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Abstract—1t is of great significance to apply deep learning for
the early diagnosis of Alzheimer’s disease (AD). In this work,
a novel tensorizing GAN with high-order pooling is proposed to
assess mild cognitive impairment (MCI) and AD. By tensorizing
a three-player cooperative game-based framework, the proposed
model can benefit from the structural information of the brain.
By incorporating the high-order pooling scheme into the classifier,
the proposed model can make full use of the second-order
statistics of holistic magnetic resonance imaging (MRI). To the
best of our knowledge, the proposed Tensor-train, High-order
pooling and Semisupervised learning-based GAN (THS-GAN)
is the first work to deal with classification on MR images for
AD diagnosis. Extensive experimental results on Alzheimer’s
disease neuroimaging initiative (ADNI) data set are reported
to demonstrate that the proposed THS-GAN achieves superior
performance compared with existing methods, and to show that
both tensor-train and high-order pooling can enhance classifi-
cation performance. The visualization of generated samples also
shows that the proposed model can generate plausible samples
for semisupervised learning purpose.

Index Terms— Alzheimer’s disease (AD), high-order pooling,
magnetic resonance (MR) images, semisupervised generative
adversarial network (SS-GAN), tensor decomposition.

I. INTRODUCTION

LZHEIMER’S disease (AD) is an irreversible and
chronic neurodegenerative disease with progressive
impairment of memory and other mental functions. It is esti-
mated to be the third leading cause of death after heart disease
and cancer [1]. According to the World Alzheimer Report [2],
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the total estimated prevalence of AD was around 50 million
worldwide in 2018, and the number will increase to 152 mil-
lion x 2050. AD is caused by abnormal deposits of protein in
the brain that destroys cells in the regions that control memory
and mental functions. To date, AD is incurable but preventable.
Early diagnosis of AD is crucial for timely therapy to slow
the progression of the disease. Currently, the clinical diagnosis
of AD heavily depends on clinical history [3]. The diagnosis
procedure is time-consuming and requires extensive clinical
training and experience for neurologists. Therefore, accurate
AD assessment in its earliest stage by utilizing deep learning
is highly desirable.

T1-magnetic resonance imaging (MRI) is significant for
AD diagnosis in routine clinical practice. Early work for AD
diagnosis using MR images primarily focused on traditional
machine learning techniques [4], [5], which heavily relied
on specific assumptions about brain structural abnormalities,
such as regional cortical thickness, hippocampal volume, and
gray matter volume. The performance of these manual feature
extraction methods is limited since they require advanced
clinical domain knowledge and complicated preprocessing
steps. Therefore, they tend to be time-consuming and sub-
jective. Besides, the brain is a huge network with complicated
connections. The disease-related structure changes are subtle
and scattered throughout the entire brain in different tissues.
These kinds of patterns are difficult to learn since not all
morphological abnormalities related to AD can be captured
accurately, and the extracted regions of interest (ROIs) or voxel
features are processed independently. Hence these features are
unable to express the internal brain connections sufficiently.

Recent advances in machine learning especially deep learn-
ing have explosive popularity in computer vision and various
medical applications [6], [7]. Instead of manually extracting
features according to domain-specific knowledge, deep learn-
ing can discover the discriminant representations of images by
incorporating feature extraction into the task learning process.
However, most existing methods can only utilize the labeled
data in a supervised manner. Annotation of MR images is
laborious and costly, which requires clinical confirmation with
great effort by experts. As a result, only small amounts of
labeled MR images are available for AD assessment, and the
unlabeled MR images cannot be used directly.

Generative adversarial network (GAN) has attracted much
attention as it is capable of generating data without explicitly
modeling the probability density function. It is intelligent for
the discriminator to incorporate unlabeled data into the training
process by utilizing the adversarial loss [8]. Furthermore, GAN
has been proven to be feasible in data augmentation, image-
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to-image translation, and semisupervised learning (SSL). To
make full use of both labeled and unlabeled MR images,
semisupervised GAN (SS-GAN) [9]-[12] can be adopted.
In this article, our primary goal is to leverage GAN to
characterize the high-order distribution of MR images for
semisupervised classification. In particular, we discovered
that the recently introduced triple-GAN could alleviate the
instability and incompatible problems of the SS-GAN [12].
Triple-GAN designed a three-player cooperative game instead
of the conventional two-player competition game by intro-
ducing the auxiliary classifier network based on generator
and discriminator. Inspired by this, our model exploits the
three-player cooperative game for modeling MR images to
assess mild cognitive impairment (MCI) and AD.

