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Collecting multiple modalities of neuroimaging data on theame subject is increasingly
becoming the norm in clinical practice and research. Fusingnultiple modalities to
nd related patterns is a challenge in neuroimaging analysi Canonical correlation
analysis (CCA) is commonly used as a symmetric data fusion¢bnique to nd related
patterns among multiple modalities. In CCA-based data fush, principal component
analysis (PCA) is frequently applied as a preprocessing gi¢o reduce data dimension
followed by CCA on dimension-reduced data. PCA, however, des not differentiate
between informative voxels from non-informative voxels ithe dimension reduction
step. Sparse PCA (sPCA) extends traditional PCA by adding spse regularization that
assigns zero weights to non-informative voxels. In this stly, SPCA is incorporated into
CCA-based fusion analysis and applied on neuroimaging dat# cross-validation method
is developed and validated to optimize the parameters in sP&. Different simulations are
carried out to evaluate the improvement by introducing spasity constraint to PCA. Four
fusion methods including SPCACCCA, PCACCCA, parallel ICA and sparse CCA were
applied on structural and functional magnetic resonance iaging data of mild cognitive
impairment subjects and normal controls. Our results indite that SPCA signi cantly
can reduce the impact of non-informative voxels and lead tanproved statistical power
in uncovering disease-related patterns by a fusion analysi

Keywords: sparse principal component analysis, PCA, canoni
cognitive impairment, MCI

cal correlation analysis, CCA, data fusion, mild

INTRODUCTION

Collecting multiple modalities of neuroimaging data on tfarse subject is increasingly becoming
the norm in clinical practice and research. Neuroimaging tiaododality data were traditionally
analyzed and interpreted separately to nd disease-relatetdsk-related patterns in the brain.
However, analyzing each modality independently does not sezrdy nd related patterns in
both modalities. A single pattern in one modality might be tethwith a mixture of patterns in
another modality. Fusing multiple modalities to nd relatpdtterns is a challenge in neuroimaging
analysis. Inthe last decade, several techniques were pbjmostize multiple imaging modalities,
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including data integration $avopol and Armenakis, 2002; the projections of original data on the space spanned by the
Calhoun and Adal, 2009asymmetric data fusiorH{lippi et al.,  major principal components are more robust to non-informative
2001; Kim et al., 2003; Henson et al., 20abd symmetric voxels and thus helps CCA to better match related patterns
data fusion techniquesCporrea et al., 2008; Groves et al.,across modalities. For example, when fusion analysis is applied
2011; Sui et al., 2011; Le Floch et al, 2012; Lin et atg the data acquired from mild cognitive impairment (MCI)
2014; Mohammadi-Nejad et al., 2Q1A detailed review about subjects and normal controls (NC), brain regions engaged in
these techniques can be found alhoun and Sui (2016) memory, language, and judgment (e.g., hippocampus, medial
In the data integration technique, each dataset is analyzeemporal lobe, frontal lobe) should be signi cant in the disea
independently, and, then, one dataset is overlaid on anotheelated patternsorsberg et al., 2008; Bai et al., 208pecifying
without considering the interaction among datasets. Asyeinic  non-informative voxels to have zero weight could be bené cia
data fusion utilizes one dataset to improve the analysis dbr matching disease-related patterns by a fusion analysis.
another dataset. For exampléjm et al. (2003)used the foci general, properly suppressing non-informative voxels willHert

of functional magnetic resonance imaging (fMRI) activatia a improve the statistical power of fusion techniques. Even iou
seed points for Diusion Tensor Imaging ber reconstruction imaging data can be masked with predetermined regions of
algorithms Filippi et al. (2001jntegrated conventional magnetic interest (ROIs) to address the feature selection process\aid a
resonance imaging (MRI) and di usion tensor MRI to better problems arising from non-informative voxels, ROI selection
locate white matter lesions in multiple sclerosis subjectgequires typically unavailable prior knowledge about the alge
Henson et al. (2010onstrained the electromagnetic sources ofand patient cohort.

Magnetoencephalography and Electroencephalography (MEG, Selection and suppression of non-informative features in
EEG) data with fMRI as empirical priors. Along with advantagesprincipal components can be automated by implementing
of asymmetric data fusion techniques, asymmetric fusiont®m sparsity in the PCA algorithm, callesparsed®?CA (sPCA) Zou

the fact that each imaging modality has an essentially umiquet al., 2006; Witten et al., 2009The sPCA method and its
nature Calhoun and Sui, 20)6In the symmetric data fusion extensions have been applied in multiple elds, such as machine
method, multiple imaging modalities are analyzed conjoinitdly learning, pattern recognition, and bioinformaticZdqu et al.,
optimize the information contributed by each modality. Myte ~ 2006; Shen and Huang, 2008; Witten et al., 2009; Jenatton et al
imaging modalities are combined to extract complementan201(). A brief review of SPCA can be found ireng et al. (2016)
information regarding the integrity of the underlying nealr When comparing sPC&CCA with PCACCCA, sPCA produces
structures and networksJalhoun and Sui, 20)6In this study, di erent scores because of the reoriented space spanned by the
we focus on symmetric data fusion using two modalities. Unlesgrincipal components and, thus, sSPCA in uences the subsequent
explicitly stated, data fusion refers to symmetric datadosi CCA step in associating multiple modalities.

Canonical correlation analysis (CCA) is a multivariate huet Unlike sSPCACCCA having feature selection prior to fusing
of nding linear combinations of two multidimensional rarmm  datasets, sparse CCA (sSCCRpfkhomenko et al., 2009; Witten
variables to maximize their correlatioi¢telling, 1939. CCA  and Tibshirani, 2009; Lé Cao et al., 2011; Abdel-Rahman et al
and its extensions have been extensively utilized in dageoifu  2014; Avants et al., 20)Lhas feature selection and data fusion
to associate related patterns across multiple data. A few CCapplied at the same time. In this study, the SROBCA method
based fusion methods were proposed in the last decade, suchissompared with the sCCA method.
multimodal CCA (Correa et al., 2008source CCAC joint ICA In the following, we rst describe the theory behind sPCA
(Sui et al., 2000and multimodal CCAC joint ICA (Sui et al., and outline how to implement the sPCA algorithm. Then,
201). The variant of CCA with more than two datasets, multisetwe develop a cross-validation algorithm to optimally specify
CCA, was also applied in data fusiofi@rrea et al., 20)0When  the sparsity parameter and the number of major principal
CCA is directly applied to the original data in a fusion analysiscomponents in sPCA. Then, we evaluate the improvement by
some of the canonical variables are perfectly correlateatddgss introducing sparsity constraint to PCA using simulated data.
of the association among data, since the feature space iflyusu&onsidering mild cognitive impairment (MCI) impacts both the
high-dimensional and only relatively few observationsbfsats) function and structure in certain regions of the braiftljetelat
are available Rezeshki et al., 20p4In the CCA-based fusion et al., 2002; Rombouts et al., 2p0we apply four fusion
methods mentioned above, principal component analysis (PCAnethods including sSPCBCCA, PCACCCA [called multimodal
was used to reduce the data dimension. More speci cally, &CA in Correa et al. (2008)sCCA Witten et al., 200pand
set of principal components with the largest possible variancegzarallel ICA (iu et al., 200p on structural and functional
are found by PCA and then the projections of original dataMRI data of mild cognitive impairment (MCI) subjects and
(scores) on the space spanned by principal components are tmermal controls (NC), with the hypothesis to nd disease-tel
dimension-reduced input data for the fusion CCA algorithm.  association between these two modalities. Since diseladedre

