged brain image ˆ x o from x i , conditioned on the target health state vector h o and target age 

difference a d = a o − a i between input a i and target a o ages, respectively. Right: For an image x i of a 26 year old subject, bottom row shows outputs ˆ x o given different target 

age. The top row shows the corresponding image differences | ̂ x o − x i | to highlight progressive changes. 
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ender, education, etc ( Ravi et al., 2019b ). Recent studies proposed 

ubject-specific ageing progression with neural networks ( Ravi 

t al., 2019a; Rachmadi et al., 2019 ), although they require longi- 

udinal data to train. Ideally, the longitudinal data should cover a 

ong time span with frequent sampling to ensure stable training. 

owever, such data are difficult and expensive to acquire, partic- 

larly for longer time spans. Even in ADNI ( Petersen et al., 2010 ),

ne of the most well-known large-scale datasets, longitudinal im- 

ges are acquired at few time points and cover only a few years. 

ongitudinal data of sufficient time span remain an open chal- 

enge. 1 

In this paper, we build the foundations of a model that can be 

rained without longitudinal data. A simplified schematic of our 

odel is shown in Fig. 1 along with example results. Given a brain 

mage, our model produces a brain of the same subject at target 

ge. The input image is first encoded into a latent space, which is 

odulated by two vectors representing target age difference and 

ealth state (AD status in this paper), respectively. The conditioned 

atent space is finally decoded to an output image, i.e. the synthet- 

cally aged image. 

Under the hood, what trains the generator, is a deep adversar- 

al method that learns the joint distribution of brain appearance, 

ge and health state. The quality of the output is encouraged by 

 discriminator that judges whether an output image is represen- 

ative of the distribution of brain images of the desired age and 

ealth state. A typical problem in synthesis which is exacerbated 

ith cross-sectional data ( Ziegler et al., 2012 ) is loss of subject iden- 

ity 1 , i.e. the synthesis of an output that may not correspond to the 

nput subject’s identity. We propose, and motivate, two loss func- 

ions towards retaining subject identity by regularising the amount 

f change introduced by ageing. In addition, we motivate the de- 

ign of our conditioning mechanisms and show that ordinal binary 

ncoding for both discrete and continuous variables improves per- 

ormance significantly. 

We consider several metrics and evaluation approaches to ver- 

fy the quality and biological plausibility of our results. We quan- 

itatively evaluate our simulation results using longitudinal data 

rom the ADNI dataset ( Petersen et al., 2010 ) with classical metrics 

hat estimate image fidelity. Since the longitudinal data only cover 

 limited time span, it is difficult to evaluate the quality of syn- 

hesized aged images across decades. For brain ageing synthesis, 
1 A classical computer vision example is generating a human face resembling an- 

ther individual instead of the input subject. Even with faces, humans find it dif- 

cult to assess identity loss. It remains hard to define detailed structural changes 

uring ageing, e.g. balding, nose shape change, eye colour change. There are some 

ommon patterns that we can expect, such as wrinkles and gray/white hair, but 

t is difficult to define other more detailed changes. Therefore, even in face age- 

ng, ‘subject identity’ is defined as young and old images should be from the same 

erson. In brain synthesis, it is even more difficult to define ‘subject identity’, as 

uman eyes are less able to visually ascertain brain image identity particularly as 

odulated by age and pathology. In this paper, we followed a similar analogue of 

identity: a “synthetic image should be from the same subject as the input image”. 
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2 
 good synthetic brain image should be accurate in terms of age, 

.e. be close to the target age that we want it to be, and also pre-

erve subject identity, i.e. should be from the same subject as the 

nput. Thus, we pre-train a deep network to estimate the apparent 

ge from output images. The estimated ages are used as a proxy 

etric for age accuracy . We also show qualitative results, includ- 

ng ageing simulation on different health states and long-term age- 

ng synthesis. Both quantitative and qualitative results show that 

ur method outperforms benchmarks with more accurate simula- 

ions that capture the characteristics specific to each individual on 

ifferent health states. Furthermore, we train our model on Cam- 

AN and evaluate it on ADNI to demonstrate the generalisation 

bility to unseen data. In addition, to demonstrate the realism of 

ynthetic results, we perform volume synthesis and evaluate defor- 

ation. We also estimate gray matter atrophy in middle temporal 

yrus and find that our model, even without longitudinal data, has 

earned that ageing and disease leads to atrophy. Ablation studies 

nvestigate the effect of loss components and different ways of em- 

edding clinical variables into the networks. 

Our contributions are summarised as follows: 2 

• Our main contribution is a deep learning model that learns to 

simulate the brain ageing process, and perform subject-specific 

brain ageing synthesis, trained on cross-sectional data overcom- 

ing the need for longitudinal data. 
• For our model to be able to change output based on desired 

input (age and health state), we use an (ordinal) embedding 

mechanism that guides the network to learn the joint distri- 

bution of brain images, age and health state. 
• Since we do not use longitudinal data that can constrain the 

learning process, we design losses that aim to preserve subject 

identity, while encouraging quality output. 
• We provide an experimental framework to verify the quality 

and biological validity of the synthetic outputs. 

While our first contribution is the most important one, it is the 

ombination of our proposed losses and embedding mechanisms 

hat lead to the method’s robustness, as extensive experiments and 

blation studies on two publicly available datasets, namely Cam- 

AN ( Taylor et al., 2017 ) and ADNI ( Petersen et al., 2010 ) show. 

The manuscript proceeds as follows: Section 2 reviews related 

ork on brain ageing simulation and prediction. Section 3 details 

he proposed method. Section 4 describes the experimental setup 

nd training details. Section 5 presents results and discussion. Fi- 

ally, Section 6 offers conclusions. 
2 We advance our preliminary work ( Xia et al., 2019 ) in the following aspects: 1) 

e extend our model to condition on age and AD status, which enables more ac- 

urate simulation of ageing progression of different health states; 2) we introduce 

dditional regularisation to smooth the simulated progression; 3) we offer more ex- 

eriments and a detailed analysis of performance, using longitudinal data, includ- 

ng new metrics and additional benchmark methods for comparison; 4) we intro- 

uce analysis based on measuring deformation and atrophy; and 5) several ablation 

tudies. 
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Fig. 2. An overview of the proposed method (training). x i is the input image; h o is the target health state; a d is the difference between the starting age a i and target age a o : 

a d = a o − a i ; ˆ x o is the output (aged) image (supposedly belong to the same subject as x i ) of the target age a o and health state h o . The Generator takes as input x i , h o and a d , 

and outputs ˆ x o ; the Discriminator takes as input a brain image and h o and a o , and outputs a discrimination score. 
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. Related work 

We first discuss brain ageing simulation , i.e. simulating the age- 

ng process from data. For completeness, we also briefly discuss 

rain age prediction , i.e. estimating age from an image. 

.1. Brain ageing simulation 

Given variables such as age, one can synthesise the correspond- 

ng brain image to enable visual observation of brain changes. For 

nstance, patch-based dictionary learning ( Zhang et al., 2016 ), ker- 

el regression ( Huizinga et al., 2018; Ziegler et al., 2012; Serag 

t al., 2012 ), linear mixed-effect modelling ( Lorenzi et al., 2015; 

ivera et al., 2019 ) and non-rigid registration ( Sharma et al., 2010; 

odat et al., 2014; Pieperhoff et al., 2008; Camara et al., 2006 ) 

ave been used to build spatio-temporal atlases of brains at dif- 

erent ages. However, by relying on population averages as at- 

ases subject-specific ageing trajectories are harder to capture. Re- 

ently, Khanal et al. (2017) build a biophysical model assuming 

rain atrophy, but without considering age or other clinical factors 

e.g. AD status). 

