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Collecting multiple modalities of neuroimaging data on thesame subject is increasingly
becoming the norm in clinical practice and research. Fusingmultiple modalities to
�nd related patterns is a challenge in neuroimaging analysis. Canonical correlation
analysis (CCA) is commonly used as a symmetric data fusion technique to �nd related
patterns among multiple modalities. In CCA-based data fusion, principal component
analysis (PCA) is frequently applied as a preprocessing step to reduce data dimension
followed by CCA on dimension-reduced data. PCA, however, does not differentiate
between informative voxels from non-informative voxels inthe dimension reduction
step. Sparse PCA (sPCA) extends traditional PCA by adding sparse regularization that
assigns zero weights to non-informative voxels. In this study, sPCA is incorporated into
CCA-based fusion analysis and applied on neuroimaging data. A cross-validation method
is developed and validated to optimize the parameters in sPCA. Different simulations are
carried out to evaluate the improvement by introducing sparsity constraint to PCA. Four
fusion methods including sPCACCCA, PCACCCA, parallel ICA and sparse CCA were
applied on structural and functional magnetic resonance imaging data of mild cognitive
impairment subjects and normal controls. Our results indicate that sPCA signi�cantly
can reduce the impact of non-informative voxels and lead to improved statistical power
in uncovering disease-related patterns by a fusion analysis.

Keywords: sparse principal component analysis, PCA, canoni cal correlation analysis, CCA, data fusion, mild
cognitive impairment, MCI

INTRODUCTION

Collecting multiple modalities of neuroimaging data on the same subject is increasingly becoming
the norm in clinical practice and research. Neuroimaging multi-modality data were traditionally
analyzed and interpreted separately to �nd disease-related or task-related patterns in the brain.
However, analyzing each modality independently does not necessarily �nd related patterns in
both modalities. A single pattern in one modality might be related with a mixture of patterns in
another modality. Fusing multiple modalities to �nd relatedpatterns is a challenge in neuroimaging
analysis. In the last decade, several techniques were proposed to utilize multiple imaging modalities,
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including data integration (Savopol and Armenakis, 2002;
Calhoun and Adal, 2009), asymmetric data fusion (Filippi et al.,
2001; Kim et al., 2003; Henson et al., 2010) and symmetric
data fusion techniques (Correa et al., 2008; Groves et al.,
2011; Sui et al., 2011; Le Floch et al., 2012; Lin et al.,
2014; Mohammadi-Nejad et al., 2017). A detailed review about
these techniques can be found inCalhoun and Sui (2016).
In the data integration technique, each dataset is analyzed
independently, and, then, one dataset is overlaid on another
without considering the interaction among datasets. Asymmetric
data fusion utilizes one dataset to improve the analysis of
another dataset. For example,Kim et al. (2003)used the foci
of functional magnetic resonance imaging (fMRI) activation as
seed points for Di�usion Tensor Imaging �ber reconstruction
algorithms.Filippi et al. (2001)integrated conventional magnetic
resonance imaging (MRI) and di�usion tensor MRI to better
locate white matter lesions in multiple sclerosis subjects.
Henson et al. (2010)constrained the electromagnetic sources of
Magnetoencephalography and Electroencephalography (MEG,
EEG) data with fMRI as empirical priors. Along with advantages
of asymmetric data fusion techniques, asymmetric fusion omits
the fact that each imaging modality has an essentially unique
nature (Calhoun and Sui, 2016). In the symmetric data fusion
method, multiple imaging modalities are analyzed conjointlyto
optimize the information contributed by each modality. Multiple
imaging modalities are combined to extract complementary
information regarding the integrity of the underlying neural
structures and networks (Calhoun and Sui, 2016). In this study,
we focus on symmetric data fusion using two modalities. Unless
explicitly stated, data fusion refers to symmetric data fusion.

Canonical correlation analysis (CCA) is a multivariate method
of �nding linear combinations of two multidimensional random
variables to maximize their correlation (Hotelling, 1936). CCA
and its extensions have been extensively utilized in data fusion
to associate related patterns across multiple data. A few CCA-
based fusion methods were proposed in the last decade, such as
multimodal CCA (Correa et al., 2008), source CCAC joint ICA
(Sui et al., 2010) and multimodal CCAC joint ICA (Sui et al.,
2011). The variant of CCA with more than two datasets, multiset
CCA, was also applied in data fusion (Correa et al., 2010). When
CCA is directly applied to the original data in a fusion analysis,
some of the canonical variables are perfectly correlated regardless
of the association among data, since the feature space is usually
high-dimensional and only relatively few observations (subjects)
are available (Pezeshki et al., 2004). In the CCA-based fusion
methods mentioned above, principal component analysis (PCA)
was used to reduce the data dimension. More speci�cally, a
set of principal components with the largest possible variances
are found by PCA and then the projections of original data
(scores) on the space spanned by principal components are the
dimension-reduced input data for the fusion CCA algorithm.

PCA solves the singularity problem in these fusion methods
but does not take into account that in many cases only a
small proportion of voxels (features), called informative voxels
(features), have contribution to the variance, and a large
proportion are non-informative. If principal components were
obtained with non-informative voxels (features) assignedto zero,

the projections of original data on the space spanned by the
major principal components are more robust to non-informative
voxels and thus helps CCA to better match related patterns
across modalities. For example, when fusion analysis is applied
to the data acquired from mild cognitive impairment (MCI)
subjects and normal controls (NC), brain regions engaged in
memory, language, and judgment (e.g., hippocampus, medial
temporal lobe, frontal lobe) should be signi�cant in the disease-
related patterns (Forsberg et al., 2008; Bai et al., 2009). Specifying
non-informative voxels to have zero weight could be bene�cial
for matching disease-related patterns by a fusion analysis.In
general, properly suppressing non-informative voxels will further
improve the statistical power of fusion techniques. Even though
imaging data can be masked with predetermined regions of
interest (ROIs) to address the feature selection process and avoid
problems arising from non-informative voxels, ROI selection
requires typically unavailable prior knowledge about the disease
and patient cohort.

Selection and suppression of non-informative features in
principal components can be automated by implementing
sparsity in the PCA algorithm, calledsparsePCA (sPCA) (Zou
et al., 2006; Witten et al., 2009). The sPCA method and its
extensions have been applied in multiple �elds, such as machine
learning, pattern recognition, and bioinformatics (Zou et al.,
2006; Shen and Huang, 2008; Witten et al., 2009; Jenatton et al.,
2010). A brief review of sPCA can be found inFeng et al. (2016).
When comparing sPCACCCA with PCACCCA, sPCA produces
di�erent scores because of the reoriented space spanned by the
principal components and, thus, sPCA in�uences the subsequent
CCA step in associating multiple modalities.

