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a b s t r a c t

In order to predict the risks of Alzheimer’s Disease (AD) based on the deep learning model of brain 18F-
FDG positron emission tomography (PET), a total of 350 mild cognitive impairment (MCI) participants
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were selected as the research
objects; in addition, the Convolutional Architecture for Fast Feature Embedding (CAFFE) was selected
as the framework of the deep learning platform; the FDG PET image features of each participant were
extracted by a deep convolution network model to construct the prediction and classification models;
therefore, the MCI stage features were classified and the transformation was predicted. The results
showed that in terms of the MCI transformation prediction, the sensitivity and specificity of conv3 clas-
sification were respectively 91.02% and 77.63%; in terms of the Late Mild Cognitive Impairment (LMCI)
and Early Mild Cognitive Impairment (EMCI) classification, the accuracy of conv5 classification was
72.19%, and the sensitivity and specificity of conv5 were all 73% approximately. Thus, it was seen that
the model constructed in the research could be used to solve the problems of MCI transformation predic-
tion, which also had certain effects on the classifications of EMCI and LMCI. The risk prediction of AD
based on the deep learning model of brain 18F-FDG PET discussed in the research matched the expected
results. It provided a relatively accurate reference model for the prediction of AD. Despite the deficiencies
of the research process, the research results have provided certain references and guidance for the future
exploration of accurate AD prediction model; therefore, the research is of great significance.
� 2019 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Alzheimer’s Disease (AD) is a chronic neurodegenerative dis-
ease whose clinical manifestations are mainly memory degrada-
tion and cognitive function impairment, which seriously
threatens the quality and safety of life of the seniors (Coleman
et al., 2017). Fig. 1 shows the brains of AD patients presented by
tomography. Research has suggested that the incidence rate of
dementia among seniors over 65 years old in European and Amer-
ican countries is about 4–8%, while the incidence rate of dementia
in China is 7.8%, in which the incidence rate of AD is 4.8%
(Smailagic et al., 2018). As the country with the largest population
in the world, China is about to face the increasingly serious prob-
lem of population aging, and AD would bring enormous economic
and living burdens to patients, families, and the society (Oliveira
et al., 2018).

Based on the malignant degradation of cognitive and physical
functions of patients, clinically, AD is divided into 3 stages, i.e.
the pre-clinical stage, the mild cognitive function impairment
stage, and the dementia stage (Jiang et al., 2018). In the pre-
clinical stage, the early pathological onset of the disease begins
in the cerebral cortex, cerebrospinal fluid (CSF), and blood circula-
tion of the patient; however, no significant clinical manifestations
are observed, as shown in Fig. 2. Mild cognitive impairment (MCI)
is a transitional stage between normal aging and the progression to
AD. The thinking ability and memory of MCI patients are degraded
mildly, which would affect the daily communication of MCI
patients (Ma et al., 2018). A survey has suggested that about
10–15% MCI patients are progressed to AD annually, while the
transformation rate of AD among normal seniors is only 1–2%; in
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Fig. 1. Brains of AD patients presented by tomography.

Fig. 2. The schematic diagram of the brain at the initial stage of AD.
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addition, the transformation rate of MCI in 4–6 years is about 40–
60.92% (Malpetti et al., 2017). Thus, it is seen that MCI is more
likely to be further developed into AD, which can be used as a
key breakthrough in the early diagnosis of AD.

At present, the clinical examination methods of AD mainly
include cerebrospinal fluid examination, electroencephalogram
examination, neuropsychological examination, neuroimaging
examination, and the latest genetic detection and molecular probe
detection. Neuroimaging is widely used in the field of assisted
diagnosis for the cerebral disease. It can provide rich information
about brain structure or brain functions and help researchers ana-
lyze the conditions of patients from various angles, making the
early diagnosis of cerebral disease possible (Ferreira et al., 2017).
Therefore, MCI is an important point of penetration for the early
diagnosis and prevention of AD. Based on the deep learning net-
work model, a risk prediction model of AD was proposed in the
research to predict the transformation of AD from MCI in advance,
thereby effectively reducing the incidence rate of AD. Due to the
difference in the types of data structures and the degrees of com-
plexity, the prediction effects obtained by different prediction
models applied to different fields are also different. According to
the information obtained in the previous documents, the widely
used prediction models in the imaging field include the support
vector machine and Lasso. The texture data of medical images have
strong self-characteristics, including large data dimensions, large
data variables, and a certain weak correlation between variables.
To improve the risk prediction rate of AD, this study will further
explore the key aspects of AD risk prediction based on the theoret-
ical basis of deep learning and the 18F-FDG PET image data of the
brain.
Fig. 3. Brain scans of healthy people and AD patients (the left image shows the
brain of healthy people; the right image shows the brain of AD patients).
2. Materials and methods

