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Abstract
Background: Plasma neurofilament light chain (NFL) is a biomarker of inflammation 
and neurodegenerative diseases such as Alzheimer's disease (AD). However, the un-
derlying neural mechanisms by which NFL affects cognitive function remain unclear. 
In this study, we investigated the effects of inflammation on cognitive integrity in 
patients with cognitive impairment through the functional interaction of plasma NFL 
with large-scale brain networks.
Methods: This study included 29 cognitively normal, 55 LowNFL patients, and 55 
HighNFL patients. Group independent component analysis (ICA) was applied to the 
resting-state fMRI data, and 40 independent components (IC) were extracted for the 
whole brain. Next, the dynamic functional network connectivity (dFNC) of each sub-
ject was estimated using the sliding-window method and k-means clustering, and five 
dynamic functional states were identified. Finally, we applied mediation analysis to 
investigate the relationship between plasma NFL and dFNC indicators and cognitive 
scales.
Results: The present study explored the dynamics of whole-brain FNC in controls 
and LowNFL and HighNFL patients and highlighted the temporal properties of dFNC 
states in relation to psychological scales. A potential mechanism for the association 
between dFNC indicators and NFL levels in cognitively impaired patients.
Conclusions: Our findings suggested the decreased ability of information processing 
and communication in the HighNFL group, which helps us to understand their abnor-
mal cognitive functions clinically. Characteristic changes in the inflammation-coupled 
dynamic brain network may provide alternative biomarkers for the assessment of dis-
ease severity in cognitive impairment patients.
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1  |  INTRODUC TION

Alzheimer's disease (AD) is a prevalent neurodegenerative disease 
characterized by cognitive impairment and dementia in the elderly 
population, affecting almost 50 million people worldwide.1 It has 
high morbidity and mortality rates and has become increasingly bur-
densome to families and society in recent years.2,3 Significant effort 
in the past few years has been devoted to the search for biomarkers 
of AD. Neuropsychiatric disease severity and cognitive impairment 
are often described and predicted using functional connectivity.4 
Specifically, plasma NFL is a promising low-invasive method of as-
sessing various neurologic conditions,5–7 and plasma NFL has been 
shown to be a sensitive biomarker of inflammation and chronic neu-
rodegenerative disorders.8,9

Measures of functional connectivity describe the functional archi-
tecture of the human brain by quantifying the temporal dependence 
between voxels, brain regions, or network signals.10,11 Resting-state 
functional magnetic resonance imaging (rs-fMRI), as a noninvasive 
measure of brain integrity, can assess brain activity changes and 
monitor endogenous changes in the blood–oxygen level-dependent 
(BOLD) signal under resting conditions. Previous research has con-
firmed that patients with dementia of AD exhibit functional connec-
tivity abnormalities.12,13 Briefly, patients with cognitive disorders 
exhibited disrupted functional connectivity in several key functional 
systems compared to healthy elderly individuals.14,15 These critical 
regions include the default mode network (DMN), dorsal attention 
network (DAN), control network (CON), salience network (SN), and 
sensorimotor network (SMN). Abnormal functioning of the auditory 
network (AN) leads to a disruption of memory information, which 
results in its incorrect processing of internal memory, and these ap-
parently contradictory findings suggest that the presence, severity 
and stage of illness matter.16 However, it has been considered that 
functional connectivity is static over the entire time period of typical 
rs-fMRI protocols but not dynamic. In fact, the human brain is not 
immutable but obviously a dynamically interactive system. Dynamic 
functional network connectivity (dFNC) analysis based on resting 
fMRI shows different connectivity states of the brain over time by 
summarizing recurring large-scale connectivity patterns, as well as 
the mutual transitions between connectivity states.17–19 Recently, 
several studies have focused on the dFNC of AD and indicated that 
the progressively changing connectivity pattern of the dFNC is im-
portant for tracking the progression of cognitive impairment and 
can be considered a biomarker of dementia. In more detail, abnor-
mal connectivity patterns of the whole-brain dFNC were identified 
in the early stages of AD, and decreased connectivity among the 
SMN, visual network (VN), and AN was observed relative to nor-
mal healthy individuals.20 Another study demonstrated significant 
associations between dFNC features and cognitive performance on 

neuropsychological indicators. Importantly, these associations could 
not be observed between static FNC traits and cognitive scores.21

