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INTRODUCTION

Mild cognitive impairment (MCI) is an intermediate state be-
tween normal aging and dementia, with evidence of cognitive 
impairment but preserved functional independence.1 MCI 
has various etiologies, leading to its heterogeneous neuropsy-
chological profile2 and biomarker positivity patterns.3 In par-
ticular, a considerable proportion (36–46%) of individuals 
with MCI showed low levels of beta-amyloid (Aβ) deposi-
tion.4,5 In addition, the clinical course of MCI is also diverse. 
MCI is not always a prodromal form of AD; it can be any type of 
dementia, and can remain stable over a long period of time6 or 
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may even be reversible.7 For example, based on 41 robust co-
hort studies on MCI progression,8 overall annual conversion 
rate was around 6.7% for all kinds of dementia, 6.5% for AD de-
mentia, and 1.6% for vascular dementia. A considerable number 
of MCI cases were not progressed to dementia for more than 10 
years follow-up.8

Although memory deficit is generally considered an early 
cognitive alteration associated with MCI, other cognitive defi-
cits are also widely observed in MCI. Notably, previous MCI 
studies have reported executive dysfunction9-11 and frontal lobe 
alteration.12 Executive function (EF) encompasses a set of top-
down cognitive processes to support goal-directed behavior.13 
Consequently, EF and memory could influence each other.14 
As Seo, et al.11 pointed out, memory and EF are closely related. 
More importantly, EF is an important cognitive domain in prog-
nosis and dementia conversion. For example, previous works 
showed EF impairment years prior to MCI11,15 or AD diagno-
sis.16 Compared to MCI with higher EF, MCI with lower EF is 
more often converted to AD after 1 year.14 Moreover, EF test, 
not episodic memory tests, combined with regional cerebral 
glucose metabolism (rCMglc), has high predictability for con-
version from normal to MCI or AD dementia.16 Taken together, 
previous studies suggest the important role of EF as an early 
warning system in the clinical course of MCI. 

Nevertheless, only a limited number of studies have directly 
investigated the functional neural correlates for EF impair-
ment in MCI populations. One functional imaging study re-
ported that connectivity strengths in dorsolateral prefrontal 
cortex (DLPFC) and anterior cingulate cortex (ACC) were as-
sociated with EF in MCI.17 In terms of AD population, EF im-
pairment was correlated with rCMglc in parietotemporal and 
prefrontal regions.18 Findings from structural brain studies on 
MCI also suggested a correlation between parietotemporal 
and prefrontal regions and EF.19,20 However, little attention has 
been paid to the nature of EF impairment in MCI with patho-
physiologies other than AD; i.e., MCI with low Aβ burden. It is 
plausible that EF failure in MCI depends on different neural 
substrates according to their etiologies. 

[18F]-fluorodeoxyglucose positron emission tomography 
(FDG-PET) is a valuable index of synaptic function that pro-
vides information to understand underlying neurodegenera-
tive pathology.21 It is a commonly used methodology for eval-
uation of the brain-cognition relationship and early detection 
of dementia.22 A recent meta-analysis of nine FDG-PET stud-
ies suggested that hypometabolism in posterior cingulate cor-
tex (PCC) and precuneus (PreCu) were the most reliable and 
robust markers for early detection of and tracking conversion 
from MCI to AD.23 Hypometabolism in ACC was also related to 
clinical progression, but it was much less reliable.23 These areas 
could be acceptable candidate imaging biomarkers of clinical 
progression. 

Therefore, this study aimed to identify the functional neural 
basis of EF impairment in MCI separately for Aβ positivity. 

Furthermore, we explored whether the identified functional 
brain areas could serve as predictors for clinical progression.

