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a b s t r a c t 

Functional MRI (fMRI) is a prominent imaging technique to probe brain function, however, a substantial pro- 
portion of noise from multiple sources influences the reliability and reproducibility of fMRI data analysis and 
limits its clinical applications. Extensive effort has been devoted to improving fMRI data quality, but in the last 
two decades, there is no consensus reached which technique is more effective. In this study, we developed a 
novel deep neural network for denoising fMRI data, named de noising n eural n etwork (DeNN). This deep neural 
network is 1) applicable without requiring externally recorded data to model noise; 2) spatially and temporally 
adaptive to the variability of noise in different brain regions at different time points; 3) automated to output 
denoised data without manual interference; 4) trained and applied on each subject separately and 5) insensitive 
to the repetition time (TR) of fMRI data. When we compared DeNN with a number of nuisance regression meth- 
ods for denoising fMRI data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, only DeNN had 
connectivity for functionally uncorrelated regions close to zero and successfully identified unbiased correlations 
between the posterior cingulate cortex seed and multiple brain regions within the default mode network or task 
positive network. The whole brain functional connectivity maps computed with DeNN-denoised data are approx- 
imately three times as homogeneous as the functional connectivity maps computed with raw data. Furthermore, 
the improved homogeneity strengthens rather than weakens the statistical power of fMRI in detecting intrinsic 
functional differences between cognitively normal subjects and subjects with Alzheimer’s disease. 
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. Introduction 

Functional magnetic resonance imaging (fMRI) based on the blood-
xygen-level-dependent (BOLD) signal is a prominent technique for in-
estigating human brain function. The BOLD signal is an indirect mea-
ure of neuronal activity which occurs when the subject is scanned
uring task-based and task-free (resting-state) conditions. However,
he reliability and reproducibility of fMRI is compromised by a large
roportion of noise from multiple sources, including head-motion re-
ated artifacts, cardiac and respiratory oscillations, thermal noise in-
erent to electrical circuits, changes in blood pressure, and other fac-
ors ( Bianciardi et al., 2009 ; Caballero-Gaudes and Reynolds, 2017 ;
urphy et al., 2013 ). Multiple studies have demonstrated that these

oise sources can adversely affect the results and interpretations of task-
ased or resting-state fMRI experiments ( Birn et al., 2006 ; Chang et al.,
∗ Corresponding author at: Cleveland Clinic Lou Ruvo Center for Brain Health, 888
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009 ; Van Dijk et al., 2012 ). An advanced method to substantially im-
rove fMRI data quality will advance brain function research by allow-
ng more accurate mapping of human brain function. 

Extracting nuisance regressors from fMRI data or modeling the
oise from externally recorded data (physiological data in most cases)
nd then regressing out these confounding signals is a commonly
sed technique for improving fMRI data quality. Many regression-
ased methods have been developed to correct the confounding sig-
al induced by head motion or major physiological noise oscillations,
uch as cardiac and respiratory fluctuations. The six rigid-body affine
ransformation parameters (R = [X Y Z pitch yaw roll]) estimated from
ligning fMRI volumes have been commonly used to address head-
otion related artifacts ( Friston et al., 1996 ; Johnstone et al., 2006 ).
he first-order temporal derivatives (R’) and squares (R 

2 ) of these six
ealignment parameters were also used in nuisance regression to re-
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Table 1 

Demographic information of the 193 subjects from the ADNI 
cohort. 

CN eMCI AD 

Age (years ± std) 75.9 ± 5.6 73.6 ± 7.0 73.5 ± 8.4 

Handedness (Right/Left) 55/5 63/7 59/4 

Education (years ± std) 16.5 ± 2.4 15.9 ± 2.8 15.9 ± 2.7 

Gender (Male/Female) 27/33 39/31 36/27 

MMSE ± std 27.8 ± 5.4 27.0 ± 5.4 22.1 ± 2.9 
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ove spin history related aspects of head motion ( Friston et al., 1996 ;
atterthwaite et al., 2013 ). However, the change of image intensity gen-
rated by head motion might not be properly explained by the realign-
ent parameters. These regressors have over-simplified the influence of
ead motion in fMRI data ( Caballero-Gaudes and Reynolds, 2017 ). Phys-
ological noise in fMRI data is usually addressed by constructing nui-
ance regressors with externally recorded physiological data ( Birn et al.,
008 ; Chang et al., 2009 ; Glover et al., 2000 ; Harvey et al., 2008 ;
hmueli et al., 2007 ; Tijssen et al., 2014 ). Instead of explicitly modeling
 particular noise source, data-driven methods were developed without
ssuming any parametric noise model. Using the mean whole-brain time
eries (namely global signal) ( Anderson et al., 2011 ; Jo et al., 2010 ) and
he principal component decompositions from white matter (WM) and
erebrospinal fluid (CSF) time series (namely anatomic Compcor ( aCom-

cor ) from Behzadi et al. (2007) ) as nuisance regressors are two typ-
cal examples, which assume that the signal of interest in fMRI data
ostly comes from gray matter (GM) tissue and that GM shares similar
oise characteristics with WM and CSF. The inclusion of global signal
s a regressor has been heavily debated in recent years ( Murphy et al.,
009 ; Power et al., 2018 ; Saad et al., 2012 ; Weissenbacher et al., 2009 )
ecause it could artificially introduce anticorrelation between brain re-
ions. Methods based on principal component analysis ( Kay et al., 2013 )
nd independent component analysis ( Griffanti et al., 2014 ; Pruim et al.,
015 ; Salimi-Khorshidi et al., 2014 ) were recently developed for reduc-
ng noise in fMRI data by regressing out certain components, which
ere manually or automatically labelled as noise. Regardless of how

egressors are obtained, increasing the number of regressors may re-
uce more noise variance from fMRI data but could lead to a higher
isk of substantially removed BOLD signal as well. In addition, nuisance
egression could contaminate fMRI data because the regression coeffi-
ient is heavily driven by one particular frequency band ( Chen et al.,
017 ). 