PCA solves the singularity problem in these fusion method$eatures are visible in all modalities to varying degreéeso(es
but does not take into account that in many cases only &t al., 201), fusion methods can match disease-related patterns
small proportion of voxels (features), called informativexels  in a two-group setting. Hence, the group discrimination and
(features), have contribution to the variance, and a largéhe correlation withb-amyloid measurement can be used to
proportion are non-informative. If principal components were evaluate how well fusion methods match disease-relatedrpatte
obtained with non-informative voxels (features) assigtezero, across modalities.
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THEORY penalty consisting of the; and L, penalty as shown in
. . Appendix B in Supplementary Material, and, thus, the principal

Sparse P“nCIpal Component AnalySIS C(E)rlr)1ponents frongpsPCA are well-de ned and uninL)Je e\F/)en

(SPCA) whenm  n (Zou et al., 2006 Following the derivation in

Derivation of sSPCA Appendix A in Supplementary Material, Equation (5) can be

LetXdenoteam mfeature matrix withrankX/  min(n,m), rewritten as:

wheren is the number of observations and is the number

of features in each observation.Xfis a brain map, as in our ~ maximized D u'Xv, st. kuk3 D 1, kvk3 D 1, kvk; c. (6)

casen is the number of subjects and is the number of voxels. v

PCA transforms a set of observations of correlated varg@ableag shown byWitten et al. (2009)if u or v is xed, the criterion
into a set of uncorrelated orthogonal variables called ppat Equation (6) is a convex problem i or u.Thus, Equation
components that can be ordered according to the magnitudgs) represents a biconvex problem. Because a convex problem

of their eigenvalues. The rsK principal components can be ¢4 pe solved reliably and e ciently, we solve Equation (§) b
determined by minimizing the least square probleatkart and converting the equation into two convex sub-problems with

Young, 193) expressed as andv alternatingly xed.
fopy D _min ZjiX K, (1) [lterative Algorithm for sPCA . .
KaM(K) 2 Equation (6) is solved by an iterative algorithm modi ed kds

on the sPCA algorithm inwitten et al. (2009) We start with
whereM(K) is a set of matrices with ranM)D K andk k2 means  an initial valueu D .4- and then update to maximizeu” Xv as
the squared Frobenius norm (sé@pendix A in Supplementary  expressed below :
Material for more detail). PCA is closely related to singwalue
decomposition (SVD). Using SVIX can be decomposed into max\i/mizeaTv st. kvk% D1,kvk, ¢ aDX'u. @)

T T T
XDUDVS, UTUD Ik, VIV D Ik, @ Appendix C in Supplementary Material shows that the optimal

. . . . 9a, ) . .
whereU 2 R" K andV 2 R™ K are the left and right solution in Equation (7) isv D KSa 7" The function S is

singular vectors of satisfying the orthonormality condition, and the (vector-valued) soft threshold function given Bya,m/ D
D Ddiag(d,:::,dk) 2 RK Kis the diagonal matrix of ordered Sign.a/ max.0.,jaj nv, where thesign(.) and j,j operation

Singular Values OX W|th dl d2 s dK > 0 The 0pt|ma| act on eaCh element Of vecter If m D 0 Satls eSkal
R in M(K) can be written as c, thenv Dﬁ@' Otherwise,m is determined e ciently by a

X binary search algorithm to havkvk; D c At a xed v,

KD guvT (3) Equation (6) becomes
iDL
Coa T 2 T
. maximizeu' bst. kuks D 1, bD X'v. 8

wherey; 2 R" Tandvi 2 R™ 1 denote the-th column vector u 2 (®)

of U and V, respectively. Following the notation in SVD, the ) o ) o

objective functiorfyp; for only one component can be written as  The optimalu is simply the unit vector along direction, namely,

u D Rbk; D WXQ The alternating iteration stops when a
convergence criterion is satis ed. Th&hs updated by removing
the variance contained in the previous principal component
by X X duv', and the next pair ofu and v is computed
by the same iterative algorithm unti principal components
are found.

1 T 2 2 2
fopj diu,v D 5 X duv o st. kuks D 1, kvk5 D 1, d > 0(4)

Considering that there are many voxels but few subjects aham
m n, the sparsity in our study is only implemented to set non-
informative voxels to be zero. Becausds a set of voxel-wise
spatial maps, sparsity was incorporated into the projectionorect L .
vi but not the score vectom;, which is di erent than the sPCA Parameters Selection in sSPCA by Split-Sample Cross
method in Witten et al. (2009)who applied sparsity constraint Validation

on both singular vectorsl and v. For this reason, we derived A ten-fold cross validation method is used to estimate the

the sPCA formula with ar.; penalty on variable added to the  parameters in sPCA, including the optimal sparsity tuning

fopj d,u,v in Equation (4): parameterc and the best number of principal components
N s K . The ow chart for thesplit-sample cross validation method
fopj d,u,v D 5 X duv’ oo St kuk3D 1,kvk3 D 1, kvk; ¢ d> 0, is shown in Figure 1 For data matrix X, each subject is

randomly assigned to one fold. L&) denote the data from
the subjects assigned in tliefold dataset andX() denote the
where the parametec is the Sparsity tuning parameterA data except the data in tHefOIdidataset. Principal components
smallerc means that more elements in the principal componentare computed from matrixX("), and then these principal
v are set to zero and the principal component becomesomponents are applied oK(®) to estimate parameters based
sparser. We would like to emphasize that sPCA has the elastn a selection criterion, and, nally, the mean value of the