A total of 350 mild cognitive impairment (MCI) participants
from the ADNI database were selected as the research objects; in
addition, the CAFFE was selected as the framework of the deep
learning platform, the FDG PET image features of each participant
were extracted by a deep convolution network model; then, a risk
prediction model of AD was constructed to predict the transforma-
tion of AD from MCI in the hope of reducing the incidence rate of
AD.
2.1. ADNI and research objects

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a
global longitudinal multi-site observational study based on various
approaches such as comprehensive neuroimaging examinations,
assays of CSF and blood biomarkers, and clinical cognitive function
assessments, which aims to identify AD at an earlier stage and pro-
vide evidence for early diagnosis and treatment of AD.

Research carried out in the ADNI database is divided into 3
stages, i.e. ADNI1, ADNI-GO, and ADNI2. The first stage (ADNI1)
was completed in October 2010. Completion institutions included
a total of 57 research centers in the United States and Canada, with
a total of 819 research objects included, in which 192 cases were
AD patients, 398 cases were mild cognitive impairment (MCI)
patients and 229 were normal aging populations. Fig. 3 compares
the brain scans between healthy people and AD patients.

After the completion of the first stage ADNI1, a two-year study
was continued, which became the second stage ADNI-GO, with
new patients added. The third stage is the ADNI2 stage. The respec-
tive inclusion criteria of each group in the ADNI-GO and ADNI2
stages are as follows:

The normal control group (NC): The score of Mini-Mental State
Examination (MMSE) is between 24 and 30 points, and the Clinical
Dementia Rating (CDR) score is 0 points; in order to avoid the
potential incidence risks of AD or MCI among the objects in the
group, all the objects should be 70-year-old seniors. The tracking
acquisition time is 0, 3, 6, 12, 24, and 36 months.

The EMCI group: The MMSE score (Liu et al., 2018) is between
24 and 30 points, with complaints of memory impairment; in
terms of the scores obtained from the Logical Memory Assessment
Scale in the Delayed Memory Scale (Rondina et al., 2018), the one
whose education years exceed 16 years would get 9–11 points, the
one whose education years are 8–15 years would get 5–9 points,
and the one whose education years are 0–7 years would get 3–6
points, the CDR score is 0.5, the patient could take care of



Fig. 4. Operating principles of CAFFE framework.
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himself/herself in daily life, no obvious symptoms of dementia are
seen. The tracking acquisition time of newly included objects in
ADNI-GO is 0, 3, 6, and 12 months. The tracking acquisition time
of newly included objects in ADNI2 is 0, 3, 6, 12, 24, and 36 months.

The LMCI group: The difference from EMCI is that it compares
the degree of education with the loss of objective memory; the
one whose education years exceed 16 years would get a maximum
of 8 points, the one whose education years are 8–15 years would
get 5–9 points, and the one whose education years are 0–7 years
would get 3–6 points, and the other assessment criteria are the
same as that of the EMCI group.

In the research, a total of 350 MCI participants from the ADNI
database were selected as the research objects to analyze their
FDG positron emission tomography (PET) images. Based on the
research needs and the follow-up records of the ADNI, all the
350 MCI participants were divided into MCIc and MCInc; informa-
tion of the participant is summarized in Table 1.
2.2. Deep learning framework

Based on actual needs, the CAFFE was selected as the frame-
work of the deep learning platform. CAFFE was implemented in
C++ language and had Python and Matlab interfaces; it could
quickly realize the convolution neural network (CNN) on GPU
and conveniently convert between GPU and CPU. CAFFE had visual
interfaces in the Linux operating environment, which provided a
relatively sophisticated tool for the visualization of the deep
network.