Deep generative methods have also been used for 

his task. While Rachmadi et al. (2019, 2020) and 

egmayr et al. (2019) used formulations of Generative Adver- 

arial Networks (GAN) ( Goodfellow et al., 2014 ) to simulate brain 

hanges, others ( Ravi et al., 2019a ) used a conditional adversarial 

utoencoder as the generative model, following a recent face age- 

ng approach ( Zhang et al., 2017 ). Irrespective of the model, these 

ethods need longitudinal data, which limits their applicability. 

In Bowles et al. (2018) , a GAN-based method is trained to 

dd or remove atrophy patterns in the brain using image arith- 

etics. However, the atrophy patterns were modelled linearly, with 

orphological changes assumed to be the same for all subjects. 

ilana (2017) used a Variational Autoencoder (VAE) to synthesise 

ged brain images, but the target age is not controlled, and the 

uality of the synthesised image appears poor (blurry). Recently, 

awlowski et al. (2020) showed that a VAE-based structural causal 

odel can generate brain images. However, they did not provide 

 quantitative evaluation of the generated images perhaps due to 

nown issues of low quality outputs when using a VAE. Simi- 

arly, Zhao et al. (2019) used a VAE to disentangle the spatial in- 

ormation from temporal progression and then used the first few 

ayers of the VAE as feature extractor to improve the age prediction 

ask. As their focus is on age prediction, the synthetic brain images 

nly contain the ventricular region and are population averages. 

In summary, most previous methods either built average at- 

ases ( Zhang et al., 2016; Huizinga et al., 2018; Ziegler et al., 2012;
3 
erag et al., 2012 ), or required longitudinal data ( Rachmadi et al., 

019; 2020; Ravi et al., 2019a; Wegmayr et al., 2019 ) to simulate 

rain ageing. Other methods either did not consider subject iden- 

ity ( Bowles et al., 2018; Milana, 2017 ), or did not evaluate in detail

orphological changes ( Pawlowski et al., 2020; Zhao et al., 2019 ). 

To address these shortcomings, we propose a conditional adver- 

arial training procedure that learns to simulate the brain ageing 

rocess by being specific to the input subject, and by learning from 

ross-sectional data i.e. without requiring longitudinal observations. 

.2. Brain age prediction 

These methods predict age from brain images learning a rela- 

ionship between image and age; thus, for completeness we briefly 

ention two key directions. For example, Franke et al. (2010) pre- 

icted age with hand-crafted features and kernel regression 

hereas Cole and Franke (2017) used Gaussian Processes. Natu- 

ally performance relies on the effectiveness of the hand-crafted 

eatures. 

Recently, deep learning models have been used to estimate the 

rain age from imaging data. For example, Cole et al. (2017) used a 

GG-based model ( Simonyan and Zisserman, 2015 ) to predict age 

nd detect degenerative diseases, while Jonsson et al. (2019) pro- 

osed to discover genetic associations with the brain degen- 

ration using a ResNet-based network ( He et al., 2016 ). Sim- 

larly, Peng et al. (2021) used a CNN-based model to pre- 

ict age. Cole et al. (2015) used the age predicted by a 

eep network to detect traumatic brain injury. While most 

revious works achieved mean absolute error (MAE) of 4–5 

ears, Peng et al. (2021) achieved state-of-the-art performance 

ith MAE of 2.14 years. However, these methods did not consider 

he morphological changes of brain, which is potentially more in- 

ormative ( Costafreda et al., 2011 ). 

. Proposed approach 

.1. Problem statement, notation and overview 

In the rest of the paper, we use bold notations for vec- 

ors/images, and italics notations for scalars. For instance, a rep- 

esents an age while a is a vector that represents age a . We denote

 brain image as x s (and X s their distribution such that x s ∼ X s ),

here s are the subject’s clinical variables including the corre- 

ponding age a and health state (AD status) h . Given a brain im- 

ge x i of age a i and health state h i , we want to synthesise a brain

mage ˆ x o of target age a o and health state h o . Critically, the syn- 

hetic brain image ˆ x o should retain the subject identity, i.e. belong 
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Fig. 3. Ordinal encoding of age and health state. Left shows how we represent age 

a d using a binary vector with first a d elements as 1 and the rest as 0; Right is the 

encoding of health state, where we use a 2 × 1 vector to represent three categories 

of AD status: control normal (CN), mildly cognitive impaired (MCI), and Alzheimer’s 

Disease (AD). 
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o the same subject as the input x i , throughout the ageing pro- 

ess. The contributions of our approach, shown in Fig. 2 , are the 

esign of the conditioning mechanism; our model architecture that 

ses a Generator to synthesise images, and a Discriminator to help 

earn the joint distribution of clinical variables and brain appear- 

nce; and the losses we use to guide the training process. We de- 

ail all these below. 

.2. Conditioning on age and health state 

In our previous work ( Xia et al., 2019 ), we simulate the ageing

rain with age as the single factor. Here, we improve our previous 

pproach by involving the health state, i.e. AD status, as another 

actor to better simulate the ageing process. 3 

We use ordinal binary vectors, instead of one-hot vectors as 

n Zhang et al. (2017) , to encode both age and health state, which

re embedded in the bottleneck layer of the Generator and Dis- 

riminator (detailed in Section 3.3 ). We assume a maximal age of 

00 years and use a 100 × 1 vector to encode age a . Similarly, we

se a 2 × 1 vector to encode health state. A simple illustration of 

his encoding is shown in Fig. 3 . An ablation study presented in 

ection 5.4 illustrates the benefits of ordinal v.s. one-hot encoding. 

.3. Proposed model 

The proposed method consists of a Generator and a Discrimina- 

or . The Generator synthesises aged brain images corresponding to 

 target age and a health state. The Discriminator has a dual role: 

rstly, it discriminates between ground-truth and synthetic brain 

mages; secondly, it ensures that the synthetic brain images corre- 

pond to the target clinical variables. The Generator is adversarially 

rained to generate realistic brain images of the correct target age. 

he detailed network architectures are shown in Fig. 4 . 

.3.1. Generator 

The Generator G takes as input a 2D brain image x i , and ordi-

al binary vectors for target health state h o and age difference a d . 

ere, we condition on the age difference between input age a i and 

arget age a o : a d = a o − a i , such that when input and output ages

re equal a d = 0 , the network is encouraged to recreate the input. 

he output of G is a 2D brain image ˆ x o corresponding to the target 

ge and health state. 4 
3 Additional fine-grained information on AD effects on different, local, brain re- 

ions could be provided if clinical scores are used instead. As our work is the first 

o attempt to learn without longitudinal data, for simplicity we focused on vari- 

bles capturing global effects. In the conclusion section, we note the addition of 

ne-grained information as an avenue for future improvement. 
4 Note that the target health state can be different from the corresponding in- 

ut state. This encourages learning a joint distribution between brain images and 

linical variables. 

s

s

t

t
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t

h

4 
G has three components: the Encoder E G , the Transformer T G and 

he Decoder D G . E G first extracts latent features from the input im- 

ge x i ; T G involves the target age and health state into the net- 

ork. Finally, D G generates the aged brain image from the bot- 

leneck features. To embed age and health state into our model, 

e first concatenate the latent vector v 1 , obtained by E G , with the

ealth state vector h o . The concatenated vector is then processed 

y a dense layer to output latent vector v 2 , which is then con- 

atenated with the difference age vector a d . Finally, the resulting 

ector is used to generate the output image. 5 We adopt long-skip 

onnections ( Ronneberger et al., 2015 ) between layers of E G and 

 G to preserve details of the input image and improve the sharp- 

ess of the output images. Overall, the Generator’s forward pass is: 

ˆ  o = G (x i , a d , h o ) . 