Unlike sPCACCCA having feature selection prior to fusing
datasets, sparse CCA (sCCA) (Parkhomenko et al., 2009; Witten
and Tibshirani, 2009; Lê Cao et al., 2011; Abdel-Rahman et al.,
2014; Avants et al., 2014) has feature selection and data fusion
applied at the same time. In this study, the sPCACCCA method
is compared with the sCCA method.

In the following, we �rst describe the theory behind sPCA
and outline how to implement the sPCA algorithm. Then,
we develop a cross-validation algorithm to optimally specify
the sparsity parameter and the number of major principal
components in sPCA. Then, we evaluate the improvement by
introducing sparsity constraint to PCA using simulated data.
Considering mild cognitive impairment (MCI) impacts both the
function and structure in certain regions of the brain (Chetelat
et al., 2002; Rombouts et al., 2005), we apply four fusion
methods including sPCACCCA, PCACCCA [called multimodal
CCA in Correa et al. (2008)], sCCA (Witten et al., 2009) and
parallel ICA (Liu et al., 2009) on structural and functional
MRI data of mild cognitive impairment (MCI) subjects and
normal controls (NC), with the hypothesis to �nd disease-related
association between these two modalities. Since disease-related
features are visible in all modalities to varying degrees (Groves
et al., 2011), fusion methods can match disease-related patterns
in a two-group setting. Hence, the group discrimination and
the correlation withb-amyloid measurement can be used to
evaluate how well fusion methods match disease-related patterns
across modalities.

Frontiers in Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 642

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yang et al. Sparse PCA in Data Fusion

THEORY

Sparse Principal Component Analysis
(sPCA)
Derivation of sPCA
LetX denote ann � m feature matrix with rank.X/ � min(n,m),
wheren is the number of observations andm is the number
of features in each observation. IfX is a brain map, as in our
case,n is the number of subjects andm is the number of voxels.
PCA transforms a set of observations of correlated variables
into a set of uncorrelated orthogonal variables called principal
components that can be ordered according to the magnitude
of their eigenvalues. The �rstK principal components can be
determined by minimizing the least square problem (Eckart and
Young, 1936), expressed as

fobj D min
bX2M(K)

1
2

jjX � bXjj 2
F, (1)

whereM(K) is a set of matrices with rank(M)D K andk.k2
F means

the squared Frobenius norm (seeAppendix A in Supplementary
Material for more detail). PCA is closely related to singular value
decomposition (SVD). Using SVD,X can be decomposed into

X D UDVT , UTU D I K , VTV D I K , (2)

where U 2 Rn� K and V 2 Rm� K are the left and right
singular vectors ofX satisfying the orthonormality condition, and
D Ddiag(d1, : : : ,dK) 2 RK� K is the diagonal matrix of ordered
singular values ofX with d1 � d2 � : : : � dK > 0. The optimal
bX in M(K) can be written as

bX D
X K

iD1
diuivT

i , (3)

whereui 2 Rn� 1 andvi 2 Rm� 1 denote thei-th column vector
of U and V, respectively. Following the notation in SVD, the
objective functionfobj for only one component can be written as

fobj
�
d,u,v

�
D

1
2






 X � duvT








2

F
, s.t. kuk2

2 D 1, kvk2
2 D 1, d > 0 (4)

Considering that there are many voxels but few subjects, namely,
m � n, the sparsity in our study is only implemented to set non-
informative voxels to be zero. BecauseV is a set of voxel-wise
spatial maps, sparsity was incorporated into the projection vector
vi but not the score vectorui , which is di�erent than the sPCA
method inWitten et al. (2009), who applied sparsity constraint
on both singular vectorsu and v. For this reason, we derived
the sPCA formula with anL1 penalty on variablev added to the
fobj

�
d,u,v

�
in Equation (4):

fobj
�
d,u,v

�
D

1
2






 X � duvT








2

F
, s.t. kuk2

2 D 1, kvk2
2 D 1, kvk1 � c, d > 0,

(5)

where the parameterc is the sparsity tuning parameter. A
smallerc means that more elements in the principal component
v are set to zero and the principal component becomes
sparser. We would like to emphasize that sPCA has the elastic

penalty consisting of theL1 and L2 penalty as shown in
Appendix B in Supplementary Material, and, thus, the principal
components from sPCA are well-de�ned and unique even
when m � n (Zou et al., 2006). Following the derivation in
Appendix A in Supplementary Material, Equation (5) can be
rewritten as:

maximize
u,v

d D uTXv, s.t. kuk2
2 D 1, kvk2

2 D 1, kvk1 � c. (6)

As shown byWitten et al. (2009), if u or v is �xed, the criterion
in Equation (6) is a convex problem inv or u.Thus, Equation
(6) represents a biconvex problem. Because a convex problem
can be solved reliably and e�ciently, we solve Equation (6) by
converting the equation into two convex sub-problems withu
andv alternatingly�xed.

Iterative Algorithm for sPCA
Equation (6) is solved by an iterative algorithm modi�ed based
on the sPCA algorithm inWitten et al. (2009). We start with
an initial valueu D u

kuk2
and then updatev to maximizeuTXv as

expressed below

maximize
v

aTv s.t. kvk2
2 D 1, kvk1 � c, a D XTu. (7)

Appendix C in Supplementary Material shows that the optimal
solution in Equation (7) isv D S(a,� )

kS.a,� /k2
. The function S is

the (vector-valued) soft threshold function given byS.a,m/ D
sign.a/ max.0,jaj � m/, where thesign (.) and j.j operation
act on each element of vectora. If m D 0 satis�eskvk1 �
c, then v D a

kak2
. Otherwise,m is determined e�ciently by a

binary search algorithm to havekvk1 D c. At a �xed v,
Equation (6) becomes

maximize
u

uTb s.t. kuk2
2 D 1, b D XTv. (8)

The optimalu is simply the unit vector along directionb, namely,
u D b

kbk2
D Xv

kXvk2
. The alternating iteration stops when a

convergence criterion is satis�ed. ThenX is updated by removing
the variance contained in the previous principal component
by X  X� duvT , and the next pair ofu and v is computed
by the same iterative algorithm untilK principal components
are found.

