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A B S T R A C T   

Accurate prediction of high-risk group who may convert to Alzheimer’s disease (AD) patients is critical for the 
future treatment of patients. Recently, logistic regression is used for the early diagnosis of AD. However, due to 
the high-dimensional small sample characteristics of AD data, this brings difficulties to logistic regression-aided 
diagnosis. To solve the problem, in this paper, we propose sparse logistic regression with the generalized elastic 
net for the early diagnosis of AD. The generalized elastic net is composed of Lp regularization and L2 regulari
zation. The Lp regularization can produce sparse solutions. L2 regularization ensures that the correlated brain 
regions are in solution. We evaluate our proposed method on 197 subjects from the baseline MRI data of ADNI 
database. Our proposed method achieves classification accuracy of 96.10, 84.67, and 75.87 %, for AD vs. HC, 
MCI vs. HC, and cMCI vs. sMCI, respectively. Experimental results show that, compared with previous methods, 
our proposed method captures distinct brain regions that are significantly related to AD conversion and provides 
a significant enhancement in AD classification.   

1. Introduction 

Alzheimer’s disease (AD) is an irreversible degenerative neurological 
disease. The symptoms of this disease are loss of cognitive and memory, 
which severely affect people’s daily life [1]. According to statistics, there 
are 50 million AD patients and will be close to 13.8 million people by 
2050 [2].The rapid increase in the number of AD patients and other 
forms of dementia bring a major challenge to health and social care 
systems. Thus, the early diagnosis of AD and preventing disease pro
gression will help reduce the burden of the disease on society. 

Mild cognitive impairment (MCI) is an early stage of AD. It is esti
mated that 40 %–60 % of individuals over the age of 58 with MCI have 
potential AD pathology. Approximately 15 % of MCI patients convert to 
AD each year [3]. So, accurate prediction of the risk of MCI to AD and 
timely treatment might be effective to delay the conversion of MCI to 
AD. However, compared to AD classification tasks, MCI conversion 
prediction is relatively difficult. The changes in the brain structure of 
MCI patients are relatively stable [4]. 

Recently, machine learning has been widely used for the early 

diagnosis of AD [5–9]. Among numerous machine learning algorithms, 
logistic regression (LR) is a discriminative method that is widely used. 
LR has a direct probabilistic interpretation. In addition to the class label 
information it can obtain direct classification probabilities [10]. How
ever, in neuroimaging data analysis, the training samples are limited and 
the dimensions are higher, which bring great challenges to the diagnosis 
of AD by logistic regression [11] and easily lead to overfitting. So, 
selecting the most discriminative features to remove redundant features 
is essential for the classification of AD and prediction on the conversion 
of MCI. Feature selection methods can be divided into three categories: 
filter, wrapper and embedded method. Among them, the embedded 
method is a feature selection method with a penalty term, which can 
perform feature selection and classifier design at the same time. Many 
penalty terms are applied to the logistic regression model to prevent the 
overfitting and improve the generalization performance of the model 
[12,13]. Koh et al. [14] introduced the L1 regularized logistic regression 
for high-dimensional data classification. The L1 regularization can 
shrink the regression coefficients to zero, thereby selecting some 
important features simultaneously [15–18]. However, when the 

* Corresponding author. 
E-mail address: cuixc@nuaa.edu.cn (X. Cui).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2020.102362 
Received 11 July 2020; Received in revised form 26 October 2020; Accepted 16 November 2020   

mailto:cuixc@nuaa.edu.cn
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2020.102362
https://doi.org/10.1016/j.bspc.2020.102362
https://doi.org/10.1016/j.bspc.2020.102362
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2020.102362&domain=pdf