.3.2. Discriminator 

Similar to the Generator, the Discriminator D contains three 

ubnetworks: the Encoder E D that extracts latent features, the 

ransformer T D that involves the conditional variables, and the 

udge J D that outputs a discrimination score. For the discriminator 

o learn the joint distribution of brain image, age, and health state, 

e embed the age and health vectors into the discriminator with 

 similar mechanism as that of the Generator. 

Note that D is conditioned on the target age a o instead of age 

ifference a d , to learn the joint distribution of brain appearance 

nd age, such that it can discriminate between real and synthetic 

mages of correct age. The forward pass for the Discriminator is 

 fake = D ( ̂ x o , a o , h o ) and w real = D (y o , a o , h o ) . 

.4. Losses 

We train with a multi-component loss function containing ad- 

ersarial, identity-preservation and self-reconstruction losses. We de- 

ail these below. 

.4.1. Adversarial loss 

We adopt the Wasserstein loss with gradient 

enalty ( Gulrajani et al., 2017 ) to predict a realistic aged brain 

mage ˆ x o and force ˆ x o to correspond to the target age a o and 

ealth state h o : 

L GAN = E y o ∼X o , ̂ x o ∼ ˆ X o [ D (y o , a o , h o ) 

D ( ̂  x o , a o , h o ) + λGP (||∇ z̄ D ( ̃ z , a o , h o ) || 2 − 1) 2 
]
, 

(1) 

here ˆ x o is the output image: ˆ x o = G (x i , a d , h o ) (and a d = a o − a i );

 o is a ground truth image from another subject of target age 

 o and health state h o ; and 

˜ z is the average sample defined by 

˜ 
 = ε ˆ x o + (1 − ε) y o , ε ∼ U[0 , 1] . The first two terms measure the

asserstein distance between ground-truth and synthetic samples; 

he last term is the gradient penalty involved to stabilise training. 

s in Gulrajani et al. (2017) and Baumgartner et al. (2018) we set 

GP = 10 . 

.4.2. Identity-preservation loss 

While L GAN encourages the network to synthesise realistic brain 

mages, these images may lose subject identity. For example, it is 

asy for the network to learn a mapping to an image that corre- 

ponds to the target age and health state, but belongs to a different 

ubject. An illustration is presented in Fig. 5 , where ageing trajec- 

ories of two subjects are shown. The task is to predict the brain 
5 We tested the ordering of h o and a d , and it did not affect the results. We also 

ried to concatenate h o , a d and v 1 together into one vector, and use the resulting 

ector to generate the output. However, we found that the model tended to ignore 

he information of h o . This might be caused by the dimensional imbalance between 

 o ( 2 × 1 ) and a d ( 100 × 1 ). 
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Fig. 4. Detailed architectures of Generator and Discriminator . The Generator contains three parts: an Encoder to extract latent features; a Transformer to involve target age 

and health state; and a Decoder to generate aged images. Similarly, we use the same conditioning mechanism for the Discriminator to inject the information of age and 

health state, and a long skip connection to better preserve features of input image. 

Fig. 5. Illustration of ageing trajectories for two subjects. For a subject of age a 1 
(A), the network can learn a mapping from A to C, which could still fool the Dis- 

criminator, but loses the identity of Subject 1 (orange line). 

i  

p

t

t

2

m

i

t

L

w  

o  

p  

n  

t

b

s

c

A

S

3

L

t

t

L  

s

a

o

t

4

C

n

a

f

p

y

u

t

(

b

a

6 In our previous work ( Xia et al., 2019 ), Eq. 2 did not have the a o > a i constraint 

and would randomly include the case of a o = a i to encourage self-reconstruction. 

However, as shown in Section 5.4 , we found that stronger regularisation is neces- 

sary. 
mage of subject 1 at age a 2 starting at age a 1 , by learning a map-

ing from point A to point B. But there are no ground-truth data 

o ensure that we stay on the trajectory of subject 1. Instead, the 

raining data contain brain images of age a 2 belonging to subject 

 (and other subjects). Using only L GAN , the Generator may learn a 

apping from A to C to fool the Discriminator, which will lose the 

dentity of subject 1. To alleviate this and encourage the network 

o learn mappings along the trajectory (i.e. from A to B), we adopt: 

 ID = E x i ∼X i , ̂ x o ∼X o ‖ x i − ˆ x o ‖ 1 · e 
− | a o −a i | | a max −a min | , (2) 

here x i is the input image of age a i and 

ˆ x o is the output image

f age a o ( a o > a i ). The term e 
− | a o −a i | | a max −a min | encourages ‖ x i − ˆ x o ‖ 1 to

ositively correlate with the difference | a o − a i | . The health state is

ot involved in L ID as we do not aim to precisely model the ageing

rajectory. Instead, L ID is used to encourage identity preservation 

y penalising major changes between images close in age, and to 

tabilise training. A more accurate ageing prediction, which is also 
5 
orrelated with health state, is achieved by the adversarial loss. 

n ablation study illustrating the critical role of L ID is included in 

ection 5.4 . 

.4.3. Self-reconstruction loss 

We use a self-reconstruction loss, 

 rec = E x i ∼X i , ̂ x o ∼X i ‖ x i − ˆ x o ‖ 1 , (3) 

o explicitly encourage that the output ˆ x o is a faithful reconstruc- 

ion of the input x i for the same age and health state. Although 

 rec is similar to L ID , their roles are different: L ID helps to preserve

ubject identity when generating aged images, while L rec encour- 

ges smooth progression via self-reconstruction. An ablation study 

n L rec in Section 5.4 shows the importance of stronger regularisa- 

ion. 6 

. Experimental setup 

Datasets: We use two datasets, as detailed below. 

Cambridge Centre for Ageing and Neuroscience (Cam- 

AN) ( Taylor et al., 2017 ) is a cross-sectional dataset containing 

ormal subjects aged 18 to 88. We split subjects into different 

ge groups spanning 5 years. We randomly selected 38 volumes 

rom each age group and used 30 for training and 8 for testing. To 

revent data imbalance, we discarded subjects under 25 or over 85 

ears old, because there are underrepresented in the dataset. We 

se Cam-CAN to demonstrate consistent brain age synthesis across 

he whole lifespan. Alzheimer’s Disease Neuroimaging Initiative 

ADNI) ( Petersen et al., 2010 ) is a longitudinal dataset of subjects 

eing cognitively normal (CN), mildly cognitive impaired (MCI) 

nd with AD. We use ADNI to demonstrate brain image synthesis, 
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5

onditioned on different health states. Since ADNI has longitudinal 

ata, we used these data to quantitatively evaluate the quality of 

ynthetically aged images. We chose 786 subjects as training (279 

N, 260 MCI, 247 AD), and 136 subjects as testing data (49 CN, 46 

CI, 41 AD). The age difference between baseline and followup 

mages in the testing set is 2 . 93 ± 1 . 35 years. 

Pre-processing: All volumetric data are skull-stripped using 

eepBrain 

7 , and linearly registered to MNI 152 space using FSL- 

LIRT ( Woolrich et al., 2009 ). We normalise brain volumes by clip- 

ing the intensities to [0 , V 99 . 5 ] , where V 99 . 5 is the 99.5% largest

ntensity value within each volume, and then rescale the result- 

ng intensities to the range [ −1 , +1] . Such intensity pre-processing 

lso helps alleviate potential intensity harmonisation issues be- 

ween datasets in a manner that creates no leakage (see footnote 

n section 5.2.3 why this is important). We select the middle 60 

xial slices from each volume, and crop each slice to the size of 

208,160]. During training, we only use cross-sectional data, i.e. one 

ubject only has one volume of a certain age. During testing, we 

se the longitudinal ADNI data covering more than 2 years, and 

iscard data where images are severely misaligned due to registra- 

ion errors. 