(%)
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estimated parameters in each fold of the data is used forrfiusiovhere 4 is the canonical correlation betweekyy and Aygy.
analysis. Mathematically-factor sPCA is applied on matrix Finally, the spatial map<; and C, corresponding toAz
NG by 2((f) ! ] U(f)D(f)V(f)TwhereiU(?)D [l{(lf)ﬁ::’ Ug)]' Zggoﬁéi,nrgetsopectively, are calculated by least square estimation
vHp [v(lf),: o ,vg)] and D" Ddiag df .o dg) . Then, the
~ C:DASK;, rD1,2 (11)

principal componentsV(®) are used as regressors in a linear
regression model to t each sample in the untouched datavhere the C” superscript indicates the Moore-Penrose

) HC A nooT pseudoinverse. In Equations (9) and (11) we could have used the
X, namely, D V © X' and bV - The  qriginal data matrixX; instead ofiX;. A schematic owchart of

Akaike Information Criterion AIC) (Akaike, 1974; Shumway SPCACCCA is shown inFigure 2
et al., 200pis used to evaluate how close the reconstructed
matrix K" is to X(). The AIC provides a tradeo between MATERIALS AND METHODS

oodness-of- t (minimum log-likelihood) and complexity ofie . .
?nodel Sui et a(ll., 2010 Wit?en et al. (;009)usedpthe )r/nean- Slmu_latlon 1:sPCA ,VS' PCA .
square-error (MSE) as the criterion in a cross-validatiorttme ~ 1h€ Simulation was carried out to evaluate whether sPCA is
that is based on an imputation algorithnT(oyanskaya et al., s_ensmve to the noise in the data at di erent sparsity Iev§I1s_e
2009). The optimal sparsity tuning parameter was selected Simulated dataX was generated based on the fonD YV,
by minimizing MSE with only the rst principal component where Y D [:::yn, 23] is the intrinsic principal component
(K D 1) considered. This method cannot estimate the numbefCOres andv D [:::vq, 2] is a set of orthogonal maps. The
of principal component since MSE always decreases witpsimulation consists of 80 sgmpleg, and 3 intrinsic principal
increasingK. We have revised the cross-validation method incomponents, henc¥ has a dimension of 80 3. To analyze
Witten et al. (2009)with AIC as the criterion and compared whether the |mprqvement.made by |ntrod.ucmg sparsity to PCA
AIC with the split-sample cross-validation method. We found'€lates to the spatial sparsity level of the signal, we hawesied
that the split-sample method is more reliable and accurate i€ data with sparsity levels of 30, 50, and 70%. Here, the gparsi
estimating parametergéppendix D in Supplementary Material '€Vel is de ned as the percentage of zero elements in the map.
describes the calculation @IC and the comparison of these Figure 3shows the principal component scorésin Figure 3A
two cross-validation methods in more detail. Ldf{ K(f)} gnd_thelr com_aspondlng spatial maps at 70% sparS|_ty Ievgl
denote the parameters having minimusiC for thef-fold cross- N Figure 3B without threshold. The images have a d|r_nenS|on
validation, the optimal sparsity tuning parameter is de ned  ©f 91 109 3, and only the second slice of the spatial maps
as the average ovef), and the optimal number of principal IS Shown. _ o
componentsK is the rounded integer of the average o¥&p. Gaussian noiseN was added to create noisy images

The estimated parameter set {K } is used in the SPCBCCA and Gaussian smoothing with Full-Width-At-Half-Maximum
fusion analysis. (FWHM) of 8 mm was applied to introduce spatial correlation.

The simulated data were generated with Peak Signal-toeNois
sPCACCCA Ratio (PSNR) of 5, 10, and 15 dB, which are similar to the PSNRs
In SPCACCCA, PCA is replaced by sPCA for dimension-used inSuietal. (2010PSNR is de ned as
reduction. The sPCA method is applied to reduce the data
dimension for each modality separately, i¥, ! & D PSNRD 20 logio .
U:DrV[, r D 1,2. In this step, the sparsity tuning parameter MSE

G, r=1.2, and the number of principal componerks, r = 1.2,  Here, maxvalis the maximum possible pixel value and MSE is
are optimized for each modality by using the split-sample crosspe mean squared error between noisy and noise-free images. A
validation method described in section Parameters Seledti higher PSNR indicates a higher image quality. The simufatio

SPCA by Split-Sample Cross Validation. The dimension-reduce, s carried out 100 times using the saiieand V, but with
dataset; 2 R" K is the principal component score given by i erent noise realizations.

maxval

(12)

Y, DXV, rD1,2 (9) Simulation 2: Comparison of Fusion
Methods

The simulation was carried out with sparsity level 70% at
; . i ) moderate signal-to-noise ratio with PSBRO0 dB. The sparsity
1,2, denote the canonical transformation matrices. Thelt®® 6,0/ ysed in the simulation is close to the estimated sparsity
canonical variate# D Yfz_r are called modulation pro les. level in the real data as mentioned below in Parameter Sefecti
Only the matched modulat|on.pro les between datasgts a'%ection. Two simulated modalities were generated by fatigw
correlated, and all other modulation pro les are uncorredi.e., the steps described in section Simulation 1: SPCA vs. PCA
AT Ay D 4> 0, fordD 1,:::, DID D min(K,.K,) (10) except we .replace the intrinsic principa! component scores
1gh2d = od 7 172 by modulation prole A; and A, respectively, for the rst
ArTldlArzdz D 0, ford; 6Dd; andrq,r2 2 1, 29, and second modality. The modulation pro lef\{, A,} satisfy

Then, CCA is applied to link the datd; and Y2 by maximizing
the canonical correlation betwe&f1Z; andY»Z,, whereZ,,r D
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Run sPCA(c, K)
X0 5 yNDpHyHT  Hi

essansasasanss

tHH
.

20 = (vig)”

subjects

= me;anc‘/’
|k = round(me'an K9y

[l remove [ ] keep /
f fold

FIGURE 1 | A schematic diagram of the split-sample cross-validation rethod in sSPCA. X is the data matrix. Each subject is randomly assigned to oneofd, x®

denotes the data from the subjects assigned irf-fold data and X® denotes the data with X® excluded. The ‘C” superscript indicates the Moore-Penrose
pseudoinverse.