Biomedical Signal Processing and Control 66 (2021) 102362

2

correlation between features is high, the L1 regularization only selects 
the one feature or a few of them among a group of correlated features. To 
solve the above problems, Zou et al. [19] proposed elastic net for vari
able selection which can maintain sparsity and grouping effects. Ryali 
et al. [20] proposed sparse logistic regression with elastic net regression 
which combine the L1 regularization and L2 regularization for whole 
brain classification. Schouten et al. [21] use elastic net logistic regres
sion for AD classification. However, comparing to L1 regularization, the 
Lp regularization can produce more sparse solutions when choosing the 
appropriate p value. Li et al. [22] proposed the generalized elastic net 
regularization and applied it to linear discriminant analysis. Motivated 
by this, in this paper, we proposed the sparse logistic regression with the 
generalized elastic net regularization for the early diagnosis of AD. The 
generalized elastic net regularization which combines Lp regularization 
and L2 regularization can produce the sparse solutions and ensure that 
the correlated brain regions are included in the resulting solutions 
simultaneously. It can select the most discriminative features for 
AD/MCI classification. The main contributions of this paper include: (1) 
Collect experimental data from ADNI database. Through the automatic 
anatomical labeling (AAL) template, the brain is divided into 90 regions 
of interest (ROI). We extracted the gray matter volume of 90 regions as 
features. (2) Use the generalized elastic net regularization method to 

select the most distinguishing features for classification. (3) The pro
posed method is used to predict the conversion from MCI to AD, which is 
essential for the early diagnosis of AD. 

It’s worth noting that the objective function of logistic regression has 
no analytical solution, the optimal parameters cannot be directly ob
tained. In addition, the Lp regularization penalty term is non-convex, 
which makes it difficult to solve the sparse logistic regression. Coordi
nate descent is a s “one-at-a-time” optimization algorithm. It is widely 
used to solve non-convex penalty term [23,24]. In this paper, we use the 
coordinate descent algorithm to solve the model. 

The remainder of this article is as follows. The second part introduces 
the materials and methods used in our article. The third part shows our 
experimental results. The fourth part is to discuss the experimental re
sults. The last part is conclusion. 

2. Method 

2.1. ADNI database 

The experimental datasets are derived from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (http://www.loni.ucla. 
edu/ADNI).ADNI was founded in 2003 by the National Institute of 
Biomedical Imaging and Bioengineering. It is a non-profit organization 
[25]. ADNI provides unlimited data access and encourages researchers 
to develop potential methods for analyzing the progression of early AD. 
MRI is a widely used imaging mode in the diagnosis of AD [26–28]. It is 
able to make better comparison between different soft tissues. There
fore, we use structural MR images for analysis. We select MRI images of 
197 subjects in the ADNI database, including 51 AD, 50 HC and 96 MCI 
(including 51 converted MCI (cMCI) and 45 stable MCI (sMCI)). Table 1 
presents detailed information about these subjects. 

Fig. 1. Image pre-processing and feature extraction.  

Table 1 
Statistical information of subjects (mean standard ±deviation).  

Diagnosis Subjects Age Gender(F/M) MMSE CDR 

AD 51 75.8 ± 7.5 23/28 23.6 ± 2.2 0.7 ± 0.3 
HC 50 77.8 ± 6.8 27/23 28.8 ± 1.4 0.0 ± 0.0 
cMCI 51 72.5 ± 6.5 26/25 26.7 ± 1.3 0.5 ± 0.0 
sMCI 45 71.9 ± 7.6 20/25 27.3 ± 1.6 0.5 ± 0.0 

CDR: clinical dementia rating scale, 0 = no dementia, 0.5 = suspected dementia, 
1 =mild dementia, MMSE: Concise mental state examination scale. 
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2.2. Image pre-processing and feature selection 

The experimental data downloaded from the ADNI database require 
a series of image preprocessing and feature extraction. Fig. 1 shows the 
image pre-processing and feature extraction of MRI image. All MRI 
images were pre-processed by first performing an anterior commissure- 
posterior commissure (AC-PC) correction using the MIPAV software. 
The AC-PC corrected images were resampled to 256 × 256 × 256, and 
the N3 algorithm was used to correct intensity inhomogeneity. An ac
curate and robust skull stripping was performed using VBM8 toolbox. 
Then, we used VBM8 toolbox to segment brain into three different tissue 
types: gray matter (GM), white matter (WM)and cerebrospinal fluid 
(CSF). Next, by warping the Automated Anatomical Labeling (AAL) 
template, for each subject, we parcellated the brain space into 90 regions 
of interest (ROIs). Finally, we compute the GM tissue volume from the 
subject’s MRI image as a feature. 