The neurofilament light (NFL) chain is a neural axon cytoskel-
etal protein that releases NFL into the extracellular space, includ-
ing peripheral blood, when the pathological process of neural axon 
injury occurs. In neurodegeneration, NFL can be measured using 
the ultrasensitive single-molecule array (SiMoATM) method in the 
blood due to injury in inflammation-related acute neuroaxonal in-
jury.6 Those who experience longer treatment interruptions are 
more likely to experience central nervous system inflammation and 
neuronal damage.22 It is a promising blood marker for neurodegen-
erative diseases.23,24 Moreover, plasma biomarkers are the easiest 
to use in clinical applications, where PET imaging or cerebrospinal 
fluid lumbar puncture is not yet popular due to low accessibility and 
open examination. The levels of plasma NFL are related to the pre-
clinical stages of AD, and previous studies have indicated that the 
level of NFL correlates with brain structure in patients with cognitive 
impairment.25 Briefly, plasma NFL in patients with cognitive impair-
ment has been linked to neuroimaging measures such as hippocam-
pal volume and cortex thickness, as well as cognitive function.26 
The longitudinal association between plasma NFL and white matter 
atrophy progressively involved periventricular regions throughout 
cognitively impaired subjects and appeared to propagate from the 
temporal lobe.27

However, whether and how the changes in plasma NFL could 
modulate the association between dFNC and cognitive function re-
main unclear. In the present study, we investigated the moderating 
effect of plasma NFL on the relationship between dFNC (i.e., dFNC 
state and dFNC graph theory) and neuropsychological scales in pa-
tients with cognitive impairment. First, we hypothesized that plasma 
NFL could modulate the association between dFNC and cognition, 
specifically, at the microscopic level, since patients with cognitive 
impairment have poorer cognitive control than healthy controls. 
Therefore, these patients may rely on the temporal variability 
of brain networks that respond to cognitive function to control 
cognitive-related activities. Second, considering the possible effects 
of plasma NFL on cognitive scales, we hypothesized that changes 
in dynamic functional connectivity could directly affect patients' 
cognitive dysfunction or indirectly cause cognitive impairment me-
diated through plasma NFL.

2  |  METHODS AND MATERIAL S

2.1  |  ADNI database

Data used in the preparation of this article were obtained from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
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(http://adni.loni.usc.edu). The ADNI is a multicenter, longitudinal 
neuroimaging study launched in 2003 as a public–private part-
nership led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of the ADNI has been to identify whether serial MRI, 
PET, other biological markers, and clinical and neuropsychological 
assessments would study the pathogenesis and prevention of AD. 
Since 2003, the ADNI has been further followed by the ADNI-GO 
and ADNI-2 and has recruited over 1500 older adults (aged 55–99) 
over three phases (ADNI-1, ADNI-GO, and ADNI-2) from over 50 
sites in the United States and Canada. ADNI participants consist of 
cognitively normal older individuals, people with early or late mild 
cognitive impairment (MCI), and people with AD. The study was ap-
proved by the institutional review boards of all participating centers, 
and written informed consent was obtained from each participant or 
authorized representative. A detailed description of the full inclusion 
and exclusion criteria for the ADNI is provided in the Appendix S1.

2.2  |  Participants

In this study, all subjects were obtained from the ADNI database, 
including 139 participants. The participants included 29 cognitively 
normal (CN), 55 low plasma neurofilament light chain (LowNFL), and 
55 high plasma neurofilament light chain (HighNFL) patients from 
whom the resting-state fMRI data were downloaded from the ADNI. 
In addition, the present study matched the groups by age, educa-
tion level and sex, and LowNFL and HighNFL, included patients 
with different stages of cognitive impairment, such as early MCI 
(EMCI), late MCI (LMCI), and AD. For grouping, plasma NFL values 
above and below the median were classed as HighNFL and LowNFL, 
respectively.