MATERIALS AND METHODS

Participants
Data on individuals with MCI were selected from the Alzheim-
er’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). For detailed explanation of the ADNI, please 
refer http://www.adni-info.org. The diagnosis criteria for MCI 
in ADNI database were clinical dementia rating (CDR)24 of 0.5, 
Mini-Mental State Examination (MMSE) scores between 24 
and 30, a memory complaint with objective memory loss as 
defined by logical memory test score but showing no impair-
ment in other cognitive domains, preserved activities of daily 
living, and nondemented.25 Therefore, MCI from ADNI data-
base were all amnestic MCI (aMCI). The inclusion criteria for 
the current study were described previously.26 Briefly, individ-
uals with aMCI who had conducted [18F]-florbetapir-PET and 
FDG-PET, as well as clinical and cognitive assessment. The fi-
nal analysis included 498 individuals who received baseline 
clinical evaluation and PET scans between April 2010 and De-
cember 2013. Among these 498 individuals with MCI, follow-
up diagnosis and CDR sum of boxes (CDR-SOB) at 1 year later, 
which were assessed between March 2011 and June 2014, were 
collected to obtain information on clinical progression. CDR-
SOB covers six domains of cognitive and daily functioning, 
with a score ranging from 0 to 18. It is a useful tool for staging 
clinical severity. In addition, renewed diagnosis and CDR-SOB 
at 5 years later, which were assessed between March 2015 and 
December 2018, were also collected to obtain information on 
longer clinical progression. To control for the interval time, we 
included subjects who had an evaluation visit at 54–66 months 
from baseline date. 

EF measures and other clinical information
ADNI composite scores for EF (ADNI-EF)27 were selected to 
measure EF. This score was developed using factor analysis on 
the measures including Digit Symbol Substitution and Digit 
Span Backwards from the revised Wechsler Adult Intelligence 
Scale, Trail Making Tests A and B, Category Fluency, and Clock 
Drawing Test. Therefore, ADNI-EF score covered a wide range 
of EF components. The score was standardized with a mean 
of 0 and a standard deviation of 1, based on the 800 subjects in 
ADNI.27 Higher score meant better EF in MCI. For everyday 
functioning, we included the Functional Assessment Ques-
tionnaire (FAQ), which assessed the instrumental activities of 
daily living with a score ranging from 0 to 30. For global cogni-
tion, MMSE score was included. Information on apolipopro-
tein E (APOE) genotypes was also collected.
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Florbetapir PET
We obtained the mean florbetapir standardized uptake value 
ratio (SUVR) for each participant. A detailed description of 
florbetapir PET acquisition and processing can be found on 
ADNI website (http://adni.loni.usc.edu/methods/pet-analy-
sis-method/pet-analysis/) or in previously published reports.28 
Briefly, the subject’s first florbetapir image was co-registered 
to their magnetic resonance image and segmented into Free-
surfer (version 4.5.0, Athinoula A. Martinos Center for Bio-
medical Imaging at Massachusetts General Hospital, Massa-
chusetts, MA, USA; https://surfer.nmr.mgh.harvard.edu/)-
defined cortical regions (frontal, anterior/posterior cingulate, 
lateral parietal, and lateral temporal). Next, the mean florbeta-
pir uptake from these gray matter regions was extracted relative 
to the uptake in the whole cerebellum. Participants were classi-
fied as aMCI with low Aβ burden (aMCI Aβ-) or aMCI with high 
Aβ burden (aMCI Aβ+) according to SUVR cut-off of 1.11 for 
amyloid positivity.28

FDG-PET preprocessing 
We collected the most preprocessed form of FDG-PET data 
from ADNI to investigate the relationship between ADNI-EF 
and rCMglc. ADNI-PET protocol was strictly followed in each 
site. ADNI preprocessing steps of FDG-PET data were previ-
ously described.25 Briefly, a quality control process was ap-
plied to all scans, which included assessment of image reso-
lution and uniformity, checks for statistical noise, motion 
assessment across temporal frames, and visual checks for com-
mon artifacts. Then, using the original raw PET images, the 
different temporal frames were co-registered. All image sets, 
including dynamic image and single-frame averaged image 
sets, were reoriented to a common spatial orientation and in-
terpolated onto a uniform image grid. To reduce inter-scanner 
differences (17 different scanner models from three vendors), 
the images were smoothed with a scanner-specific filter de-
rived from each site’s Hoffman phantom, and then provided a 
common isotropic resolution of 8-mm full-width at half-max-
imum resolution.25 We further preprocessed for group-level 
analysis. These scans were adjusted for their origin, and spa-
tially normalized to the Montreal Neurological Institute (MNI, 
McGill University, Montreal, Canada) space using Statistical 
Parametric Mapping 12 (SPM12) (Institute of Neurology, Uni-
versity College of London, London, UK) implemented in MAT-
LAB (MathWorks; Massachusetts, MA, USA). They were then 
smoothed with a Gaussian kernel of 8-mm full-width at half-
maximum. Finally, global normalization using proportional scal-
ing was performed, as it has a higher signal to noise compared to 
that of cerebellar count normalization.29