The 3 basic results of the CAFFE framework were Blobs, Layers,
and Nets. The function of Blobs was to store and distribute various
data; common Blobs were 4D vectors, including the ‘‘Number” that
represented the number of images and the ‘‘Channel” that repre-
sented the color channels of images, where the channel of the
grayscale image was 1 and the channel of the 3-channel RGB was
3; in addition, ‘‘Height” and ‘‘Width” were used to indicate the
heights and widths of images respectively (Purandare et al., 2017).

In the implementation process, CAFFE generally included the
network layer and the pooling layer; the ‘‘Layers” are the basis
for the realization of functions of various layers, which generally
included 3 steps, i.e. the construction of layers, the forward propa-
gation, and the back-propagation (BP). ‘‘Nets” generally consisted
of multiple layers, which defined the entire network results as
input and output, etc.; it was the integration of multiple ‘‘Layer”
layers to form a complete network result. The operating principles
of the CAFFE framework are illustrated in Fig. 4.
2.3. Deep convolution network model and AlexNet

In the research, the CNN network structure was trained by the
combination of neural cognitive machine and BP algorithm; the
LeNet-5 model was used as the deep convolution network model;
the network structure was illustrated in Fig. 5.

The general network structure of a convolution neural network
(CNN) consists of an input layer, a convolution layer, a pooling
layer, a full connected layer, and an output layer (Inui et al., 2017).
Table 1
Information on research objects.

MCIc MCInc

Total number 70 280
Gender (male/female) 32/38 143/137
Age (yr) 71.7 ± 5.8 72.0 ± 5.9
Educational level 16.0 ± 2.4 16.3 ± 2.6
MMSE 27.1 ± 1.7 27.8 ± 1.5
Usually, each convolution layer was composed of several fea-
ture surfaces, and each feature surface had plenty neurons, which
were locally connected to the input to extract the local features;
meanwhile, each feature surface was interconnected and affected
the relations with other feature spaces, and multiple feature maps
would form new feature surfaces.

In the process of convolution calculation, the convolution kernel
was connected to a local region of the feature map, which was
called the local receptive field. The weight of the convolution ker-
nel shared by the entire feature map was called weight sharing.
The convolution-calculated feature maps could be expressed
through Eq. (1):
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The output of the convolution layer was permitted by locally
weighting and transferring to a nonlinear activation function (such
as Sigmoid). Currently, the activation functions could be roughly
divided into Sigmoid functions and non-Sigmoid functions, the
LeNet-5 used Sigmoid functions, which was expressed as Eq. (2)

f xð Þ ¼ 1
1þ ex

ð2Þ

Generally, the convolution layer was closely followed by the
pooling layer, which was also composed of several feature surfaces,
and each feature surface shared a unique correspondence relation-
ship with the feature surface of the convolution layer; in addition,
the pooling layer also had the features of weight sharing and local
connection, and the main function was to reduce the dimensional-
ity of images while preserving the original feature information of
images, thereby the number of parameters during network training
was reduced. The network after dimensionality reduction not only
reduced the computational complexity and the complexity of the
hidden layer but also made it easier to classify. The general form
of pooling was expressed by Eq. (3);
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The pooling methods adopted in the research were max pooling
and average pooling. The pooling process was similar to the convo-
lution process, which moved in the order of from the top to the
bottom and from the left to the right. Max Pooling found the max-
imum value of the covered window as an element of the output
feature map; Average Pooling found the average value of the cov-
ered window as an element of the output feature map. Pooling
was important for processing images with different sizes in actual
problems; since the classification layer must be uniformly fixed,
the image size could be unified by adjusting the paranoid size of
the pooling layer.



Fig. 5. Convolution process of LeNet-5.
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The network structure of AlexNet included 8 layers of neural
networks, 5 convolution layers, and 3 full connected layers. Given
the enormous data and network scale, it was necessary to put for-
ward higher requirements for GPU video memory; therefore, the
AlexNet selected 2 GTX580 GPUs in parallel, and the video memory
of each GPU was 3 GB. The activation function of AlexNet was Rec-
tified Linear Unit (ReLU), which was expressed through Eq. (4):

f xð Þ ¼ max 0; xð Þ ð4Þ
Compared with the saturated nonlinear activation functions

such as Sigmoid and tanh, ReLU not only solved the problems of
gradient explosion and disappearance but also greatly improved
the convergence speed. The image of ReLU function was illustrated
in Fig. 6. In the dataset of Cifar-10, once the error rate of the con-
volution of the 4th layer in AlexNet reduced to 25%, the conver-
gence speed of ReLU was nearly 6 times faster than the
convergence speed of f xð Þ ¼ tanh xð Þj j, which showed that ReLU
greatly improved the learning efficiency.
2.4. Image data processing based on CAFFE and AlexNet

