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ABSTRACT Neuroimaging techniques have been used for automatic diagnosis and classification of
Alzheimer’s disease and mild cognitive impairment. How to select discriminant features from these data
is the key that will affect the subsequent automatic diagnosis and classification performance. However,
in the previous manifold regularized sparse regression models, the local neighborhood structure was
constructed directly in the traditional Euclidean distance without fully utilizing the label information of
the subjects, which leads to the selection of less discriminative features. In this paper, we propose a novel
manifold regularized sparse regressionmodel for learning discriminative features. Specifically, we first adopt
`2,1-norm regularization to jointly select a relevant feature subset among the samples. Then, to select more
discriminative features, a novel manifold regularization term is constructed via the relative distance adjusted
by the label information, which can simultaneously maintain the compactness of the intra-class samples
and the separability of inter-class samples. The proposed feature learning method is further carried out for
both the binary classification and the multi-class classification. The experimental results on Alzheimer’s
Disease Neuroimaging Initiative database demonstrate the effectiveness of the proposed method, which can
be utilized for the diagnosis of Alzheimer’s disease and mild cognitive impairment.

INDEX TERMS Alzheimer’s disease, feature learning, sparse regression, manifold regularization.

I. INTRODUCTION
Alzheimer’s disease (AD) is a degenerative, irreversible,
incurable dementia and will eventually cause the patients to
lose basic living ability. It is estimated that 1 in every 85 per-
sons will be affected by AD by year 2050 [1]. AD patients
have been not only a huge economic burden to the soci-
ety but also a great trouble to the patients as well as their
families. Mild cognitive impairment (MCI) is known as a
prodromal stage of AD. Previous studies have shown that
the normal controls (NC) subjects progress to AD patients
at a rate of approximately 1% to 2% per year [2], whereas
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MCI subjects convert to AD patients at an annualized rate
around 10% to 15% [3], [4]. The stage of MCI is a golden
period to effectively curb the conversion of MCI subjects
into AD patients [5], [6], so the intervention and treatment
for MCI subjects can possibly alleviate their pain. Therefore,
it is essential to correctly identify AD patients and mine
discriminant features for early diagnosis and treatment of AD
patients and MCI subjects.

Recently, biomedical signal processing techniques have
been widely applied for AD/MCI studies, such as struc-
tural Magnetic Resonance Imaging (MRI), positron emis-
sion tomography (PET) and functional magnetic resonance
imaging (fMRI) [7]–[9]; meanwhile, machine learning meth-
ods have presented promising performances in various
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applications [10]–[14], including biomedical applications.
Specifically, structural MRI data provide information about
the tissue type of the brain, and could serve as a powerful
tool for the analysis of AD patients and MCI subjects due
to its clear contrast and high spatial resolution [15], [16].
Many valuable structural features extracted from the struc-
tural MRI data have been identified for AD patients and MCI
subjects, such as tissue probability maps, cortical thickness
and hippocampal volumes [17], [18]. Additionally, network
techniques is applied in many fields and a series of research
has been studied [19]–[25]. The brain is a complex network
system where the interrelationships exist between different
brain region, rather than in one single brain region. There-
fore, based on the network techniques, using the structural
features(e.g. cortical thickness(CT) and local gyrification
index (LGI)), the personal morphological brain network can
be further constructed and the characteristics of personal
network is used for AD/MCI classification. In [15] and [26],
personal brain network was constructed using cortical thick-
ness for attaining good classification performance. In [27],
personal network was constructed using multiple structural
features to improve the accuracy of classifying AD patients
and MCI subjects.