Artificial intelligence technique has recently gained a lot of interest
n neuroscience research ( Marblestone et al., 2016 ; Yang et al., 2020a ).
n this study, we have used this technique to develop a non-regression-
ased denoising neural network (DeNN) for automatically alleviating
he influence of noise in fMRI data. Similar to the assumption in aCom-

cor that GM and non-GM time series share similar noise but no func-
ional signal of interest is expected in non-GM regions, DeNN is designed
ith the hypothesis that disentangling time series between GM and non-
M voxels can substantially reduce noise in fMRI data. We compared
eNN with multiple nuisance regression methods ( Behzadi et al., 2007 ;
riston et al., 1996 ; Murphy et al., 2009 ; Yang et al., 2019 ) by analyz-
ng standard resting-state fMRI data from the Alzheimer’s Disease Neu-
oimaging Initiative (ADNI, http://adni.loni.usc.edu/ ). Then, we exam-
ned positive and negative correlations in resting-state networks, eval-
ated the similarity of functional connectivity maps between subjects,
nd compared the group difference of graph theory measures between
ognitively normal (CN) subjects and subjects with Alzheimer’s disease
AD). Limited analysis was also carried out with multi-band fMRI data
rom Human Connectome Project (HCP) ( Van Essen et al., 2013 ). 

. Materials and methods 

Subject Demographics and Image Acquisition. Data acquired at the base-
ine visits were included from 193 participants in the multi-site ADNI
roject ( http://adni.loni.usc.edu/ ), with the inclusion criterion that par-
icipants were diagnosed as having normal cognition, early mild cogni-
ive impairment (eMCI), or AD, with resting-state fMRI data and struc-
ural MRI data available. The study was approved by each participat-
ng ADNI site’s local Institutional Review Boards, as documented on the
DNI website. All participants gave written, informed consent. The sub-

ect ID, imaging data ID, and other demographical information are listed
n Table S1. The summary of the demographic information, including di-
gnosis, age, gender, handedness, education, and MMSE scores are listed
n Table 1 . All subjects were scanned on 3.0-Tesla Philips MRI scanners.
he magnetization prepared rapid acquisition gradient echo (MP-RAGE)
equence was used to acquire T1-weighted structural images. The struc-
ural MRI scans were collected with a 24cm field of view and a reso-
ution of 256 × 256 × 170 to yield a 1 × 1 × 1.2mm 

3 voxel size. The
esting-state fMRI data were acquired from a regular echo-planar imag-
ng sequence with 140 time points, TR/TE = 3000/30 ms, flip angle = 80
egrees, 48 slices, spatial resolution = 3.3 × 3.3 × 3.3mm 

3 and imaging
atrix = 64 × 64. More details about the MRI protocol can be found on

he ADNI website. 
General fMRI preprocessing. Functional and structural MRI imaging

ata were processed with SPM12 ( https://www.fil.ion.ucl.ac.uk/spm/ )
nd ANTs (version 2.1.0, http://stnava.github.io/ANTs/ ) toolboxes. The
rst five volumes of fMRI data were discarded to avoid data with un-
aturated T1 signals. The following fMRI preprocessing steps were ap-
lied: (i) slice-timing correction (SPM12); (ii) rigid-body realignment
f all fMRI volumes to mean fMRI image using 7th order B-Spline in-
erpolation (SPM12); (iii) co-registration of mean fMRI image to the
kull-stripped T1 structural image (command ANTS 3 -m MI[T1_dir,

eanfmri_dir,1,32] in ANTs); (iv) standard space normalization of T1
mage to the MNI152 2mm template (command antsRegistrationSyN.sh

d 3 -f MNI152_dir -m T1_dir in ANTs); (v) transforming all fMRI vol-
mes to MNI space with the transformation information from (iii)
nd (iv) (command antsApplyTransforms in ANTs). Nuisance regression
r DeNN denoising was applied after the general fMRI preprocessing
tep. 

DeNN network architecture. We observed that the time series denoised
y our previous deep learning strategy ( Yang et al., 2019 ) still contained
ome band structure visible in the gray plot of time series, introduced
y head motion and other noise sources (Figure S1). The reason is pos-
ibly twofold. First, this denoising strategy was regression-based, which
ould be insufficient for modeling spatial variation of motion artifacts
cross the brain. Second, the same network parameters were used for
ll time points in our previous neural network without considering the
niqueness of noise at each time point. The property of temporal inde-
endence could have reduced the effectiveness of our previously devel-
ped deep neural network in addressing abrupt motion and other irregu-
ar noise variances. A non-regression-based deep neural network with a
ime-dependent layer could potentially further improve fMRI data qual-
ty. Therefore, a deep neural network with this property, namely DeNN,
s introduced in this study. 

DeNN consists of six layers in a sequential order, namely a novel
ime-dependent fully-connected layer proposed in this study, two 1-
imensional temporal convolutional layers, and three time-distributed
ully-connected layers, as shown in Fig. 1 . DeNN is fed with original time
eries after general preprocessing steps and outputs denoised data di-
ectly, instead of outputting nuisance regressors as in Yang et al. (2019) .

The schematic diagrams of different fully-connected layers with T × L

nput nodes and K output nodes is shown in Fig. 2 , where T, L , and K
epresent the number of time points, the input channels, and the output
hannels, respectively. The standard fully-connected layer connects all
nput nodes, with the output nodes ignoring the temporal property of
he data (left panel of Fig. 2 ). A time-distributed fully-connected layer
pplies a fully-connected operation with the same parameters to each
ime point separately (middle panel of Fig. 2 ). In contrast, the time-
ependent fully-connected layer has a fully-connected operation to each

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://www.fil.ion.ucl.ac.uk/spm/
http://stnava.github.io/ANTs/
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Fig. 1. Architecture of the denoising neural network (DeNN). DeNN consists of one novel time-dependent fully-connected layer (dark blue arrow), two 1-dimensional 
temporal convolutional layers (brown arrow), and three time-distributed fully-connected layers (light blue arrow) in a sequential order. The input to the network is 
the voxel time series, and the output is the denoised time series. The parameters (constant term is omitted) for each layer are illustrated above the arrow, with each 
color representing the parameters for an output channel. The dimension of the parameters for each layer is marked under the arrow. 