The obtained image data were preprocessed; the detailed pro-
cessing steps were as follows:

The PET images in the ADNI database were collected by using
the PET scanners manufactured by General Electric (GE), Siemens,
and Philips. Before the image collection, researchers should con-
firm that all participants had none of the following contraindica-
tions: (1) unable to complete the experiment (claustrophobia,
etc.); (2) unable to lie on the scanning bed for 45 min (non-
quantitative study) or 75 min (quantitative study); (3) unable to
be injected with tracers through venous accesses. Participants
Fig. 6. The schematic diagram of ReLU function.
who were scanned in the morning should fast until the scans were
completed (with free access to water); participants who were
scanned in the afternoon should fast for more than 4 h. The correct
positioning of participants was a critical step to complete the PET
scans; in addition, it was necessary to ensure the accuracy of the
positions and the comfort of the participants. Besides, participants
should leave their personal belongings out of the scan room, such
as wallets, keys, glasses, necklaces, earrings, and hearing aids, etc.
Additional mats were placed under the neck of the participant to
provide adequate support. A laser was used to ensure no rotations
in each plane. The head of the participant should be approximately
parallel to the imaginary line between the outer corner of the eye
and the outer ear canal. Supporting devices were provided for the
back and lower limb areas. In the quantitative study, it would be
better to place a small table at the edge of the scanning bed for tra-
cer management and venous blood draw, as well as for the partic-
ipant to rest. In addition, an emergency button should be provided
to the participant, or a researcher was required to accompany the
participant to ensure the safety of the experiment. Environmental
standardization was essential within 20–30 min after the injection
of 5 + 0.5 mCi (185 MBq) of the 18F-FDG tracer. During the tracer
ingestion stage, participants should remain still and awake, with
their eyes widely opened and looked straight ahead. The lights
should be dim remained unchanged throughout the overall acqui-
sition process. The participants were checked regularly to ensure
their eyes were open and they were conscious.

The grid of voxel image re-sampled by the baseline PET image
registration averaged image of each participant was oriented such
that the front and rear axes of the participant were parallel to the
AC-PC line. Afterward, feature extraction was performed to the
preprocessed FEG-PET images. Feature extraction was an impor-
tant step in the study of classification problems, which directly
related to the results of classification. The feature extraction of
general FDG PET images was mainly for the images themselves,
including the voxel or the metabolic intensity of the brain region.
In addition, the histogram and the gray level concurrence matrix
(GLCM) of the gradient and direction were extracted from FDG
PET images as the features in some studies. After data preprocess-
ing, the dimension of the gray matter density map of each partici-
pant became 121 � 145 � 121, and the voxel size became a gray
matter image of 1.5 � 1.5 � 1.5 mm3; however, the application
of AlexNet migration learning needed to satisfy the RGB 3-
channel colored images whose sides were the same as those of
the input images; therefore, the pre-processed gray matter images
should be converted before the features were extracted by using
the migration learning method.

The image processing steps in the stage were implemented in
the Windows 7 operating system by using the NifTi_2014 toolkit
loaded by MRIcro software and Matlab 2015b; the first 3 steps
were an interpolation, completion, and segmentation. After the
3rd step was output, the NifTi image of each participant was seg-



Fig. 7. The flowchart of transformation prediction and classification methods.
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mented averagely from the Z-axis into 65 images in PNG format.
Finally, all the grayscale images in the PNG format were converted
into pseudo-colored images in the RGB format. The parameter vari-
ations of the above-mentioned image conversion dimensions and
voxels were summarized in Table 2.

After the data were prepared, all the images were transformed
into Lightning Memory-Mapped Database (LMDB) format. The fea-
ture extraction process used the pre-trained CAFFE model, which
required to customize the primary input parameters such as the
size of the network; afterward, the different layers were selected
based on to the network structure to extract features respectively;
in addition, the features were extracted into LMDB format. After
the features were extracted, based on the output parameters of
each layer in the network model, the feature rows were visualized.