In the past decades, many promising performances have
been already achieved in AD applications. However, for
biomedical signal processing data, even after conducting fea-
ture extraction, there is still redundant and irrelevant features,
which may lead to poor performance of subsequent classifi-
cation. It is necessary to conduct feature selection which can
remove less discriminant features to obtain an effective fea-
ture subset. Feature selection methods can mainly be divided
into three categories [28]: the filter models [29], the wrapper
models [30] and the Embedded models [31]. The filter(e.g.
Minimum Redundancy Maximum Relevance (mRMR) [32])
and the wrapper (e.g. recursive feature elimination algorithm
(RFE) [33]) models have been widely applied in AD stud-
ies. In [13] and [17], a two-step feature selection method
was adopted, including the mRMR filter method and the
RFE wrapper method to find an optimal feature subset and
gain higher classification performance with the SVM clas-
sifier. Yao et al. [34] used two filter methods and a RFE
wrapper method to select features for AD detection using
FDG-PET data. The embedded methods (e.g., the method
LARS [35], LASSO [31], Elastic Net [36]) could obtain
superior performance over the two selection models men-
tioned above, and have been successfully used for various
application researches including AD studies [37]–[42]. For
instance, Zhang et al. [38] used Sparse Multi-Task Learn-
ing model for feature selection. Zhu et al. [44] proposed a
Sparse Multi-Task Learning with Subspace Regularization
to select features, where subspace regularization was con-
structed in an unsupervised manner. Jie et al. [45] devel-
oped a manifold regularized multitask feature learning for
multimodality disease classification method. Zu et al. [46]
presented a Label-aligned manifold regularization for multi-
task feature selection method. Ye et al. [47] introduced

a new discriminative regularization term based on intra-class
and inter-class Laplacian matrices. Generally, in most recent
studies, the local neighborhood relation of the manifold reg-
ularization is constructed directly among samples via the
traditional Euclidean distance, without considering the label
information of all subjects whichmay lead to selecting redun-
dant features subset. Importantly, the label information could
improve the quality of selected neighborhood andmay further
improve the subsequent classification performance. There-
fore, in this paper, based on the label information, we pro-
pose a novel manifold regularized sparse feature selection
method to select more discriminative features for AD/MCI
classification. Specifically, we first introduce a novel label
information-based manifold regularization term into sparse
regressmodel, which could better preserve the local structural
information and obtain the optimal feature subset. We then
adopt the support vector machine (SVM) [48] with radial
basis function (RBF) kernel to evaluate the performance
of the proposed method. Experimental results show that
our method is more effective than several others methods.
The main contributions of ourwork can be summarized as
follows:

1) We propose a novel manifold regularized sparse feature
learning method for MCI/AD Classification based on struc-
tural magnetic resonance signal processing data.

2) The selected brain regions by our method can be utilized
for the diagnosis of Alzheimer’s disease and mild cognitive
impairment.

The rest of our paper is organized as follows: Materials and
image preprocessing are introduced in Section II. Section III
gives the details of the proposed method. The experimental
results are in Section IV and discussion is in Section V.
Sections VI and VII finally gives the limitations and con-
cludes the paper, respectively.

II. MATERIALS AND IMAGE PREPROCESSING
A. MATERIALS
The data we used in this paper is obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu). ADNI was launched in
2003 by the National Institute of Biomedical Imaging and
Bioengineering, as a non-profit organization led by Principal
Investigator Michael W. Weiner, MD. The initial goal of
ADNI is to evaluate the progression of early Alzheimer’s
disease, i.e., MCI, by combining technologies such as mag-
netic resonance imaging (MRI), fluorodeoxyglucose positron
emission tomography (FDG-PET), Cerebrospinal fluid (CSF)
and other biological markers. We download baseline MRI
data from ADNI database, which includes 165 NC subjects,
142 AD patients and 221MCI subjects. TheMCI Participants
were further divided into two categories: cMCI (126) who
progressed to AD within 3years from baseline and sMCI (95)
who did not progress to AD within the same time period.
Table1 lists the detailed demographic information of the
participants.
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TABLE 1. Demographic information of the participant.

