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Abstract

Background: Alzheimer’s disease is the most common form of brain dementia characterized by 

gradual loss of memory followed by further deterioration of other cognitive function. Large-scale 

genome-wide association studies have identified and validated more than 20 AD risk genes. 

However, how these genes are related to the brain-wide breakdown of structural connectivity in 

AD patients remains unknown.

Methods: We used the genotype and DTI data in the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. After constructing the brain network for each subject, we extracted 

three types of link measures, including fiber anisotropy, fiber length and density. We then 

performed a targeted genetic association analysis of brain-wide connectivity measures using 

general linear regression models. Age at scan and gender were included in the regression model as 
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covariates. For fair comparison of the genetic effect on different measures, fiber anisotropy, fiber 

length and density were all normalized with mean as 0 and standard deviation as one.We aim to 

discover the abnormal brain-wide network alterations under the control of 34 AD risk SNPs 

identified in previous large-scale genome-wide association studies.

Results: After enforcing the stringent Bonferroni correction, rs10498633 in SLC24A4 were 

found to significantly associated with anisotropy, total number and length of fibers, including 

some connecting brain hemispheres. With a lower level of significance at 5e-6, we observed 

significant genetic effect of SNPs in APOE, ABCA7, EPHA1 and CASS4 on various brain 

connectivity measures.
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Background

Alzheimer’s disease is the most common form of brain dementia characterized by gradual 

loss of memory followed by further deterioration of other cognitive function. It has become 

one of the leading cause of death and is still increasingly affecting the aging population 

nationwide[1]. Due to the lack of effective treatment, number of deaths due to Alzheimer’s 

between 2000 and 2014 has significantly increased [1].

Neuroimaging has been a major approach to study AD which allows mapping of structural, 

functional and molecular AD pathology inside brain [2]. Accumulating evidence from 

previous studies suggests abnormal imaging patterns in AD patients, such as cortical and 

subcortical atrophy [3], cortical amyloid deposition[4], grey matter atrophy[5], and 

functional cortical disconnection [6]. Recently, there is a growing interest in structural brain 

connectivity captured through diffusion tensor imaging (DTI)in AD. AD patients and those 

in a mild stage were found to have loss of inter-hemisphere connectivities [7] and increased 

diffusion anisotropy [8].

On the other hand, genetic factors play an essential role in AD. Results from large-scale twin 

studies suggests the heritability of AD to reach 70%-80% [9, 10]. APOE is the most well-

known gene associated with increased AD risk and remains as the risk gene with the greatest 

known impact. Later, large-scale genome-wide association studies (GWASs) identified and 

validated twenty novel risk genetic loci [11, 12, 13, 14, 15, 16]. These risk variants have 

been recently found to differentially regulate brain amyloidosis across different disease 

stages [17]. However, how they exert effect on the brain-wide breakdown of structural brain 

connectivity has not been studied yet.

Leveraging the genotype and DTI data in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [18, 19], in this paper, we perform a targeted genetic association analysis of brain-

wide connectivity measures to discover the brain network alterations under the control of 

AD risk SNPs. We focus our analysis on link level measures, including fiber anisotropy, 

fiber length and density. In addition, to avoid potential bias introduced in imaging processing 

pipeline, we repeat our imaging processing pipeline and evaluate the reliability of all 
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connectivity measures. Only high quality measures will be considered for the further 

imaging genetics association analysis. Using age at scan and gender as covariates, we 

employ general linear regression models to investigate the association between each pair of 

candidate SNP and connectivity measure. After enforcing the stringent Bonferroni 

correction, SNPs rs10498633 in SLC24A4 were found to be significantly associated with 

anisotropy, total number and length of fibers including some connecting hemispheres, which 

is consistent with existing findings. With a lower level of significance at 5e-6, we observed 

significant genetic effect of SNPs in APOE, ABCA7, EPHA1 and CASS4 on various brain 

connectivity measures.

Methods

ADNI Cohort

Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database [19, 18]. Involving researchers from more than 50 sites in the USA and 

Canada, the ADNI is a multi-site study to track the progression of AD in the human brain by 

collecting longitudinal neuroimaging, biochemical, and genetic biological data. A key aim of 

the ADNI is to provide the opportunity to combine genetics with multiple types of imaging 

(e.g. magnetic resonance imaging (MRI) and positron emission tomography (PET)) and 

clinical data to help investigate mechanisms of the disease. For up-to-date information, see 

www.adni-info.org. For the proposed brain-wide connectomics genetics association analysis, 

we downloaded the structural MRI (sMRI) scans, DTI scans, GWAS genotype and 

demographic data from the ADNI website. Written informed consent was obtained at the 

time of enrollment and/or genetic sample collection and protocols were approved by each 

participating study and sites’ Institutional Review Board.