Benchmarks: We compare with the following benchmarks 8 : 

Conditional GAN: We use a conditional image-to-image transla- 

ion approach ( Mirza and Osindero, 2014 ) and train different Con- 

itional GANs for transforming young images to different older age 

roups. Therefore, a single model of ours is compared with age- 

roup specific Conditional GANs. 

CycleGAN: We use CycleGAN ( Zhu et al., 2017 ), with two transla- 

ion paths: from ‘young’ to ’old’ to ‘young’, and from ‘old’ to ‘young’ 

o ‘old’. Similarly to Conditional GAN, we train several CycleGANs 

or different target age groups. 

CAAE : We compare with Zhang et al. (2017) , a recent paper for

ace ageing synthesis. We use the official implementation 

9 , modi- 

ed to fit our input image shape. This method used a Conditional 

dversarial Autoencoder (CAAE) to perform face ageing synthesis 

y concatenating a one-hot age vector with the bottleneck vector. 

hey divided age into discrete age groups. 

Implementation details: The optimization function is: 

 = 

min 

G 

max 

D 

λ1 L GAN + λ2 L ID + λ3 L rec , (4) 

here λ1 = 1 , λ2 = 100 and λ3 = 10 are hyper-parameters used 

o balance each loss. The λ parameters are chosen experimen- 

ally. We chose λ2 as 100 following Baumgartner et al. (2018) and 

ia et al. (2019) , and λ3 as a smaller value to put emphasis on

ynthesis rather than self-reconstruction. 

To train our model, we divide subjects into a young group and 

n old group, and randomly draw a image x i the young group 

nd an image y o from the old group to synthesise the aged im- 

ge ˆ x o (of x i ) with target age a o and health state h o (of those cor-

esponding to y o ). Here ˆ x o is the synthetically aged version of x i , 

nd the target age a o and health state h o are the same as those

f the selected old sample y o . Afterwards, y o and 

ˆ x o are fed into 

he discriminator as real and fake samples, respectively. Note that 

or all samples a o > a i , and h o could be different than h i . Since

lzheimer’s Disease is an irreversible neurodegenerative disease, 

e select samples where the input health status is not worse than 

he output health status. We train all methods for 600 epochs. 

e update the generator and discriminator iteratively ( Arjovsky 

t al., 2017; Goodfellow et al., 2014 ). Since the discriminator of 

 Wasserstein GAN needs to be close to optimal during training, 
7 https://github.com/iitzco/deepbrain 
8 We also used the official implementation of Milana (2017) ; however, our exper- 

ments confirmed the poor image quality reported by the author. 
9 https://zzutk.github.io/Face- ageing- CAAE/ 
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6 
e update the discriminator for 5 iterations per generator update. 

nitially, for the first 20 epochs, we update the discriminator for 

0 iterations per generator update. We use Keras ( Chollet et al., 

015 ) and train with Adam ( Kingma and Ba, 2015 ) with a learn-

ng rate of 0.0 0 01 and decay of 0.0 0 01. Code is available at https:

/github.com/xiat0616/BrainAgeing . 

Evaluation metrics: To evaluate the quality of synthetically 

ged images, we first use the longitudinal data from ADNI dataset. 

e select follow-up studies covering > 2 years to allow observable 

eurodegenerative changes to happen. We used standard defini- 

ions of mean squared error (MSE), peak signal-to-noise ratio (PSNR) 

nd structural similarity (SSIM) of window length of 11 ( Wang et al., 

003 ) to evaluate the closeness of the predicted images to the 

round-truth. 

Predicted age difference (PAD) as a metric: Longitudinal data in 

DNI only cover a short time span, i.e. the age difference between 

aseline and followup images is only several years. To assess out- 

ut even when we do not have corresponding follow-up ground 

ruth, we use a proxy metric of apparent age to evaluate image 

utput. To develop our proxy metric, we first train a learning based 

ge predictor to assess apparent brain age. We pre-train a VGG- 

ike ( Simonyan and Zisserman, 2015 ) network to predict age from 

rain images, then use this age predictor, f pred , to estimate the ap- 

arent age of output images. To train this age predictor f pred we 

ombine Cam-CAN and healthy (CN) ADNI training data to ensure 

ood age coverage. On a held out testing set it achieves a MAE of 

 . 1 ± 3 . 1 years. When the held out dataset is restricted to ADNI

ealthy subjects alone, MAE is 3 . 9 ± 2 . 8 years. 

We use the difference between the predicted and desired target 

ge to assess how close the generated images are to the (desired) 

arget age. Formally, our proxy metric predicted age difference (PAD) 

s: 

AD = E ˆ x o ∼X o | f pred ( ̂ x o ) − a o | , (5) 

here f pred is the trained age predictor, ˆ x o is the synthetically aged 

mage, and a o is the target age. Here we choose to measure the 

ean absolute error as we want to avoid the neutralization of pos- 

tive and negative errors. By adopting PAD, we have a quantitative 

etric to measure the quality of synthetic results in terms of age 

ccuracy. Observe that PAD does not compare baseline and follow- 

p scans. Given that the age predictor is only trained on healthy 

ata it will estimate age on how normal brains will look like. Thus, 

t should capture when brain ageing acceleration occurs in AD, as 

thers have demonstrated before us ( Cole et al., 2019 ). This will 

ncrease PAD error when we synthesise with AD or MCI target 

ealth state, but given that we use PAD to compare between differ- 

nt methods this error should affect all methods. With advances in 

rain ageing estimation Peng et al. (2021) the fidelity of PAD will 

lso increase. Here since we use PAD to compare across methods 

ven a biased estimator is still a useful method of comparison. 

Statistics: All results are obtained on testing sets, and we show 

verage and standard deviation (std, as subscript on all tables), es- 

imated by sample mean and variance on the testing set. We use 

old font to denote the best performing method (for each met- 

ic) and an asterisk ( ∗) to denote statistical significance. We use 

 paired t -test (at 5% level assessed via permutations) to test the 

ull hypothesis that there is no difference between our methods 

nd the best performing benchmark. 

. Results and discussion 

We start by showing quantitative and qualitative results on 

DNI with detailed evaluation demonstrating quality of the gener- 

ted images. We then train our model on Cam-CAN to show long- 

erm brain ageing synthesis. We conclude with ablation studies to 

llustrate the effect of design choices. 

https://github.com/iitzco/deepbrain
https://zzutk.github.io/Face-ageing-CAAE/
https://github.com/xiat0616/BrainAgeing
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Table 1 

Quantitative evaluation on ADNI dataset (testing set) for several metrics. We report average and std (as sub- 

script) with BOLD, ∗ indicating best performance and statistical significance, respectively (see Section 4 ). 

SSIM PSNR MSE PAD PAD (CN) PAD (MCI) PAD (AD) 

Naïve baseline 0 . 71 ±0 . 09 22 . 1 ±3 . 3 0 . 097 ±0 . 013 7 . 2 ±3 . 9 6 . 3 ±3 . 8 6 . 8 ±3 . 9 8 . 7 ±4 . 0 

Cond. GAN 0 . 39 ±0 . 08 14 . 2 ±3 . 5 0 . 202 ±0 . 012 9 . 5 ±4 . 7 8 . 7 ±4 . 8 9 . 1 ±4 . 7 10 . 9 ±4 . 7 

CycleGAN 0 . 46 ±0 . 07 16 . 3 ±3 . 3 0 . 193 ±0 . 008 9 . 7 ±5 . 1 8 . 9 ±4 . 9 9 . 4 ±5 . 2 11 . 0 ±5 . 2 

CAAE 0 . 64 ±0 . 07 20 . 3 ±2 . 9 0 . 114 ±0 . 011 5 . 4 ±4 . 5 4 . 4 ±4 . 3 5 . 1 ±4 . 4 6 . 9 ±4 . 7 

Ours-previous 0 . 73 ±0 . 06 23 . 3 ±2 . 2 0 . 081 ±0 . 009 5 . 0 ±3 . 7 4 . 0 ±3 . 5 4 . 6 ±3 . 6 6 . 6 ±4 . 0 

Ours 0 . 79 ∗±0 . 06 26 . 1 ∗±2 . 6 0 . 042 ∗±0 . 006 4 . 2 ∗±3 . 9 3 . 1 ∗±3 . 6 3 . 9 ∗±3 . 8 5 . 9 ∗±4 . 2 
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.1. Brain ageing synthesis on different health states (ADNI) 

In this section, we train and evaluate our model on ADNI 

ataset, which contains CN, MCI and AD subjects. Our model is 

rained only on cross-sectional data. The results and discussions are 

etailed below. 