B. IMAGE PREPROCESSING AND FEATURE EXTRACTION
Biomedical Signal image pre-processing and feature extrac-
tion are performed by the following procedures. First,
T1-weighted images were preprocessed using FreeSurfer
software (http://surfer.nmr.mgh.harvard.edu). This process
involves the following steps: motion correction, non-brain tis-
sue removal, coordinate transformation, grey matter segmen-
tation, and reconstruction of gray/white matter boundaries.
In particular, the reconstruction and segmentation errors were
visually checked in FreeView and manually corrected. Next,
surface inflation and registration were performed [49]–[51].
The cortical thickness was calculated in each vertex based
on the distances between the white matter and pial surface.
Finally, we obtained the mean cortical thickness of each
brain region according to the Automated Anatomical Label-
ing (AAL) atlas and removed the subcortical tissues [52],
resulting in 78 cortical regions (78 ROIs).

III. THE PROPOSED METHOD
In this section, we will propose our method, which is called
manifold regularized sparse feature learning with label infor-
mation. We first briefly introduce the feature selection with
sparse regression model, and then present the details of our
method, as well as the corresponding iterative optimization
algorithm. Finally, we utilize SVM classifier for the three
binary classification tasks and one multi-class classification
task. An overview of the proposed classification framework
is illustrated in Figure1.

FIGURE 1. Overall workflow of our proposed method.

A. NOTATIONS
We begin with a brief description of some notations used in
this paper. For a matrix X = [xi,j] ∈ Rn×d , its transpose,
inverse, and trace operator are denoted by XT , X−1 and tr(X ),
respectively. Its i-th row and i-th column are denoted by xi
and xTi , respectively. The `2,1-norm [53] of a matrixW is the

sum of `2-norm of the rows of W :‖W‖2,1 =
∑

i ‖W‖2 =∑
i

√∑
j w

2
ij
.

B. FEATURE LEARNING WITH SPARSE
REGRESSION MODEL
Let X ∈ Rn×d denote the feature matrix, where n is the
number of training samples, d is the dimension of fea-
tures. Y ∈ Rn×c denotes the class label matrix with binary
encoding, where c is the number of classes. Consequently,
the objective function of sparse regressionmodel with a group
lasso [31], [44] is defined as follows:

min
W

1
2
‖Y − XW‖2F + λ ‖W‖2,1 (1)

where W ∈ Rd×c is the regression coefficient matrix, and λ
is a weighting parameter which not only balances the relative
importance between the loss term and the regularization term,
but also controls the sparsity of elements in W matrix. The
`2,1-norm encourages the sparsity of rows in W , and then
common features will be jointly selected among samples
corresponding to multi-class label matrix. When λ = 0, all
features are selected, as λ increases, the number of selected
features decreases. In other words, a larger λ value means that
there are more zero rows in W matrix and fewer features are
selected. However, this model only selects common feature
subset without considering the local geometric space struc-
ture among samples, and the selected features might be less
discriminative.

C. MANIFOLD REGULARIZED SPARSE FEATURE
LEARNING WITH LABEL INFORMATION
In this section, a joint framework of the sparse regression
model is proposed for effectively selecting discriminative
features.

First, we introduce a graph regularization term (Locality
Preserving Projections (LPP)) as follows:

G =
n∑
i,j

si,j
∥∥xiW − xjW∥∥22 = tr[W TXTLXW ] (2)

where L = D−S is a positive semi-definite symmetric matrix
and S = [si,j] ∈ Rn×n is the similarity matrix with elements
si,j which represent the similar relationship between each pair
of samples xi and xj. D = [di,j] ∈ Rn×n is a diagonal matrix
with di,i =

∑n
j=1 sij. si,j in Eq. (2) is defined as:

si,j =

{
1, xi ∈ Nk (xj) or xj ∈ Nk (xi), i 6= j
0, otherwise

(3)

where Nk (xi) denotes the k-neighbors of subject xi. How
to choose the optimal k-neighbors among the samples
of different classes is the key issue in constructing the
neighbor relationship. Unlike the traditional methods in
[44], [46], and [47], si,j is directly constructed based on the
Euclidean distance, where the label information of all the
subjects is not fully utilized. To solve this problem, we first
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introduced an adjustable parameter with a label information
to control the absolute Euclidean distance between samples,
and then the relative distance can be defined as follows:

rdij =


δ
∥∥xi − xj∥∥ if xi and xj belong to the same class,

0 < δ ≤ 1
1
δ

∥∥xi − xj∥∥ otherwise

(4)