Parameters Selection in sPCA by Split-Sample Cross
Validation
A ten-fold cross validation method is used to estimate the
parameters in sPCA, including the optimal sparsity tuning
parameterc� and the best number of principal components
K� . The �ow chart for thesplit-sample cross validation method
is shown in Figure 1. For data matrix X, each subject is
randomly assigned to one fold. LetX(f ) denote the data from

the subjects assigned in thef -fold dataset andX(f ) denote the
data except the data in thef -fold dataset. Principal components

are computed from matrixX(f ), and then these principal
components are applied onX(f ) to estimate parameters based
on a selection criterion, and, �nally, the mean value of the
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estimated parameters in each fold of the data is used for fusion
analysis. Mathematically,K-factor sPCA is applied on matrix

X(f ) by X(f ) ! U(f )D(f )V (f )Twhere U(f )D [u(f )
1 , : : : , u(f )

K ],

V (f )D [v(f )
1 , : : : ,v(f )

K ] and D(f )Ddiag
�

d(f )
1 , : : : , d(f )

K

�
. Then, the

principal componentsV (f ) are used as regressors in a linear
regression model to �t each sample in the untouched data

X(f ), namely,� D V

�
f )

C

X. f / T
and bX(f ) D

�
V

�
f )

�
� T

. The

Akaike Information Criterion (AIC) (Akaike, 1974; Shumway
et al., 2000) is used to evaluate how close the reconstructed
matrix bX(f ) is to X(f ). The AIC provides a tradeo� between
goodness-of-�t (minimum log-likelihood) and complexity of the
model (Sui et al., 2010). Witten et al. (2009)used the mean-
square-error (MSE) as the criterion in a cross-validation method
that is based on an imputation algorithm (Troyanskaya et al.,
2001). The optimal sparsity tuning parameterc� was selected
by minimizing MSE with only the �rst principal component
(K D 1) considered. This method cannot estimate the number
of principal componentsK� since MSE always decreases with
increasingK. We have revised the cross-validation method in
Witten et al. (2009)with AIC as the criterion and compared
AIC with the split-sample cross-validation method. We found
that the split-sample method is more reliable and accurate in
estimating parameters.Appendix D in Supplementary Material
describes the calculation ofAIC and the comparison of these
two cross-validation methods in more detail. Let {c(f ), K(f )}
denote the parameters having minimumAIC for thef -fold cross-
validation, the optimal sparsity tuning parameterc� is de�ned
as the average overc(f ), and the optimal number of principal
componentsK� is the rounded integer of the average overK(f ).
The estimated parameter set {c� ,K� } is used in the sPCACCCA
fusion analysis.

sPCACCCA
In sPCACCCA, PCA is replaced by sPCA for dimension-
reduction. The sPCA method is applied to reduce the data
dimension for each modality separately, i.e.,Xr ! bXr D
UrDrVT

r , r D 1, 2. In this step, the sparsity tuning parameter
c�
r , r = 1,2, and the number of principal componentsK�

r , r = 1,2,
are optimized for each modality by using the split-sample cross-
validation method described in section Parameters Selection in
sPCA by Split-Sample Cross Validation. The dimension-reduced
datasetYr 2 Rn� K�

r is the principal component score given by

Yr D bXrV r , r D 1, 2. (9)

Then, CCA is applied to link the dataY1 andY2 by maximizing
the canonical correlation betweenY1Z1 andY2Z2, whereZr , r D
1, 2, denote the canonical transformation matrices. The resulting
canonical variatesAr D YrZr are called modulation pro�les.
Only the matched modulation pro�les between datasets are
correlated, and all other modulation pro�les are uncorrelated, i.e.,

AT
1dA2d D � d > 0, for d D 1, : : : , DI D D min(K

�

1,K
�

2) (10)

AT
r1d1

Ar2d2 D 0, ford1 6Dd2 andr1, r2 2 f1, 2g,

where � d is the canonical correlation betweenA1d and A2d.
Finally, the spatial mapsC1 and C2 corresponding toA1
and A2, respectively, are calculated by least square estimation
according to

Cr D AC
r

bXr , r D 1, 2 (11)

where the “C” superscript indicates the Moore-Penrose
pseudoinverse. In Equations (9) and (11) we could have used the
original data matrixXr instead ofbXr . A schematic �owchart of
sPCACCCA is shown inFigure 2.

MATERIALS AND METHODS

Simulation 1: sPCA vs. PCA
The simulation was carried out to evaluate whether sPCA is
sensitive to the noise in the data at di�erent sparsity levels.The
simulated dataX was generated based on the formX D YVT ,
where Y D [: : : ,yn, : : :] is the intrinsic principal component
scores andV D [: : : ,vn, : : :] is a set of orthogonal maps. The
simulation consists of 80 samples and 3 intrinsic principal
components, henceY has a dimension of 80� 3. To analyze
whether the improvement made by introducing sparsity to PCA
relates to the spatial sparsity level of the signal, we have simulated
the data with sparsity levels of 30, 50, and 70%. Here, the sparsity
level is de�ned as the percentage of zero elements in the map.
Figure 3 shows the principal component scoresY in Figure 3A
and their corresponding spatial mapsV at 70% sparsity level
in Figure 3B without threshold. The images have a dimension
of 91� 109� 3, and only the second slice of the spatial maps
is shown.

Gaussian noiseN was added to create noisy images
and Gaussian smoothing with Full-Width-At-Half-Maximum
(FWHM) of 8 mm was applied to introduce spatial correlation.
The simulated data were generated with Peak Signal-to-Noise
Ratio (PSNR) of 5, 10, and 15 dB, which are similar to the PSNRs
used inSui et al. (2010). PSNR is de�ned as

PSNRD 20 log10
maxval
MSE

. (12)

Here,maxval is the maximum possible pixel value and MSE is
the mean squared error between noisy and noise-free images. A
higher PSNR indicates a higher image quality. The simulation
was carried out 100 times using the sameY and V, but with
di�erent noise realizations.

Simulation 2: Comparison of Fusion
Methods
The simulation was carried out with sparsity level 70% at
moderate signal-to-noise ratio with PSNRD10 dB. The sparsity
level used in the simulation is close to the estimated sparsity
level in the real data as mentioned below in Parameter Selection
section. Two simulated modalities were generated by following
the steps described in section Simulation 1: sPCA vs. PCA
except we replace the intrinsic principal component scores
by modulation pro�le A1 and A2, respectively, for the �rst
and second modality. The modulation pro�les {A1,A2} satisfy
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FIGURE 1 | A schematic diagram of the split-sample cross-validation method in sPCA.X is the data matrix. Each subject is randomly assigned to one fold, X(f)

denotes the data from the subjects assigned inf -fold data and X(f) denotes the data withX(f) excluded. The “C” superscript indicates the Moore-Penrose
pseudoinverse.

FIGURE 2 | Flow chart of sPCACCCA. sPCA was carried out reduce data dimensions and to suppress irrelevant features. Then, CCA was carried out for fusion
analysis to obtain modulation pro�les and associated components. In the �ow chart bXr D UrDrVT

r with r D 1, 2, is the data matrix of the two modalities obtained
from sPCA.

the orthogonality condition in Equation (10). The canonical
correlationsr betweenA1 (red curve) andA2 (black curve) are
[0.70, 0.45, 0.22] as shown inFigure 4A. The three corresponding
pairs of sparse spatial maps are shown inFigure 4B. The �rst pair
of canonical variables in {A1,A2} were simulated to be group-
distinct using 40 subjects for each group. The simulation was
carried out �fty times using the same modulation pro�les and
spatial maps, but with di�erent noise realizations. The average
performance is reported in the Result section.