Fig. 2. Schematic diagrams of a fully-connected layer (left), a time-distributed fully-connected layer (middle) and a time-dependent fully-connected layer. The 
fully-connected layer links all (T × L) input nodes to each output node leading to (T × L) × K parameters in the layer and K output nodes. The time-distributed 
fully-connected layer links the L input nodes with K output nodes at each time point with the same parameter leading to L × K parameters and the T × K output 
dimension. The time-dependent fully-connected layer links the L input nodes with K output nodes at each time point with distinct parameters, leading to T × L × K 
parameters and T × K output dimension. 
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ime point with different parameters (right panel of Fig. 2 ). The number
f parameters in the time-dependent layer linearly increases with the
umber of time points acquired in fMRI data, resulting in a higher com-
utational cost for longer time series. The temporal convolutional lay-
rs can be treated as a set of temporal filters with unknown pass bands,
hich are learned from the data without manually specifying a fixed

requency threshold. We have demonstrated this property in previous
ask fMRI denoising work ( Yang et al., 2020b ). Learning filtering prop-
rties from data is particularly important because the commonly used
requency threshold of 0.1 Hz in fMRI preprocessing remains a topic
f debate ( Boubela et al., 2013 ; Chen and Glover, 2015 ; Cordes et al.,
001 ). 

The temporal convolutional layers used in this study (layers 2 and
) have 1-dimensional filters with a filter size of five time points. Zero
adding is used to ensure the output time series have the same num-
er of time points as the input time series. These convolutional layers
utput each time point with data from neighboring time points and the
ame filters are applied for all time points. They are effective for re-
ucing periodic or pseudoperiodic noise and have been successfully im-
lemented in our previous work ( Yang et al., 2020b ). However, tempo-
al convolutional layers have a risk of propagating temporally limited
oise variance (e.g. abrupt motion) through the entire time series and
omplicating the denoising process. Therefore, a time-dependent fully-
onnected layer is applied before the temporal convolutional layer to
ddress irregular noise. For the ADNI data, the time-dependent fully-
onnected layer was specified with 128 units, and the first and second
emporal convolutional layers were specified with 32 and 16 filters,
espectively. Following the temporal convolutional layers, three time-
istributed fully-connected layers were specified with 8, 4, and 1 filters,
espectively, in sequential order. These time-distributed fully-connected
ayers determine the weight of the multiple channels from the second
emporal convolutional layer and output the denoised time series. Note
hat a time-distributed fully-connected layer is equivalent to a temporal
onvolutional layer with a filter size of one. The last layer has a single
lter to ensure one output time series for each voxel. The dimension of

nput data, output of each layer, and the network parameters in each
ayer are marked in Fig. 1 (the dimension for the number of samples is
mitted). 

Customized cost function for DeNN. The cost function provides a crite-
ion to optimize the parameters in the network during the iteration step.
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Fig. 3. Different denoising strategies for fMRI data. 
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w  
any cost functions have been developed for classification or regres-
ion in machine learning and deep learning applications, such as mean
quared error, mean absolute percentage error, cross entropy, Poisson,
nd cosine proximity. Implementation of these cost functions requires
nown true values or classes. However, the true BOLD signal in fMRI
ata is unknown, and extracting the underlying BOLD signal is diffi-
ult, if not impossible, especially for resting-state data. Therefore, a cus-
omized cost function that does not require the knowledge of the under-
ying BOLD signal is preferred. 

The rationality embedded in aCompcor ( Behzadi et al., 2007 ) is that
M tissue shares similar noise properties with non-GM tissue (includ-

ng WM and CSF), and removing the common variance can improve
ata quality. With similar rationality, the cost function for DeNN is de-
igned to minimize the correlation between GM and non-GM time se-
ies. DeNN is trained by first arbitrarily pairing one GM voxel with one
on-GM voxel. Each paired time series is treated as a sample and as-
igned to different batches. In each batch, let Y raw denotes the original
MRI data within the gray matter mask (GM mask) and 𝒀̃ 𝑟𝑎𝑤 denotes the
aired time series within eroded white matter or ventricle mask (nonGM
ask). Erosion is applied to reduce the risk of BOLD signal included in

̃
 𝑟𝑎𝑤 because of partial volume effect. During the learning process, Y raw 

nd 𝒀̃ 𝑟𝑎𝑤 share the same network (including network architecture and
arameters) and are fed to the network alternatingly in each iteration.
ach iteration will then provide the corresponding output data Y denoise 

nd 𝒀̃ 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 . The cost function  =  ( 𝒀 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 , 𝒀̃ 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 ) is defined as the
um of the correlation magnitude between paired time series given by 

 

(
𝒀 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 , 𝒀̃ 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 

)
= 

∑
𝒚 ∈𝒀 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 , 𝒚̃ ∈𝒀̃ 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 

|corr ( 𝒚 , ̃𝒚 ) |, (1)

here [ 𝒚 , ̃𝒚 ] is one paired time series from [ Y denoise , 𝒀̃ 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 ]. 
DeNN is optimized for each subject separately, because the char-

cteristics of noise is highly subject-dependent, including the severity
f head motion, rate and stability of cardiac and respiratory pulses,
nd other unknown subject-specific factors. Since there are hundreds
f thousands of voxels in a standard fMRI acquisition protocol, the large
umber of voxels makes it feasible to train a subject-specific DeNN
odel. 