For each subject xi, its k-neighbors Nk (xi) are calculated via
the relative distance rdij which is controlled by the adjustable
parameter δ. Notably, if two samples xi and xj belong to the
same class, the relative distance rdij between them is reduced;
contrarily, if two samples xi and xj belong to different classes,
the relative distance rdij between them is extended. Therefore,
intra-class samples are closer, while inter-class samples are
far away. As a result, the optimal neighbors with the most
similar features are easily selected via the relative distance.
By constructing the k-neighbors graph, the regularization
term in Eq. (2) could subtly preserve the relationship among
the most similar neighbors (k ∈ [5, 10]). Interestingly, when
parameter δ is equal to 1, the novel subspace regularization
term in Eq. (2) will degenerate into the ordinary subspace
regularization constructed in an unsupervised manner. This
indicates that the neighbor relationship could be conducted
by our proposed method in both unsupervised and supervised
manner.

Substituting Eq. (2) into Eq. (1), we can obtain our
proposed model as follows:

min
W

1
2
‖Y − XW‖2F + λ1

n∑
i,j

si,j
∥∥xiW−xjW∥∥22 + λ2 ‖W‖2,1

(5)

where λ1 and λ2 are two balancing parameters. Our pro-
posed method could preserve the relationship among the
optimal neighbors and select more discriminative features
to achieve superior performance in subsequent classification
tasks. More importantly, feature selection is still guaranteed
to perform in the original space which is easy to inter-
pret or investigate the selected features.

D. OPTIMIZATION ALGORITHM
We use an iterative algorithm to solve the optimization prob-
lem in Eq. (5). Specifically, we first separate our objective
function into the smooth part and non-smooth part. The
smooth part is shown as follows:

1
2
‖Y − XW‖2F + λ1

n∑
i,j

si,j
∥∥xiW − xjW∥∥22 (6)

While non-smooth part is shown as follows:

λ2 ‖W‖2,1 (7)

According to [54], we can define φ(x) =
√
x2 + ε, ε is a

smoothing term, which is usually set to a small value, so that

the next iterative procedures can be guaranteed to converge.

‖W‖2,1 can then be rewritten as
∑d

i=1

√
‖wi‖22 + ε and can

be optimized in a half-quadratic way [55], [56]. Therefore,
we can replace ‖W‖2,1 as:

‖W‖2,1 = Tr(W TRW ) (8)

where R = Diag(r), r is an auxiliary vector of the `2,1-norm.
ri can be computed as follows:

ri =
1√

‖wi‖22 + ε
(9)

From the above formula, our objective functions can be
approximately expressed as follows:

min
W

1
2
‖Y−XW‖2F + λ1

n∑
i,j

si,j
∥∥xiW − xjW∥∥22 + λ2 ‖W‖2,1

= min
W

1
2
‖Y − XW‖2F + λ1tr[W

TXTLXW ]

+ λ2tr(W TRW ) (10)

Taking derivative of Eq. (10) with respect to W and set it to
zero, we can get:

df (W )
dW

= XTXW − XTY + λ1(XTLX + XTLTX )W

+ λ2(RW + RTW ) = 0 (11)

We can then get the solution forW as:

W = (XTX − XT + λ1(XTLX + XTLTX )

+ λ2(R+ RT ))−1XTY (12)

The main optimization procedure of our proposed method is
summarized in Algorithm1.