2.3. Logistic regression model 

As a special nonlinear model, logistic regression is mainly used to 
solve classification problems [29]. In this paper, we implement LR for 
the binary classification problem. Suppose we have m samples, where 
xi = (xi1, xi2, xi3, ..., xin)

T is i-th input pattern with dimensionalityn. Then 
the expression of the logistic regression model is: 

πi = p(yi|xi) = sigmoid(xTi θ + θ0) =
exp(xTi θ + θ0)

1 + exp(xTi θ + θ0)
. (1)  

Where, θ ∈ Rn is the whole parameter vector. yiis a return variable, 
containing two values either 1 or 0. It is obtained by I(πi > 0.5), where 
I(.) is an indicator function.πi ∈ (0,1)represents the return probability of 
the classifier label yi. The log-likelihood can be expressed as: 

log
∏m

i=1
p(yi|xi) =

∑m

i=1
(yilog(πi) + (1 − yi)log(1 − πi)). (2) 

The loss function based on (2) is shown as: 

J(θ) = −
∑m

i=1
(yilog(πi) + (1 − yi)log(1 − πi)). (3)  

2.4. Sparse logistic regression with the generalized elastic net 
regularization 

When faced with high-dimensional small sample data, logistic 
regression is prone to overfitting. To reduce the number of features and 
obtain a robust classifier, the penalization techniques for logistic 
regression were proposed as: 

J(θ) = −
∑m

i=1
(yilog(πi) + (1 − yi)log(1 − πi)) + λ

∑n

j=1
P(θj). (4)  

Where,λ > 0is a tuning parameter and P(θj) is the regular term that 
constraints the feature coefficient estimates. In many regular terms, the 
generalized elastic net can select the important features by setting some 
feature coefficients to 0 and maintaining the grouping effects. The 
generalized elastic net is a combination of Lp regularization and L2 
regularization. The Lp regularization can produce more sparse solutions, 
which make some feature coefficients to 0. When the pairwise correla
tions between two brain regions are very high, L2 regularization can 
ensure that two brain regions are retained or deleted at the same time. 
The loss function of a sparse logistic regression with the generalized 
elastic net regularization is defined as: 

J(θ) = −
∑m

i=1
(yilog(πi) + (1 − yi)log(1 − πi))

+λ1

∑n

j=1

⃒
⃒θj|p + λ2

∑n

j=1
θ2
j

(5)  

Where, the parametersλ1and λ2 control the model’s sparsity and group 
effect respectively [30]. In this paper, λ1and λ2 are adjusted by the 
ten-fold cross-validation (CV) method in the training set. 

2.5. The optimization algorithm for sparse logistic regression 

In this paper, we use the coordinate descent algorithm to solve the 
sparse logistic regression based on generalized elastic net. The coordi
nate descent algorithm is an efficient method for solving regularization 
models. Since, the Eq. (5) does not have closed-form solution, we 
transformed it into a quadratic function. Differentiating Eq. (5) with 
respect to θjyields following formulae: 

∂J(θ)
∂θ =

∑m

i=1
(πi − yi)xi = X(π − y) (6)  

∂J2(θ)
∂θ∂θT

=
∑m

i=1
xTi kixi = XTKX (7)  

Where, ki = πi⋅(1 − πi)and Kis the diagonal matrix of diagonal elements 
ki. In Eq. (5), θsatisfies the following conditions. 

∂J(θ)
∂θ = X(π − y) = 0 (8) 

In order to obtain the solution of Eq. (8), we use Newton-Raphson to 
iteratively calculate. 

θnew = θold −
(

∂J(θ)
∂θ∂θT

)− 1∂J(θ)
∂θ

= θold +
(
XTKX

)− 1XT(y − π)

=
(
XTKX

)− 1XTKz

(9)   
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Where, z = Xθold + K− 1(y − π). Newton-Raphson iteration is to solve 
the least square problem. 