Based on these observations, in this article, we propose
a novel Tensorizing GAN with High-order pooling to assess
MCI and AD. More specifically, in order to stabilize the train-
ing of GAN and speed up the convergence, the proposed model
utilizes the compatible learning functions of the three-player
cooperative game. Our proposed model is called THS-GAN,
i.e., Tensor-train decomposition, Higher order pooling, and
Semisupervised learning are employed in the proposed GAN
model. Instead of vectorizing each layer as conventional GAN,
the tensor-train decomposition is applied to all layers in
classifier and discriminator, including fully connected layers
and convolutional layers. Thus the number of parameters can
be reduced significantly. Besides, in such a tensor-train format,
our model can benefit from the structural information of
the brain. Moreover, compared with the first-order pooling,
the high-order pooling module can extract more significant
features by making full use of the second-order statistics of
the holistic MR image. Thus our model also exploits the
Global Second-order Pooling (GSP) block as a high-order
pooling module in the classifier. In particular, the GSP block
can capture the long-range dependences of features at distant
positions by computing all pairwise channel correlations of the
4-D feature-maps extracted by 3D-DenseNet. Thus both GSP
and 3D-DenseNet are integrated into the classifier to enhance
salient feature channels and suppress less-useful feature chan-
nels. As a result, useful features related to anatomical abnor-
malities are extracted in a self-attention manner to improve the
performance of classification. The contributions of this article
are summarized as follows.

1) By tensorizing the three-player cooperative game-based
framework, the proposed model can benefit from the
structural information of the brain.

2) The proposed THS-GAN leverages the high-order pool-
ing to make full use of the second-order statistics
of the holistic MR images. The long-range depen-
dences between slices of different directions can be
captured effectively. Thus more significant features can
be extracted automatically in a self-attention manner to
boost the predictive performance.

3) The THS-GAN model is designed to assess MCI and
AD in a semisupervised manner to take advantage of
both labeled and unlabeled MR images.

The rest of this article is organized as follows. We review
the related work in Section II. In Section III, we present the
proposed THS-GAN in detail. In Section IV, THS-GAN is

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

tested with various configurations, and experimental results
are presented to demonstrate its advantage. Finally, concluding
remarks and future work are discussed in Section V.

II. RELATED WORK

The current AD diagnosis model can be categorized into two
types: the traditional machine learning-based approach and the
deep learning-based approach.

The traditional machine learning techniques can be
divided further into three categories: voxel-based approach,
ROI-based approach, and patch-based approach. Although
the voxel-based approach [13] is intuitive and straightforward
in terms of interpretation, the process of classification is
computationally expensive since the voxelwise features are
of extremely high dimensionality, and the classification per-
formance will deteriorate due to the “curse of dimensional-
ity” [14]. For the ROI-based approach [4], the ROIs are seg-
mented by prior hypothesis, but the abnormal regions related to
AD may not fit the predefined ROIs ideally in practice, and the
features extracted from ROIs are very coarse in the sense that
they cannot sufficiently represent all subtle changes involved
in the brain diseases. As a result, the representation power of
ROI features is limited. Patch-based approach dissected brain
areas into small 3D-patches, followed by extracting features
from each selected patch individually, and then the features
are combined hierarchically in a classifier level [15]. However,
the features extracted by these methods neglect the correlated
variations of the whole brain structure affected by AD in other
regions. Besides, the extraction of these handcrafted features
heavily depends on how well the images are registered and
segmented, which often require the domain expert knowledge.

In the application domain of AD diagnosis, the previous
deep learning studies focused on two directions: 1) CNN
is utilized for supervised classification, primarily by using
large-scale annotated data sets and 2) unsupervised GAN
is exploited for data synthesis or image-to-image translation
[16], [17]. In the first approach, Islam and Zhang [18] pre-
sented a method based on 2D-DenseNet. The MR images
are sliced in three directions (axial, coronal, and sagittal).
Then three parallel 2D-DenseNets are evaluated on MRI
slices separately. Finally, the results are fused for AD diag-
nosis. However, the way of converting a 3D-image into
a series of 2D-slices causes CNNs to disregard the spa-
tial information of 3-D space, and different slicing meth-
ods lead to loss of features. Thus many studies focus on
3D-CNN instead of 2-D to alleviate this issue. For instance,
Wang et al. [19] proposed an ensemble of 3-D densely con-
nected convolutional networks (3D-DenseNets) for AD and
MCI diagnosis. In the second approach, Pan et al. [16]
imputed the missing PET images by learning bidirectional
mappings between MRI and PET via 3D-cGAN. Then, based
on the complete MRI and PET (after imputation), they
develop a landmark-based multimodal multi-instance learning
method (LM3IL) for AD diagnosis. Karim Armanious and
Jiang [17] proposed the Cycle-MedGAN framework based
on the traditional Cycle-GAN with new nonadversarial losses
for PET to CT translation. Wang et al. [20] proposed a 3-D
autocontext-based locality adaptive multimodality GAN model
(LA-GANSs) to synthesize the high-quality FDG-PET image
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from the low-dose one with the MR images that provide
anatomical information.