Modulation
g profile
Feature |
; N, =
Patients ek 5 C, « AR,
X, T DV Yy« XV, l
Controls Ared <
CCA (Y, Y,): Canonical  Associated
Feature 2 argmaxcorr(Y,Z,,Y,Z,) variates components
7,2,
Patients - l\']:
s . -
X U, Dy, V, Y, « XoV, T C, « A3X,
Controls <

FIGURE 2 | Flow chart of SPCACCCA. sPCA was carried out reduce data dimensions and to supg@ss irrelevant features. Then, CCA was carried out for fugio
analysis to obtain modulation pro les and associated compoents. In the ow chart Rr D UrDrV,T with r D 1, 2, is the data matrix of the two modalities obtained
from sPCA.

the orthogonality condition in Equation (10). The canonlica The resting-state fMRI data, T1 structural data, and
correlationsr betweenA; (red curve) andA; (black curve) are corresponding clinical data were downloaded from the ADNI
[0.70,0.45, 0.22] as shownkigure 4A. The three corresponding 2 database before September 18, 2016. All subjects used in this
pairs of sparse spatial maps are showRigure 4B The rstpair  study had orbetapir {8F) PET scans within 6 months of MRI

of canonical variables inAj, Ay} were simulated to be group- scans. All MCI subjects had an absence of dementia (clinical
distinct using 40 subjects for each group. The simulation wadementia rating of 0.5), a memory complaint and objective
carried out fty times using the same modulation pro les and memory loss measured by education adjusted scores on the
spatial maps, but with di erent noise realizations. The averagWechsler Logical Memory Scale Il, an absence of signi caml$e

performance is reported in the Result section. of impairment in other cognitive domains and essentially had
preserved activities of daily living. All subjects were seahon
MRI/fMRI Data and PET Analysis a 3.0-Tesla Philips MRI scanner. The magnetization prepared

Structural MRI and resting-state fMRI data used in this studyrapid acquisition gradient echo (MP-RAGE) sequence was used
were downloaded from the publicly available ADNI databaseto acquire T1-weighted structural images by the investigaof

The ADNI was launched in 2003 as a public-private partnershipthe ADNI consortium. The structural MRI scans were collected
led by Principal Investigator Michael W. Weiner, MD. The with a 24cm eld of view and a resolution of 256 256
primary goal of ADNI has been to test whether serial MRI,170, to yield a voxel size of 1 1  1.2mm. Resting-state
positron emission tomography (PET), other biological markersfMRI data were acquired from an echo-planar imaging sequence
and clinical and neuropsychological assessment can be ceahbi with parameters: 140 time points; TR/TE 3000/30 ms; ip

to measure the progression of mild cognitive impairment (MCl)angleD 80 degrees; 48 slices; spatial resolufi»rg.3 mm

and early Alzheimer's disease (AD). 3.3mm 3.3mm and imaging matriXD 64 64. Details of

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 642


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Sparse PCA in Data Fusion

A -
!
c v 1 .
1 ! r
- s ' B; . [ g_ '
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5dB 10dB 15 dB 5dB 10 dB 15dB
PSNR PSNR
FIGURE 3 | Simulation 1: Comparison of sSPCA and PCA(A) Simulated principal component scoresY D [y1,Y2,y3]. (B) The spatial mapsV D [vq, Vo, V3]
corresponding to the scores with 70% voxels having zero vaks. Simulated data were generated 100 times with PSNR as 5 dB10 dB and 15 dB and sparsity level
as 0.3, 0.5, and 0.7. (C) Boxplot for the similarity value with true principal compoent scores Sy. (D) Boxplot for the similarity value with true spatial mapSy. The
boxplot for sPCA is shown in red and for PCA in blue.

the ADNI MRI protocol can be found on ADNI website (http:// structure in patients compared to normal controléd and Evans,
adni.loni.usc.edu/). If one subject had multiple MRI/fMRI scans2010; Power et al., 20)L1n graph theory and network analysis,
satisfying the requirements speci ed above, the rst aldda centrality is a measure of importance of a node in the graph
MRI/fMRI data set was used for analysis. The Standard Uptak@avelas, 1948We used eigenvector centrality mapping (ECM)
Value Ratio (SUVR) analysis was carried out to measure (e analyze functional networks. ECM is an assumption-free-non
amyloid on ADNI orbetapir PET scans by site investigatorsparametric method that can e ciently carry out voxel-wise who
and the SUVR data using a composite reference regions weleain nodal analysis. A variant of eigenvector centralitgtthas
downloaded from the ADNI website. The correlation betweerbeen applied successfully is Google's PageRank algorizhyar
SUVR measurement and the result of fusion methods was usethd Leise, 20Q6which is used as the Google search engine.

to evaluate the performance of di erent fusion methods. Iretipt In the ECM algorithm, am m similarity matrix (for

37 MCl subjects (agb 73.7 6.7 years; gendé 19 female/18 example a correlation map between voxel-wise time series) is
male) and 42 NC subjects (a@e75.0 7.3 years; gendd 24  constructed and the eigenvector centrality map is the eigetor

female/18 male) were selected. corresponding to the largest eigenvalue of the similaritytrira
Here, the value at node (voxel)s de ned as the-th entry in

FMRI Data the normalized eigenvector. Because the normalization istep

Preprocessing ECM reduces the centrality value in a map with more nodes,

The rst 5 volumes were excluded from the analysis. The fMRR group mask with the same nodes is used for all subjects
time series were slice-timing corrected and realigned te thwhen applying ECM on fMRI data. Individual masks were rst
rst volume using SPM12, co-registered to the individual T1calculated by thresholding the mean fMRI signal intensityGftl
images and then normalized to the MNI152 2mm templateof the maximal mean signal intensity for each individual jgat,
using Advanced Normalization Tools (ANTs) (hitp:/stnava.and then the group mask was chosen to be the intersection of
github.io/ANTs/). Nuisance regression was carried outhwit all individual masks and the MNI152 gray matter mask. The
six head motion parameters along with signals extracted frorkCM maps of resting-state fMRI time series for all subjects
white matter and CSF [3-mm radius spheres centered at MNwere calculated using the Fast ECM algorithivifk et al.,
coordinates (26, 12, 35) and (19, 33, 18)] Chen et al., 205  2013. Unlike the basic ECM algorithm, the Fast ECM algorithm
The resulting time series were smoothed further with a 10-mn€an estimate voxel-wise eigenvector centralities comjuutally
Gaussian kernel and band-pass Itered to be in the frequencinore e ciently because the Fast ECM computes matrix-vector
range 0.01-0.1Hz. These steps were computed with MATLABroducts directly from the data without explicitly storing éh

(The Mathworks, Inc., version R2015a). correlation matrix. The 3D ECM map of each subject was masked
and reshaped to a one-dimensional vector with 128257 non-zero
Eigenvector Centrality Mapping (ECM) voxels and the ECM maps of all subjects were represented as

Many studies have shown that graph-theoretical analysia two-dimensional array of dimension 79 128257. The ECM
methods can help elucidate the disruption of brain networkmaps were corrected by regressing out the e ects of age, gender
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regressing out the e ects of age, gender and handedness. The
corrected VBM matrix, denoted asypm, constitute the other
modality used for fusion analysis.