MRI/fMRI Data and PET Analysis
Structural MRI and resting-state fMRI data used in this study
were downloaded from the publicly available ADNI database.
The ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI,
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer's disease (AD).

The resting-state fMRI data, T1 structural data, and
corresponding clinical data were downloaded from the ADNI
2 database before September 18, 2016. All subjects used in this
study had �orbetapir (18F) PET scans within 6 months of MRI
scans. All MCI subjects had an absence of dementia (clinical
dementia rating of 0.5), a memory complaint and objective
memory loss measured by education adjusted scores on the
Wechsler Logical Memory Scale II, an absence of signi�cant levels
of impairment in other cognitive domains and essentially had
preserved activities of daily living. All subjects were scanned on
a 3.0-Tesla Philips MRI scanner. The magnetization prepared
rapid acquisition gradient echo (MP-RAGE) sequence was used
to acquire T1-weighted structural images by the investigators of
the ADNI consortium. The structural MRI scans were collected
with a 24 cm �eld of view and a resolution of 256� 256 �
170, to yield a voxel size of 1� 1 � 1.2 mm. Resting-state
fMRI data were acquired from an echo-planar imaging sequence
with parameters: 140 time points; TR/TED 3000/30 ms; �ip
angleD 80 degrees; 48 slices; spatial resolutionD 3.3 mm �
3.3 mm � 3.3 mm and imaging matrixD 64 � 64. Details of
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FIGURE 3 | Simulation 1: Comparison of sPCA and PCA.(A) Simulated principal component scoresY D [y1, y2, y3]. (B) The spatial mapsV D [v1, v2, v3]
corresponding to the scores with 70% voxels having zero values. Simulated data were generated 100 times with PSNR as 5 dB,10 dB and 15 dB and sparsity level
as 0.3, 0.5, and 0.7. (C) Boxplot for the similarity value with true principal component scores SY . (D) Boxplot for the similarity value with true spatial mapsSV. The
boxplot for sPCA is shown in red and for PCA in blue.

the ADNI MRI protocol can be found on ADNI website (http://
adni.loni.usc.edu/). If one subject had multiple MRI/fMRI scans
satisfying the requirements speci�ed above, the �rst available
MRI/fMRI data set was used for analysis. The Standard Uptake
Value Ratio (SUVR) analysis was carried out to measure ß-
amyloid on ADNI �orbetapir PET scans by site investigators
and the SUVR data using a composite reference regions were
downloaded from the ADNI website. The correlation between
SUVR measurement and the result of fusion methods was used
to evaluate the performance of di�erent fusion methods. In total,
37 MCI subjects (ageD 73.7� 6.7 years; genderD 19 female/18
male) and 42 NC subjects (ageD 75.0� 7.3 years; genderD 24
female/18 male) were selected.

FMRI Data
Preprocessing
The �rst 5 volumes were excluded from the analysis. The fMRI
time series were slice-timing corrected and realigned to the
�rst volume using SPM12, co-registered to the individual T1
images and then normalized to the MNI152 2 mm template
using Advanced Normalization Tools (ANTs) (http://stnava.
github.io/ANTs/). Nuisance regression was carried out with
six head motion parameters along with signals extracted from
white matter and CSF [3-mm radius spheres centered at MNI
coordinates (26,� 12, 35) and (19,� 33, 18)] (Chen et al., 2015).
The resulting time series were smoothed further with a 10-mm
Gaussian kernel and band-pass �ltered to be in the frequency
range 0.01–0.1 Hz. These steps were computed with MATLAB
(The Mathworks, Inc., version R2015a).

Eigenvector Centrality Mapping (ECM)
Many studies have shown that graph-theoretical analysis
methods can help elucidate the disruption of brain network

structure in patients compared to normal controls (He and Evans,
2010; Power et al., 2011). In graph theory and network analysis,
centrality is a measure of importance of a node in the graph
(Bavelas, 1948). We used eigenvector centrality mapping (ECM)
to analyze functional networks. ECM is an assumption-free non-
parametric method that can e�ciently carry out voxel-wise whole
brain nodal analysis. A variant of eigenvector centrality that has
been applied successfully is Google's PageRank algorithm (Bryan
and Leise, 2006), which is used as the Google search engine.

In the ECM algorithm, am � m similarity matrix (for
example a correlation map between voxel-wise time series) is
constructed and the eigenvector centrality map is the eigenvector
corresponding to the largest eigenvalue of the similarity matrix.
Here, the value at node (voxel)i is de�ned as thei-th entry in
the normalized eigenvector. Because the normalization stepin
ECM reduces the centrality value in a map with more nodes,
a group mask with the same nodes is used for all subjects
when applying ECM on fMRI data. Individual masks were �rst
calculated by thresholding the mean fMRI signal intensity at 10%
of the maximal mean signal intensity for each individual subject,
and then the group mask was chosen to be the intersection of
all individual masks and the MNI152 gray matter mask. The
ECM maps of resting-state fMRI time series for all subjects
were calculated using the Fast ECM algorithm (Wink et al.,
2012). Unlike the basic ECM algorithm, the Fast ECM algorithm
can estimate voxel-wise eigenvector centralities computationally
more e�ciently because the Fast ECM computes matrix-vector
products directly from the data without explicitly storing the
correlation matrix. The 3D ECM map of each subject was masked
and reshaped to a one-dimensional vector with 128257 non-zero
voxels and the ECM maps of all subjects were represented as
a two-dimensional array of dimension 79� 128257. The ECM
maps were corrected by regressing out the e�ects of age, gender
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FIGURE 4 | Simulation 2: Comparison of fusion methods.(A). Three pairs of
simulated modulation pro�les satisfying the orthogonalitycondition. (B).
Simulated spatial maps at sparsity level 70%.(C) Bar plot of the AUC
measurement, similarities (SA) between estimated and true modulation
pro�les, and their corresponding spatial maps (SC).

and handedness. The corrected ECM matrix, denoted asXECM,
was used for fusion analysis.