A region of interest (ROI)-based approach was also applied 
to investigate the association between rCMglc and clinical 
progression. The automatic anatomic labeling (AAL) algorithm 
and a region-combining method were applied to set ROIs to 
measure regional brain metabolism in the bilateral ACC (AAL 

template No. 31–32), bilateral PCC (AAL template No. 35–36), 
and bilateral PreCu (AAL template No. 67–68).30

Statistical analysis
The correlations between ADNI-EF and rCMglc were analyzed 
separately for aMCI Aβ- and aMCI Aβ+ groups using a multi-
ple regression model with age, sex, education, and APOE gen-
otype as covariates. Statistical threshold was set at p<0.001, 
uncorrected for multiple comparisons, with an extent thresh-
old of greater than 50 contiguous voxels. CDR-SOB was further 
added as a covariate to the multiple regression model to con-
trol for clinical severity. These analyses were performed using 
SPM12 (Institute of Neurology, University College of London).

Demographic and clinical data were compared between 
groups by separate one-way analysis of variance (ANOVA) 
and χ2 tests for continuous and categorical variables, respec-
tively. Multiple linear regression analysis was conducted to 
investigate the associations between rCMglc and clinical pro-
gression as measured by CDR-SOB at 1 year later. Age, sex, 
education, and APOE ε4 genotype were included in the first 
step using the “Enter” method to control for their effects on 
CDR-SOB; then, ACC, PCC, and PreCu metabolism were in-
cluded using the “Stepwise” method. Additional multiple lin-
ear regression analysis was also conducted to investigate the 
associations between rCMglc and further clinical progression 
(CDR-SOB) 5 years later. These analyses were performed using 
SPSS version 25.0 (IBM Corp., Armonk, NY, USA), and p val-
ues <0.05 were considered statistically significant.

Ethics statement
Institutional Review Boards approved the study procedures 
across institutions participating in ADNI. Written informed 
consent to share data for scientific research purposes was ob-
tained from each participant. A request for access to data was 
approved by the ADNI Data and Publication Committee 
(https://adni.loni.usc.edu/wp-content/uploads/how_to_ap-
ply/ADNI_DSP_Policy.pdf). The institutional review board of 
Chosun University also approved the present study (IRB no. 
2-1041055-AB-N-01-2017-28). 

RESULTS

Participant characteristics at baseline and follow-up
Based on mean SUVR, aMCI group was divided into aMCI Aβ- 
(n=230) and aMCI Aβ+ (n=268). The demographic and clini-
cal characteristics of the 498 subjects are presented in Table 1. 
No group differences in sex or education were found; however, 
aMCI Aβ- group was younger than aMCI Aβ+ group. APOE ε4 
carriers were more frequent among aMCI Aβ+ subjects. CDR-
SOB, FAQ, MMSE, and ADNI_EF scores were significantly 
worse in aMCI Aβ+ group compared to those in aMCI Aβ- 
group. Among them, 409 (82.1%) subjects completed evalua-
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tions at 1 year later. Individuals with aMCI Aβ+ (n=253, 94.4%) 
were more followed than aMCI Aβ- (n=156, 67.8%) (χ2

df=1= 
59.564, p<0.001) at the 1-year follow-up (Table 1). The 5-year 
follow-up analysis included 120 (24.1%) subjects. Remaining 
subjects were not followed up after 1 year (n=56), or were fol-
lowed up but were not included in the analysis due to longer 
(n=38) or shorter (n=195) follow-up intervals than 5.0±0.5 years. 

Changes in CDR-SOB scores are shown in Fig. 1. These scores 
did not differ between baseline and one- and 5-year follow-up 
in aMCI Aβ- group, whereas these scores were significantly in-
creased from baseline to 1 year (p<0.001) and between the one 
and 5-year follow-ups (p<0.001) in aMCI Aβ+ group. CDR-SOB 
scores in aMCI Aβ- group were significantly lower than those 
in aMCI Aβ+ group (baseline, p=0.01; one- and 5- year follow-
up, p<0.001). In aMCI Aβ- group, three individuals converted 
to dementia but seven reverted to cognitively normal (CN) 

status at the 1-year follow-up, and no individuals had addi-
tionally converted to dementia but nine had reverted to CN at 
the 5-year follow-up. In aMCI Aβ+ group, 33 converted to de-
mentia but six reverted to CN at the 1-year follow-up, and 28 
additionally converted to dementia and four reverted to CN at 
the 5-year follow-up.