DeNN training and calibration . Since GM and nonGM voxels are paired
o calculate the customized loss function, the same number of voxels
ithin GM and nonGM masks are required to be the input samples to the
etwork. The voxels within GM are randomly paired with voxels within
onGM and the extra voxels within GM or nonGM mask are discarded
n the following optimization. There are about 50,000 paired time series
or each subject, which are the input to the network. 90% of the paired-
oxels are assigned randomly to the training set to update parameters,
nd the remaining 10% of the paired-voxels are assigned to the valida-
ion set to monitor whether or not the network suffers from over-fitting
r under-fitting, leading to either high bias or variance, respectively.
here is no independent testing set, because the noise variance in each
MRI session is unique, and DeNN is trained to specifically address the
oise existing in the training set. Therefore, once the model is trained,
he whole brain original fMRI data (including the time series used or
ot used in training and validation set) are the input to the model, with
he output of denoised time series. 

The initial parameters are randomly sampled from the Xavier uni-
orm initializer ( Glorot and Bengio, 2010 ). The parameters are up-
ated with the Adam stochastic gradient-based optimization algorithm
 Kingma and Ba, 2014 ), which adapts the parameter learning rates by
aking advantage of both the average first moment (mean) and the av-
rage of the second moments of the gradients (uncentered variance).
he Adam optimizer is parameterized with learning rate 𝜂= 0.01, learn-

ng rate decay 𝛾= 0.05, exponential decay rate for the first moment es-
imates 𝛽1 = 0 . 9 and exponential decay rate for the second moments
stimates 𝛽2 = 0 . 999 . The parameters and their learning gradients are
pdated with each batch of 500 paired time series (or samples). Thus,
he input data Y raw and 𝒀̃ 𝑟𝑎𝑤 in each batch have the same dimension of
00 × T × 1, where the singleton dimension “1 ” represents the number
f channels. One epoch is defined as running through all batches once
nd the network is set to run up to 50 epochs, with the early stopping
riterion that the network stops training if the cost for the validation
ata does not reduce in the last five epochs. The number of layers in the
etwork is heuristically selected. To determine the network architecture
or ADNI data, we have applied DeNN on ten randomly selected subjects
ultiple times with gradually increasing layer sizes until the mean cost
oes not show considerable decrease with larger layer sizes, which al-
ows the network to be relatively time-efficient and effective. The same
etwork architecture is used for all subjects to avoid extensive human
ffort. 

Nuisance regressors. The nuisance regressors used in this study include
he linear detrending regressor, six rigid-body realignment parameters
, first order derivative of R (R’), squares of R and R’, mean WM and
SF time series, aCompcor, and the global signal (GS). Different com-
inations of these regressors lead to the five datasets named as 12P,
4P, 14P, 14P + GS, and 12P + aCompcor. As shown in Fig. 3 , 12P con-
ists of 12 regressors, including the six realignment parameters R and
heir first order derivative R’. 24P consists of the 12P and its squared
egressors. 14P indicates 14 regressors consisting of regressors in 12P,
nd mean WM and CSF time series. aCompcor is applied with the top
hree principal components from WM and CSF as nuisance regressors
in total 6 regressors). Erosion is carried out to generate WM and CSF
asks to avoid the partial volume effect. Nuisance regression is applied

fter general preprocessing steps. 
Graph theoretical network analysis. The mean region of interest (ROI)

ime series is computed with 94 cortical and subcortical ROIs from the
evised AAL atlas (AAL2) ( Tzourio-Mazoyer et al., 2002 ), and then the
unctional connectivity map is constructed with Pearson’s correlation.
o evaluate how different denoising strategies influence the power of
etecting brain function difference between AD and CN, graph theo-
etical analysis is performed, and 2-sample t-test is applied to evaluate
he group difference with age, gender, handedness and education as co-
ariates. The graph theoretical network analysis is carried out using the
RETNA toolbox (version 2.0.0) ( Wang et al., 2015 ). 11 network met-

ics are obtained for analysis, including assortativity, betweenness cen-
rality, degree centrality, global efficiency, local efficiency, clustering
fficiency C p , 𝛾, 𝜆, path length L p , 𝜎, and synchronization. The nodal
etwork metrics are averaged across all ROIs to generate a single mea-
ure for comparison. 

. Results 

We analyzed data from 193 ADNI subjects to explore the extent to
hich the denoising steps influence fMRI data quality. In this section,
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Fig. 4. Gray plot of the time series from six example subjects. The top panel for each subject shows the framewise displacement (in mm) derived from rigid head 
motion estimation. The remaining panels show the time series with voxels along the y-axis and time points along the x-axis. 
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e demonstrate the performance of different strategies qualitatively by
omparing the gray plot of the time series and quantitatively by con-
ucting the functional connectivity (FC) analysis. A group comparison
f network metrics between CN and AD presents intermediate evidence
o further support our hypothesis. 

Visualization of denoised time series. Time series from six example sub-
ects after different denoising strategies are shown in Fig. 4 . These sub-
ects are selected to demonstrate different noise characteristics and the
arying performance of different denoising strategies. The gray plots of
ll subjects can be seen in the Supplementary. The framewise displace-
ent (FD) ( Power et al., 2012 ) derived from rigid head motion estima-

ion, along the time point (x-axis), is shown in the top panel. The higher
D value means that the rigid head motion is more severe. The origi-
al whole-brain time series and the time series processed by 12P, 24P,
4P, 14P + GS, 12P + aCompcor and DeNN are presented in a descending
rder. Motion artifact, signal drift, and noise fluctuation introduced by
nknown sources are observed in these subjects. Head motion corrupts
MRI data with varying duration (note width of dark band in Fig. 4 ).
 large motion might not have a visually obvious effect in fMRI data

e.g. arrow A1), but a small motion could considerably change the sig-
al (e.g. arrow A2). By only regressing out rigid-body realignment pa-
ameters and their variants (e.g. 12P and 24P), motion artifacts were
nsufficiently addressed. These regressors can even be detrimental for
ome time points (e.g. arrow A3). The band structure in the gray plot
ndicates similar noise fluctuation widespread across the entire brain.
his particular noise structure was alleviated by including additional
egressors extracted from fMRI data, such as global signal, mean WM,
nd CSF time series or principal components from WM and CSF time
eries (aCompcor). However, such noise artifacts remained noticeable
e.g. arrow A4-6). In contrast, DeNN visually showed substantially re-
uced band-structure artifacts and achieved more homogeneous time
eries. Besides band structure variation, the pseudoperiodic variations
n subjects 126_S_4514 and 003_S_4644 were also considerably reduced.
he gray plots for all ADNI subjects were included in the Supplemen-
ary. In addition to the time series achieved by the methods in Fig. 4 , the
enoised time series by running DeNN without the time-dependent fully-
onnected layer (all the other layers remain the same, named DeNN0)
ere also plotted in the Supplementary, which clearly demonstrated the
ecessity of the time-dependent fully-connected layer in DeNN to reduce
and structure variance in fMRI data. 