2.3  |  Clinical and neuropsychological measurement

Demographic characteristics and neuropsychological assessment 
data were downloaded from the ADNI database (http://adni.loni.
usc.edu). For the primary analyses, all subjects were subjected to 
a thorough physical and cognitive examination by ADNI or BLSA 
study personnel. ADNI subjects were evaluated using the Mini-
Mental State Examination (MMSE), Montreal Cognitive Assessment 
(MoCA), Clinical Dementia Rating (CDR), Alzheimer's Disease 
Assessment Scale-Cognitive Section (ADAS), and Functional 
Activities Questionnaire (FAQ) as general cognition and the Ray 
Auditory Verbal Learning Test (RAVLT) as a marker of episodic mem-
ory. Full information regarding the ADNI inclusion and exclusion cri-
teria can be accessed at http://adni.loni.usc.edu/.

2.4  |  Plasma NFL

During the course of the study, plasma NFL was available for all pa-
tients included. Plasma NFL concentrations were measured using 

an NFL kit (NF light; UmanDiagnostics) and then transferred to an 
ultrasensitive single-molecule array platform using a homemade kit 
(Simoa Homebrew Assay Development Kit; Quanterix Corporation). 
A 6.7 ng/L was the lower limit of quantification, and 1620.0 ng/L 
was the upper limit. All measurements fell within the limits of 
quantification.

2.5  |  MRI scanning

All image data analyzed here were obtained from the ADNI website 
(http://www.adni-info.org). MRI scanners with a 3.0-Tesla Philips 
were used for scanning all subjects. In this study, resting-state 
fMRI was acquired using a gradient echo planar imaging sequence 
with the following parameters: repetition time (TR) = 3000 ms; 
echo time (TE) = 30 ms; slice thickness = 3.3 mm; flip angle = 80°; 
acquisition matrix = 64 × 64; slice number = 48; and spatial resolu-
tion = 3.31 × 3.31 × 3.31 mm3. Then, the data processing pipeline was 
divided into several main processing blocks, while the study flow-
chart is available in Figure 1.

2.6  |  rs-fMRI preprocessing

The resting-state fMRI data were preprocessed using the Data 
Processing Assistant for Resting-State fMRI v2.2 (DPARSF) under 
the MATLAB R2013b environment. The following is a description 
of the data preprocessing procedure. A 10-point time series was re-
moved to lessen the impact of the scanner on the participants during 
their initial scanning and to facilitate their adaptation. Then, the func-
tional images were slice time corrected for timing offsets between 
different slices and realigned to the first image to account for head 
motion between scans. Participants whose head motion exceeded 
3 mm in translation and 3° in rotation were rejected from the study. 
Subsequently, spatial smoothing was performed using a Gaussian 
smoothing kernel with a full width at half maximum (FWHM) of 
6 × 6 × 6 mm. After that, we applied a bandpass temporal filter (0.01–
0.08 Hz). As a final step, nuisance covariates, including head mo-
tions, global mean signals, white matter signals, and cerebrospinal 
fluid signals, were removed from the regression calculations.

2.7  |  Group independent component analysis and 
postprocessing

Group-level independent component analysis (ICA) for the pre-
processed fMRI data was conducted with the Group ICA for fMRI 
Toolbox (GIFT version 4.0b).28,29 First, data reduction was conducted 
to decrease computational complexity using a two-stage princi-
pal component analysis (PCA). Specifically, the preprocessed fMRI 
data of both the patient and control groups were first dimensionally 
reduced in the temporal dimension, and then the dimensionality-
reduced data of all subjects were concatenated along the temporal 
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dimension into a dataset, or grouped data, and reduced by another 
dimension. After that, the preprocessed data were decomposed into 
40 independent components (ICs) through a two-step PCA. To en-
sure the repeatability or stability of the decomposed independent 

components, we used the Infomax algorithm30 with 20 repetitions 
of ICASSO.31 Ultimately, using back reconstruction,28,32 individual-
level components were transformed into Z scores, which represent 
how closely the time series of a given voxel matches the mean time 