The previous GAN applications focus on image synthe-
sis and image-to-image translation. However, different from
the previous GAN applications, the aim of the proposed
THS-GAN is for AD classification in a semisupervised manner
with less annotated MR images. We remark that the research
of GAN adaptation in MR images is still under development.

III. PROPOSED THS-GAN METHOD
A. Overview

Fig. 1 summarizes the architecture of the proposed
THS-GAN. After data preprocessing (see Section IV-A),
the normalized MR images are fed into THS-GAN. Since the
input MR images are high-order with complicated brain struc-
ture, we modify the triple-GAN with the following four signif-
icant improvements: 1) instead of 2-D transposed convolution,
3-D transposed convolution is utilized in the generator to
generate MR images; 2) 3D-DenseNet [21], [22] is adopted in
both the classifier and discriminator to extract subtle features
related to AD within the limited receptive field at a local level;
3) all layers in classifier and discriminator are compressed
by tensor-train decomposition; and 4) the high-order pooling
module GSP block is incorporated into the classifier to make
full use of the correlation within feature-maps along the

channel axis to capture more discriminative features at the
global level to represent the holistic brain. The details of
the proposed method will be presented in Section III-B.

B. Architecture

The proposed THS-GAN is designed for semisupervised
classification. Input data x is partially labeled and y repre-
sents the corresponding label. pr,(x) denotes the empirical
distribution of input data and prea(y) is assumed as the
distribution of labels on partially annotated data. The goal is
to predict the label y for both labeled and unlabeled data x
as well as to the new generated samples x conditioned on
y. As the label y is incomplete, our density model should
characterize the uncertainty of both x and y, thus the joint
distribution preq(x, y) of image-label pairs can be calculated
in two ways: preal(X, ¥) = Preal(y) Preat(x|y) and prear(x, y) =
Preal(X) preai(¥]x). The conditional distributions prea(x|y) and
Preal(y]x) are learned by the class-conditional generator and
auxiliary classifier, respectively. Thus the proposed THS-GAN
consists of three networks: 1) a class-conditional generator
that approximately characterizes the conditional distribution
Do (X|y) & preai(x|y); 2) a classifier that approximately char-
acterizes the conditional distribution in the opposite direction
Pe(¥1X) = prea(y]x); and 3) a discriminator that distinguishes
whether the image-label pair (x, y) comes from the real data
distribution preq(x, y).
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More specifically, in the three-player game as illustrated
in Fig. 1, a sample xypjapel 18 drawn from p.(x), classifier pre-
dict label y, given xypjabel following the conditional distribution
pe(y|x). Hence, the pseudo image-label pair (xXuniapel, Ye) 1S
from the joint distribution p.(x, y) = p.(x) p(y]x). Similarly,
a pseudo image-label pair (x, y,) is produced by generator
given y, ~ pg(y) by utilizing x|y ~ p,(x|y), hence forming
the joint distribution p,(x,y) = p,(y)pe(x|y). With respect
to pe(x|y), x, is transformed by generator given label y,
and the latent variables z. x, = G(yg,2), 2 ~ p.(z), where
p-(z) is a distribution (e.g., uniform or standard normal). Then
the pseudo image-label pairs (Xunlabel, yc) and (xg, y,) are fed
into the discriminator for identification. Discriminator will
identify the image-label pairs from real data distribution as
positive samples, and discriminator D is trained to maximize
the probability of assigning the correct label to both real
samples and fake samples from generator G and classifier C.
To achieve equilibrium that the joint distributions defined by
classifier and generator both converge to real data distributions,
compatible function of adversarial loss is defined as follows:

minmax U (C, G, D)
C.G D

= B )~ preax.y) [log D (X1abels y)]
+ 0 (xynay0)~pe () [108(1 = D (euntabets Ye)) ]
FA =D )~ peen) [log(1 — D(xg, ¢))]
= B )~ preax.y) [log D (X1abels y)]
+ 0B~ pe 0 [108(1 = D (Xuntavel, C (Kuntavel))) |
+ (1= By, ~p, 0 [108(1 = D(G(2, ¥5), ¥¢)) ]
(1)

where C, G, and D are individual networks. C and D are
represented by tensor-train layers (TT-layers). E(x. .. v)~prea(x,y)
denotes the expectation over the real labeled data. E, ~p. (0
is the expectation over the real unlabeled data produced by
the classifier, and E(y, y,)~p,(x.y) is the expectation over the
fake data produced by the generator. D (xjupel, ¥) represents the
probability that image-label pair came from the real labeled
data. Meanwhile, D (Xyniabel » Yc) and D(x,, y,) represent the
probability that image-label pair came from fake data produced
by classifier and generator, respectively. a € (0,1) is a
constant that controls the relative importance of generation
and classification, and we use the fixed value of 0.5. The
game defined in (1) achieves its equilibrium if and only if
preal(x; y) = apc(x» y) + a- a)pg(x» y). The equilibrium
indicates that if one of classifier and generator tends to the
real data distribution, the other will also go toward the data
distribution, which addresses the competing problem of the
conventional SS-GAN. Note that the conventional SS-GAN
only contains two players: generator and discriminator. The
discriminator shares incompatible roles of identifying fake
samples and predicting real labels simultaneously, and the gen-
erator estimates the data without considering the labels. By uti-
lizing the three-player cooperative game, both the classifier
and generator will converge to the real data distribution if the
model has been trained to achieve the optimum. In this man-
ner, the class-conditional generator can disentangle different
modalities and generate MR images to cover all classes (AD,
MCI, and NC). On the other hand, the discriminator is trained
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with dissimilar samples from various classes (AD, MCI, and
NCO) to provide gradients for the generator. Hence, the mode
collapse problem is alleviated.

As aforementioned, layers are tensorized as TT-layer and
we treat the elements of the TT-cores as the parameters of the
layer. TT-layers of classifier and discriminator are represented
as various TT-cores Gy of elements 6, and 6,, respectively. The
classifier is updated by descending along its stochastic gradient
according to C_loss with respect to all the elements 6. of
TT-cores. The classifier loss function C_ loss is composed of
two parts: the supervised loss and the unsupervised loss

0C_loss
0Glix, jil
—_——

Tp—1 XTIk

= Var [Lsupervised + Lunsupervised]- (2

The supervised loss function is defined by the cross-entropy
loss of real image-label samples and generated image-label
samples in a supervised learning setting

Lsupervised = R[) + (ZPRP (3)
Re = E(Xlahehy)“‘PreM (x,y) [_ IOg Pe (y|x1abel)] 4)
Re = E(y ) ~ptey) [ log pe(yelxg)]- )

The cross-entropy loss of real labeled data distribution for
classifier is defined as R, which is equivalent to model
the KL-divergence between p.(x,y) and prea(x, y). As the
generated data can also be used for boosting classifica-
tion performance, the cross-entropy loss of synthesis data is
defined as Rp, which optimizes classifier on the samples
produced by generator in the supervised manner. Minimiz-
ing Rp with respect to classifier is equivalent to minimiz-
ing Dgr(pe(x, y)lIpc(x,y)). Note that directly minimizing
Dir(pg(x, Y)Ipe(x,y)) is infeasible since the unknown like-
lihood ratio p,(x, y)/pc(x, y) cannot be computed directly.
op is the weight hyperparameter fixed as 0.05.

The unsupervised loss is the adversarial loss of standard
GAN minimax game

Lunsupervised = Exunlaha”pr (x) [log(l - D(xunlabel, C(xunlabel)))]-
(6)

In other words, the unsupervised loss is computed to distin-
guish real and fake image-label pairs. The supervised loss
computes the cross-entropy for real classes. In this work, these
classes are AD, MCI, and NC.