T1 Images
Voxel-Based Morphometry (VBM)
VBM is a common automated brain segmentation technique
that is used to investigate structural brain di�erence (volume
di�erences) among di�erent populations (Ashburner and
Friston, 2000). A standard VBM processing routine was created
with the SPM12-DARTEL toolbox (Ashburner, 2007). The
following processing steps were carried out for VBM: (a) the raw
T1 structural images were bias-corrected for inhomogeneities,
brain-extracted and segmented (“NativeCDARTEL imported”
is selected in “Native Tissue” option) into gray mater, white
mater and cerebrospinal �uid probability maps; (b) a customized
template was created using the SPM12-DARTEL “create
template” module; (c) gray mater volumes for all subjects were
normalized and registered to the MNI152 2 mm template using
the �nal DARTEL template in “create template” module and
�nally smoothed using an 8 mm FWHM Gaussian �lter. The
3D VBM map of each subject was masked and reshaped to a
one-dimensional vector of 171705 non-zero voxels and the VBM
maps of all subjects were represented as a two-dimensional array
of dimension 79 x 171705. The VBM maps were corrected by

regressing out the e�ects of age, gender and handedness. The
corrected VBM matrix, denoted asXVBM, constitute the other
modality used for fusion analysis.

sPCACCCA, PCACCCA, sCCA, and
Parallel ICA
To see the improvement achieved by replacing PCA with sPCA,
both sPCACCCA and PCACCCA were performed on simulated
and real imaging data. In addition, sPCACCCA was also
compared with parallel ICA using the Fusion ICA Toolbox (FIT,
http://mialab.mrn.org/software/�t/). Furthermore, a comparison
with sparseCCA (sCCA) was carried out.

Parallel ICA
Similar to ICA computing maximally independent components
in one dataset, parallel ICA �nds the hidden independent
components from two datasets simultaneously with the
association between modalities considered (Liu et al., 2009).
Parallel ICA is realized by jointly maximizing the independence
among components in each modality and the correlations
between modalities in asinglealgorithm. The maximal number
of correlated componentsncc are pre-de�ned and only the
correlation above threshold� thre is considered. More detailed
description can be found inLiu et al. (2009)and the fusion ICA
toolbox (Fulop and Fitz, 2006) (http://mialab.mrn.org/software/
�t/) documentation. Parallel ICA was carried out with standard
PCA and the default “AA” parallel ICA algorithm using the FIT
toolbox. Parallel ICA was repeated ten times for consistency. The
default ICA options were used in the analysis. The maximally
allowed descending trend of entropy was� 0.001, the maximum
number of steps was 512 and the default learning rates (0.0063,
0.0065) were used. Since the performance of parallel ICA
depends on the hyperparameters including the maximal number
of correlated componentsnccand the correlation threshold� thre,
we have used �ve pairs of hyperparameters, {ncc, � thre}D{1, 0.2},
{1, 0.4}, {3, 0.3}, {5, 0.2}, and {5, 0.4} for both simulated and real
data. The best performance was used to compare with other
fusion methods.

Sparse CCA (sCCA)
Unlike the sPCACCCA method that enforces sparsity during the
dimension reduction step, sCCA associates the original dataX1
andX2 directly with asparsity constraint applied on the canonical
transformation matrices. The obtained transformation matrices
and the canonical variates present the spatial mapsCr and the
modulation pro�lesAr , respectively. The iterative algorithm for
sCCA is described in detail inWitten et al. (2009).

Parameter Selection
To avoid over�tting, we carried out parameter selection for all
fusion methods. The number of sparse principal components
used in sPCACCCA was determined by the AIC-basedsplit-
sample cross-validation methoddescribed in section Parameters
Selection in sPCA by Split-Sample Cross Validation. For the
ECM and VBM modalities, the optimal numbers of principal
components were 10 and 7, respectively, and the optimal
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sparsity levels were 70 and 80%, respectively. The same cross-
validation method was also used to determine the number
of conventional principal components in PCACCCA and in
parallel ICA by simply replacing sPCA with the standard PCA
algorithm. 7 ECM principal components and 6 VBM principal
components were found for these two fusion methods. While
minimizing MSE based on CCA potentially can be used to select
the parameters in sPCACCCA or PCACCCA as suggested by
Lameiro and Schreier (2016), the high dimensionality of the data
and the SVD over a large cross-covariance matrix makes this
parameter selection method infeasible for our study becauseof
computational time and memory. The optimal sparsity tuning
parameter in sCCA was estimated by the cross-validation method
presented inWitten and Tibshirani (2009). With this method, the
optimal sparsity level is 73% for the ECM dataset and 79% for the
VBM dataset.

To compare how well the sPCA and PCA methods extract the
intrinsic principal component scoresYtrue and the spatial maps
V true in simulation 1, the similarity between the estimated and
the true scores and maps were computed at di�erent noise levels
by following equation

SY D

P 3
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�
�corr

�
ytrue

d , yest
d

� ��

3
2 [0, 1],
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P 3
dD1

�
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�
vtrue

d , vest
d

� ��

3
2 [0, 1]. (13)

The similarity valueSY close to 1 indicates that the estimatedYest

agrees well with the true scoresYtrue. Similarly, the similarity
valueSV close to 1 indicates that the estimatedVest agrees well
with the true spatial mapsV true.

When comparing the fusion methods in simulation 2, the
evaluation is focused on how well these methods distinguish
two groups and uncover the modulation pro�les and their
corresponding spatial maps. The receiver operating characteristic
(ROC) was used to evaluate group classi�cation and the area
under ROC curves (AUC) were calculated. The similarity
between true modulation pro�lesAtrue

r and the estimated one,
Aest

r , was computed, namely,
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The similarity for spatial mapsCest
r as de�ned in Equation (11)

was also computed. Furthermore, we used the correlation error
� D

P 3
dD1 (� true

d � � est
d ) to measure how close the estimated

correlation � est and intrinsic (true) correlation� true are. A
positive sign of1� indicates that overall the correlation is
underestimated and a negative sign indicates the correlation
is overestimated.

For the real imaging data, the ECM arrayXECM and VBM
arrayXVBM were used for fusion analysis. Two samplet-tests with
unequal variances were applied on modulation pro�lesAECM
andAVBM. ROC analysis was carried out on modulation pro�les

AECM and AVBM to determine how well fusion methods extract
disease-related modulation pro�les and corresponding patterns,
and theAUC for each modality also was calculated.

RESULTS

Simulations
Conventional PCA and sPCA were carried out 100 times on a
series of simulated data with PSNR as 5 dB, 10 and 15 dB and
the sparsity level as 30, 50, and 70%. The boxplot for similarity
valuesSY and SV of sPCA (red color) and PCA (blue color)
were shown inFigure 3C and Figure 3D. When the sparsity
level and PSNR is low (e.g., sparsity levelD 30% and PSNR
D 5 dB), the improvement by introducing sparsity constraint
is negligible. With increasing PSNR or sparsity level, sPCA
outperforms PCA in uncovering the true principal component
scores and corresponding spatial maps.