Seed-based functional connectivity analysis. A quantitative comparison
f different denoising strategies was applied by conducting a functional
onnectivity analysis. We predefined a PCC seed as a 10-mm sphere
round the coordinate (-7, -55, 27) in Montreal Neurological Institute
MNI) space to select regions having positive and negative correlations
ith the PCC seed. The whole-brain functional connectivity map be-

ween voxel-wise time series and the PCC seed was calculated for each
ubject. Four ROIs were identified as positively correlated with the PCC
eed, and six ROIs were identified as negatively correlated with the
eed by following Fox et al. (2005) . The positive-correlated ROIs in-
lude PCC, the medial prefrontal cortex (MPFC), left lateral parietal
ortex (LLP), and right lateral parietal cortex (RLP), which are within
he default mode network. The six anticorrelated ROIs include the bi-
ateral insula, the bilateral middle frontal gyrus (MFG), and the bilat-
ral supramarginal gyrus (SMG), which are within the task positive net-
ork (TPN) and consistent with the task-positive regions observed in
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Fig. 5. (a) Four positive-correlated ROIs; (b) six negative-correlated ROIs; (c) two reference regions in visual cortex (VC1 and VC2), which are not expected to have 
connectivity with the MPFC seed. 
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Fig. 6. Mean connectivity between MPFC and bilateral visual regions using dif- 
ferent denoising methods. The error bar indicates 2 × standard error. 
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ox et al. (2005) . The correlation coefficients between ROIs and the PCC
eed were converted to a normal distribution by Fisher’s r-to-z transfor-
ation. The four regions showing significant positive correlation and

he six regions showing significant negative correlation with the PCC
eed are shown in Fig. 5 a and Fig. 5 b, respectively. 

The specificity defined as 

 𝑡𝑎𝑟𝑔𝑒𝑡 = 

|||𝑍 𝑡𝑎𝑟𝑔𝑒𝑡 
||| − 

|||𝑍 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
||||||𝑍 𝑡𝑎𝑟𝑔𝑒𝑡 

||| + 

|||𝑍 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
|||

∈ [ −1 , 1 ] , (2)

y following Chai et al. (2012) is used to compare the seed-based con-
ectivity values achieved by different denoising strategies, where Z is
he Fisher r-to-z transformed connectivity value. In this equation Z target 

efers to the connectivity from the MPFC to the positive-correlated or
nticorrelated ROIs and Z reference refers to the mean connectivity from
PFC to the two reference regions in visual cortex. MPFC is expected

o be functionally uncorrelated with the visual area ( Biswal et al., 1995 ;
hai et al., 2012 ; Fox et al., 2005 ; Van Dijk et al., 2010 ). The connec-
ivity between MPFC seed (10-mm sphere centered at coordinates (-1,
9, -2) in MNI space) and two visual regions (10-mm spheres centered
t coordinates (-30, -88, 0) and (30, -88, 0)) (see Fig. 5 c) is evaluated,
nd the mean connectivity between these two visual regions and MPFC
eed is used as the reference connectivity to compute specificity. 

The connectivity (and standard error) between MPFC and two vi-
ual reference regions is shown in Fig. 6 . 12P and 24P have signifi-
ant positive bias for bilateral visual regions, and 14P, 14P + GS and
2P + aCompcor have significant negative bias for bilateral visual re-
ions. Compared to original fMRI data, 12P and 24P regressors led to
ore severe positive bias, and 14P, 14P + GS and 12P + aCompcor led

o negative bias in the reference regions. In contrast, DeNN achieved
he most unbiased connectivity (close to zero) between MPFC and vi-
ual reference regions. The connectivity and its specificity values of the
our positive ROIs are shown in Fig. 7 . 12P and 24P had similar con-
ectivity strength and specificity as original fMRI data. 14P, 14P + GS,
2P + aCompcor, and DeNN overall reduced connectivity strength and
mproved specificity compared to original fMRI data. DeNN had the
ighest specificity for all four positive ROIs with an average of 21.2%
etter than original fMRI data and an average of 8.2% above the second
ighest specificity achieved by 12P + aCompcor. A paired t-test between
he specificity values achieved by DeNN and 12P + aCompcor showed
hat DeNN significantly improved specificity with p < 10 − 10 for these four
ositive ROIs. 

The connectivity and its specificity values of the six anticorrelated
OIs are shown in Fig. 8 . Negative connectivity did not emerge in orig-

nal data or the data only processed by realignment parameters and
heir variants. Global signal regression is well known to artificially intro-
uce anticorrelation ( Murphy et al., 2009 ), as expected, 14P + GS showed
trongest anticorrelation among all methods. Consistent with the find-
ng in Chai et al. (2012) that aCompcor is less likely to artificially in-
roduce anticorrelation, 12P + aCompcor had weaker connectivity com-
ared to 14P + GS, and DeNN had the weakest negative connectivity. In
erms of specificity, DeNN had the highest specificity for all six anticor-
elated ROIs with an average of 19.6% above the second highest speci-
city achieved by 12P + aCompcor. A paired t-test between the speci-
city values achieved by DeNN and 12P + aCompcor showed that DeNN
as significantly improved specificity, with p < 10 − 5 for these six nega-
ive ROIs. Compared to original fMRI data, 12P and 24P had decreased
onnectivity magnitude for negative ROIs and increased connectivity
agnitude for the reference regions. Therefore, the specificity of these

ix negative ROIs for these two methods was considerably lower than
he value of original fMRI data. Negative specificity was observed in 24P
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Fig. 7. Connectivity (top panel) and corresponding specificity (bottom panel) 
for four positive-correlated ROIs. The error bars are 2 × standard error. ∗ ∗ ∗ de- 
notes 𝑝 < 10 −10 . 