Brain Connectivity Measures

The DTI data was first denoised and corrected for motion and distortion using the approach 

described in a previous study [20]. Tractography was performed in Camino [21] based on 

white matter fiber orientation distribution function (ODF). Streamlines were modeled with a 

multi-tensor modeling approach, where voxels will fit up to two fiber orientations. Second, 

the sMRI images were registered to the b0 volume of DTI data using the FNIRT toolbox 

[22] and 278 brain regions of interest (ROIs) were extracted following [23]. The final 

networks between 278 brain ROIs were constructed using fibers going through white matter 

and connecting ROIs. In this project, we focus on the link level measures and calculated the 

fiber anisotropy (FA), length of fibers (LOF) and number of the fibers (NOF) connecting 

each pair of ROIs. Considering that the number of fibers are partially dependent on the 

surface area of their connected ROIs, we derived a new measure, the fiber density (FD), for 

the following association analysis, which is the fraction between number of fibers and the 

average surface of grey-matter regions i and j.

Reliability Test

To avoid potential bias introduced in imaging processing pipeline, We further evaluated the 

reliability of all brain connectivity measures. Since each subject only have one DTI scan in 

ADNI, we repeated our imaging processing pipeline three times and quantified the reliability 
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of FA, FD and LOF measures by calculating their intraclass correlation coefficients (ICC) 

across three runs.

Genotype Data

Genotyping was performed using the Illumina HumanOmni Express BeadChip for all 

participants included. We first performed standard sample and SNP quality control 

procedures as described previously [24]. The un-genotyped SNPs were imputed using 

MACH and minimac in a two-stage procedure following a previous study [25]. The pilot 1 

data of the 1000 Genomes Project were used as a reference panels for inferring missing 

genotypes. Minimac produced the posterior probabilities of the imputed genotypes at un-

genotyped marker loci for each individual. To assure the quality of imputation, an r2 value 

equal to 0.30 was imposed as the threshold to filter the imputed genotypes. In this project, 

since we are particularly interested in the brain network alterations under the control of AD, 

rs429358 in APOE and 33 AD risk SNPs used in [17] were included for the association 

analysis (Table.1).

Brain Connectomics Genetics Association

We performed a targeted genetic association analysis of brain-wide connectivity measures 

by employing a general linear model (GLM) approach in R. GLMs were developed using 

age at scan and gender as independent variables. For fair comparison of genetic effect on 

different measures, FA, LOF and FD measures were normalized to have zero mean and 

standard deviation as one. Following analysis of brain connectivity to examine the 

association between candidate SNPs and brainwide connectivity measures, correction for 

multiple comparisons was enforced using the Bonferroni correction method at a 0.05 level of 

significance. We also examined the associations showing trend-level significance 

(uncorrected p ≤ 5e-6).

Results

Subject

All the subjects included in this study are participants from the ADNI-2 and ADNI-GO 

stages. Among all 273 subjects with DTI scans, 214 of them without missing values in sMRI 

scans, genotype of 34 risk SNPs and demographic information were kept for the association 

analysis. In total, the study population is consisted of 34 healthy controls (HC), 26 

individuals with subjective memory complain (SMC), 59 individuals with early mild 

cognitive impairment (EMCI), 23 individuals with late MCI (LMCI) and 36 individuals with 

AD. Shown in Table. 2 is the detailed demographic information for all 214 subjects.

Reliability Test

Among all brain connectivity measures, including FA, LOF and FD, about one third of the 

measures show inconsistency across three runs with ICC smaller than 0.9. More specifically, 

26886 out of 38503 FA measures (69.83%) passed the reliability test with ICC greater than 

0.9 [26]. For LOF and FD measures, there are 25644 (66.6%) and 29791 (77.37%) passing 

the same threshold. Shown in Figure. 1 is the ICC distribution for FA, LOF and FD 
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respectively. In this paper, we only included those measures with excellent reliability (ICC ≥ 

0.9) for further analysis.