SPCACCCA, PCACCCA, sCCA, and
Parallel ICA

To see the improvement achieved by replacing PCA with sPCA,
both sPCACCCA and PCACCCA were performed on simulated
and real imaging data. In addition, SPCACA was also
compared with parallel ICA using the Fusion ICA Toolbox (FIT,
http://mialab.mrn.org/software/ t/). Furthermore, a coparison
with spars€CCA (sCCA) was carried out.

Parallel ICA

Similar to ICA computing maximally independent components
in one dataset, parallel ICA nds the hidden independent
components from two datasets simultaneously with the
association between modalities considerédl (et al., 200Q
Parallel ICA is realized by jointly maximizing the independe
among components in each modality and the correlations
between modalities in ainglealgorithm. The maximal number
of correlated componentsi.c are pre-de ned and only the
correlation above thresholdiye is considered. More detailed
description can be found ihiu et al. (2009and the fusion ICA
toolbox (Fulop and Fitz, 2006(http://mialab.mrn.org/software/
t/) documentation. Parallel ICA was carried out with staa
FIGURE 4 | Simulation 2: Comparison of fusion methods(A). Three pairs of PCA and the default “AA" parallel ICA algorithm using the FIT
simulated modylation pro les sat_isfying the orthogonalitondition. (B). toolbox. Parallel ICA was repeated ten times for consisterieg. T
Simulated spatial maps at sparsity level 70%(C) Bar plot of the AUC . . . .
measurement, similarities$a) between estimated and true modulation default ICA OptIOI’IS were used in the anaIySIS' The maX|ma”y
pro les, and their corresponding spatial maps 8¢). allowed descending trend of entropy wa®.001, the maximum
number of steps was 512 and the default learning rates (0.0063,
0.0065) were used. Since the performance of parallel ICA
depends on the hyperparameters including the maximal number
of correlated componentscand the correlation thresholdiye,

we have used ve pairs of hyperparametersg{ wnre}D{1, 0.2},

T1 Images {1, 0.4}, {3, 0.3}, {5, 0.2}, and {5, 0.4} for both simulated @eal
Voxel-Based Morphometry (VBM) data. The best performance was used to compare with other

VBM is a common automated brain segmentation techniqudusion methods.

that is used to investigate structural brain di erence (vole

dierences) among dierent populations Ashburner and Sparse CCA (sCCA)

Friston, 200). A standard VBM processing routine was createdJnlike the SPCAACCA method that enforces sparsity during the
with the SPM12-DARTEL toolbox Ashburner, 200y, The dimension reduction step, SCCA associates the original Hata
following processing steps were carried out for VBM: (a) the ravand Xz directly with asparsity constraint applied on the canonical
T1 structural images were bias-corrected for inhomogeesit transformation matricesThe obtained transformation matrices
brain-extracted and segmented (“Nat’BARTEL imported” and the canonical variates present the spatial m@pand the

is selected in “Native Tissue” option) into gray mater, whitemodulation pro les A, respectively. The iterative algorithm for
mater and cerebrospinal uid probability maps; (b) a custonize SCCA is described in detail ivitten et al. (2009)

template was created using the SPM12-DARTEL “create

template” module; (c) gray mater volumes for all subjectsewerParameter Selection

normalized and registered to the MNI152 2 mm template usingro avoid over tting, we carried out parameter selection fdr a
the nal DARTEL template in “create template” module and fusion methods. The number of sparse principal components
nally smoothed using an 8 mm FWHM Gaussian lter. The used in SPCECCA was determined by the AIC-baseyplit-

3D VBM map of each subject was masked and reshaped tosample cross-validation methddscribed in section Parameters
one-dimensional vector of 171705 non-zero voxels and thB1VB Selection in sPCA by Split-Sample Cross Validation. For the
maps of all subjects were represented as a two-dimensiorsgl arrECM and VBM modalities, the optimal numbers of principal
of dimension 79 x 171705. The VBM maps were corrected bgomponents were 10 and 7, respectively, and the optimal

and handedness. The corrected ECM matrix, denotel @S,
was used for fusion analysis.
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sparsity levels were 70 and 80%, respectively. The same crodgem and Aypym to determine how well fusion methods extract

validation method was also used to determine the numbedisease-related modulation pro les and corresponding patern

of conventional principal components in P@XCCA and in  and theAUC for each modality also was calculated.

parallel ICA by simply replacing sPCA with the standard PCA

algorithm. 7 ECM principal components and 6 VBM principal RESULTS

components were found for these two fusion methods. While

minimizing MSE based on CCA potentially can be used to sele@imulations

the parameters in SPGACCA or PCACCCA as suggested by Conventional PCA and sPCA were carried out 100 times on a

Lameiro and Schreier (201,6he high dimensionality of the data series of simulated data with PSNR as 5 dB, 10 and 15 dB and

and the SVD over a large cross-covariance matrix makes thike sparsity level as 30, 50, and 70%. The boxplot for similarity

parameter selection method infeasible for our study becaiise valuesS, and S, of SPCA (red color) and PCA (blue color)

computational time and memory. The optimal sparsity tuningwere shown inFigure 3C and Figure 3D. When the sparsity

parameter in sSCCA was estimated by the cross-validation oweth level and PSNR is low (e.g., sparsity leDeB0% and PSNR

presented inVitten and Tibshirani (2002)With this method, the D 5 dB), the improvement by introducing sparsity constraint

optimal sparsity level is 73% for the ECM dataset and 79% for the negligible. With increasing PSNR or sparsity level, SPCA

VBM dataset. outperforms PCA in uncovering the true principal component
To compare how well the sSPCA and PCA methods extract thgcores and corresponding spatial maps.

intrinsic principal component score¥™'¢ and the spatial maps In simulation 2, fusion analysis was carried out fty times

V€ in simulation 1, the similarity between the estimated andon the simulated data with PSNR 10 dB and sparsity level

the true scores and maps were computed at di erent noise level®%. Figure 4C shows the mean value of AUCS and

by following equation & for these four fusion methods including sPCECA,
PCACCCA, parallel ICA and sCCA. The sPCACA has the
3, corr ylrue yest best performance among these fusion methods. Compared to
S{ D dD1 d d 2 [0 1] )
3 b PCACCCA, sPCACCA has improved measurements of AUC
true | est and S by approximately 10%. The correlation err@r for

3
dp1 COIT Vg
3

v V4

2 [0,1]. (13) sPCACCCA, PCACCCA, parallel ICA and sCCA are 0.11, 0.16,
0.17, and 0.35, respectively. Results indicate that SBCEA
achieves correlations closest to the simulated correlatiand
sCCA signi cantly overestimates the correlation while dter
fusion methods underestimate the correlation.

S/ D

The similarity valueS, close to 1 indicates that the estimatégf!
agrees well with the true scor&d™®. Similarly, the similarity
valueS, close to 1 indicates that the estimaté@agrees well
with the true spatial mapy .