In simulation 2, fusion analysis was carried out �fty times
on the simulated data with PSNR 10 dB and sparsity level
70%. Figure 4C shows the mean value of AUC,SA and
SC for these four fusion methods including sPCACCCA,
PCACCCA, parallel ICA and sCCA. The sPCACCCA has the
best performance among these fusion methods. Compared to
PCACCCA, sPCACCCA has improved measurements of AUC
and SC by approximately 10%. The correlation error1� for
sPCACCCA, PCACCCA, parallel ICA and sCCA are 0.11, 0.16,
0.17, and� 0.35, respectively. Results indicate that sPCACCCA
achieves correlations closest to the simulated correlations, and
sCCA signi�cantly overestimates the correlation while all other
fusion methods underestimate the correlation.

Real fMRI Data
sPCA vs. PCA
The principal components having largest variance from sPCA
and PCA are shown inFigure 5without threshold for the ECM
maps (Figure 5A) and VBM maps (Figure 5B). The color bars
are di�erent for these spatial maps to better visually represent
the principal components. The ECM principal component
obtained from sPCA shows a clear default mode network (DMN)
pattern and the VBM principal component have non-zero voxels
centered at the hippocampus. Compared to the spatial maps
of PCA, sPCA has similar principal component maps but with
a large proportion of voxels removed. A group comparison of
the principal component scores from sPCA and PCA on ECM
and VBM modality is applied. The sPCA method has achieved
the most signi�cant group di�erence with uncorrectedp-value
0.01 and 0.008 on ECM and VBM modality, respectively. In
contrast, PCA has obtained less signi�cant group di�erence
with uncorrected p-value 0.03 and 0.02 on ECM and VBM
modality, respectively.

Fusion Analysis
For each fusion method, the modulation pro�lesAECM andAVBM
were calculated and two-samplet-tests with unequal variance
were carried out to assess group di�erence. The ROC technique
was applied on modulation pro�lesAECM and AVBM, and the
AUC was calculated. Group classi�cation accuracy was also
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FIGURE 5 | The standardized principal component maps having largest variance from sPCA and PCA.(A) ECM principal component,(B) VBM principal component.

calculated by running ten-fold quadratic discriminant analysis
(QDA) on modulation pro�les from both ECM and VBM
modalities. The most signi�cant component ofAECM or AVBM
from two-samplet-tests always had the largest AUC value. The
AUC and Bonferroni-correctedpvalue for multiple comparisons,
denoted aspcorr, of the most signi�cant components are
shown inTable 1. The correlation between the most signi�cant
components is also listed in this table. sPCACCCA found one
signi�cant component in both ECM and VBM data (ECM:
pcorr D 3.4 � 10� 4, AUC D 0.78; VBM:pcorr D 2.6 �
10� 4, AUC D 0.81). sPCACCCA associated these two signi�cant
components at the 1st pair of canonical variates with canonical
correlation � D 0.78. PCACCCA found one signi�cant
component in both ECM and VBM data (ECM: pcorr D 2.9�
10� 2, AUC D 0.71; VBM:pcorr D 2.0� 10� 3, AUC D 0.73).
PCACCCA associated these two signi�cant components at the
1st pair of canonical variates with canonical correlation� D 0.48.
Parallel ICA found one signi�cant component in VBM but not
in the ECM data (ECM:pcorr D 0.10, AUC D 0.68; VBM:
pcorr D 1.8� 10� 3, AUC D 0.75). The correlation between the
most signi�cant component in ECM and VBM was� D 0.27.
sCCA found two signi�cant ECM components and one VBM
component (ECM:pcorr D 1.3� 10� 2, AUC D 0.70 andpcorr D
4.7� 10� 2, AUC D 0.55; VBM:pcorr D 1.6� 10� 2, AUC D 0.70).
The correlation between the most signi�cant component in ECM
and VBM was� D 0.80. Among these four fusion methods,
sPCACCCA achieved the highest group classi�cation accuracy
0.68, which was more than 99-percentile of the null distribution.
The classi�cation accuracy with concatenated ECM and VBM
principal component scoreswithout fusionas input features to
QDA was 0.57.

The spatial patterns for these four fusion methods were also
computed for sPCACCCA and PCACCCA by using Equation
(11). ECM z-score spatial patterns corresponding to the most

signi�cant components inAECM are shown inFigure 6. All
spatial maps were thresholded atz � 1.5 except the one
from parallel ICA. The ECM spatial map from parallel ICA
only showed an artifact on the brain boundary if thresholded
at z � 1.5, hence the threshold was lowered toz � 1
for better interpretation. Anterior cingulate cortex (Bianciardi
et al., 2009) was shown in the spatial patterns for all fusion
methods. Both PCACCCA and parallel ICA show some artifacts
at the boundary of the brain. Bilateral superior temporal gyrus
and bilateral amygdala were found in the ECM spatial pattern
from sPCACCCA.

VBM z-score maps corresponding to the most signi�cant
components inAVBM are shown inFigure 7. The spatial maps
were thresholded atz � 2. The VBM spatial maps are very
similar except the one from PCACCCA. In the VBM spatial
maps, all fusion methods show gray matter atrophy in bilateral
hippocampus and inferior temporal gyrus.

Since the performance di�erence among these fusion methods
shown inFigure 6andFigure 7may be a�ected by the number
of remaining principal components, we have run sPCACCCA,
PCACCCA and parallel ICA with the number of principal
components ranging from 4 to 20 for both ECM and VBM
datasets. For each fusion method, the most signi�cantp-
values for group discrimination with the number of principal
components varying from 4 to 20 were recorded and the
distribution of p-values is shown inFigure 8. The VBM datasets
overall has more signi�cant group di�erence than ECM datasets.
Compared to PCACCCA and parallel ICA, sPCACCCA tends to
havep-value more signi�cant.

Correlation Between Disease-Related Modulation
Pro�les and b-Amyloid Measurement
The most disease-related modulation pro�le inAECM andAVBM
were correlated with SUVR, a measure ofb-amyloid content
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TABLE 1 | Measurements of the modulation pro�les in sPCACCCA, PCACCCA, parallel ICA and sCCA.

Methods ECM VBM Correlation � Classi�cation accuracy

pcorr AUC pcorr AUC

sPCACCCA 3.4 � 10� 4 0.78 2.6 � 10� 4 0.81 0.78 0.68

PCACCCA 2.9 � 10� 2 0.71 2.0 � 10� 3 0.73 0.48 0.61

Parallel ICA 0.10 0.68 1.8� 10� 3 0.75 0.27 0.58

sCCA 1.3 � 10� 2 0.70 1.6 � 10� 2 0.70 0.80 0.60

sCCA obtains the highest correlation due to over�tting, but has very lowvalues in AUC. sPCACCCA has largest AUC and a large correlation indicating that this method issuperior to the
other 3 methods. pcorr denotes thep value for group discrimination with multiple comparison correction. The group classi�cation accuracy is obtained by running quadratic discriminant
analysis on modulation pro�les from both modalities. The most signi�cant p-value and the largest value for each measurement are in bold font.