F I G U R E  1  Pipeline of capturing whole-brain connectivity features. (A) Group ICA is performed on three independent datasets, and the 
estimated independent components (ICs) are matched by spatial correlation. (B) Pearson correlation coefficients are calculated using the 
time courses across all scans, and then a sliding window approach is used to estimate dFNC. K-means clustering is performed on the dFNC 
estimates. (C) State occurrences and transitions are calculated.
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series of that component. Then, we identified ICs of interest by using 
the automatic identification method and visual screening based on 
previously reported spatial maps. Of the 40 ICs obtained, 11 ICs of 
interest were determined that exhibited peak activation and higher 
low-frequency spectral power predominantly in gray matter, with 
known spatial overlap with vessels, ventricles, white matter, and 
limbic regions. Eleven ICs were characterized as subnetworks: AN, 
DAN, DMN, left frontoparietal network (LFPN), right frontoparietal 
network (RFPN), SMN, ventral attention network (VAN), visual net-
work (VN), and SN. In addition, following a previous study, we ap-
plied additional postprocessing steps on the time courses of the 11 
ICs to eliminate noise, including (i) linear, quadratic, and cubic de-
trending; (ii) regression of their temporal; (iii) removal of detected 
outliers; and (iv) low-pass filtering with a high-frequency cut-off 
of 0.15 Hz. Eventually, we performed the following dFNC analyses 
using the residual time courses.

2.8  |  Dynamic functional network connectivity

We adopted this analysis using the FNC toolbox in GIFT using the 
sliding window approach and k-means clustering, which are com-
mon ways to estimate dFNC. The tapered windows were created by 
convolving a rectangle (window size set to 30 TRs) with a Gaussian 
of σ = 3 and slides in steps of 1 TR. Based on Pearson correlation, 
a covariance matrix was calculated to measure the dFNC between 
ICA time courses. Then, the k-means clustering algorithm (using the 
squared Euclidean distance method with 500 iterations and 150 rep-
licate dFNC windows) was conducted on the matrices. In addition, 
three dFNC indices were extracted from the target dFNC state of 
each subject, namely the fraction of time (FT), the mean dwell time 
(MDL), and the number of transitions (NT). FT refers to the percent-
age of the total time that occurs in each state. MDL indicates the 
average of time spent in a given state for each subject. NT reflects 
the number of times each participant switched between states. 
Subsequently, statistical analysis was performed using the nonpara-
metric Whitney U test for these indicators (p < 0.05 was considered 
statistically significant).

Additionally, to determine whether plasma NFL mediated the re-
lationships between dFNC indices and cognition, mediation analysis 
was further performed. Based on bootstrapping (k = 1000 random 
samples), bias-corrected 95% confidence intervals (CIs) were cal-
culated to test whether the mediation was significant. Statistical 
analyses were performed with PROCESS for the Statistical Package 
for Social Science (SPSS) version 22.0 for Windows (SPSS, Inc., 
Chicago, IL).

2.9  |  Graph theory analysis

We applied graph theory analysis using GRETNA software (www.
nitrc.org/proje​cts/gretna) to analyze the topological properties of 
the dynamic functional networks of each subject. Based on the 

previous graph theory framework, 11 ICs corresponded to func-
tionally independent nodes and connectivities linking node pairs 
were defined as edges in the graphs. Then, all FNC matrixes were 
binarized, and a wide range of sparsity thresholds was set (thresh-
old range of 0.05–0.40 with an interval of 0.01). At each sparsity 
threshold, global and local network efficiencies were employed to 
investigate local and global information in functional brain net-
works. Briefly, we calculated both global and nodal network prop-
erties and the area under the curve (AUC) for each property over 
the sparsity range and compared the AUC between each group. 
We applied variance to assess the differences in global and local 
efficiency.

2.10  |  Statistical analysis

The statistical analysis was performed with SPSS version 22.0 for 
Windows. The differences among CN, LowNFL, and HighNFL in 
demographic, neuropsychological, and plasma NFL were assessed 
by Kruskal–Wallis tests, a nonparametric test. Post hoc tests were 
also performed by another nonparametric test, the Mann–Whiney 
U test. We performed Spearman's correlation analysis to investigate 
the relationship between the dFNC characteristics and the neu-
ropsychological assessment data in the HighNFL group. The statisti-
cal significance threshold was set at p < 0.05.