θnew = argmin
θ

(z − Xθ)TK(z − Xθ) (10) 

The iterative form of the generalized elastic net logistic regression 
model is as follow. 

θnew = argmin
θ

(z − Xθ)TK(z − Xθ)

+λ1

∑n

j=1

⃒
⃒θj|p + λ2

∑n

j=1
θ2
j

(11)  

Eq. (11) can be transformed into the following form. 

L(θj) = min
∑m

i=1
ki

(

zi − θ0 −
∑

j∕=t

xijθj

)2

+λ1

∑n

j=1

⃒
⃒θj|p + λ2

∑n

j=1
θ2
j

(12) 

The differentiating Eq. (12) with respect to θtgives the following 
expression. 

∂L
∂θj

=

(
∑m

i=1
x2
ijki + 2λ2

)
⎛

⎜
⎜
⎝θj −

∑m

i=1
x2
ijki
∑n

i=1
xij (yi −

∑

t∕=j

θtxit)

(
∑m

i=1
x2
ijki + 2λ2

)
∑m

i=1
x2
ij

⎞

⎟
⎟
⎠

+λ1 × p× sign(θj)
⃒
⃒θj
⃒
⃒p− 1 (13)  

∂2L
∂θ2

j
=
∑m

i=1
x2
ijki + 2λ2 + λ1⋅p⋅(p − 1)⋅

⃒
⃒θj
⃒
⃒p− 2 (14) 

Letuj =
∑m

i=1x2
ijki + 2λ2,cj =

∑m
i=1

x2
ij ki
∑n

i=1
xij

(

yi −
∑

j∕=t
θt xit

)

(
∑m

i=1
x2

ij ki+2λ2

)
∑m

i=1
x2

ij

. 

Eq. (13) can be expressed as. 

L’
(
θj
)
= uj

(
θj − cj

)
+ λ1⋅p⋅sign

(
θj
)⃒
⃒θj
⃒
⃒p− 1 (15) 

Derivative of Eq. (13) can be obtained. 

L’’
(
θj
)
= uj + λ1p

(
p − 1

)⃒
⃒θj
⃒
⃒p− 2 (16) 

We need to find λcritical for which Eq. (12) has minima. The following 
equations are used to be solved 
⎧
⎨

⎩

L(θj) −
u
2
c2 = 0

L’(θj) = 0
(17) 

The solution is as follow. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θj =
2 − 2p
2 − p

• c

λcritical =
u|c|

2 − p
•

(
2 − 2p
2 − p

• |c|
)1− p

(18) 

The algorithm is stopped when it exceeds maximum number of it
erations or maximum relative difference between θj(m + 1) and θj(m)

falls below ε = 10− 8. The procedure of the coordinate descent algorithm 
for the SLR is given as algorithm I. 

3. Results 

3.1. Experiment setting 

In this paper, we implement three classification tasks: AD subjects 
versus HC subjects (AD vs. HC), MCI subjects versus HC subjects (MCI vs. 
HC) and cMCI versus sMCI (cMCI vs. sMCI). To assess classification 
performance of different methods, the program consists of two nested 
ten-fold cross-validation. In the outer loop, we divide the data set into 10 
parts, one of which is used for testing. In the inner loop, we perform ten- 
fold cross-validation in the training sets to select the optimal parameters 
λ1and λ2. The classification performance of all methods is quantified by 
calculation accuracy (ACC), sensitivity (SEN) and specificity (SPE). The 
specific formula is defined as: 

ACC =
TP+ TN

TP+ FN + TN + FP
(19)  

SEN =
TP

TP+ FN
(20)  

SPE =
TN

TN + FP
(21) 

The true positive (TP) stands for the number of patients who were 
correctly classified into disease category. True negative (TN) is the 
number of healthy people with the correct classification of the healthy 
class. False positive (FP) is the number of healthy people divided into 
sick patients. False negatives (FN) are the number of sick patients clas
sified as healthy people. 