When comparing the fusion methods in simulation 2, the Real fMRI Data
evaluation is focused on how well these methods distinguisR”CA VS: PCA _ _
two groups and uncover the modulation proles and their The principal compqnents havmg largest variance from sPCA
corresponding spatial maps. The receiver operating charatiteri @nd PCA are shown ifrigure Swithout threshold for the ECM
(ROC) was used to evaluate group classi cation and the ard§aPs Figure 5A) and VBM maps Figure 5B). The color bars

under ROC curves (AUC) were calculated. The similarity?® di erent for these spatial maps to better visually represent

between true modulation pro |e$\|trrue and the estimated one, the principal components. The ECM principal component
Aest was computed, namely obtained from sPCA shows a clear default mode network (DMN)
r ’ ’

pattern and the VBM principal component have non-zero voxels
P, P3 corr Aliue pest centered at the hippocampus. Compared to the spatial maps
rD1  dD1 rd

S D d 2 [0,1], of PCA, sPCA has similar principal component maps but with
P, P, 6 - a large proportion of voxels removed. A group comparison of

corr C''¢ C inci
D rD1  dD1 d 2 ~rd 5 [0, 1]. (14) the principal component scores from sPCA and PCA on ECM

6 and VBM modality is applied. The sPCA method has achieved
the most signi cant group di erence with uncorrecteghvalue
The similarity for spatial map€fs'as de ned in Equation (11) 0.01 and 0.008 on ECM and VBM modality, respectively. In
was a|§o computed. Furthermore, we used the correlatiorr errgontrast, PCA has obtained less signi cant group di erence
D ol (t{”e %) to measure how close the estimatedwith uncorrected p-value 0.03 and 0.02 on ECM and VBM
correlation ©St and intrinsic (true) correlation "™© are. A modality, respectively.
positive sign ofl indicates that overall the correlation is
underestimated and a negative sign indicates the coroglati Fusion Analysis
is overestimated. For each fusion method, the modulation pro légcyandAvewm
For the real imaging data, the ECM arra§ecv and VBM  were calculated and two-sampleests with unequal variance
arrayXypm were used for fusion analysis. Two santplests with  were carried out to assess group di erence. The ROC technique
unequal variances were applied on modulation pro lagscy  was applied on modulation pro lef\ecm and Aygm, and the
andAvgm. ROC analysis was carried out on modulation pro lesAUC was calculated. Group classi cation accuracy was also
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FIGURE 5 | The standardized principal component maps having largestariance from sPCA and PCA(A) ECM principal component,(B) VBM principal component.

calculated by running ten-fold quadratic discriminant dysis signi cant components inAgcu are shown inFigure 6. All
(QDA) on modulation proles from both ECM and VBM spatial maps were thresholded at 1.5 except the one
modalities. The most signi cant component é&fgcym or Aygw  from parallel ICA. The ECM spatial map from parallel ICA
from two-samplet-tests always had the largest AUC value. Thenly showed an artifact on the brain boundary if thresholded
AUC and Bonferroni-corrected value for multiple comparisons, at z 1.5, hence the threshold was lowered zo 1
denoted aspeor, Of the most signicant components are for better interpretation. Anterior cingulate cortexBianciardi
shown inTable 1 The correlation between the most signi cant et al., 200p was shown in the spatial patterns for all fusion
components is also listed in this table. SROBCA found one methods. Both PCE&CCA and parallel ICA show some artifacts
signi cant component in both ECM and VBM data (ECM: at the boundary of the brain. Bilateral superior temporal gyru
Peor D 3.4 104 AUC D 0.78; VBM:pecor D 2.6 and bilateral amygdala were found in the ECM spatial pattern
10 4, AUC D 0.81). sSPC&CCA associated these two signi cant from sPCACCCA.
components at the 1st pair of canonical variates with candnica VBM z-score maps corresponding to the most signi cant
correlation D 0.78. PCECCA found one signicant components inAygy are shown inFigure 7. The spatial maps
component in both ECM and VBM dateECM: p,,, D 2.9 were thresholded at 2. The VBM spatial maps are very
10 2, AUC D 0.71; VBM:pecorr D 2.0 10 3, AUC D 0.73). similar except the one from PGACCA. In the VBM spatial
PCACCCA associated these two signi cant components at thenaps, all fusion methods show gray matter atrophy in bilateral
1st pair of canonical variates with canonical correlatiod 0.48. hippocampus and inferior temporal gyrus.
Parallel ICA found one signi cant component in VBM but not  Since the performance di erence among these fusion methods
in the ECM data (ECMpcorr D 0.10, AUC D 0.68; VBM: shown inFigure 6 and Figure 7 may be a ected by the number
Peorr D 1.8 10 3, AUC D 0.75). The correlation between the of remaining principal components, we have run sROBCA,
most signi cant component in ECM and VBM was D 0.27. PCACCCA and parallel ICA with the number of principal
SCCA found two signi cant ECM components and one VBM components ranging from 4 to 20 for both ECM and VBM
component (ECMpeor D 1.3 10 2, AUCD 0.70 andpeoy D datasets. For each fusion method, the most signi camt
4.7 10 2, AUCD 0.55; VBMpeorr D 1.6 10 2, AUCD 0.70). values for group discrimination with the number of principal
The correlation between the most signi cant component in ECMComponents varying from 4 to 20 were recorded and the
and VBM was D 0.80. Among these four fusion methods, distribution of p-values is shown ifrigure 8 The VBM datasets
SPCACCCA achieved the highest group classi cation accurac{Verall has more signi cant group di erence than ECM dataset
0.68, which was more than 99-percentile of the null distiont ~ COmpared to PCECCA and parallel ICA, sPCBCCA tends to
The classi cation accuracy with concatenated ECM and VBMaVep-value more signi cant.
principal component scorewithout fusionas input features to
QDA was 0.57. Correlation Between Disease-Related Modulation

The spatial patterns for these four fusion methods were alsBro les and b-Amyloid Measurement
computed for sSPCECCA and PCACCCA by using Equation The most disease-related modulation pro le Agcy and Aygm
(11). ECM z-score spatial patterns corresponding to the mostere correlated with SUVR, a measure lmémyloid content
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TABLE 1 | Measurements of the modulation pro les in sSPCACCA, PCACCCA, parallel ICA and sCCA.