3  |  RESULTS

3.1  |  Demographic and neuropsychometric 
characteristics

Demographic and neuropsychometric characteristics are provided 
in Table 1. Comparisons of age, education level, or sex variables did 
not reveal any significant differences. General cognition and epi-
sodic memory (i.e., RAVLT_immediate, RAVLT_learning, and RAVLT_
perc_forgetting) indicated significant differences between the CN 
and HighNFL groups, as well as the LowNFL and HighNFL groups. 
Furthermore, a previous study demonstrated that a significant cor-
relation was found between NFL levels and cognitive impairment. 
In Table 1, we observed that plasma NFL levels were significantly 
higher in the HighNFL group than in the CN and LowNFL groups, and 
patients' general cognition (i.e., MMSE, MoCA, CDR, ADAS11/13, 
and FAQ) and episodic memory (i.e., RAVLT_immediate, RAVLT_
learning, and RAVLT_perc_forgetting) worsened with plasma NFL 
level progression (p < 0.05).

3.2  |  ICs of interest

Figure  2 shows the 11 ICs of interest, which were selected from 
the 40 ICs (one sample t test, p < 0.001, FDR corrected). Based on 
their anatomical and functional properties, 11 ICs were further 
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    |  7YAO et al.

categorized into nine networks, including the AN, DAN, DMN, 
LFPN, RFPN, SN, SMN, VAN, and VN.

3.3  |  dFNC states

The sliding window approach was utilized to calculate the dFNC be-
tween ICs, and then the dFNC was estimated for all subjects using 
k-means clustering to identify five states of connectivity that re-
curred over time. The five states of the clusters and their respective 
frequencies and percentages appear as in Figure  3A,B. Using the 
five clustering centroids (cluster medians) described above, all dFNC 
windows for each subject were classified into one of the five states 
based on the similarity of the starting clustering centroids. Note that 
not all subjects were assigned a dFNC window for each state; see the 
subject counts for each state shown in Table 2.

In state 1, which accounts for 16% of all windows, the FNC 
between the AN and SMN, VAN, VN, and SN showed positive con-
nectivity and negative connectivity between the DMN and DAN 
and SN. In states 2 and 3, which accounted for 22% and 43% of 
all windows, the FNC between all functional networks was very 
sparse. Compared with state 2, state 4 showed the opposite 
connectivity pattern, such as a more positive correlation within 
networks.

With regard to temporal properties, the dFNC was computed in 
Figure 3C,D (i.e., fractional of time and mean dwell time). Figure S1A 
(for details, see Appendix  S1) generated the state transition vec-
tor of three groups for 139 participants, as well as the number of 
transitions and matrix of transitions, as shown in Figure S1B,C (for 
details, see Appendix S1). Among these state-related indicators in 
state 1, we found significant differences in fraction time and mean 
dwell time in the CN and HighNFL groups, as well as the LowNFL 

F I G U R E  2  Eleven independent 
functional components were derived from 
the group ICA: auditory network (AN, 
IC 5), dorsal attention network (DAN, IC 
36), default mode network (DMN, IC 25, 
20), left frontoparietal network (LFPN, IC 
30), right frontoparietal network (RFPN, 
IC 28), salience network (SN, IC 22, 8), 
somatomotor network (SMN, IC 10), 
ventral attention network (VAN, IC 34), 
and visual network (VN, IC 17).
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8  |    YAO et al.

and HighNFL groups (Table  3). However, we did not observe any 
significant group differences in the other state-related indicators. 
Furthermore, we also found that in state 1, the fraction of time and 
mean dwell time of the HighNFL group were lower than those of the 
CN and LowNFL groups.

3.4  |  Associations between dFNC features and 
cognitive scores

Figure  3E–K displays the results of a significant association be-
tween dFNC features and cognitive scores in the HighNFL group. 

F I G U R E  3  Dynamic functional connectivity state results. Identified dFNC states using the k-means clustering method. (A) Cluster 
centroids of each state and percentage of occurrence of each brain connectivity state across the sliding windows of all subjects. The color 
bar shows the strength of the connectivity. (B) Visualization of functional network connectivity at every state. (C) Comparison of the group 
effect in the temporal properties of the dFNC state among the CN, LowNFL, and HighNFL groups (p < 0.05, FDR corrected): Fraction time. 
(D) Mean dwell time. (E–K) Correlations of the HighNFL group between cognitive scales and dFNC indices in state 1.
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    |  9YAO et al.