According to the principle of feature migration, each prepro-
cessed brain image was visualized in the feature extraction of con-
v1, conv3, conv4, and conv5 of AlexNet, respectively. In the
research, the features of conv3, conv4, and conv5 were extracted,
and the features of the LMDB format were changed into feature
matrices for subsequent classification and prediction. Taking conv3
as an example, according to the model parameters of AlexNet, the
image of each participant became data in 65 � 64,896 dimensions,
of which 64,896 was the output of conv3 13 � 13 � 384; however,
in terms of the next step of classification, the image of each partic-
ipant was recombined in 3D, and the dimensions reached
4,218,240, which was undoubtedly a dimensional disaster for the
classifier; therefore, the features of each participant were submit-
ted to dimension reduction by overlapping polling, in which the
step was 2, the size of pooling window was 3, i.e. S = 2, Z=; then,
the conv3 and conv4 feature dimensions of each participant
became 1 � 898,560, and the conv5 feature dimension of each par-
ticipant became 1 � 599,040.

2.5. Model construction of prediction and classification

The basic construction flow of the classification and prediction
model was illustrated in Fig. 7. During the image preprocessing
process, the original FDG PET image was converted into NifTi for-
mat, and the gray matter was extracted to generate the gray matter
density map; after the completion and segmentation, the image
was converted to fit the input size of AlexNet; next, the image
was converted into 2D image in PNG format, which was then con-
verted into the LMDB format that CAFFE could recognize. During
the AlexNet-based feature extraction process, features were
sequentially extracted by setting input sizes and input batches that
met the experimental requirements and the video memory. After-
ward, the predictive model for MCIc and MCInc was constructed,
and a feature classification set for the classification models of EMCI
and LMCI was established. The PCA was input for dimension reduc-
tion; the training set was selected by using the SFS algorithm, and a
total of 20 most representative features of the training set were
selected. Since only 70 cases of MCIc were included, 40 cases were
selected as the training sets in the prediction model. Finally, the
selected features were input into the classifier as the test set to
obtain the final classification results.
Table 2
Image-transformed parameters based on CAFFE and AlexNet.

Original images Step I Step II

Dimension changes 121 � 145 � 121 121 � 145 � 121 121 � 145
Voxel size (mm3) 1.5 � 1.5 � 1.5 1.5 � 1.5 � 1.5 1.5 � 1.5
Bytes occupied (bit) 32 32 32
Image format NifTi NifTi NifTi
3. Results and discussion

3.1. Brain PET images of MCI participants

After the tracer was ingested, the brains of the MCI participants
were scanned with PET and were compared with the brain PET
scans of the healthy participants. As shown in Fig. 8, compared
with the healthy human brain, the brains of MCI participants began
to shrink, and part of the nervous system functions would gradu-
ally degenerate.
3.2. Results of MCI transformation prediction model

Based on the workflow of classification and prediction models,
the statistics of MCIc and MCInc classification results in each layer
were summarized in Table 3.

Based on the workflow of classification and prediction models,
after the SFS feature selection and SVM classifier were applied,
the classification results were summarized in Table 4.
Step III Step IV Step V

� 121 121 � 145 � 121 121 � 145 � 121 121 � 145 � 121
� 1.5 1.5 � 1.5 � 1.5 1.5 � 1.5 � 1.5 1.5 � 1.5 � 1.5

32 32 32
NifTi NifTi NifTi



Fig. 8. Comparison of brain PET scans between healthy participants and MCI
participants after tracer injections (The left showed the healthy human brain; the
right showed the MCI brain).
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As shown in Table 4, the classification of conv3 achieved prefer-
able results in MCI transformation prediction, with the sensitivity
and specificity being respectively 91.02% and 77.63%, which indi-
cated that the model constructed in the research could be used
to solve the MCI transformation problems.

The 3 indicators of the conv5 layer were not as preferable as
those of conv3 in terms of MCI transformation prediction, which
indicated that conv3 was more suitable for the construction of
such transformation prediction models. The set of constructed
Table 3
Feature dimensions before and after PCA.