FIGURE 6 | The most signi�cant disease-related ECM z-score maps from sPCACCCA, PCACCCA, parallel ICA and sCCA. Maps are displayed in radiological
convention (right is left and vice versa). All spatial maps are thresholded at z� 1.5 except the map from parallel ICA that is thresholded at z� 1. Parallel ICA would not
show the anterior cingulate cortex if the map is thresholdedat z � 1.5.

calculated from the PET scans within 6 months of MRI scans.
The correlation plots are shown inFigure 9. Each value in the
ECM modulation pro�le measures the strength of functional
connectivity for one subject, and a more negative value indicates
lower functional connectivity. Similarly, each value in the VBM
modulation pro�le measures the amount of atrophy for one
subject, and a more negative value indicates more severe atrophy.
Among these plots, only the VBM modulation pro�le in sPCA
had a signi�cant negative correlation with SUVR (p < 0.05) and
the other correlations were not signi�cant. sPCACCCA had the
strongest correlation with SUVR in both ECM and VBM data.

DISCUSSION

To the best of our knowledge, our study is the �rst study
proposing the sPCACCCA method and comparing it with
other methods for fusion analysis of multimodal brain imaging

data. A novel split-sample cross-validation algorithm withAIC
as selection criterion was validated for sPCA to determine
the sparsity tuning parameter and the number of principal
components. The sPCACCCA fusion method extracts disease-
related modulation pro�les with the highest statistical power
in real data. While sPCA and its variants were applied for
noise elimination and functional segmentation in neuroimaging
research (Ulfarsson and Solo, 2007; Ng et al., 2009; Khanna et al.,
2015), to the best of our knowledge, this is the �rst study to
implement and validate sPCA in fusion analysis.

Properties of sPCA
Since sPCA is a sparse version of PCA, naturally they have
some common properties. Both are linear techniques for
dimensionality reduction. High-dimensional data is projected to
a subspace spanned by the dominant principal component scores
so that most of the variance in the original data is kept in a
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FIGURE 7 | The most signi�cant disease-related VBM z-score maps from sPCACCCA, PCACCCA, parallel ICA and sCCA. Maps are displayed in radiological
convention (right is left and vice versa). All spatial maps were thresholded at z> 2. Note that PCACCCA does not give a bilateral disease-related pattern.

FIGURE 8 | The distribution ofp-values for group discrimination with the number of principal components ranging from 4 to 20. VBM dataset has more signi�cant
p-value than ECM dataset. The sPCACCCA method has more signi�cant group discrimination than PCACCCA and parallel ICA.

low-dimensional feature space. However, sPCA is di�erent from
PCA in terms of robustness, implementation, orthogonality,
and computation.

1) Robustness: sPCA not only searches for the direction to
maximize variance but also discriminates informative voxels
from non-informative voxels as a data-driven approach. In
other words, sPCA is useful when the number of features is
large, while only a small proportion of them are informative.
In many cases the salient features such as age- and disease-
related features in the modalities are limited to only a few
regions but not the entire brain. The sPCA method adjusts
principal components by setting non-informative voxels to
zero and hence obtains more robust scores (projection of
original data on principal components) as the input to

the following CCA analysis. In the sPCACCCA fusion
method, sPCA itself does not have discriminatory power.
However, it was shown that sPCA is more robust against
noise than conventional PCA. The similarity valuesSY and
SV in Figure 3 indicate that sPCA outperforms PCA in
uncovering the true principal component scores and spatial
maps, especially when the sparsity level is high. The robust
scores from sPCA improve the subsequent CCA analysis
to better link related modulation pro�les and extract the
corresponding spatial patterns in the data.

2) Implementation: Unlike PCA, which represents a standard
eigenvalue problem, sPCA is a constrained optimization
problem and optimized by an iterative algorithm. The
objective function in sPCA is a biconvex function and is
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FIGURE 9 | Correlation between the most signi�cant modulation pro�les in ECM and VBM modalities with SUVR. The signi�cancep-values for ECM (pECM) and VBM
data (pVBM) in sPCACCCA, PCACCCA, parallel ICA and sCCA are also shown. The SUVR measures the content of �-amyloid using PET scanning. The ECM
modulation pro�le of the disease-related pattern measures the strength of functional connectivity. A more negative value indicates lower functional connectivity. The
VBM modulation pro�le of the disease-related pattern relates to the amount of atrophy. More atrophy is present for negative values of the VBM modulation pro�le.
Note that sPCACCCA has the most signi�cant negative correlation with SUVR.

solved by optimizing two convex subproblems, both of which
can be solved reliably and e�ciently.

3) Orthogonality: The orthogonality no longer strictly holds
when the L1 norm penalty term is added in sPCA.
However, at the optimal sparsity tuning parameter, the mean
absolute correlation with sign ignored between di�erent
principal components is 0.054, indicating that the principal
components from sPCA are nearly orthogonal.

4) Computation: sPCA is more computationally intensive than
standard PCA. Along with choosing the number of principal
components as in PCA, sPCA also needs to specify the
sparsity tuning parameter. Overestimated sparsity would be
detrimental since informative voxels are also removed, and
underestimated sparsity may not signi�cantly improve the
analysis. A grid search in PCA is carried out over the
number of principal components, and a grid search in sPCA
is carried out over a sparsity tuning parameter and the
number of principal components. The grid search process
exponentially increases computational time of sPCA because
more parameters need to be optimized.

Comparison of Fusion Analysis
Fusion analysis was carried out with simulated and real data.
In the simulations, the sPCACCCA method has improved
performance over PCACCCA by about 10% at sparsity level
70%. We have tested these two fusion methods at di�erent
sparsity levels and found that the improvement decreases with
lower sparsity level until the performance di�erence becomes
negligible when the sparsity level is about 30%. We would like
to point out that parallel ICA does not lead to orthogonal
components because orthogonality is not strictly enforced unlike
CCA-based fusion methods. Thus, the simulation generated
with an orthogonality condition is biased toward CCA-based
fusion methods and explains why parallel ICA does not

perform well in our simulation. In contrast, generating data
without the assumption of orthogonality would make the
simulation more biased toward parallel ICA. Among the four
fusion methods considered, sCCA overestimates the correlation
between modalities and also has low similarity. Unlike sCCA
having original voxel-wise input features, sPCACCCA along
with PCACCCA and parallel ICA reduces the data dimension
beforefusing modalities and thus possibly may discard some
correlated features that have low variance. The voxel-wise input
features to sCCA, however, are much larger than the number
of samples. For example, the number of non-zero features in
sCCA is at the order of a thousand, while the number of input
features to CCA in sPCACCCA is of the order of ten. The
elastic-net penalty as a sparsity constraint may not be su�cient
to alleviate an overestimated canonical correlation relationship
and thus sPCACCCA still outperforms sCCA in both simulated
and real data.