In dFNC state 1, the fraction of time was positively correlated 
with ADAS11 (r = 0.2817, p = 0.0372) and ADAS13 (r = 0.2978, 
p = 0.0272), whereas it was negatively correlated with MMSE 
(r = −0.2693, p = 0.0468) and RAVLT_immediate (r = −0.3057, 
p = 0.0232). Similarly, we found that the mean dwell time was posi-
tively correlated with ADAS11 (r = 0.3143, p = 0.0195) and ADAS13 
(r = 0.3227, p = 0.0163) and negatively correlated with RAVLT_im-
mediate (r = −0.3091, p = 0.0216).

3.5  |  Graph topological properties

Graph theory analysis was applied to investigate the topologic met-
rics of dFNC states and compare them between groups (i.e., CN, 
LowNFL, and HighNFL). The variability of the global and local ef-
ficiency for the three groups is depicted in Figure  S2 (for details, 
see Appendix S1). In global and local efficiency, we observed that 
LowNFL and HighNFL patients exhibited significantly higher global 
efficiency than CN (p < 0.05 FDR corrected), suggesting that aver-
age parallel information in brain networks of cognitively impaired 
patients can provide more efficient information transfer. In addition, 

we found a significant correlation between CN and LowNFL, as well 
as CN and HighNFL groups in local efficiency.

3.6  |  Mediators of plasma NFL

Three parent-reported variables (plasma NFL as a mediator, topologic 
metrics of dFNC states were entered as a predictor, and neuropsy-
chological performance was an outcome) showed differential change 
by condition and were subjected to mediation analyses. In the cog-
nitively impaired patients, plasma NFL was used as a mediator, and 
topologic metrics of dFNC states (i.e., fractional of time, FT; mean 
dwell time, MDL) affected general cognition and episodic memory by 
these mediators (p < 0.05, details see Figure 4). The results indicated 
that dynamic indicators influenced cognitive scale mainly through 
the mediator of plasma NFL in state 1. In detail, the effect of plasma 
NFL was found to be significant in the HighNFL group FT of CDR, 
ADAS11, ADAS13, RAVLT immediate, FAQ, MOCA, and MMSE (95% 
CIs in order were as follows: −1.3721, −0.1034; −5.5790, −0.3781; 
−6.7920, −0.5959; 0.3992, 5.1880; −5.9447, −0.2529; 0.1202, 
2.7546; 0.1066, 2.4672, separately), while plasma NFL was found to 

TA B L E  2  Number of per group individuals in each state and their number of windowed FNC in parentheses.

Groups N State 1 State 2 State 3 State 4 State 5

CN 29 16 13 21 13 1

LowNFL 55 28 22 43 20 2

HighNFL 55 16 23 42 20 3

Total 139 60 (2193) 58 (3071) 106 (5912) 53 (2357) 6 (367)

Note: Number of individuals in per group participating in each state. The number of FNCs in the window is indicated in parentheses.
Abbreviation: N, number.

TA B L E  3  Group differences in temporal dynamic indices revealed by the states clustering analysis.

Indices CN LowNFL HighNFL

p-(Mann–Whiney U Test)