Algorithm 1 Our Proposed Method
Input: Samples X and the label matrix Y ,

parameters λ1 and λ2
Output: The regression coefficient matrixW
1 Construct the Laplacian matrix L
2 Repeat
3 Compute ri according to Eq. (9)
4 UpdateW according to Eq. (12)
5 Until Convergence

E. CLASSIFICATION
The optimal solution W obtained from Eq. (5) can be con-
sidered as a new representation of the samples X . Due to the
`2,1-norm imposed onW , many rows inW are approximately
equal to zero. This indicates that the features corresponding to
these approximate zero rows are uninformative in represent-
ing the class labels. Therefore, we ignore them and then select
the top ranked rows as the results of feature selection [57].
We then use the Support Vector Machines (SVM) with linear
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TABLE 2. Classification performance of different methods for three binary classification.

kernel [48] for classification. We build three binary classi-
fiers, i.e., AD vs. NC, MCI vs. NC and cMCI vs. sMCI
respectively, and one multi-class classifier i.e., AD vs. MCI
vs. NC. Here, we chose to use one-versus-one approach for
multi-class classification. To evaluate the performance of our
method, we apply a 10-fold cross-validation method, where
all samples are randomly divided into 10 parts, and each part
is left out in turn as test set, while the rest are used for training
sets that undergo the nested feature selection, the optimal
parameter values (i.e., λ1, λ2, δ and k) as mentioned above.
We repeat this process 10 times independently to avoid the
possible bias caused by randomly partitioning the dataset
and the average results are reported. For binary classifica-
tion tasks, we adopt four measures i.e. accuracy (ACC),
sensitivity (SEN), specificity (SPE) and Area Under Curve
(AUC) to quantify the performance of different methods,
whereas only accuracy is calculated to evaluate the multi-
class classification performance. In addition, for binary clas-
sification, we applied a grid search algorithm and 3-fold
cross-validation to select the optimal parameter C of SVM
(range from 2−8 to 28) on the training data. For multi-class
classification, to short computing time, the parameter C is set
to the default value on the training data.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
We test the performance of our proposed method using cor-
tical thickness of MRI data obtained from ADNI database.
For each ROI, we compute the mean cortical thickness of the
brain region, and thus each subject contains 78 features.

We compare our method with several state-of-the-art fea-
ture selection methods including mRMR and RFE. mRMR
is a filter feature selection method that maximizes the corre-
lation between each feature and class label variables, while
minimizes the redundancy between each feature pair simul-
taneously [32]. RFE is a wrapper feature selection method,
which removes the minimum discriminant features from the
feature set to find an optimal feature subset [33]. To reveal the
validity of feature selection, we also conduct the classifica-
tion task using all features without feature selection (denoted
as ‘Raw’). Since our method combines the novel manifold
regularization method and a sparse regression model with an
`2,1-norm method in a unified framework. When λ1 = 0, our

proposed model will be sparse regression model with a group
lasso (denoted as SR) without the manifold regularization
term. When λ2 = 0, all features without feature selection are
used for classification(denoted as ‘Raw’). It’s necessary that
we should compare our method with SR method to justify
the rationale of our method where adds the novel manifold
regularization into SR method. In addition, to further verify
the validity of relative distance term adjusted by the label
information, we also make comparison with the relative dis-
tance in Eq. (5) with 0 < δ ≤ 1 (our method) and the
traditional Euclidean distance in Eq. (5) with δ = 1 (denoted
as ED). For fairness comparisons, all methods are conducted
on the same training and test samples.

B. CLASSIFICATION PERFORMANCE
The comparison performance of three binary classification
tasks are presented in Table2. We can see that our method
achieves better performance than the other methods. Specif-
ically, for AD vs. NC classification (λ1 = 1, λ2 = 8,
k = 9, δ = 1), our method improves the classification
accuracy by 1.32% (mRMR), and 1.13% (RFE), respectively.
For MCI vs. NC classification (λ1 = 0.01, λ2 = 2, k = 8,
δ = 0.9), our method improves the classification accuracy
by 0.63% (mRMR)and 0.45% (RFE), respectively. For cMCI
vs. sMCI classification (λ1 = 0.01, λ2 = 5, k = 7,
δ = 0.1), our proposed method achieves a classification
accuracy of 63.65%, which is 2.11% and 1.51% higher than
that of mRMR and RFE method, respectively. We also can
see that the classification accuracy of our method is slightly
higher than SR, and ED (only except for AD vs. NC clas-
sification, our method has the same classification perfor-
mance as the EDmethod.). For further validation, we perform
the significance test by using the standard paired t-test on
the classification accuracy between SR, ED, our method
and other methods. The p-values are shown in Table3. The
smaller the p-value is, the more significant the difference is.
If p-value is less than 0.05, it indicates a significant difference
between two sets of data.We can see that ourmethod achieves
smaller p-values than SR and ED methods. For AD vs. NC
classification, our proposed method is significantly better
than all the other method. For cMCI vs. sMCI classification,
our method is significantly better than mRMR. Only, for
MCI vs. NC classification, there are no significant differences
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TABLE 3. Significance test for three binary classification between SR, ED,
our proposed method and other methods.