In real data, the proposed sPCACCCA method has the most
signi�cant disease-related modulation pro�les in both modalities
and the highest group classi�cation accuracy. Compared to
the accuracy obtained with principal component scores as
input, using the modulation pro�les as input have improved
classi�cation accuracy for all considered fusion methods. ACC is
found to be disease-related by all fusion methods in ECM data.
A decreased functional connectivity of ACC was consistent with
the �ndings in previous resting-state fMRI studies (Rombouts
et al., 2005; Sheline et al., 2009) and ACC was also found
to be a�ected in MCI subjects by other imaging techniques,
such as single photon emission computed tomography (SPECT)
and structural MRI studies (Huang et al., 2002; Karas et al.,
2004). sPCACCCA found that the amygdala and the superior
temporal gyrusbilaterally, in addition to ACC, are important
disease-related regions in the ECM data. Decreased functional
connectivity of the amygdala and superior temporal gyrus in MCI
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or Alzheimer's disease subjects were also found in previous fMRI
studies (Celone and Calhoun, 2006; Liu and Zhang, 2012; Yao
et al., 2013), and are consistent with our results. In the VBM
disease-related spatial maps, hippocampus and inferior temporal
gyrus are found to have more atrophy in all fusion methods.
The hippocampus is a critical region in the limbic system that is
involved in motivation, emotion, learning and memory. Atrophy
in the hippocampus is closely related to early symptoms in AD
patients, such as short-term memory loss and disorientation.
Early hippocampal atrophy is an established biomarker of AD
(Jack et al., 1999). We also found that the inferior temporal gyrus
is a�ected in MCI. This region is essential in face, pattern, and
object recognition, and may already be a�ected in early-stage
MCI subjects (Whitwell et al., 2008).

The disease-related modulation pro�les from sPCACCCA,
PCACCCA, parallel ICA and sCCA were correlated with the
measure of� -amyloid, i.e., SUVR (Figure 9). Only sPCACCCA
found signi�cant correlation with SUVR in VBM data but not
in ECM data. The ECM modulation pro�le from sPCACCCA,
however, had strongest correlation with SUVR among all of
ECM modulation pro�les. A more negative value in the ECM
modulation pro�le indicates lower functional connectivity, and
a more negative value in the VBM modulation pro�le indicates
more severe atrophy in the disease-related patterns. Since SUVR
is used for longitudinal analyses in MCI (Landau et al., 2014),
the disease-related spatial pattern and corresponding modulation
pro�le from our fusion method potentially can be used to
monitor disease severity.

Similar to other fusion methods, sPCACCCA has its own
assumptions and limitations. From the simulation and the
formulation of sPCACCCA, we illustrate that the CCA step
enforces orthogonality on the modulation pro�le for each
modality. In addition, implementing sparsity assumes that the
associated e�ect between modalities is distributed locallyinstead
of globally across the brain. This assumption is realistic because
in amnestic MCI or early AD not the entire brain shows
atrophy or loss of functional connectivity, but the disease state
is limited to sparse brain regions such as the inferior temporal
lobes and the posterior cingulate cortex. Enforcing sparsityin
fusion analysis is applicable to many neurological diseases in
their early stages. On a computational level, enforcing sparsity
signi�cantly increases computational time. Computations were
run on a Dell workstation with 2 Intel Xeon E5-2643 processors.
This is di�erent from parallel ICA and PCACCCA, where the
computation takes only minutes to carry out a fusion analysis.In
contrast, sPCACCCA needs approximately 12 h to complete the
analysis, and sCCA needs� 21 h.

Extension of sPCA CCCA
We would like to emphasize that sPCA also can be applied
to other CCA-based fusion methods such as multiset CCA
(Correa et al., 2010) and CCACjICA (Sui et al., 2010, 2011).
Unlike CCA that associates only two modalities, multiset CCAis
applied when more than two modalities are considered for fusion
analysis. In the CCACjICA method, joint ICA is carried out after
CCA to maximize the independence among joint components
and to prevent CCA from failing to separate sources. Since
PCA is also required in these two methods for dimensionality

reduction, sPCA can be incorporated into these methods as well.
If the structural information in the brain map is pre-speci�ed,
more sophisticated sparse constraints such as structural lasso
(Simon et al., 2013; Lin et al., 2014) can potentially be used
in sparse fusion methods including sPCACCCA and sCCA.
However, more advanced methods are beyond the scope of the
current study.

Limitations and Future Study
The proposed sPCA method has two limitations. First, as in
PCA, sPCA preserves the global structure of the data but
ignores the Euclidean structure of image space and hence
may lead to discrete non-zero voxels in sparse principal
components. Second, the property of orthogonality between
principal components does not strictly hold because of the
lasso penalty used in sPCA. Furthermore, the issue of missing
data is not addressed in this study. Some subjects may
only have one imaging modality available or have data with
partial brain coverage, while some fusion methods have been
developed to address this issue (Xiang et al., 2014; Pan et al.,
2018), current sPCACCCA framework cannot use subjects with
missing data.

Other dimension reduction methods, such as the locality
preserving projection method (He and Niyogi, 2003), were
studied extensively in pattern recognition. However, the
performance of more sophisticated dimension reduction
techniques for neuroimaging studies is unknown. The auto
encoder related methods (Bengio, 2009) are currently of high
interest in the deep learning research community. This method
is appealing for handling non-linear systems and could replace
the linear PCA algorithm. One critical reason for requiring
dimension reduction in CCA-based fusion analysis is that the
number of features in standard CCA algorithm cannot be more
than the number of observations. If CCA itself can be revised
to select features adaptively and avoid the singularity problem
arising from too many features, then the dimension reduction
preprocessing step may not be required.

CONCLUSION

We have proposed a sPCA algorithm for data fusion and
compared sPCA with three di�erent state-of-the-art fusion
methods. We evaluated how well these fusion methods associate
related patterns in di�erent modalities and correlated the result
from fusion analysis with ß-amyloid measurement (SUVR). We
found that sPCA can signi�cantly reduce the impact of non-
informative voxels and improve statistical power for uncovering
disease-related patterns. The sPCACCCA method not only
achieves the best group discrimination but also has the strongest
correlation with the SUVR measurement. In summary, sPCA is
a powerful method for sparse regularization and dimensionality
reduction, completely data-driven, and self-adaptive without
experts' intervention.
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