CN vs. 
LowNFL CN vs. HighNFL Low vs. HighNFL

FT in state 1 0.17 ± 0.23 0.22 ± 0.26 0.10 ± 0.19 0.564 0.048* 0.007*

FT in state 2 0.21 ± 0.31 0.22 ± 0.32 0.23 ± 0.31 0.912 0.888 0.875

FT in state 3 0.42 ± 0.33 0.40 ± 0.34 0.46 ± 0.35 0.751 0.624 0.325

FT in state 4 0.19 ± 0.28 0.15 ± 0.25 0.18 ± 0.29 0.387 0.875 0.509

FT in state 5 0.01 ± 0.08 0.02 ± 0.14 0.03 ± 0.16 0.524 0.924 0.416

MDL in state 1 14.57 ± 20.28 15.02 ± 18.37 5.96 ± 10.27 0.895 0.018* 0.005*

MDL in state 2 17.35 ± 28.91 16.14 ± 28.84 15.65 ± 23.62 0.748 0.952 0.722

MDL in state 3 27.98 ± 28.80 29.98 ± 32.18 36.0 ± 33.81 0.928 0.451 0.258

MDL in state 4 16.47 ± 25.44 11.06 ± 19.19 11.99 ± 21.37 0.342 0.593 0.632

MDL in state 5 1.48 ± 7.61 2.13 ± 13.64 2.83 ± 14.35 0.524 0.941 0.408

Transition Number 2.38 ± 1.68 2.55 ± 1.95 2.42 ± 1.64 0.834 0.893 0.913

Note: Values were presented as the average ± standard deviation (SD); p-(Mann–Whiney U Test) was used here due to the fact that the data were not 
normally distributed.
Abbreviations: CN, cognitively normal; FT, fraction of time; HighNFL, high neurofilament light; LowNFL, low plasma neurofilament light; MDL, mean 
dwell time.
*Indicates a statistical difference between groups, p < 0.05.
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10  |    YAO et al.

be significant in the HighNFL group MDL of CDR, ADAS11, ADAS13, 
RAVLT immediate, FAQ, MOCA, and MMSE (95% CIs in order were 
as follows: −0.0204, −0.0016; −0.0855, −0.0079; −0.1027, −0.0110; 
0.0087, 0.0761; −0.0889, −0.0040; 0.0019, 0.0426; 0.0015).

4  |  DISCUSSION

The present study explored the dynamics of whole-brain FNC in 
CN, LowNFL, and HighNFL patients and emphasized the temporal 
properties of functional connectivity of dFNC states in relation to 
psychological scales. The main findings were as follows: (i) the dFNC 
in the 11 brain networks could be clustered into 5 states that re-
curred over time, which differed in their connectivity patterns, with 
3 states showing dense connectivity (states 1, 4, and 5) and 2 states 
showing sparse connectivity (states 2 and 3); (ii) analysis of the tem-
poral properties of the functional connectivity of the dFNC states 
revealed that the HighNFL group spent less time in state 1 than con-
trols and had significantly lower fraction time and mean dwell time, 
but the opposite in state 3; and (iii) a potential mechanism for the 
association between dFNC indicators and plasma NFL levels in cog-
nitively impaired patients, in addition, it could be used to distinguish 
normal patients from cognitively impaired patients. These results 
suggested that the dynamic behavior of brain connections should be 
highlighted as AD related.

Transient dFNC states may reveal the functional capacity of the 
nervous system.33 Strengthened integration between networks is 
necessary for greater working memory performance.34,35 A recent 
study showed that the motor network in AD subjects is independent 
of other brain networks and is in a sparsely connected functional 
connectivity state most of the time.36 In addition, another study 
demonstrated that the time spent by AD patients differed when 
they were in different states of connectivity. Namely, states with 

lower connectivity spend more time, while states with higher con-
nectivity spend less time.37 Our results showed that the subjects in 
the HighNFL group spent more time in state 3, which showed sparse 
connectivity between brain networks, and less time in the state with 
stronger connectivity between brain networks. Next, another part 
of the results was identified by showing that the normal brain spends 
more time in tight junctions than HighNFL, as in state 1. Therefore, 
this reinforces the role of connectivity sparseness and denseness in 
the transition from the normal to the cognitive impairment stage in 
different states.