Fig. 8. The connectivity (top panel) and the corresponding specificity (bottom 

panel) for six negative ROIs. The error bars are 2 × standard error. ∗ ∗ denotes 
𝑝 < 10 −5 . 
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Fig. 9. Pairwise similarity of functional connectivity between subjects. 
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nd CNN12, which was because the connectivity magnitude was lower
han the connectivity magnitude of the reference regions. 

Inter-subject homogeneity of whole-brain functional connectivity. In
ddition to seed-based connectivity, we have calculated the whole-
rain functional connectivity (FC) map using the AAL atlas ( Tzourio-
azoyer et al., 2002 ). Because the noise fluctuations in fMRI data could

ary between subjects and between brain regions, “artificial connectiv-
ty ” induced by these noise could lead to heterogeneous FC maps, im-
roved between-subject similarity of FC maps is expected if a denoising
echnique correctly reduces the noise without considerably corrupting
he signal in the data. Pair-wise Pearson’s correlation was used to evalu-
te the similarity of FC maps between each two subjects. The boxplot of
C similarity for different processed data is shown in Fig. 9 . Compared to
ther processed datasets, DeNN substantially improved the inter-subject
C similarity. The mean similarity values are 0.207, 0.364, 0.371, 0.369,
.397, 0.392, 0.405 and 0.582 for original, 12P, 24P, 14P, 14P + GS,
2P + aCompcor, CNN12 and DeNN processed data, respectively. The
ean similarity achieved by DeNN is 181% higher than the value of

he original data and 44% higher than the second highest similarity
alue achieved by CNN12. The set of 12 deep learning derived regres-
ors in CNN12 shows improved inter-subject similarity over its tradi-
ional counterpart 12P and is slightly better than 12P + aCompcor but
s less substantial than DeNN. We have also tested the FC maps with
 functional atlas ( Power et al., 2011 ) and observed consistent perfor-
ance (see Figure S2). Furthermore, we have applied DeNN with the

ame network architecture, except that the number of time points for
he first layer is adjusted correspondingly, on fast-acquisition fMRI data
rom HCP cohort and have found that DeNN retains the highest between-
ubject similarity (see Figure S3). With known intrinsic “functional con-
ectivity ” map in the simulated fMRI data (see Appendix), DeNN is con-
istently observed to have the best performance in uncovering the true
onnectivity map. 

Functional connectivity vs. motion summary measure. We have fur-
her tested the association between functional connectivity and motion
ummary measure. The scatter plots of median correlation magnitude
MCM) versus mean FD are shown in Fig. 10 . Each dot represents the
alue from an individual subject. The MCM of each individual subject
s defined as the median strength of the connectivities between 94 ROIs
n the AAL atlas. MCM was observed to have a large variability between
ubjects in original, 12P, 24P, and CNN12 processed datasets. The vari-
bility was considerably reduced in 14P, 14P + GS, 12P + aCompcor, and
eNN. 14P and 14P + GS showed significant association between MCM
nd mean FD with p < 0.001 and p < 10 − 9 , respectively, and all the other
atasets did not have significant association between MCM and mean
D. Linear fitting was applied for 14P and 14P + GS data with a 95%
onfidence level, as shown in the figure. 

Group comparison based on network metrics. The question that natu-
ally arises is whether the improved inter-subject homogeneity of FC
aps would be detrimental for detecting the intrinsic difference be-

ween cognitively normal subjects and subjects with a neurodegener-
tive condition. Since the functional change in AD group is expected
o be more severe and the functional change in eMCI is likely to be
ess detectable, we limit the group comparison to CN and AD groups in
his study. Graph theoretical analysis as described in MATERIALS AND
ETHODS section was applied on the FC maps and the group differ-

nce between AD and CN was tested using 11 network metrics, with
ge, gender, handedness and education as covariates. The t statistical
alues of the group difference achieved by the seven processed datasets
re shown in Fig. 11 . Only the metrics passing p < 0.05 after Bonferroni
orrection over the number of metrics and the number of datasets are
arked with t value. Only with DeNN processed data, the AD group

hows significant higher path length L p and significant lower degree
entrality, global efficiency, local efficiency, and clustering coefficient
 p . 14P and 12P + aCompcor show similar group difference, but the sta-
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Fig. 10. Scatter plots of median correlation magnitude vs. mean framewise displacement. Each dot represents the value from an individual subject. 

Fig. 11. Group difference of graph theoretic metrics between cognitive normal subjects and subjects with AD. Only the metrics passing p values less than 0.05 after 
Bonferroni correction are marked with the t value. 
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istical significance does not pass the Bonferroni-corrected significance
evel p < 0.05. 

. Discussion 

In this study, we have designed a subject-level deep neural network
or denoising fMRI data as a data-driven non-regression technique. This
etwork is optimized with fMRI time series as input, which does not
equire externally recorded data (e.g. physiological data) to model any
pecific noise sources. Therefore, DeNN can be widely applied for many
xisting fMRI datasets, particularly for those data that do not have ex-
ernally recorded data available. In addition, once the network archi-
ecture is determined, DeNN automatically outputs denoised data with-
ut requiring human effort to identify noise fluctuation, which could be
ubjective and labor intensive. Since DeNN is trained for each subject
eparately with paired time series as input samples, this network is ap-
licable for a study with a small sample size or even a single subject
nalysis. 