.1.1. Quantitative results 

The quantitative results are shown in Table 1 , employing the 

etrics defined in Section 4 . For ADNI we also obtained a non- 

earned naïve baseline that simply calculates performance compar- 

ng ground-truth baseline and follow-up images. The naïve base- 

ine result is obtained by subtracting from the followup the base- 

ine (input) image. We involve this non-learned baseline as a lower 

ound to check if the proposed algorithm synthesises images that 

re closer to the follow-up than the baseline images or not. As re- 

orted in Section 4, the average age prediction error (MAE) of the 

ge predictor on the ADNI testing data is 3.9 years. Estimating PAD 

eparately for CN, MCI and AD testing subjects (see Table 1 ) shows 

hat the best PAD results are obtained on healthy (CN) data. This is 

xpected as the age predictor used to estimate PAD it is trained on 

ealthy data only. However, this bias affects all methods, and thus 

till allows comparisons between them. Indeed, we can observe 

hat our method achieves the best results in all metrics, with sec- 

nd best being the previous (more simple incarnation) ( Xia et al., 

019 ) of the proposed model. Embedding health state improves 

erformance, because it permits the method to learn an ageing 

unction specific for each state as opposed to the one learned by 

he method in Xia et al. (2019) . The other benchmarks achieve a 

ower performance compared to the baseline. The next best results 

re achieved by CAAE ( Zhang et al., 2017 ), where age is divided

nto 10 age groups and represented by a one-hot vector. To gen- 

rate the aged images at the target age (the age of the follow- 

p studies), we use the age group to which the target age be- 

ongs, i.e. if the target age is 76, then we choose the age group 

f age 75–78. We see the benefits of encoding age into ordinal 

ectors, where the difference between two vectors positively cor- 

elates with the difference between two ages in a finely-grained 

ashion. CycleGAN and Conditional GAN achieve the poorest results 

nsurprisingly, since conditioning here happens explicitly by train- 

ng separate models according to different age groups. 

.1.2. Qualitative results 

Visual examples on two images from ADNI, are shown in Fig. 6 . 

or both examples, our method generates most accurate predic- 

ions, followed by our previous method Xia et al. (2019) , offer- 

ng visual evidence to the observations above. The third best re- 

ults are achieved by CAAE, where we can see more errors between 

rediction ˆ x o and ground-truth x o . CycleGAN and Conditional GAN 

roduced the poorest output images, with observable structural 

ifferences from ground-truth, indicating loss of subject identity. 

e can also observe that the brain ventricle is enlarged in our re- 

ults and the difference between x i and x o is reduced, which is 

onsistent with known knowledge that ventricle increases during 

geing. 
7 
Furthermore, we show visual results of the same subject at dif- 

erent target health states h o , in Fig. 7 . We observe that for all

 o , the brain changes gradually as age ( a o ) increases. However, the 

geing rate varies based on health state ( h o ). Specifically, when h o 
s CN, ageing is slower than that of MCI and AD, as one would 

xpect; when h o is AD, ageing changes accelerate. We also report 

he estimated ages of these synthetic images as predicted by f pred . 

hile these results show one instance, we synthesised aged im- 

ges of different health status from 49 ADNI test set CN subjects, 

ith target ages 10 years older than the original age. We then 

sed f pred to estimate the age of these synthetic images. We find 

hat on average, synthetic AD images are 4 . 9 ± 2 . 3 years older than

he target age, whereas synthetic MCI and CN images are 1 . 8 ± 2 . 0

nd 1 . 5 ± 2 . 1 years older than the target age, respectively. These

bservations are consistent with prior findings that AD acceler- 

tes brain ageing ( Petersen et al., 2010 ). We also observe that the 

ray/white matter contrast decreases as age increases, which is 

onsistent with existing findings ( Westlye et al., 2009; Farokhian 

t al., 2017 ). 

.2. Does our model capture realistic morphological changes of 

geing and disease? 

Here we want to assess whether our model captures known 

geing-related brain degeneration. It is known that brain age- 

ng is related to gray matter reduction in middle temporal gyrus 

MTG) ( Guo et al., 2014; Sullivan et al., 1995 ). We wanted to as-

ess whether synthetic volumes could act as drop-in replacements 

f ground-truth follow-up in assessing MTG gray matter volume 

hange. We focus here on the MTG as this is well covered by the 

ange of slices we use to train our synthesis method. Before we 

roceed we first illustrate that we can synthesise 3D volumes slice- 

y-slice, and then show that our model can capture realistic mor- 

hological changes. 

.2.1. Volume synthesis by stacking 2D slices 

We show that, even with our 2D model, we can still produce 

D volumes that show consistency. We applied our model on 2D 

xial slices and obtained a 3D volume by stacking the synthetic 

lices. An example result of a stacked synthetic 3D volume in sagit- 

al and coronal views is shown in Fig. 8 . Compared to the respec-

ive ground-truth from the same subject, we observe that both 

agittal and coronal views of the synthetic volume look realistic 

nd are close to the follow-up images. Note here that our model 

s trained only on 2D axial slices, for which we chose middle 60 

lices from each volume. Our model uses a residual connection and 

hus makes minimal changes to the regions affected by age instead 

f synthesising the whole brain image. This helps preserve details 

nd continuity across slices. These results illustrate that we can 

roduce 3D volumes that maintain consistency in different views. 

.2.2. Do we capture morphological changes? 

We use an � 1 loss to restrict (in pixel space) the amount of 

hange between input and output images. This is computationally 
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Fig. 6. Example results of subjects with ground-truth follow-up studies. We predict output ˆ x o from input x i using benchmarks and our method. We also show errors between 

the outputs and the ground-truths as | ̂ x o − x o | . We can observe that our method achieves the most accurate results outperforming our previous method ( Xia et al., 2019 ) and 

benchmarks. As a comparison, we also visualized the difference between inputs and ground-truth outputs as | x o − x i | . For more details see text. 