3.2. Experiment results 

Table 2 lists the classification results via different methods on AD vs. 
HC and MCI vs. HC. In AD vs. HC, our proposed method achieves clas
sification accuracy of 96.10 %, sensitivity of 94.21 %, and specificity of 
96.12 %. In MCI vs. HC, our method achieves classification accuracy of 
84.67 %, sensitivity of 90.75 %, and specificity of 82.61 %. We also 
carried out experiments to predict MCI conversion. As an early stage of 
AD, MCI has a high conversation risk, so it is necessary to identify cMCI 
from sMCI. Early diagnosis and intervention can delay the conversion of 
MCI to AD. This is of important clinical and practical significance. In 
cMCI vs. sMCI, the classification accuracy, sensitivity and specificity of 

Table 2 
Different p values in AD/MCI classification comparison.  

Methods AD vs. HC MCI vs. HC cMCI vs. sMCI  

ACC (Dim) SEN SPE ACC (Dim) SEN SPE ACC (Dim) SEN SPE 

LR-L2 90.25(90) 87.50 92.85 79.41(90) 85.89 74.75 68.75(90) 73.35 62.50 
LR-L1 90.79(40) 88.21 92.85 80.10(52) 86.21 75.87 69.45(45) 75.00 64.01 
Lp + L2(p = 0.2) 93.95(25) 91.25 94.82 80.98(28) 85.51 75.36 70.75(28) 64.21 75.75 
Lp + L2(p = 0.4) 96.10(32) 94.21 96.12 82.72(33) 86.51 79.34 69.73(43) 64.91 75.00 
Lp + L2(p = 0.6) 90.33(48) 88.21 91.87 78.69(30) 84.83 74.25 72.85(53) 72.25 70.25 
Lp + L2(p = 0.8) 92.13(50) 91.45 94.75 83.33(46) 81.21 78.15 75.87(47) 73.71 77.51 
Lp + L2(p = 1.0) 93.00(45) 94.15 95.38 84.67(47) 90.75 82.61 72.12(50) 71.41 75.31  
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our method are 75.87 %, 73.71 % and 77.51 % respectively. 

4. Discussion 

4.1. Evaluation with different p values 

In order to assess the classification performance of our proposed 
method at different p-values, we compare it with other methods 
including LR with L2 regularization and LR with L1 regularization. The 
classification accuracy for three classification tasks is computed under 
the optimal parameters. Table 2 lists the classification results for the 
different p values on AD vs. HC, MCI vs. HC and cMCI vs. sMCI. As can be 
seen from the Table 2, when p is 0.4, our proposed achieves the best 
classification performance in AD vs. HC compared with other methods. 
In MCI vs. HC, our method obtains a good classification effect when p is 
1. So, in different classification tasks, by choosing an appropriate p 
value, our proposed method can achieve good classification 

performance. In particular, in cMCI vs. sMCI, when p is 0.8, the classi
fication accuracy obtained by our proposed method on cMCI and sMCI is 
75.12 %. Comparing with logistic regression based on L1 regularization, 
the classification accuracy achieved by our proposed method is more 
than nearly 4 percentage points. The classification result demonstrates 
that our proposed method can better identify cMCI from sMCI under the 
optimal p value and better predict the disease progression. 

Fig. 2 shows the corresponding histogram of the proposed method in 
the three sets of classification tasks. Through the histogram, we can 
intuitively see that our proposed method can achieve a better classifi
cation performance under an appropriate p value, which shows the 
better diagnostic capabilities than other methods. 

4.2. Evaluation with the parameters 

In Eq. (5), the parameters λ1and λ2 control the degree of Lp regula
rization and L2 regularization, respectively. By selecting optimal 
parameter values, the classifier can have better performance and select 
the most discriminating brain areas. We used ten-fold cross-validation in 
the training sets to select the optimal parameters λ1and λ2λ1and λ2 are 
selected from the set {10− 2,102}. Every value in the span can participate 
in the calculation. Different λ1and λ2values produced different classifi
cation effects. Optimal values are selected by the highest classification 
accuracy. Fig. 3 shows the classification accuracy obtained by selecting 
different parameter values in the three classification tasks. Different 
colors represent different classification accuracy. The horizontal axis 
represents different values of λ1. The vertical axis represents different 
values of λ2. 