Conv3

Grouped by Pre-PCA dimension Post-PCA dimens
MCIc/MCInc 351 � 898470 351 � 305

Table 4
Classification results of MCI in each layer.

Grouped by Layer name TP FP TN

MCIc/MCInc conv3 18 3 189
conv5 15 6 185

Table 5
Feature dimensions before and after PCA.

Conv3

Grouped by Pre-PCA dimension Post-PCA dimens
EMCI/LMCI 351 � 898470 351 � 178

Table 6
Classification results of MCI in each layer.

Grouped by Layer name TP FP TN

EMCI/LMCI conv3 33 14 107
conv5 30 15 113
models had a problem that the data set was very uneven; only
70 cases were included in MCIc, which may affect the accuracy
of the model.

The problems of MCI transformation in the research were all
based on the long-term collection of ADNI-GO and ADNI2; in addi-
tion, participants transformed from MCI to AD on a regular basis of
time were unclassified; however, most previous studies would per-
form quantitative analysis to the MCI transformation in 3 months,
6 months, and 18 months. In addition to the time limit of the
research, only 70 cases of MCIc were selected from ADNI-GO and
ADNI-2; if the transformation prediction was performed, the
amount of data in each group may be smaller, which would lead
to more uneven data and eventually affected the classifier to a
large extent.
3.3. Results of EMCI and LMCI classification models

Based on the workflow of classification and prediction models,
the statistics of EMCI and LMCI classification results in each layer
were summarized in Table 5.

Based on the workflow of classification and prediction models,
after the SFS feature selection and SVM classifier were applied,
the classification results were summarized in Table 6.

Few binary classification problems in the LMCI and EMCI prob-
lems were discussed; currently, most of the studies were based on
brain structure changes in these2 stages; the reason may be that no
differences in brain structure between the 2 stages were found;
therefore, no conclusions were drawn, and no strict ROI feature
extraction methods could be applied to construct the classification
model. In the research, the full brain gray matter features were
used as the materials for feature extraction. As for the classification
problems of LMCI and EMCI in the conv5 layer, the accuracy was
Conv5

ion Pre-PCA dimension Post-PCA dimension
351 � 598270 351 � 201

FN Accuracy (%) Sensitivity (%) Specificity (%)

57 78.56 91.02 77.63
62 73.91 77.54 75.11

Conv5

ion Pre-PCA dimension Post-PCA dimension
351 � 598270 351 � 201

FN Accuracy (%) Sensitivity (%) Specificity (%)

51 68.37 78.63 68.49
46 72.19 73.82 73.05
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72.19%, and the sensitivity and specificity were all 73% approxi-
mately, indicating that the classification model was useful to the
classification of EMCI and LMCI.

4. Conclusion

The positron emission tomography (PET) is an advanced nuclear
medicine functional imaging technology used to observe metabolic
processes in vivo to help clinicians diagnose diseases. A total of 350
mild cognitive impairment (MCI) participants from the ADNI data-
base were selected as the research objects; in addition, the CAFFE
was selected as the framework of the deep learning platform, the
FDG PET image features of each participant were extracted by a
deep convolution network model. Then, a prediction and classifica-
tion model of AD was constructed and was applied to the MCI
stage, which achieved preferable classification and transformation
prediction results.

The risk prediction of AD based on the deep learning model of
brain 18F-FDG PET discussed in the research matched the expected
results, which achieved preferable predictive results in the prob-
lem of MCI transformation. According to the prediction results,
the classification of conv3 achieved good results in MCI transfor-
mation prediction, and the sensitivity and specificity were respec-
tively 91.02% and 77.63%, indicating that the model constructed in
this study can be used in the MCI transformation. In addition, by
using the whole-brain gray matter feature as the material for fea-
ture extraction, 72.19% of accuracy was obtained in the classifica-
tion problem of LMCI and EMCI in the conv5 layer, and the
sensitivity and specificity were also about 73%, indicating that
the classification model was effective for the classification of EMCI
and LMCI. It provided a relatively accurate reference model for the
prediction of AD. However, certain deficiencies were found in the
research process, such as the limited database data, which led to
the results that the accuracy of the constructed model was not
well-verified. Therefore, it is necessary to increase the data capac-
ity to further explore the accuracy of the AD risk prediction model
in subsequent research.
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