Fig. 7. Brain ageing progression for a healthy (CN) subject x i (at age 67) from ADNI dataset. We synthesise the aged images ˆ x o at different tar get ages a o on different health 

states h o : CN, MCI and AD, respectively. We also visualise the difference between x i and ˆ x o , | ̂ x o − x i | , and show the predicted (apparent) ages of ˆ x o as obtained by our 

pre-trained age predictor (white text overlaid on each difference image). For more details see text. 
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fficient, but to show that it also restricts deformations, we mea- 

ure the deformation between input (baseline) and synthetic or 

round-truth follow-up images in ADNI. We obtain for each subject 

he baseline image x i , the follow-up image x o and the synthetic 

mage ˆ x o , respectively. We first rigidly register x o to x i using Ad- 

anced Normalization Tools (ANTs) ( Avants et al., 2008 ) rigid trans- 

ormation. Then we non-rigidly register x o to x i and obtain the 

acobian determinant map J x o → x i that describes the transforma- 

ion from x o to x i , using ANTs ”SyN” transformation ( Avants et al., 

008 ). Similarly, we obtain J ˆ x o → x i 
that describes the non-linear 

ransformation from ˆ x o to x i . Fig. 9 shows an example of the Ja- 

obian maps for one subject. 
8 
From Fig. 9 , we observe that J ˆ x o → x i 
is close to J x o → x i . To quantify

heir difference, we calculate the mean relative error between the 

acobian determinant maps, defined as: 

 = E x i ∼X i , x o ∼X o , ̂ x o ∼ ˆ X o 
‖ J x o → x i − J ˆ x o → x i 

‖ 1 

‖ J x o → x i ‖ 1 

, (6) 

here ‖ . ‖ 1 is 1-norm of matrices. We find the mean relative er- 

or to be 3 . 49% on the testing set of 136 images. Similarly, we

erform the same evaluations for the results of Conditional GAN, 

ycleGAN, CAAE and our previous method, and find the mean rel- 

tive errors to be 9 . 87% , 8 . 76% , 5 . 91% and 4 . 43% , respectively. Both

ualitative and quantitative results suggest that synthetically aged 
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Fig. 8. Example results of a synthetic 3D volume ̂  x o in sagittal view (top) and coro- 

nal view (bottom) from ADNI dataset. Here we construct the 3D volume by stacking 

the 2D synthetic axial slices of our model. From left to right are slices from a base- 

line volume x i , the corresponding follow-up volume x o , and the stacked synthetic 

volume ˆ x o . 
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Table 2 

Analysis of MTG gray matter relative change between 

baseline and follow-up real or synthetic. Mean and 

std are reported as well as the corresponding F- 

statistic of a one-way ANOVA test (between relative 

change and patient type), with asterisk indicating sig- 

nificance ( p < . 05 ). 

Relative change F-statistic 

real ( RC real ) −0 . 071 ±0 . 0096 4 . 008 ∗

synthetic ( RC syn ) −0 . 083 ±0 . 0099 4 . 539 ∗
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10 We observe checkerboard artefacts near the ventricles after target age 67. Such 

artefacts are a known problem in computer vision and mostly likely due to the use 

of deconvolutional layers in the decoder ( Oramas et al., 2018 ). 
11 We purposely do not use any intensity harmonisation that uses both datasets, 

e.g. histogram matching. Such methods will leak information from ADNI to Cam- 

CAN. Any leakage would skew (to our favour) the generalisation ability which we 

want to avoid. Thus, our experiments also indirectly evaluate how design choices 

(e.g. using a residual connection in the generator) help with differences in intensi- 

ties between datasets. 
mages capture realistic morphological changes of the brain ageing 

rocess. 

.2.3. Measuring middle temporal gyrus (MTG) gray matter atrophy. 

We further evaluate the quality of the synthetic results by as- 

essing if they can act as a drop-in replacement to real data in 

 simple study of brain atrophy. We performed ageing synthesis 

ith our model on 136 ADNI testing subjects, such that for each 

ubject we have: a baseline image x i ; a real follow-up image x o ;

nd a synthetic image ˆ x o of the same target age and health state 

s of x o . We then assembled volumes by stacking 2D images. Then 

e affinely registered both x o and 

ˆ x o and the Human-Brainnetome 

ased on Connectivity Profiles (HCP) atlas ( Fan et al., 2016 ) to x i .

fter that, we obtained the MTG segmentation of x i , x o and 

ˆ x o by 

eans of label propagation from HCP using the deformation fields. 

hen we obtained the gray matter segmentation of x i using FSL- 

AST ( Zhang et al., 2001 ). The gray matter segmentation of x o and

ˆ 
 o was subsequently obtained by non-linearly registering x o and 

ˆ x o 
o x i and propagating anatomical labels using ANTs ( Avants et al., 

008 ). These steps yield the MTG gray matter volume of x i , x o and

ˆ 
 o , termed as V base , V f ol , and V syn , respectively. Then, we calcu-

ate the relative change between V base and V f ol as RC real = 

V f ol −V base 

V base 
, 

nd the relative change for synthetic data as RC syn = 

V syn −V base 
V base 

. We 

epeat this for several subjects in three patient type groups, i.e. CN 

49), MCI (46) and AD (41). 

We expect, following Guo et al. (2014) and Sullivan et al. (1995) , 

o see a statistical relationship between patient type and RC real 

hen assessed with a one-way analysis of variance (ANOVA). If a 

imilar relationship is shown also with synthetic data RC syn , it will 

emonstrate that for this statistical test, our synthetic data can act 

s a drop-in replacement to real data, and as such have high qual- 

ty and fidelity. 

The results are summarised in Table 2 , where we report also 

he F-statistic of the omnibus one-way ANOVA test. We observe 

hat MTG gray matter volume reduces in both real and synthetic 

olumes. This indicates that our synthetic results achieve good 

uality and similar statistical conclusions can be drawn using real 

r synthetic data in this simple atrophy study. 
9 
.3. Long term brain ageing synthesis 

In this section, we want to see how our model performs in long 

erm brain ageing synthesis. As ADNI dataset only covers old sub- 

ects, we use Cam-CAN dataset which contains subjects of all ages. 

e train our model with Cam-CAN dataset where no longitudi- 

al data are available, but evaluate it on the longitudinal part of 

DNI to assess the generalisation performance of our model when 

rained on one dataset and tested on another. 

.3.1. Qualitative results 

In Fig. 10 , we demonstrate the simulated brain ageing process 

hroughout the whole lifespan, where the input images are two 

oung subjects from Cam-CAN. We observe that the output grad- 

ally changes as a o increases, with ventricular enlargement and 

rain tissue reduction. This pattern is consistent with previous 

tudies ( Good et al., 2001; Mietchen and Gaser, 2009 ), showing 

hat our method learns to synthesise the ageing brain through- 

ut the lifespan even trained on cross-sectional data. 10 Fig. 10 of- 

ers only only a qualitative visualization to show the potential of 

ife-time simulation. We cannot quantitatively evaluate the quality 

f these synthetic images due to the lack of longitudinal data in 

am-CAN. However, both the previous section on ADNI where we 

rain and test on ADNI, and the next section, where we use lon- 

itudinal ADNI as testing set we but train on Cam-CAN data, offer 

onsiderable quantitative experiments. 

.3.2. Quantitative results (generalisation performance on ADNI) 

To evaluate how accurate our longitudinal estimation is, even 

hen training with cross sectional data from another dataset, we 

rain a model on Cam-CAN and evaluate it on ADNI. We use the 

ongitudinal portion of ADNI data, and specifically only the CN co- 

ort, to demonstrate generalisation performance. 11 Given an image 

f ADNI we use our Cam-CAN trained model to predict an out- 

ut at the same age as the real follow up image. We compare our 

rediction with the ground truth follow up image (in the ADNI 

ataset). The results are shown in Table 3 . We observe that though 

ur model is trained and evaluated on different datasets, it still 

chieves comparable results with those of Table 1 and outperforms 

enchmarks. 

.4. Ablation studies 

We ablate loss components, explore different conditioning 

echanisms, and explore latent space dimensions. 
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Fig. 9. An example of Jacobian determinant maps for a subject. From left to right are the Jacobian determinant maps J x o → x i , J ˆ x o → x i 
, and the error map between them: 

| J x o → x i − J ˆ x o → x i 
| . 

Fig. 10. Long-term brain ageing synthesis on Cam-CAN dataset. We synthesise the aged images ˆ x o at different target ages a o and show the difference between input images 

x i and ˆ x o , | ̂ x o − x i | , and show the predicted (apparent) ages of ˆ x o as obtained by our pre-trained age predictor (white text overlaid on each difference image). Note here x i : 

N means an input image at age N. For more details see text. 