Methods ECM VBM Correlation Classi cation accuracy
Pcorr AUC Pcorr AUC

SPCACCCA 34 10 4 0.78 26 10 4 0.81 0.78 0.68

PCACCCA 29 10 2 0.71 20 10 3 0.73 0.48 0.61

Parallel ICA 0.10 0.68 1.8 10 3 0.75 0.27 0.58

SCCA 13 10 2 0.70 16 10 2 0.70 0.80 0.60

sCCA obtains the highest correlation due to over tting, but has very lowalues in AUC. sSPCACCCA has largest AUC and a large correlation indicating that this method &iperior to the
other 3 methods. pcorr denotes the p value for group discrimination with multiple comparison correction. The gup classi cation accuracy is obtained by running quadratic discriminat
analysis on modulation pro les from both modalities. The most signi ant p-value and the largest value for each measurement are in bold fon

FIGURE 6 | The most signi cant disease-related ECM z-score maps from sSEACCCA, PCACCCA, parallel ICA and sCCA. Maps are displayed in radiologita
convention (right is left and vice versa). All spatial mapsethresholded atz 1.5 except the map from parallel ICA that is thresholded at z 1. Parallel ICA would not
show the anterior cingulate cortex if the map is thresholdea@tz  1.5.

calculated from the PET scans within 6 months of MRI scangdata. A novel split-sample cross-validation algorithm wiiC
The correlation plots are shown iRigure 9. Each value in the as selection criterion was validated for sPCA to determine
ECM modulation pro le measures the strength of functional the sparsity tuning parameter and the number of principal
connectivity for one subject, and a more negative valuecaidis components. The sPGACCA fusion method extracts disease-
lower functional connectivity. Similarly, each value irethiBM  related modulation pro les with the highest statistical power
modulation pro le measures the amount of atrophy for onein real data. While sPCA and its variants were applied for
subject, and a more negative value indicates more seveggtr noise elimination and functional segmentation in neuroigiveg
Among these plots, only the VBM modulation pro le in sSPCA research(Ifarsson and Solo, 2007; Ng et al., 2009; Khanna et al.,
had a signi cant negative correlation with SUVR € 0.05) and 2015, to the best of our knowledge, this is the rst study to
the other correlations were not signi cant. sSPC&ACA had the implement and validate sPCA in fusion analysis.

strongest correlation with SUVR in both ECM and VBM data.

Properties of SPCA
DISCUSSION Since sPCA is a sparse version of PCA, naturally they have
some common properties. Both are linear techniques for
To the best of our knowledge, our study is the rst studydimensionality reduction. High-dimensional data is projedtto
proposing the sPC&CCA method and comparing it with  asubspace spanned by the dominant principal component scores
other methods for fusion analysis of multimodal brain imagi so that most of the variance in the original data is kept in a

Frontiers in Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 642



Yang et al. Sparse PCA in Data Fusion

FIGURE 7 | The most signi cant disease-related VBM z-score maps from sEACCCA, PCACCCA, parallel ICA and sCCA. Maps are displayed in radiologita
convention (right is left and vice versa). All spatial mapsese thresholded at z> 2. Note that PCACCCA does not give a bilateral disease-related pattern.

FIGURE 8 | The distribution ofp-values for group discrimination with the number of princial components ranging from 4 to 20. VBM dataset has more signiant
p-value than ECM dataset. The sSPC&CCA method has more signi cant group discrimination than PCECCA and parallel ICA.

low-dimensional feature space. However, sPCA is di erentrfro the following CCA analysis. In the sPCACCA fusion
PCA in terms of robustness, implementation, orthogonality, method, sPCA itself does not have discriminatory power.
and computation. However, it was shown that sPCA is more robust against
noise than conventional PCA. The similarity valugs and

1) RobustnesssPCA not only searches for the direction to S, in Figure 3 indicate that SPCA outperforms PCA in

maximize variance but also discriminates informative Isxe ncovering the tr fincinal component ; nd tial
from non-informative voxels as a data-driven approach. In uncovering the true principal component scores and spatia

other words, SPCA is useful when the number of features is Maps, especially when the sparsity level is high. The robust
large, while only a small proportion of them are informative. ~ scores from sPCA improve the subsequent CCA analysis
In many cases the salient features such as age- and diseaseto better link related modulation proles and extract the
related features in the modalities are limited to only a few corresponding spatial patterns in the data.

regions but not the entire brain. The SPCA method adjust2) Implementation Unlike PCA, which represents a standard
principal components by setting non-informative voxels to  eigenvalue problem, sPCA is a constrained optimization
zero and hence obtains more robust scores (projection of problem and optimized by an iterative algorithm. The
original data on principal components) as the input to  objective function in sPCA is a biconvex function and is
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FIGURE 9 | Correlation between the most signi cant modulation pro les h ECM and VBM modalities with SUVR. The signi canc@-values for ECM pgcy) and VBM
data (pygm) in SPCACCCA, PCACCCA, parallel ICA and sCCA are also shown. The SUVR measureseticontent of -amyloid using PET scanning. The ECM
modulation pro le of the disease-related pattern measureshe strength of functional connectivity. A more negative vaé indicates lower functional connectivity. The
VBM modulation pro le of the disease-related pattern relats to the amount of atrophy. More atrophy is present for negatie values of the VBM modulation pro le.
Note that SPCACCCA has the most signi cant negative correlation with SUVR.

solved by optimizing two convex subproblems, both of whichperform well in our simulation. In contrast, generating data
can be solved reliably and e ciently. without the assumption of orthogonality would make the
3) Orthogonality The orthogonality no longer strictly holds simulation more biased toward parallel ICA. Among the four
when the Ly norm penalty term is added in sPCA. fusion methods considered, sCCA overestimates the cdioala
However, at the optimal sparsity tuning parameter, the mearetween modalities and also has low similarity. Unlike sCCA
absolute correlation with sign ignored between dierenthaving original voxel-wise input features, SPCBCA along
principal components is 0.054, indicating that the principalwith PCACCCA and parallel ICA reduces the data dimension
components from sPCA are nearly orthogonal. beforefusing modalities and thus possibly may discard some
4) Computation sPCA is more computationally intensive than correlated features that have low variance. The voxel-wiset i
standard PCA. Along with choosing the number of principal features to SCCA, however, are much larger than the number
components as in PCA, sPCA also needs to specify thef samples. For example, the number of non-zero features in
sparsity tuning parameter. Overestimated sparsity would beCCA is at the order of a thousand, while the number of input
detrimental since informative voxels are also removed, angbatures to CCA in sSPCBCCA is of the order of ten. The
underestimated sparsity may not signi cantly improve thegastic-net penalty as a sparsity constraint may not be su cient
analysis. A grid search in PCA is carried out over theg gjleviate an overestimated canonical correlation fetehip
number of principal components, and a grid search in SPCAyng thus sPC&CCA still outperforms SCCA in both simulated
is carried out over a sparsity tuning parameter and theyng real data.
number of principal components. The grid search process | rea| data, the proposed sSPCACA method has the most
exponentially increases computational time of sPCA becau%(?gni cant disease-related modulation pro les in both mdties

more parameters need to be optimized. and the highest group classi cation accuracy. Compared to
the accuracy obtained with principal component scores as
Comparison of Eusion Analysis input, using the modulation proles as input have improved