Previous work has demonstrated the overlap between areas of 
pathological damage in AD and regions of the DMN.38 Notably, activa-
tion in the DMN plays a significant role in goal-directed and introspec-
tive cognitive control associated with episodic memory.39,40 Therefore, 
as prior studies have demonstrated, we expected the role of the DMN 
as a pivotal brain function to be compromised. However, we found 
that the strength of the functional connectivity between the SMN/
SN was most associated with symptom severity. Meanwhile, the DMN 
was tightly connected to internal functions in four states but sparsely 
connected to other brain networks. In the HighNFL group, the time 
spent in state 1 was positively correlated with the ADAS11/13 score 
but negatively correlated with the ADAS11/13 score. The SMN and 
SN are assumed to be less affected by AD pathology in the later stages 
of cognitive impairment. Therefore, these stimulating findings may 
serve as a measure of sensitivity for monitoring neurological damage 
in AD (possibly more sensitive than regions of primary degeneration). 
Therefore, we speculated that SMN and SN may impact cognitive 
function by dynamically regulating functional connections within the 
networks. Additionally, our results may suggest that the DMN is an 
important brain network affected by AD progression to later stages, 
which could also help explain why changes in motor function may 
occur preferentially and earlier than the onset of cognition and de-
mentia.41 Large, population-based prospective studies are needed to 

F I G U R E  4  Relationships among plasma NFL, the temporal properties of the dFNC state, and cognition were revealed in cognitive 
impairment patients. Plasma NFL was used as a mediator, and fraction time affected general cognition and episodic memory by these 
mediators (p < 0.05). In addition, plasma NFL was used as a mediator, and mean dwell time affected general cognition and episodic memory 
by these mediators (p < 0.05).
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    |  11YAO et al.

identify more precise changes in sensory or motor function that mark 
early cognitive impairment.

NFL is one of the three subunits of neurofilament proteins in the 
central nervous system, which are essential cytoskeletal proteins for 
neurons and are abundantly present in most myelinated axons.42 NFL 
is a dynamic biomarker that is released into the circulation and eventu-
ally into the bloodstream following axonal injury. NFL levels have been 
associated with neurodegenerative diseases, such as AD.5 NFL levels 
were positively correlated with cerebral axonal degeneration, and the 
higher the NFL, the more severe the cerebral axonal degeneration.43 
Clinical studies have also indicated that plasma NFL is higher in pa-
tients who suffer from MCI or AD dementia with pathological fea-
tures Aβ.43 Previous studies have also shown that age affects plasma 
NFL levels.44 Previous studies from our research team demonstrated 
that plasma NFL could affect the interactions of the core subsystem 
and FPN, which leads to cognitive decline in AD spectrum patients.45 
Some studies have addressed the relationship between plasma NFL 
and structural and functional changes in the brain. For example, in 
cognitively impaired subjects, plasma NFL was significantly associated 
with material atrophy in the temporal lobe and anterior and posterior 
cingulate. Meanwhile, it can also independently predict hippocampal 
atrophy.46 This study further highlighted the effect of plasma NFL on 
the temporal properties of dFNC states in relation to psychological 
scales.

This study had several limitations. First, given the relatively small 
sample size of our study population and based on a heterogeneous 
group, it prevented us from a comprehensive assessment. Future 
studies with larger sample sizes or multicenter clinical studies are 
recommended to validate this result and to further evaluate the 
impact of disease heterogeneity on dFNC. Second, the analytical 
approach of dFNC is relatively new and in this case, lacks a gold stan-
dard. For example, there is no common standard for how parameters 
such as the optimal window length and overlap should be chosen, 
whereas variations in these parameters may have a large impact on 
the analytical results.47 The choice of window size significantly af-
fects the clustering. A window that is considered longer does not 
capture the true dynamic behavior, but more smoothing could be ac-
complished, while a shorter window can detect faster fluctuations. 
Future work could be completed to evaluate the variation in state 
derivatives over a range of window sizes.48 There was only one value 
of the plasma NFL index in this study, and the relationship between 
NFL over time and dFNC can be studied in a follow-up.

5  |  CONCLUSIONS

In summary, our study examined common and specific dFNC ab-
normalities in the brain networks of cognitive impairment patients 
at different levels of the inflammation-related indicator NFL. We 
found that the HighNFL group preferred to spend less time in the 
dense connection state and spent more time in the sparse connec-
tion state. Moreover, our findings suggested decreased information 

processing and cognitive abilities in the HighNFL group, which may 
contribute to our clinical understanding of their abnormalities in 
emotional and cognitive functions. In brief, characteristic changes in 
the inflammation-coupled dynamic brain network may provide alter-
native biomarkers for the assessment of disease severity of cognitive 
impairment.
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