Relationship between ADNI-EF and rCMglc 
at baseline
The relationships between ADNI-EF and rCMglc were investi-
gated after controlling for age, sex, education, and APOE gen-
otype. In aMCI Aβ- group, significant positive correlations be-
tween ADNI-EF and rCMglc were found mainly in bilateral 
ACC (Fig. 2, Table 2). In contrast, in aMCI Aβ+ group, signifi-
cant positive correlations between ADNI-EF and rCMglc were 
found in bilateral PreCu, left PCC, bilateral middle temporal 
gyri, bilateral inferior parietal lobule, and bilateral superior 
frontal gyri (Fig. 3, Table 2). These patterns of correlation re-
mained unchanged when clinical severity was added as a co-
variate.

Associations of clinical progression with ACC, PCC, 
and PreCu rCMglc
Multiple linear regression analysis using stepwise method 
showed Aβ positivity-dependent distinct patterns of associa-
tions between rCMglc ROIs and CDR-SOB at 1 year. In aMCI 
Aβ- group, baseline ACC hypometabolism was significantly 
associated with a higher CDR-SOB (β=-0.260, p=0.003) inde-
pendently of age, sex, education, and APOE genotype. In con-
trast, in aMCI Aβ+ group, baseline PCC hypometabolism was 
significantly associated with a higher CDR-SOB (β=-0.190, p= 
0.003) independently of age, sex, education, and APOE geno-
type (Table 3). In terms of 5-year follow-up, aMCI Aβ- group 
showed no significant associations between rCMglc ROIs and 
CDR-SOB. However, aMCI Aβ+ group showed a significant as-

Fig. 1. Longitudinal Clinical Dementia Rating sum of boxes (CDR-SOB) 
score changes according to beta-amyloid positivity. The number of 
subjects at baseline was 230 and 268 for amnestic mild cognitive im-
pairment with low Aβ burden (aMCI Aβ-) and amnestic mild cognitive 
impairment with high Aβ burden (aMCI Aβ+), respectively. The number 
of subjects at 1-year follow-up (FU) was 156 and 253 for aMCI Aβ- and 
aMCI Aβ+, respectively. The number of subjects at 5-year FU was 52 
and 68 for aMCI Aβ- and aMCI Aβ+, respectively. *p<0.01; †p<0.001.

Table 1. Demographic and Clinical Characteristics of Participants at Baseline

Total participants Followed for 1 year only
aMCI Aβ- (n=230) aMCI Aβ+ (n=268) aMCI Aβ- (n=156) aMCI Aβ+ (n=253)

Age (yr) 70.95 (8.32)   73.69 (7.14)* 71.53 (8.45) 73.71 (6.99)*
Education (yr) 16.34 (2.48) 15.94 (2.87) 16.62 (2.42) 15.86 (2.88)*
Female (n, %)    127 (55.2)     154 (57.5)      63 (40.4)  107 (42.3)
APOE ε4 carriers (n, %)       54 (23.5)      173 (64.6)*      41 (26.3)     167 (66.0) *
Aβ   1.00 (0.53)     1.37 (0.17)*   1.01 (0.55)   1.37 (0.17)*
CDR-SOB   1.32 (0.83)     1.63 (0.98)*   1.34 (0.86)   1.65 (0.96)*
FAQ   1.97 (3.18)     3.29 (4.07)*   2.15 (3.28)   3.43 (4.14)*
MMSE 28.52 (1.45)   27.64 (1.84)* 28.60 (1.48) 27.60 (1.85)*
ADNI-EF   0.53 (0.73)     0.18 (0.82)*   0.48 (0.74)   0.16 (0.81)*
aMCI Aβ-, amnestic mild cognitive impairment with low Aβ burden; aMCI Aβ+, amnestic mild cognitive impairment with high Aβ burden; APOE, apolipoprotein E; 
Aβ, florbetapir mean standard uptake value ratio of frontal, anterior cingulate, precuneus and parietal cortex relative to the cerebellum; CDR-SOB, Clinical De-
mentia Rating sum of boxes; FAQ, Functional Assessment Questionnaire; MMSE, Mini Mental Status Examination; ADNI-EF, Alzheimer’s Disease Neuroimaging 
Initiative composite score for executive function.
Data are presented as mean (standard deviation) unless specified otherwise.
*p<0.05.
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Table 2. Brain Regions Showing Significant Correlations between rCMglc and ADNI-EF