Genetic effect of AD risk genes on connectivity measures

We identified several significant association between 34 AD risk loci and three types of 

connectivity measures with excellent reliability (Table. 3). For better interpretation of 

results, we mapped 278 brain ROIs to Yeo parcellation with seven groups (3rd and 4th 

columns in Table. 3), including Visual (VIS), Somato-Motor (SM), Dorsal Attention (DA), 

Ventral Attention (VA), Limbic system (L), Fronto-Parietal (FP), and Default Mode Network 

(DMN). Shown in Figure. 2(a) is the brain map of Yeo atlas we used in MNI 152 space. We 

also added subcortical regions (SUBC) and cerebellum (CER) to complement Yeo atlas 

using the strategy previously described in [27].

For FA measure, after enforcing the stringent Bonferroni correction based on the total 

number of FA measures and risk SNPs, the genetic effect of rs10498633 in SLC24A4 
achieved brain-wide significance and showed association with the anisotropy of fibers 

connecting Ventral Attention and Subcortical, Ventral Attention and Cerebellum, and within 

Default Mode Network respectively. rs10498633 in SLC24A4 is also found to be 

significantly associated with the length and density of fibers connecting Cerebellum and 

Somato-Motor, Ventral Attention and Cerebellum, Ventral Attention and Subcortical, and 

within Default Mode Network etc. After lowering the level of significance to 5e-6 

(uncorrected), other SNPs such as rs11771145 and rs10498633 are found to be nominally 

associated with the fibers connecting Cerebellum and Somato-Motor, Dorsal Attention and 

Somato-Motor respectively. In addition, rs17125944 in FERMT2 is associated with the 

internal connectivity anisotropy inside Default Mode Network with a nominal significance. 

rs429358 in top AD risk gene APOE only shows nominal significance of association with 

the density of fibers between Subcortical and Cerebellum.

Shown in the top panel of Figure. 2(b) is the heatmap of association results between 

rs10498633 and three types of connectivity measures. Each row and column were reordered 

based on Yeo atlas. The bottom panel is the corresponding brain connectivity map showing 

only links with ICC ≥ 0.9 and uncorrected p leq 5e-6. Links in the bottom panel are 

corresponding to the dots in the top panel. Different node colors in the brain connectivity 

map indicate the Yeo group information of each ROI. Among all the fibers affected by those 

risk genes, we observed that some of them associated with rs10498633 connect two 

hemispheres. This is consistent with previous findings that AD patients show loss of inter-

hemispheric connectivity. Figure. 2(c)-(e) are example brain maps of three associations with 

nominal significance.

Discussion

To the best of our knowledge, this is the first comprehensive analysis to test the association 

of the top AD risk variants with brain connectivity measures. By performing a targeted 

genetic association of brain-wide connectivity, we were able to replicate the previous 

findings such as abnormal inter-hemispheric connectivity patterns and fiber anisotropy in 

AD. rs10498633 in SLC24A4 consistently shows significant genetic effect on all three type 
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of brain connectivity measures, including some inter-hemispheric connectivity which is a 

known abnormal pattern in AD patients.

SLC24A4 encodes a member of the potassium-dependent sodium/calcium exchanger protein 

family. It has been previously reported to have significant association with gray matter 

density and brain metabolism [28]. According to the Allen Human Brain Atlas (AHBA) 

(www.brain-map.org), SLC24A4 is highly expressed in part of the cerebellum and some 

subcortical regions, including Amygdala, Puta-men, etc. Results of a large-scale eQTL 

analysis (www.braineac.org) show that rs10498633 is an eQTL in Thalamas, Putamen and 

white matter. Taken together, these evidence gives strong support to our connectomics-

genetics findings. It also suggests potential role of rs10498633 in regulating the brain 

connectivity by mediating the expression of certain genes including SLC24A4.

Conclusion

We performed a targeted genetic association analysis of brain-wide connectivity measures to 

investigate the effect of AD risk genes on brain networks. We identified several significant 

genetics-connectomics associations. Particularly, rs10498633 in SLC24A4 shows significant 

genetic effect on the anisotropy, length and density of fibers, some of which connect two 

hemispheres. Since rs10498633 is an eQTL locus in multiple brain regions, the regulation 

role of rs10498633 in brain network may be achieved by mediating the expression of certain 

genes including SLC24A4.
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Figure 1. ICC distribution for all measures
(a) Fiber anisotropy, (b) Length of fibers, (c) Fiber density.
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Figure 2. Heatmap of all SNP-connectivity associations and brain map of selected connectivities 
with uncorrected p ≤ 5e-6.
(a) Brain map of Yeo parcellation with 7 groups in MNI 152 space. (b) Top panel: Heatmap 

showing the association of rs10498633 in SLC24A4 with three different types of 

connectivity measures. Rows and columns are reordered to form 7 groups corresponding to 