From Fig. 3, we can see that in the classification of AD vs. HC, our 
proposed method can achieve the best classification accuracy when λ1,

λ2 ∈ {10− 2, 1}. In MCI vs. HC, when λ1, λ2 ∈ {10− 2, 10− 1}, the classifi
cation result is optimal. In cMCI vs. sMCI, when λ1, λ2 ∈ {10− 1,1}, the 
classification results within this range are stable and optimal. Therefore, 
the initializations of two parameters are set to the above three ranges 

Fig. 3. Classification accuracy under different parameters.  

Fig. 2. The accuracy of different methods in three classification tasks.  

R. Xiao et al.                                                                                                                                                                                                                                     
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during the parameter selection process. In the experiment, our proposed 
method achieves the best classification performance for AD vs. HC when 
p = 0.4and λ1 = 0.01,λ2 = 0.05. In MCI vs. HC, when p = 1 andλ1 =

λ2 = 0.1, our method obtains the high classification accuracy. In cMCI 
vs. sMCI, when p = 0.8 andλ1 = 0.5,λ2 = 0.3, our proposed method can 
better classify cMCI from sMCI. Throughout the above analysis, in 
different classification tasks, selecting optimal parameter values can 
improve classification performance under the appropriate p value. 

4.3. The most discriminative brain regions 

In addition to introducing the classification performance of our 
proposed method, we also report the AD-related brain regions selected 
by our method. To identify brain regions that can be regarded as po
tential imaging biomarkers, we first identified the important brain areas 
based on their weight. Each feature is multiplied by a feature weight, 
and we judge the importance of the feature according to the size of the 
weight. We select the feature of highest weight as the most discrimi
native feature. Table 3 summarizes brain regions that are the most 
discriminative to classify sMCI from cMCI. Fig. 4 plots the brain regions 
selected in cMCI vs. sMCI. They are known to be related to AD [31–35]. 
For example, Hippocampal atrophy, or shape change, is one of the main 
hallmarks of AD. The amygdala plays an important role in emotional 
expressions, memory processing and managing stimulatory input. The 
precuneus is a key area for memory impairment of AD patients. The 
above experimental results indicate that the generalized elastic net with 
optimal p value can select the most discriminative brain area and 
remove redundant information to boost the accuracy and better be 

applied to the early diagnosis of AD. 

4.4. Comparison with other methods 

To further evaluate the advantages of our proposed method, we list 
some representative methods in the recent years. Table 4 represents the 
classification results obtained by other methods, including SVM [36], 
DBN [37], Multi-task learning [38], Multiple Kernel Learning [39], 
Random Forest (RF) [40], SDPSO-SVM-PCA [41], CNN and RNN [42]. 
Although the size of the data set and the method of feature extraction 
may be different, the data come from the ADNI database. So, it is worth 
comparing the classification performance. In Table 4, our proposed 
method achieves better classification accuracies in three classification 
tasks. This further proves the effectiveness of our proposed method. 

5. Conclusions 

In this paper, the sparse logistic regression with the generalized 
elastic net is proposed for the early diagnosis of AD. The generalized 
elastic net is able to identify the most discriminative brain areas and 
improve the classification performance. We evaluate our proposed 
method based on ADNI datasets. It is worth noting that the accuracy of 
our proposed method for AD vs. HC and MCI vs. HC are 95.61 % and 
84.67 % respectively. In particular, we used this method to perform 
classification experiments on cMCI and sMCI, and obtained a classifi
cation accuracy of 75.87 %, which is essential for MCI conversion pre
diction. More importantly, our method can find disease-related 
biomarkers that can be used for disease diagnosis. In future work, we 
will consider using better optimization algorithms to train the model to 
achieve faster prediction speed and better classification performance. 
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Table 4 
Classification accuracy of different classification methods on AD, MCI, HC.  