Fusion analysis was carried out with simulated and real .dat&!2SSi cation accuracy for all considered fusion methodS(As

In the simulations, the SPOBCCA method has improved found to be dlseage-related by gl! fusion methods in ECM.dqta
performance over PCBCCA by about 10% at sparsity level Adecrgaseq functhnal conn.ectlvny of ACC was consisterth wit
70%. We have tested these two fusion methods at di ereri’® Ndings in previous resting-state fMRI studie&¢mbouts
sparsity levels and found that the improvement decreases with al., 2005; Sheline et al., 2ptahd ACC was also found
lower sparsity level until the performance di erence become#o be aected in MCI subjects by other imaging techniques,
negligible when the sparsity level is about 30%. We would likeuch as single photon emission computed tomography (SPECT)
to point out that parallel ICA does not lead to orthogonal and structural MRI studiesHuang et al., 2002; Karas et al.,
components because orthogonality is not strictly enforcellke =~ 2009. sPCACCCA found that the amygdala and the superior
CCA-based fusion methods. Thus, the simulation generatettmporal gyrusbilaterally, in addition to ACC, are important
with an orthogonality condition is biased toward CCA-baseddisease-related regions in the ECM data. Decreased funadtio
fusion methods and explains why parallel ICA does notconnectivity of the amygdala and superior temporal gyrus inlIMC
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or Alzheimer's disease subjects were also found in previdéd f  reduction, SPCA can be incorporated into these methods as well
studies Celone and Calhoun, 2006; Liu and Zhang, 2012; Yalf the structural information in the brain map is pre-speci ed,
et al., 2018 and are consistent with our results. In the VBM more sophisticated sparse constraints such as structurad lass
disease-related spatial maps, hippocampus and inferior temporgbimon et al., 2013; Lin et al., 2Q1¢an potentially be used
gyrus are found to have more atrophy in all fusion methodsin sparse fusion methods including sPCECA and sCCA.
The hippocampus is a critical region in the limbic system that iHowever, more advanced methods are beyond the scope of the
involved in motivation, emotion, learning and memory. Apby  current study.
in the hippocampus is closely related to early symptoms in AD . .
patients, such as short-term memory loss and disorientatiorl-imitations and Future Study
Early hippocampal atrophy is an established biomarker of ADThe proposed sPCA method has two limitations. First, as in
(Jack et al., 1999We also found that the inferior temporal gyrus PCA, sPCA preserves the global structure of the data but
is a ected in MCI. This region is essential in face, patterndan ignores the Euclidean structure of image space and hence
object recognition, and may already be a ected in early-stagg@y lead to discrete non-zero voxels in sparse principal
MCI subjects (Vhitwell et al., 2008 components. Second, the property of orthogonality between
The disease-related modulation pro les from sPC&CA, Pprincipal components does not strictly hold because of the
PCACCCA, parallel ICA and sCCA were correlated with thelasso penalty used in sPCA. Furthermore, the issue of missing
measure of -amyloid, i.e., SUVRKigure 9). Only sSPCACCCA data is not addressed in this study. Some subjects may
found signi cant correlation with SUVR in VBM data but not only have one imaging modality available or have data with
in ECM data. The ECM modulation pro le from sPGACCA, partial brain coverage, while some fusion methods have been
however, had strongest correlation with SUVR among all ofleveloped to address this issueigng et al., 2014; Pan et al.,
ECM modulation pro les. A more negative value in the ECM 2019, current sSPCACCA framework cannot use subjects with
modulation pro le indicates lower functional connectivitand ~ Missing data.
a more negative value in the VBM modulation pro le indicates ~ Other dimension reduction methods, such as the locality
more severe atrophy in the disease-related patterns. Sinc&Suyreserving projection methodHe and Niyogi, 2005 were
is used for longitudinal analyses in MCLgndau et al., 20)4 studied extensively in pattern recognition. However, the
the disease-related spatial pattern and corresponding madulat performance of more sophisticated dimension reduction
prole from our fusion method potentially can be used to techniques for neuroimaging studies is unknown. The auto
monitor disease severity. encoder related method€3éngio, 200pare currently of high
Similar to other fusion methods, SP@ACCA has its own interest in the deep learning research community. This roeth
assumptions and limitations. From the simulation and theis appealing for handling non-linear systems and could replace
formulation of SPCACCCA, we illustrate that the CCA step the linear PCA algorithm. One critical reason for requiring
enforces orthogonality on the modulation prole for each dimension reduction in CCA-based fusion analysis is that th
modality. In addition, implementing sparsity assumes that th number of features in standard CCA algorithm cannot be more
associated e ect between modalities is distributed lodaiiead  than the number of observations. If CCA itself can be revised
of globally across the brain. This assumption is realisticabge t0 select features adaptively and avoid the singularity jgnobl
in amnestic MCI or early AD not the entire brain shows arising from too many features, then the dimension reduatio
atrophy or loss of functional connectivity, but the diseasstes Preprocessing step may not be required.
is limited to sparse brain regions such as the inferior tempora
lobes and the posterior cingulate cortex. Enforcing spaiisity CONCLUSION
fusion analysis is applicable to many neurological diseases i
their early stages. On a computational level, enforcing fyars We have proposed a sPCA algorithm for data fusion and
signi cantly increases computational time. Computationsreve compared sPCA with three dierent state-of-the-art fusion
run on a Dell workstation with 2 Intel Xeon E5-2643 processorsmethods. We evaluated how well these fusion methods associat
This is di erent from parallel ICA and PC&CCA, where the related patterns in di erent modalities and correlated thesud
computation takes only minutes to carry out a fusion analyisis. from fusion analysis with [3-amyloid measurement (SUVR). We
contrast, sSPC& CCA needs approximately 12 h to complete thefound that SPCA can signi cantly reduce the impact of non-

analysis, and sCCA need21 h. informative voxels and improve statistical power for uncorgri
disease-related patterns. The sRGO2CA method not only
Extension of sPCA CCCA achieves the best group discrimination but also has the gieeh

We would like to emphasize that SPCA also can be appliegorrelation with the SUVR measurement. In summary, sPCA is
to other CCA-based fusion methods such as multiset CC/A powerful method for sparse regularization and dimensidpali
(Correa et al., 20)0and CCAC]jICA (Sui et al., 2010, 20).1 reduction, completely data-driven, and self-adaptive without
Unlike CCA that associates only two modalities, multiset GEA experts' intervention.

applied when more than two modalities are considered for fusio
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