in classification performance between our method and the
other methods, so do SR and ED. It is worth mentioning
that, for MCI classification, we can see that there are no
significant differences in performance between SR, ED and
the othermethods(except Raw), however, there are significant
differences in performance between our method and the other
methods(except RFE).

We also demonstrate the Receiver Operating Characteristic
(ROC) curves for different methods in Figure2. Our method
achieves the Area Under the ROC curve of 0.9536, 0.7089
and 0.6365 for AD vs. NC, MCI vs. NC and cMCI vs. sMCI
classifications, respectively, indicating the effective classifi-
cation performance of our method over the other methods in
most case.

TABLE 4. Comparison of classification performance for 3-class i.e.,
cMCI vs. sMCI classification.

In addition, the classification accuracy for 3-class i.e.,
AD vs. NC vs. MCI ((λ1 = 0.1, λ2 = 3, k = 9, δ = 0.4))
is presented in Table 4. Our proposed method achieves a
classification accuracy of 59.16 %, while the other methods
are 57.43%,57.88%,57.91%,58.73 and 58.97% respectively.
The significance test are shown in Table5. The p-values fur-
ther confirmed the effectiveness of our method over mRMR
and RFE. We also can see that our method achieves smaller
p-values than SR and ED. There are significant differences in
performance between our method, ED and the other methods,
however, there are no significant differences in performance
between SR and RFE.

FIGURE 2. ROC curve of the classification performance of different
methods. (a), (b) and (c) show the ROC curve of Classification of AD vs.
NC, MCI vs. NC and cMCI vs. sMCI, respectively(TPR:true positive
rate;FPR:false positive rate).

We investigated the top 10 selected brain regions by our
method for MCI classification and 3-calss classification.
Specifically, the most frequently selected brain regions in
each cross-validation were defined as the top 10 ROIs. The
results are shown in Table6 and Table7. We also visualized
the top 10 ROIs in Figure3 and in Figure4.

26162 VOLUME 7, 2019



L. Xu et al.: Sparse Feature Learning With Label Information for Alzheimer’s Disease Classification Based on MRI

TABLE 5. Significance test for 3-class between SR, ED, our proposed
method and other methods.

TABLE 6. Top 10 selected ROIs for MCI classification.

TABLE 7. Top 10 selected ROIs for 3-class classification.

FIGURE 3. Top 10 selected ROIs by our method for MCI classification.

For MCI classification(Table6 and Figure3), the most dis-
criminative regions are Angular gyrus, Cingulate, Parahip-
pocampal gyrus, etc., which have been reported in AD/MCI
studies [44], [58]–[62] and also shown to be highly related to
AD/MCI diagnosis [44], [59], [63], [64].

FIGURE 4. Top 10 ROIs selected by our method for 3-class classification.

Also, we can see from Table7 and Figure4, for 3-class, the
top five-ranked discriminative regions are known to be highly
related to AD/MCI which have been reported in the previous
studies [46], [44], [58], [59], [62].