By applying DeNN to resting-state fMRI data from the ADNI cohort,
eNN does not artificially induce connectivity (neither positive nor neg-
tive) between MPFC seed and visual cortex, and shows the highest
pecificity for positively correlated spontaneous fluctuations within the
efault mode network and for the anticorrelated fluctuations between
egions in task positive network and PCC seed. The between-subject
imilarity of functional connectivity maps after DeNN denoising (mean
imilarity 0.582) is about three times of the similarity obtained by orig-
nal time series (mean similarity 0.207) and about 1.5 times of the sec-
nd highest similarity value (CNN12, mean similarity 0.405). Significant
ssociation between brain connectivity and motion summary measure
s observed for 14P and 14P + GS but not for DeNN. Possibly because
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f the large between-subject variability, original, 12P, 24P and CNN12
ata do not have significant association between brain connectivity and
otion summary measure (see Fig. 10 ). We further demonstrate that the

mproved between-subject similarity in DeNN-processed data does not
ndermine, but strengthens, the group difference between cognitively
ormal subjects and subjects with AD in terms of graph-theoretical mea-
ures. The result from HCP data (see Supplementary) shows that DeNN
s not limited to regular fMRI data but can also be applied on multi-band
ast-acquisition (low TR) fMRI data. Overall, DeNN offers a new pathway
owards improving the statistical power of fMRI and could strengthen
he capability of fMRI in future neuroscience research and clinical prac-
ice. 

DeNN vs. nuisance regression. One main difference between DeNN and
raditional nuisance regression methods is that DeNN takes advantage of
he network structure to make it adaptive to the variability of noise fluc-
uation across the entire brain. While nuisance regression could adjust
he weights of regressors for each brain region (or voxel), the regres-
ors are fixed without considering potential spatial-dependent fluctua-
ions caused by the same noise source. Our previous study ( Yang et al.,
019 ) demonstrated that the same noise source could lead to a peak
or some voxels but a dip for other voxels. In addition, adding more re-
ressors to explain additional noise variance could potentially remove
OLD signal and induce unwanted noise variance ( Chen et al., 2017 ). In
ontrast, DeNN is a non-regression-based denoising method. Naturally,
eNN does not involve the selection of regressors. Instead, after optimiz-

ng the model by disentangling GM time series from non-GM time series,
eNN automatically outputs the denoised time series with original time

eries as input. 
Because 12P, 24P and CNN12 are observed as less effective methods

n addressing the band-structure artifact, indicating similar noise fluctu-
tion across the entire brain, this band structure could lead to “artificial
ositive connectivity ” between brain regions. Therefore, 12P, 24P and
NN12, together with the original time series, have a stronger connec-
ivity magnitude than other processed time series for the four positive
OIs in the default mode network. Such artificial connectivity could
ominate over the intrinsic anticorrelation between PCC and the six
egative-correlated ROIs in the task positive network, leading to erro-
eous positive connectivity. In contrast, DeNN and the denoising strate-
ies with average time series or principal components extracted from
MRI data have correctly identified the anticorrelation. Consistent with
he finding by Chai et al. (2012) that replacing the global signal with
Compcor components alleviates the overestimated anticorrelation, a
imilar finding is observed in our study. However, significant negative
ias is still observed with aCompcor. Methods including 14P, 14P + GS,
nd 12P + aCompcor have significant negative bias in the reference re-
ions, which is not the case for DeNN. This phenomenon could explain
hy DeNN has weaker anticorrelation compared to these three meth-
ds, and the anticorrelation obtained by DeNN more likely reflects the
ntrinsic connectivity strength of neural fluctuations because of DeNN’s
nbiased connectivity estimation in the reference regions. 

DeNN vs. previous deep neural network denoising. DeNN is distinct from
ur two recently developed deep learning denoising methods, one for
esting-state ( Yang et al., 2019 ) and the other one for task fMRI data
 Yang et al., 2020b ). In contrast to those two methods, a novel time-
ependent fully-connected layer is designed in DeNN to effectively re-
ove noise in the data. Unlike Yang et al. (2019) applied deep learning

o derive nuisance regressors, DeNN is not a regression method, and the
etwork outputs the denoised fMRI data directly. The task design used
n task fMRI denoising ( Yang et al., 2020b ) is not required in DeNN,
hus DeNN perfectly fits for resting-state fMRI data. 

The proposed time-dependent fully-connected layer plays a critical
ole in boosting the performance. The temporal convolutional layer and
ong short-term memory (LSTM) layer are the two kinds of layers used
n our previous studies ( Yang et al., 2019 ; Yang et al., 2020b ), which
ake neighboring time points to inform the current time point. These
wo layers are invariant to the time point, thus they could be more ef-
ective for reducing periodic or pseudoperiodic noise induced by cardiac
r respiratory oscillations. The gray plot of original time series shows
hat the noise variance at each time point can be unique, a network
ithout the temporally dependent layer is likely to be less efficient in
ddressing these irregular noise (see gray plots in the Supplementary).
eNN takes advantage of the time-dependent fully-connected layer to
ake it temporally adaptive. Because the network for task fMRI data
iscards any fluctuation irrelevant to the task ( Yang et al., 2020b ), this
roblem is likely more severe in the network for resting-state fMRI data
 Yang et al., 2019 ). To overcome this obstacle, the time-dependent fully-
onnected layer is proposed in DeNN to reduce distinct noise fluctuation
or each time point separately. In addition, DeNN outputs the denoised
ime series directly instead of optimizing a set of spatially independent
uisance regressors, thereby increasing DeNN’s flexibility and capabil-
ty to differentiate spatial-varying noise from the BOLD signal. Certainly,
STM potentially can be an additional part of DeNN or the replacement
f temporal convolutional layer used in current DeNN architecture, how-
ver, an LSTM layer is not expected to make substantial performance
ifference because of its similar temporal property as a temporal con-
olutional layer. 