Brain region BA
MNI coordinates (mm)

t-score z-score Cluster size
x y z

aMCI Aβ-
Rt. dorsal anterior cingulate gyrus 32 16 34 14 4.08 4.01 55
Rt. ventral anterior cingulate gyrus 24 10 -2 36 4.08 4.01 114
Lt. ventral anterior cingulate gyrus 24 -6 -22 38 3.47 3.42
Lt. dorsal anterior cingulate gyrus 32 -12 28 24 3.86 3.79 58

aMCI Aβ+
Lt. middle temporal gyrus 39 -44 -66 24 6.17 5.96 2680
Lt. inferior parietal lobule 7 -44 -70 44 5.73 5.56
Lt. precuneus 7 -26 -72 40 4.10 4.04
Rt. precuneus 31 10 -50 32 5.65 5.49 2451
Lt. posterior cingulate gyrus 31 -8 -48 34 5.52 5.37
Rt. inferior parietal lobule 40 50 -46 42 5.30 5.16 2419
Rt. supramarginal gyrus 40 54 -60 32 5.14 5.02
Rt. superior frontal gyrus 8 26 28 60 4.37 4.29 58
Rt. postcentral gyrus 40 70 -26 20 4.27 4.19 59
Lt. superior frontal gyrus 8 -34 26 54 4.20 4.13 99
Lt. middle temporal gyrus 20 -56 -40 -18 4.15 4.08 521
Rt. middle temporal gyrus 21 66 -38 -14 3.58 3.54 75

rCMglc, regional cerebral glucose metabolism; ADNI-EF, Alzheimer’s Disease Neuroimaging Initiative composite score for executive function; BA, Brodmann 
area; MNI, Montreal Neurological Institute; aMCI Aβ-, amnestic mild cognitive impairment with low Aβ burden; aMCI Aβ+, amnestic mild cognitive impairment 
with high Aβ burden; Rt., right; Lt., left.

Fig. 2. Brain areas with significant positive correlations between regional cerebral glucose metabolism and executive function in amnestic mild cog-
nitive impairment (aMCI) with low Aβ burden. Statistical parametric maps showing positive correlations between Alzheimer’s Disease Neuroimaging 
Initiative executive function composite scores and regional cerebral glucose metabolism using a multiple regression model with age, sex, education, 
and apolipoprotein E (APOE) genotype as covariates in aMCI with low Aβ burden. Significant regions have p<0.001 (uncorrected for multiple compari-
sons) with an extent threshold of greater than 50 contiguous voxels. The yellow-red color bar represents t-score.
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sociation between baseline PCC hypometabolism and higher 
CDR-SOB (β=-0.291, p=0.024).

DISCUSSION

The results of the current study demonstrated that aMCI Aβ- 
and aMCI Aβ+ groups had distinct brain regions correlated to 
EF and different predictors of clinical progression. The rCMglc 
in bilateral ACC and AD-vulnerable brain regions were corre-
lated with EF in aMCI Aβ- and aMCI Aβ+ groups, respectively. 
Moreover, rCMglc in ACC and PCC were associated with clini-
cal progression in aMCI Aβ- and aMCI Aβ+ groups, respec-
tively. 

As expected, longitudinal courses differed clearly between 
the two groups. On average, aMCI Aβ- subjects maintained 
their level of clinical severity, whereas aMCI Aβ+ subjects 
showed clinical progression, suggesting that aMCI Aβ- sub-
jects had a much longer duration of illness than did aMCI Aβ+ 
subjects. As shown in Fig. 1, on average, aMCI Aβ- subjects 
showed no clinical progression. While some aMCI Aβ- sub-
jects showed increased CDR-SOB (n=37, 24% of aMCI Aβ- 
group), they numbered much less than aMCI Aβ+ subjects 
with progression (n=121, 47.8% of aMCI Aβ+ group). During 
1-year follow-up, 2% of aMCI Aβ- subjects converted to AD
dementia, compared to 13% of aMCI Aβ+ subjects. Our obser-
vations that much higher progression rate in aMCI Aβ+ sub-
jects were largely consistent with previous reports on longitu-
dinal studies of MCI,31,32 which have examined conversion 
rate separately for Aβ positivity. Along with previous report,33 