Yeo parcellation. Top and side colorbasr indicate the corresponding Yeo parcellation of each 

ROI. The last two groups, subcortical (SUBC) and Cerebellum (CER), are added to 

complement the Yeo atlas. (c) Brain map of the association between rs17125944 and FA 

measures. (d) Brain map of the association between rs7274581 and LOF measures. (e) Brain 

map of the association between rs429358 and FD measures. All the links in the brain 

connectivity map share the same colormap with the dots in the heatmap. Yeo parcellation in 
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(a), top and side colorbars in (b), and all the nodes in the brain connectivity map share the 

same color scheme.
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Table 1

34 AD risk loci included in the brain-wide connectomics genetics association.

SNP Gene MAF SNP Gene MAF

rs3752246 ABCA7 0.17 rs6701713 CR1 0.25

rs3764650 ABCA7 0.2 rs11767557 EPHA1 0.2

rs4147929 ABCA7 0.18 rs11771145 EPHA1 0.43

rs6733839 BIN1 0.39 rs17125944 FERMT2 0.11

rs744373 BIN1 0.36 rs35349669 INPP5D 0.21

rs7561528 BIN1 0.2 rs190982 MEF2C 0.22

rs7274581 CASS4 0.09 rs610932 MS4A6A 0.45

rs9349407 CD2AP 0.19 rs983392 MS4A6A 0.23

rs10948363 CD2AP 0.19 rs2718058 NME8 0.34

rs3865444 CD33 0.21 rs3851179 PICALM 0.31

rs10838725 CELF1 0.26 rs10792832 PICALM 0.31

rs11136000 CLU 0.38 rs561655 PICALM 0.34

rs1532278 CLU 0.26 rs28834970 PTK2B 0.32

rs9331896 CLU 0.38 rs10498633 SLC24A4/RIN3 0.15

rs12034383 CR1 0.41 rs1131497 SORL1 0.37

rs3818361 CR1 0.25 rs1476679 ZCWPW1 0.21

rs6656401 CR1 0.07 rs429358 APOE 0.15
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Table 2

Demographic information of all participants.

HC SMC EMCI LMCI AD

Number 34 26 59 23 36

Gender(M/F) 19/15 18/8 34/25 16/7 22/14

Age(Mean±std) 72.97±5.94 73.5±5.22 72.9±7.59 71.39±8.1 75.06±8.94
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Table 3

Significant associations between AD risk SNPs and brain connectivity measures.

Data Type SNP ROI1 ROI2 Beta p(uncorrected) ICC

Fiber Anisotropy

rs10498633 DMN DMN 0.89 1.44E-08 1.00

rs10498633 VA CER 0.88 1.68E-08 1.00

rs10498633 VA SUBC 0.88 1.73E-08 1.00

rs10498633 CER FP 0.76 1.52E-06 1.00

rs10498633 CER SM 0.75 2.08E-06 1.00

rs10498633 CER SM 0.75 2.72E-06 1.00

rs11771145 CER SM 0.58 4.08E-06 1.00

rs17125944 VS VS 0.48 4.35E-06 0.92

rs10498633 DA SM 0.72 4.89E-06 1.00

 

Length of Fibers

rs10498633 CER SM 0.90 8.73E-09 1.00

rs10498633 DMN DMN 0.90 9.06E-09 1.00

rs10498633 VA CER 0.88 1.68E-08 1.00

rs10498633 VA SUBC 0.88 1.68E-08 1.00

rs10498633 DA SM 0.76 1.54E-06 1.00

rs10498633 CER FP 0.75 2.56E-06 1.00

rs7274581 L DMN 0.53 4.49E-06 1.00

 

Fiber Density

rs10498633 VA CER 0.88 1.76E-08 1.00

rs10498633 VA SUBC 0.88 2.20E-08 1.00

rs4147929 SUBC CER 0.68 1.04E-06 1.00

rs10498633 SM SUBC 0.77 1.40E-06 0.95

rs10498633 DMN DMN 0.76 1.48E-06 1.00

rs429358 SUBC CER 0.64 2.71E-06 1.00

rs10498633 VA CER 0.74 3.37E-06 1.00

rs10498633 VA CER 0.74 3.62E-06 1.00

rs10498633 VA SUBC 0.73 4.15E-06 1.00

rs10498633 VS L 0.73 4.56E-06 1.00
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