Limitation and future study. The parameter size for the time-
ependent fully connected layer linearly increases with the number of
ime points, leading to more expensive computational time for longer
ime series. Noise reduction for 135 time points (ADNI data) requires
pproximately fifteen minutes for one subject, and noise reduction for
200 time points (HCP data) requires approximately six hours for one
ubject on a workstation with a single Tesla K40c GPU card. A large sam-
le study may require parallel computation, particularly for data with
he number of time points larger than 1000. In addition, optimal noise
eduction for a set of new data could require adjusting the depth of the
etwork or the width of each layer. However, the current network ar-
hitecture performs adequately for two distinct datasets, suggesting that
he network is insensitive to different acquisition parameters. In addi-
ion, DeNN currently is only validated with connectivity analysis, the
pplication of DeNN for other types of analysis, e.g. fALFF ( Zou et al.,
008 ), requires further investigation. Researchers should first validate
he applicability of DeNN when using it for non-connectivity analysis. 

While DeNN was designed for resting-state fMRI, it can be applied
o denoise task fMRI data as well. The deep neural network targeted at
enoising task fMRI data ( Yang et al., 2020b ) is likely to provide more
obust activation maps than DeNN because a task design matrix is used
n Yang et al. (2020b) , with the drawback that the data is required to
e denoised again for a different task design of interest. Instead, DeNN
s applied based on fMRI data itself without specifying a task design.
urthermore, DeNN is likely to be a better choice for denoising passive-
iewing task fMRI data, where specifying a task design is less feasible,
f not impossible. Currently DeNN is only evaluated with resting-state
MRI data, and its performance on task fMRI data remains to be inves-
igated. 

. Summary 

Our current results demonstrate the feasibility of using artificial in-
elligence to denoise fMRI data by disentangling the time series between
ray matter tissue and non-gray matter tissue. This automated fMRI de-
oising neural network is generally applicable without requiring exter-
ally recorded data. The proposed time-distributed fully connected layer
akes the network spatially and temporally adaptive to the noise in the
ata. The network is applied at the subject-level, therefore, it is com-
letely feasible for a study with a small sample size. It is insensitive to
MRI acquisition parameters and can be applied both on standard and
ast-acquisition fMRI data. We have shown that the denoising network
eveals no connectivity between functionally uncorrelated regions and
as the highest specificity for the positive correlation within the default
odel network and the anticorrelation between networks. Furthermore,

his network substantially increases the homogeneity of functional con-
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Fig. A1. Boxplot of FC similarity between true FC map and FC map estimated 
with denoised time series. 

r  

G

𝒚  

w  

d  

s

𝒚  

 

𝑺  

t  

o  

f

𝐖

8  

m  

a  

h
 

A  

t  

l
(  

n  

h  

m  

n  

h  

s  

i  

i  

D

ectivity maps and strengthens the statistical power of fMRI data in
etecting the group difference between cognitively normal subjects and
ubjects with AD. 
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ppendix 

imulation 

Instead of generating noise from scratch, we use non-GM time series
xtracted from real fMRI data to define noise data without any BOLD
ignal. To simulate the neural signal in GM, we use boxcar functions
specified below) that are convolved with the canonical hemodynamic
esponse function. With this definition, the simulated time series y with
35 time points can be written as 

 = ( 1 − 𝑓 ) ∗ 𝒚 signal + 𝑓 ∗ 𝒚 noise , (A1)

here f is the noise fraction. Specifically, the noise y noise is generated
y randomly selecting one time series 𝒚 from non-GM voxels of
non − GM 
eal resting-state data from one subject, and adding additional white
aussian noise according to the equation 

 noise = 𝒚 non − GM 

+ 0 . 05 ∗ 𝐍 ( 0 , 𝑰 ) , (A2)

here N (0, I ) represents a normal random vector following a Gaussian
istribution with mean 0 and identity covariance matrix I . The BOLD
ignal in a voxel is defined to be 

 signal = 𝑺 ⋅
(
𝒘 𝑖 + 0 . 1 ∗ 𝐍 ( 0 , 𝑰 ) 

)
, 𝑖 = randi ( 8 ) . (A3)

The index i is a positive random integer with maximum value 8 and
 = [ 𝒔 1 , …, s 8 ] contains 8 simulated BOLD components where each vec-

or s i is generated by convolving a random binary vector (consisting
f 105 zeros and 30 ones) with the canonical hemodynamic response
unction. The weight vectors 𝒘 𝑖 , 𝑖 = 1 , … , 8 are given by 

 = 

[
𝒘 1 , 𝒘 2 , … , 𝒘 7 , 𝒘 8 

]
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 5 0 
0 . 5 0 

0 0 
0 0 

0 0 . 5 
0 0 . 5 

0 0 
0 0 

0 . 5 0 
0 0 . 5 

0 0 
0 0 

0 . 5 0 
0 0 . 5 

0 0 
0 0 

0 0 
0 0 

0 . 5 0 
0 . 5 0 

0 0 
0 0 

0 0 . 5 
0 0 . 5 

0 0 
0 0 

0 . 5 0 
0 0 . 5 

0 0 
0 0 

0 . 5 0 
0 0 . 5 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(A4) 

0% of GM voxels are simulated to have BOLD signal (named infor-
ative voxels) and the remaining 20% of GM voxels do not carry

ny BOLD signal. The scripts for simulation are publicly available at
ttps://github.com/pipiyang/DeNN . 

We have run DeNN on simulated data with the same architecture for
DNI data. To evaluate how well each denoising strategy can uncover

he intrinsic connectivity between informative voxels, we randomly se-
ect 100 informative voxels and calculate the “functional connectivity ”
FC) map between these 100 voxels with the true signal y signal , origi-
al simulated time series y , and different denoised time series. Then we
ave calculated the similarity between FC map from true signal and FC
ap from original or denoised time series after vectorising the FC map,
amely corr (FC signal , FC timeseries ). The noise fraction is specified as 0.8 to
ave the similarity of simulated original data close to the inter-subject
imilarity of real original fMRI data. We have repeated selecting 100
nformative voxels randomly for 1000 times and the boxplot of the sim-
larity is shown in Fig. A1 . Substantial improvement is observed with
eNN processed data, which is consistent with real data. 

http://www.fnih.org
https://doi.org/10.1016/j.neuroimage.2020.117340
https://github.com/pipiyang/DeNN
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