Table 3 

Quantitative evaluation of methods trained on Cam-CAN and evalu- 

ated on ADNI. 

SSIM PSNR MSE PAD 

Cond. GAN 0 . 38 ±0 . 12 13 . 9 ±4 . 2 0 . 221 ±0 . 021 11 . 3 ±5 . 6 

CycleGAN 0 . 42 ±0 . 09 14 . 4 ±3 . 8 0 . 212 ±0 . 016 10 . 2 ±5 . 5 

CAAE 0 . 59 ±0 . 10 19 . 3 ±3 . 9 0 . 121 ±0 . 012 5 . 9 ±4 . 7 

Ours-previous 0 . 68 ±0 . 08 22 . 7 ±2 . 8 0 . 095 ±0 . 014 5 . 3 ±3 . 8 

Ours 0 . 74 ∗±0 . 08 24 . 2 ∗±2 . 7 0 . 043 ∗±0 . 009 5 . 0 ±3 . 6 

Table 4 

Ablations on using different combinations of cost func- 

tions. 

SSIM PSNR MSE 

L GAN 0 . 55 ±0 . 14 18 . 4 ±3 . 7 0 . 132 ±0 . 013 

L GAN + L rec 0 . 62 ±0 . 12 19 . 6 ±3 . 2 0 . 089 ±0 . 014 

L GAN + L ID 0 . 74 ±0 . 07 24 . 3 ±2 . 5 0 . 074 ±0 . 010 

L GAN + L ID + L rec 0 . 79 ∗±0 . 08 26 . 1 ∗±2 . 6 0 . 042 ∗±0 . 006 
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Table 5 

Quantitative results of different embedding mechanisms. 

SSIM PSNR MSE PAD 

One-hot 0 . 54 ±0 . 14 17 . 3 ±3 . 8 0 . 177 ±0 . 014 9 . 7 ±4 . 9 

concat all 0 . 74 ±0 . 09 23 . 9 ±2 . 9 0 . 065 ±0 . 011 5 . 2 ±3 . 9 

Ours 0 . 79 ∗±0 . 08 26 . 1 ∗±2 . 6 0 . 042 ∗±0 . 006 5 . 0 ±3 . 6 
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.4.1. Effect of loss components 

We demonstrate the effect of L ID and L rec by assessing the 

odel performance when each component is removed. In Table 4 

e show quantitative results on ADNI dataset. In Fig. 11 we illus- 

rate qualitative results on Cam-CAN dataset to visualise the effect. 

e can observe that the best results are achieved when all loss 

omponents are used. Specifically, without L ID , the synthetic im- 

ges lost subject identity severely throughout the whole progres- 

ion, i.e. the output image appears to come from a different sub- 

ect; without L rec , output images suffer from sudden changes at the 

eginning of progression, even when a o = a . Both quantitative and 
i 

10 
ualitative results show that the design of L ID and L rec improves 

reservation of subject identity and enables more accurate brain 

geing simulation. 

.4.2. Effect of different embedding mechanisms 

We investigate the effect of different embedding mechanisms. 

ur embedding mechanism is described in Section 3 . We consid- 

red to encode age as a normalized continuous value (between 0 

nd 1) or using a one-hot vector, which was then concatenated 

ith the latent vector at the bottleneck. The qualitative results are 

hown in Fig. 12 . We can see that when age is represented as a

ormalized continuous value, this is ignored by the network, thus 

enerating similar images regardless of changes in target age a o . 

hen we use one-hot vectors to encode age, the network still gen- 

rates realistic images, but the ageing progression is not consistent, 

.e. synthetic brains appear to have ventricle enlarging or shrinking 

n random fashion across age. In contrast, with ordinal encoding , 

he model simulates the ageing process consistently. This observa- 

ion is confirmed by the estimated ages of the output images by 

f pred . 

We also compare with an embedding strategy where we con- 

atenate h o , a d and the bottleneck latent vector v 1 together, and 

he concatenated vector is processed by the Decoder to generate 
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Fig. 11. Ablation studies for loss components. Left: ablation study of L ID . Top row shows that without L ID , the network can lose the subject identity. Bottom row shows that 

the use of L ID can enforce the preservation of subject identity, such that the changes as ages are smooth and consistent. Right: ablation study on L rec . When L rec is not used 

(top two rows), there are sudden changes at the beginning of ageing progression simulation (even at the original age), which hinders the preservation of subject identity. In 

contrast, when L rec is used (bottom two rows), the ageing progression is smoother, which demonstrates better identity preservation. Note here x i : N means an input image 

at age N. 

Fig. 12. Example results for continuous, one-hot and ordinal encoding on the Cam-CAN dataset for an image ( x i ) of a 28 year old subject. We synthesise aged images ˆ x o at 

different tar get ages a o . We also show the difference between x i and ˆ x o , | ̂ x o − x i | , and report estimated age (white text overlaid at the bottom of each difference image). The 

proposed ordinal encoding shows consistent and progressive changes. 

Table 6 

Quantitative results of different choices of the v 2 dimension. 

SSIM PSNR MSE PAD 

65 × 1 0 . 73 ±0 . 09 23 . 6 ±3 . 1 0 . 065 ±0 . 012 5 . 6 ±4 . 1 

260 × 1 0 . 76 ±0 . 10 24 . 9 ±2 . 9 0 . 055 ±0 . 012 5 . 3 ±3 . 8 

130 × 1 (ours) 0 . 79 ∗±0 . 08 26 . 1 ∗±2 . 6 0 . 042 ∗±0 . 006 5 . 0 ±3 . 6 

t

R

t

u

Table 7 

Quantitative results of a longitudinal benchmark and 

our method. 

SSIM PSNR MSE 

Longitudinal 0 . 72 ±0 . 09 24 . 2 ±3 . 0 0 . 076 ±0 . 013 

Ours 0 . 79 ±0 . 08 26 . 1 ±2 . 6 0 . 042 ±0 . 006 

h  

m

5

W  
he output image. We refer to this embedding strategy as concat all . 

esults on ADNI are shown in Table 5 . We found with concat all , 

he network tends to ignore the health state vector h o and only 

se a . This can be caused by the dimensional imbalance between 
d 

11 
 o ( 2 × 1 ) and a d ( 100 × 1) . When one-hot encoding is used, perfor-

ance deteriorates even more. 

.4.3. Effect of latent space dimension 

We explored whether latent dimension affects performance. 

e altered the length of the latent vector ( v ) from 130 × 1 to
2 
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Table 8 

Quantitative results of VGG-based AD/CN classifiers trained on different datasets. The first 

two rows show results when trained on varying size of real training data, e.g. 10% means 

this model is trained on 10% of the real training data; the last two rows show results when 

trained on mixed datasets with different ratios of real and synthetic data, e.g. 10%+90% means 

this model is trained on 10% real training data and 90% synthetic data. 

Real data 10% 30% 50% 70% 100% 

Accuracy (%) 51.3 55.7 64.6 74.0 89.5 

Real data + synthetic data 10% + 90% 30% + 70% 50% + 50% 70% + 30% 

Accuracy (%) 58.7 64.0 72.6 81.7 
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d

wice smaller/larger and compared the corresponding models on 

DNI. Our findings are shown in Table 6 . We find that our choice

 130 × 1 ) achieved the best results. It appears that too small is 

ot enough to represent image information well, and too large can 

ause dimension imbalance. 

.4.4. Comparison with longitudinal model 

To compare our method with models that use longitudinal 

ata 12 , we created a new benchmark where we train a fully su- 

ervised generator using only longitudinal ADNI data. The results 

re shown in Table 7 . We see that our method has slightly bet-

er performance than the longitudinal model. This is because the 

roposed model is trained on 786 subjects (cross-sectional data), 

hile the longitudinal model is trained on a longitudinal cohort 

f ADNI of 98 subjects. This illustrates the benefit of using cross- 

ectional data. Note that our SSIM results are similar to those pre- 

ented in Ravi et al. (2019a) . 