V. DISCUSSION
A. PERFORMANCE COMPARISON
The classification results listed in Table2 and Table4 demon-
strate that our method generally outperforms the other fea-
ture section methods. Specifically, SR also obtains higher
accuracies for all classification tasks, compared with mRMR
and RFE. This indicates that the embedding feature section
method is more effective than the filter and wrapper method
in AD/MCI data. Notably, by introducing the manifold reg-
ularization into the sparse regression model, our proposed
method achieves better classification performance than SR.
Furthermore, from Table 3 and Table 5, We can see that
our method both achieves smaller p-values than SR and ED
methods.And there are significant differences in performance
between our method and the other methods in most case. This
indicates that combining the manifold regularization and SR
in a unified framework can help enhance the classification
performance, and relative distance term in Eq. (5) adjusted
by the label information of our method is also effective for
improving classification performance. This verifies the con-
clusion that the manifold regularization with label informa-
tion could positively detect the most discriminative features
and remove irrelevant features for improving the classifi-
cation performance. Besides, all feature selection methods
outperform the Raw, which implies the necessity of feature
selection for AD/MCI classification.

B. EFFECT OF PARAMETERS
In our method, there are three main parameters including
an adjustable parameter δ and two regularization parameters
(i.e., λ1 and λ2). To evaluate their effects on the final pre-
diction performances, we first study the parameter sensitivity
of λ1 and λ2 by fixing δ. Specifically, λ1 is tested from
10−3 to 103 and λ1 is tested from 1 to 10. As shown in
Figure5, we can see that λ1 and λ2 only have minor effects
on the prediction accuracy of our method.

We also study different values of δ by fixing λ1 and λ2, δ
is tested from 0 to 1. As shown in Figure 6, the classification
performance varies with the parameter δ, which means that
parameter δ is valid in our method and the selection of param-
eter δ is very important for final classification performance.
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FIGURE 5. The classification accuracy with regularization parameters λ1
and λ2.

Specifically, when δ = 1, for AD vs. NC, our method
achieves the best classification accuracy of 90.40% which
indicates that it is relatively easy to distinguish AD from NC,
and thus there is not need to adjust the samples distance. For
MCI vs. NC, when δ = 0.9, our method achieves the best

FIGURE 6. The classification accuracy with the adjustable parameter δ.
(a) Adjustable parameter δ. (b) Adjustable parameter δ. (c) Adjustable
parameter δ. (d) Adjustable parameter δ.

classification accuracy of 70.89% and 62.23%, respectively,
which denotes that it is not very easy to distinguish MCI and
NC, so there is need to slightly adjust the samples distance.
For AD vs. NC vs. MCI, the best classification accuracy
of 59.16% is achieved when δ = 0.4. Since it is relatively
difficult to distinguish MCI, NC and AD, there is need
to relatively largely adjust the samples distance. However, for
cMCI vs. sMCI, the best classification accuracy of 63.69%
is achieved when δ = 0.1, which denotes that it is difficult
to distinguish cMCI from sMCI, and it’s necessary that the
distance of two samples within the same class is reduced on
a larger scale and vice versa. This verified the conclusion
that, for different classification tasks, the optimal neighbors
are effectively selected via calculating the relative distance
adjusted by label information, which contribute to the selec-
tion of more discriminative features for further improving the
subsequent classification.

VI. LIMITATIONS
There are still some limitations in our study that should be
considered in future studies. First, the optimal parameters are
data dependent. How to obtain the optimal parameter auto-
matically is still an open problem. In the future, the method
of parameter optimization should be exploited to set the
optimal parameter. Second, we only use cortical thickness for
AD/MCI classification. However, there exist other structural
features (e.g., volume and area) may also contain commen-
tary information that can help to improve the classification
performance. Finally, the personal network should be further
constructed, and the characteristics of network may describe
structural changes in a more accurate way.

VII. CONCLUSION
In this paper, we propose a novel manifold regularized sparse
feature learning method for MCI/AD Classification based
on structural magnetic resonance imaging. We first used
a `2,1-norm regularization to jointly select common features
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among the samples of different classes. We then constructed
a new manifold regularization with class label informa-
tion to preserve the relationship among the optimal neigh-
bors. Experimental results demonstrate that our proposed
method can achieve preferable classification performance
compared with several state-of-the-art methods for AD/MCI
classification.
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