Fig. 3. Brain areas with significant positive correlations between regional cerebral glucose metabolism and executive function in amnestic mild cog-
nitive impairment (aMCI) with high Aβ burden. Statistical parametric maps showing positive correlations between Alzheimer’s Disease Neuroimaging 
Initiative executive function composite scores and regional cerebral glucose metabolism using a multiple regression model with age, sex, education, 
and apolipoprotein E (APOE) genotype as covariates in aMCI with high Aβ burden. Significant regions have p<0.001 (uncorrected for multiple com-
parisons) with an extent threshold of greater than 50 contiguous voxels. The yellow-red color bar represents t-score.

Table 3. Multiple Linear Regression of ACC, PCC, and PreCu Regions of 
Interest at Baseline on 1-Year Follow-Up CDR-SOB*

Group Variable B SE (B) β p value
aMCI Aβ-† Age  0.011 0.013  0.078 0.385

Education -0.016 0.040 -0.032 0.695
Sex 0.038 0.198 0.016 0.849
APOE4 -0.176 0.175 -0.081 0.315
ACC -0.056 0.019 -0.260 0.003

aMCI Aβ+‡ Age 0.019 0.014 0.089 0.189
Education 0.005 0.032 0.010 0.871
Gender 0.343 0.196 0.114 0.081
APOE4 0.252 0.142 0.115 0.077
PCC -0.044 0.015 -0.190 0.003

ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; PreCu, precu-
neus; CDR-SOB, Clinical Dementia Rating sum of boxes; aMCI Aβ-, amnestic 
mild cognitive impairment with low Aβ burden; aMCI Aβ+, amnestic mild cog-
nitive impairment with high Aβ burden; APOE, apolipoprotein E; B, regression 
coefficient; SE (B), standard error of B; β, standardized regression coefficient.
*Age, education, ACC, and PCC were entered as continuous variables. APOE4
was coded as the number of epsilon 4 alleles (0, 1, or 2). Sex was coded as 0 and 
1 for female and male, respectively; †R 2=0.062, p=0.008; ‡R 2= 0.108, p=0.005.
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different conversion rates between aMCI Aβ- and aMCI Aβ+ 
groups also suggest that Aβ deposition is a very early process 
in the course of AD. Our results support that, although MCI 
subjects were diagnosed using the same criteria and showed 
similar behavioral phenotypes at the time of diagnosis, under-
lying pathologies could to lead different clinical courses.

The relationship between brain function and cognition is im-
portant for the understanding of underlying pathology. Multi-
ple etiologies could cause superficially similar symptoms; i.e., 
EF impairment in aMCI; however, the neural base for impair-
ment may differ. We found clear differences according to Aβ 
positivity in the current study. Our findings in aMCI Aβ- group 
suggest that bilateral ACC is a critical brain area responsible 
for Aβ-independent EF impairment. Similar to our results, a 
previous study reported that metabolism in ACC was correlat-
ed with EF measured by fluency test and declined with nor-
mal aging.34 There is rich literature supporting the role of ACC 
in cognitive control, such as monitoring and evaluative pro-
cesses.35 Given that ACC is connected to DLPFC and parietal 
cortex35 and serves as a hub in brain networks associated with 
cognitive control,36 reductions in cerebral glucose utilization in 
ACC in our aMCI Aβ- subjects indicates that their EF impair-
ment could be related to an inefficient brain system for cogni-
tive control. On the other hand, our study also revealed that 
EF impairment in aMCI Aβ+ group was related to the default 
mode network (DMN), which was mainly affected by Aβ pa-
thology37 rather than isolated dysfunction of EF-related brain 
system. Hypometabolism, particularly in PCC and PreCu, key 
areas of DMN, was the most robust feature in the progression 
from MCI to AD.23 Previous studies reported that EF impair-
ment in MCI and AD were correlated to both temporoparietal 
and prefrontal regions.18-20 These reports and our findings al-
together suggest that EF failure in aMCI due to AD may be the 
consequence of AD pathology, rather than pure EF-related 
brain systems. Taken together, the current findings indicate 
that, although the two subgroups were superficially in the same 
aMCI category, EF impairment process depends on completely 
different functional brain regions according to the Aβ burden. 
Information on neuropathology is important to understand 
clinical characteristics and diverse patterns of clinical progres-
sion in MCI.38