.4.5. Data augmentation for AD classification 

We explore whether we can use our model to generate 

ynthetic data used to augment training sets for training an 

lzheimer’s disease classifier. We select 200 ADNI subjects as 

raining data (100 AD, 100 CN), 40 subjects as validation data (20 

D, 20 CN), and 80 (40 AD, 40 CN) subjects as testing data. For 

ach subject, there are 60 2D slices. Next, we train classifiers of 

he same VGG architecture to classify AD and CN subjects varying 

he composition of the training data combining real and synthetic 

ata obtained by our generator. We always evaluate the classifiers 

n the same testing set. The synthetic data are generated from the 

raining set using our proposed method by randomly selecting tar- 

et ages larger than the original ages. As shown in Table 8 , we first

rain classifiers only on real data varying the size of the training 

ata (1st and 2nd rows). Then we compose mixed sets of the same 

ize of 200 subjects varying the ratio of real vs. synthetic data (3rd 

nd 4th rows), e.g. 10%+90% means this set is composed of 10% real 

ata and 90% synthetic data. Note here the 90% synthetic data are 

ot generated from the whole training set, but from the 10% real 

ata. 

We can observe that when training on 10% of real training data, 

he accuracy reduces by almost 40% compared to when using the 

ull training data. However, the performances improve when syn- 

hetic data are involved. The results demonstrate that our method 

an be used as data augmentation to improve AD classification es- 

ecially when the training data are not sufficient. 

Furthermore, we perform another experiment to demonstrate 

ur models potential to improve the classification accuracy for spe- 

ific age groups and thus target augmentation to treat data imbal- 

nce. We evaluate the classification model trained with 100% real 

ata on test set subjects of age 65 to 70 years old. We find an
12 Ravi et al. (2019a) also synthesise subject-specific aged brain images based on 

ongitudinal data relyin on complex biological constraints. Our attempts to replicate 

heir work (an official code is not available) have been fruitless. 

i

w

t

w

12 
ccuracy of 67.2%, which is much lower than the overall accuracy 

89.5%, Table 8 ). This may be likely due to training data imbalance: 

e have only 5 training subjects with age between 65 and 70 yrs. 

o alleviate this data imbalance, we use our model to generate 25 

ynthetic subjects with target ages between 65 and 70 yrs from 

ounger subjects in the training set. Then we train a new AD clas- 

ifier on 100% real data and the 25 synthetic subjects, and evaluate 

ts performance on the same testing and age group. Accuracy now 

ncreases to 80.1% a substantial change from 67.2%. 

. Conclusion 

We present a method that learns to simulate subject-specific 

ged images without longitudinal data. It relies on a Generator to 

enerate the images and a Discriminator that captures the joint 

istribution of brain images and clinical variables, i.e. age and 

ealth state (AD status). We propose an embedding mechanism 

o encode the information of age and health state into our net- 

ork, and age-modulated and self-reconstruction losses to pre- 

erve subject identity . We present qualitative results showing that 

ur method is able to generate consistent and realistic images con- 

itioned on the target age and health state. We evaluate with lon- 

itudinal data from ADNI for image quality and age accuracy . We 

emonstrate on ADNI and Cam-CAN datasets that our model out- 

erforms benchmarks both qualitatively and quantitatively and, via 

 series of ablations, illustrate the importance of each design deci- 

ion. 

Potential applications. The proposed method has several po- 

ential applications. For example, a common problem in longitudi- 

al studies is missing data due to patient dropout or poor-quality 

cans. The proposed method offers an opportunity to impute miss- 

ng data at any time point. Furthermore, when there is insufficient 

ongitudinal training data, the proposed method can be used to in- 

lude cross-sectional data within a study. The simple experiment 

n 5.2.3 shows a glimpse of this potential. 

This in turn will make further clinical analysis of ageing pat- 

erns, e.g. to evaluate the incidence of white matter hyperintensi- 

ies ( Wardlaw et al., 2015 ), and large studies into neurodegener- 

tive diseases, possible. Finally, from an AI perspective we advo- 

ated earlier on the paper about the importance of capturing and 

nderstanding current state from a machine learning perspective. 

n fact, recently this has been cast in a causal inference and coun- 

erfactual setting Pawlowski et al. (2020) . While our work didn’t 

xplicitly use a causal inference framework, our generated outputs 

an be seen as counterfactuals. 

Limitations and avenues for improvement. The notion of sub- 

ect identity is context specific and we do note that others in the 

iterature also follow the same simple assumptions we make. We 

o agree though that identity should be defined as what remains 

nvariant under ageing and neurodegenerative disease. Although 

e used several losses to help preserve subject identity of syn- 

hetic aged images, there is no guarantee that a subject’s identity 

ill be preserved, and new losses or mechanisms that could fur- 
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her improve identity preservation will be of high value. Unfortu- 

ately, without access to large data where we exhaustively explore 

ll possible combinations of variables that we want to be equiv- 

lent (to identity) or invariant (to age, pathology) preservation of 

dentity can only be proxied. The proposed model only considers 

redicting older brain images from young ones. However, perform- 

ng both brain ageing and rejuvenation will provide more utility 

ut will require more advanced design of encoding and network 

rchitecture. The proposed method allows for change of health sta- 

us between input and output images. However, it does not model 

hange of health state in between input and output. This is a com- 

on limitation of current works in this area ( Ravi et al., 2019a; 

awlowski et al., 2020; Rachmadi et al., 2019 ). A potential solu- 

ion is recursive image synthesis: generating a suitable intermedi- 

te image before generating the desired target output of an older 

ge and state. Advances in architectures that improve image qual- 

ty will enable such recursive image generation in the future. Con- 

itioning mechanisms that reliably embed prior information into 

eural networks enabling finer control over the outputs of mod- 

ls are of considerable interest in deep learning. In this paper we 

esign a simple yet effective way to encode both age (continu- 

us) and AD status (ordinal) factors into the image generation net- 

ork. However, as classification of MCI is challenging, use of fur- 

her (fine-grained) clinical information (e.g. clinical score) to re- 

ect health status can be of benefit. Incorporating additional clin- 

cal variables, e.g. gender, genotypes, etc., can become inefficient 

ith our current approach as it may involve more dense layers. 

hile new techniques are available ( Huang and Belongie, 2017; 

erez et al., 2018; Park et al., 2019; Lee et al., 2019 ) and some prior

xamples on few conditioning variables ( Jacenkow et al., 2019 ) or 

isentanglement ( Chartsias et al., 2019 ) are promising, their util- 

ty in integrating clinical variables, and replacing the need for or- 

inal pre-encoding of continuous or ordinal variables, with imag- 

ng data is under investigation. Although we used brain data, the 

pproach could be extended to other organs. Furthermore, here 

e focus on the use of cross-sectional data to train a model 

o predict aged brain images. If longitudinal data are also avail- 

ble, e.g. within a large study aggregating several data sources, 

odel performance could be further improved by introducing su- 

ervised losses; however, adding more losses requires that they 

re well balanced –a known problem in semi-supervised learn- 

ng ( Sener and Koltun, 2018 ). We showed that our synthetic vol- 

mes (composed by stacking 2D images) can achieve good qual- 

ty. In all our attempts with 3D architectures, the parameter space 

xploded due to their size. We expect that advances in network 

ompression ( Han et al., 2016 ) will eventually permit us to adapt a

D design which should further improve visual quality and consis- 

ency of the approach and allow us to repeat our atrophy analysis 

ot only in the MTG. 
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