Author Methods AD vs. HC 
(%) 

Subjects 
(AD/HC) 

MCI vs. HC 
(%) 

Subjects 
(MCI/HC) 

cMCI vs. sMCI 
(%) 

Subjects 
(cMCI/sMCI) 

Min et al., 2014 [36] SVM 91.64 97/128 – – 72.41 117/117 
Li et al., 2015 [37] DBN 91.40 51/52 77.40 99/52 57.40 43/56 
Yu et al., 2016 [38] Multi-task learning 92.60 50/52 80.00 97/52 – – 
Ahmedet et al., 2017 [39] Multiple Kernel Learning 90.20 45/52 75.49 58/52 – – 
Ruiz et al., 2018 [40] RF 82.79 188/229 71.92 401/229 67.39 86/312 
Zeng et al., 2018 [41] SDPSO-SVM-PCA 81.25 92/92 – – 69.23 95/82 
Basaia et al., 2019 [42] CNN + RNN 91.33 198/229 – – 71.71 167/236 
– proposed 96.10 51/50 84.67 96/50 75.87 51/45  

Fig. 4. The most discriminative brain regions identified by the proposed method in cMCI vs. sMCI.  

Table 3 
The top 10 discriminative brain regions identified by our 
proposed method in cMCI vs. sMCI.  

Brain regions Weight 

Hippocampus_L 0.3478 
Amygdala_L 0.3278 
Middle temporal gyrus_L 0.3154 
Precuneus_R 0.2791 
ParaHippocampal gyrus_R 0.2477 
Superior occipital gyrus_L 0.1941 
Precentral gyrus_R 0.1921 
Insula_L 0.1908 
Angular_L 0.1867 
Cuneus_L 0.1725  
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[40] E. Ruiz, J. Ramirez, J.M. Górriz, et al., Alzheimer’s disease computer-aided 
diagnosis: histogram-based analysis of regional MRI volumes for feature selection 
and classification, J. Alzheimer’s Dis. 65 (3) (2018) 819–842. 

[41] N. Zeng, H. Qiu, Z. Wang, et al., A new switching-delayed-PSO-based optimized 
SVM algorithm for diagnosis of Alzheimer’s disease, Neurocomputing 320 (2018) 
195–202. 

[42] R. Cui, M. Liu, RNN-based longitudinal analysis for diagnosis of Alzheimer’s 
disease, Comput. Med. Imaging Graph. 73 (2019) 1–10. 

R. Xiao et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0005
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0005
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0005
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0010
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0010
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0010
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0010
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0015
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0015
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0020
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0020
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0020
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0025
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0025
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0025
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0030
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0030
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0035
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0035
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0040
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0040
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0045
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0045
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0045
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0050
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0050
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0055
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0055
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0060
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0060
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0060
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0065
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0065
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0065
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0070
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0070
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0075
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0075
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0075
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0080
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0080
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0085
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0085
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0085
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0090
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0090
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0095
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0095
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0100
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0100
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0105
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0105
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0105
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0110
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0110
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0110
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0115
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0115
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0120
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0120
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0125
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0125
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0125
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0130
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0130
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0130
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0135
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0135
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0135
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0140
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0140
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0140
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0145
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0145
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0150
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0150
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0150
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0155
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0155
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0155
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0160
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0160
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0165
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0165
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0170
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0170
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0170
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0175
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0175
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0175
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0180
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0180
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0185
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0185
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0190
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0190
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0195
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0195
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0195
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0200
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0200
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0200
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0205
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0205
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0205
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0210
http://refhub.elsevier.com/S1746-8094(20)30470-5/sbref0210

	Early diagnosis model of Alzheimer’s disease based on sparse logistic regression with the generalized elastic net
	1 Introduction
	2 Method
	2.1 ADNI database
	2.2 Image pre-processing and feature selection
	2.3 Logistic regression model
	2.4 Sparse logistic regression with the generalized elastic net regularization
	2.5 The optimization algorithm for sparse logistic regression

	3 Results
	3.1 Experiment setting
	3.2 Experiment results

	4 Discussion
	4.1 Evaluation with different p values
	4.2 Evaluation with the parameters
	4.3 The most discriminative brain regions
	4.4 Comparison with other methods

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