Another point worth mentioning is that we adopted a com-
posite scoring system for EF, which was developed through 
factor analysis of the wide range of EF tests.27 EF is basically an 
umbrella term encompassing decision-making, abstract think-
ing, planning, integrative attention, inhibition, maintenance, 
monitoring, set shifting, etc.13 A single EF test covers only a sub-
set of executive components. Therefore, combining results from 
multiple EF tests could be used to more precisely assess the 
neural substrates of EF compared to a single test. 

Given that EF and its related brain areas can play an impor-
tant role as an early warning system in clinical progression,11,39 
the current study examined separately whether ACC, PCC, 

and PreCu were associated with clinical progression accord-
ing to Aβ positivity. ACC and PCC were associated with clini-
cal progression at 1 year in aMCI Aβ- and aMCI Aβ+, respec-
tively. However, ACC was no longer useful for the prediction 
of clinical progression at 5 years in aMCI Aβ- group, whereas 
PCC was still associated with clinical progression at 5 years in 
aMCI Aβ+ group. Our results indicate that ACC, but not poste-
rior brain areas, can be a useful predictor for short-term Aβ-
independent clinical progression regardless of age, sex, edu-
cation, and APOE genotype. Given that ACC is a main node of 
cognitive control network,36 alterations in EF-related brain sys-
tems might play a role in the pathogenesis of Aβ-independent 
clinical progression. In contrast, hypometabolism in PCC in 
aMCI Aβ+ can be a useful predictor for both short-term and 
long-term clinical progression regardless of age, sex, educa-
tion, and APOE genotype. This finding is consistent with those 
of a recent meta-analysis which investigated brain regions 
with hypometabolism to predict the conversion from MCI to 
AD.23 Based on nine studies, they concluded that hypometab-
olism in PCC and PreCu were the most robust regions for early 
detection and disease tracking.23 Previous studies considered 
PCC and PreCu as a single cluster, whereas this study used 
separate ROIs for these regions. In the current study, only PCC, 
and not PreCu, was a significant predictor of clinical progres-
sion. This finding might be attributable to the high correlation 
between PCC and PreCu (Pearson correlation, r=0.361, p< 
0.001). We applied stepwise regression. After including PCC 
in the regression model, PreCu did not significantly increase 
the model fit. PCC is a key node of DMN40 that is altered in AD 
dementia that involves very early stages of AD trajectory and 
leads to the neurodegeneration process in AD.41 

Despite its significant implications, the current study had 
some limitations and needs future improvements. First, sam-
ple size at the 5-year follow-up was small, since we excluded 
data if the evaluation interval times more or less than 5 years 
from baseline date. Consequently, the associations of rCMglc 
ROIs and long-term clinical progression were interpreted with 
caution. Further studies based on larger sample sizes for long-
term clinical progression are advised to replicate our results. 
Second, we investigated the neural correlates for EF in terms 
of localizationist view. Given that ACC and PCC are the hubs 
of cognitive control network and DMN, respectively, further 
network-based neural correlate studies using functional and 
structural imaging are warranted to extend our knowledge of 
the mechanisms of underlying EF impairment in MCI. 

In conclusion, to our knowledge, the current study is the 
first to separately explore the functional neural correlates of 
EF impairment in aMCI with and without Aβ pathology. Giv-
en the role of EF as an early warning system and the patho-
physiological heterogeneity in MCI, clarification of the etiolo-
gies and the nature of EF impairment in MCI are critical for 
disease prognosis and management. EF impairment in aMCI 
Aβ- was related to ACC, the main node of cognitive control 
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network, whereas EF impairment in aMCI Aβ+ was related to 
the PCC, PreCU, and other AD-vulnerable brain regions. More-
over, ACC and PCC were associated with the clinical progres-
sions of aMCI Aβ- and aMCI Aβ+, respectively. These findings 
suggest that, although MCI subjects showed similar behavior-
al phenotypes at the time of diagnosis, EF impairment and 
further clinical progression was associated with completely 
different brain regions according to their Aβ burden.
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