The generator loss is defined as

G_loss = " log(l = D(xg, yg)) + Al%iaver — Xglla. (7)
(x53¢)

The L1 reconstruction loss is integrated with the adversarial
loss to impose an additional constraint on the generator. Thus,
the generator needs to fool the discriminator while minimize
the absolute pixelwise intensity distance between synthetic
MR images x, and real MR images Xiupe1 sSimultaneously. This
encourages the generator to produce MR images as close as
possible to ground truth images. 4 is set as 0.01 empirically to
balance the relative importance between adversarial loss and
reconstruction loss.
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The discriminator is updated by descending along its sto-
chastic gradient according to D_ loss for all the elements 6,
of TT-cores

oD_loss _
0Glir, Jjil
—_——

Tp—1 XTIy

Vo, Z log D (Xtabel, ¥)

(X1abel )

+a Z log(1 — D (xuntabel> Ye))

(Xuntabel » Ve )

+(—a) D log(l = D(xe y,)) |- (8
(ngyg)

Intuitively, a sound generator can produce meaningful
labeled data beyond the training set as auxiliary information
for the classifier, which will improve the predictive perfor-
mance, and vice versa, a sound classifier will boost the per-
formance of the generator. As a result, both the classifier and
generator can improve mutually. Moreover, the discriminator
can utilize the label information of the unlabeled data through
the classifier and then assist the generator to generate correct
image-label pairs. Therefore, THS-GAN is more likely to
reach Nash equilibrium.

Two components of triple-GAN (classifier and discrimi-
nator) are converted to the tensor-train format (TT-format)
[23]-[25]. We refer to 1-D data as a vector, denoted as v.
2-D array is matrix, denoted as V, and higher dimensional
array is tensor, denoted as V. To refer one specific element
from a tensor, we use V(i) = V(iy,i2,...,14), wWhere d is
the dimensionality of the tensor V and i is the index vector.
Our proposed THS-GAN ingests T1-MRI image as 3-D tensor,
where each dimension corresponds to height, width, and slice,
respectively. A d-dimensional n; X n, X - - - X ng tensor V can
be represented in the TT-format [25], [26] as

V(i iz, ..., 0q) = Gili1]1Galiz] - - - Gglial )

where Gylix] is an ry_; X ry matrix, which is one slice from
the 3-D array Gy. The elements of the collection {r}{_, are
called TT-ranks. ro = ry = 1 is the boundary condition to
keep the matrix product (9) of size 1 x 1.

The collections of matrices {{G[ jk]};f:zl}zzl are called
TT-cores [24]. The TT-format requires ZZ:1 NgFry—1ry para-
meters to represent a tensor }V € R">*"*"¢ which has HZ=1 ng
elements. The TT-ranks r; control the trade-off between the
number of parameters and the accuracy of the representation.
The smaller the TT-ranks, the more memory efficient the
TT-format is. But if the TT-ranks are set too small, the accu-
racy might deteriorate due to information loss caused by

overcompressing. Such a representation is memory-efficient
to store high-order data. Meanwhile, the significant struc-
tural information of data can be preserved. These properties
are suitable for representing MR images. In the following,
we introduce tensor-train decomposition for fully-connected
layers and convolutional layers, respectively.
1) Fully-Connected Layers Tensor-Train Decomposition:

The fully-connected layer is applied to an input N-dimensional
vector X

Y=WX+B (10)
where the weight matrix W € RM*N and the bias
vector B € RM define the linear transformation.

A TT-fully-connected-layer transforms a d-dimensional tensor
X (which is constructed from the corresponding vector X)
to the d-dimensional tensor ) (which corresponds to the
output vector Y) by factorizing the weight matrix W into
the TT-format with the TT-cores Gy[ix, ji]. Thus the linear
transformation [see (10)] of a fully connected layer can be
represented in the TT-layer

Vit ....ia) = Y. Giliv. jil -+ Galia, jalX (v - .

Jseesdd

s Ja)

+B@, ..., iq) (11)
where Gliy, jo] € R™"*"* is a slice of cores as illustrated in
the red part of Fig. 1. Since the fully connected layer is a
special case of the convolutional layer with kernel size 1 x
1 x 1, such TT-format can also be applied to convolutional
layers in a similar manner.

2) Convolutional Layers Tensor-Train Decomposition: 3-D
convolution is an extension of 2-D convolution with one
more spatial dimension in terms of slice with respect to
MRI volume. The traditional 3-D convolutional layer trans-
forms the 4-D input tensor X € RW*H*LxC into the out-
put Y e RWXH*XL'XS by convolving X with the kernel
K e Rl’x[x[xCxS

t ¢ ¢ C
V(x,v,z,8) = ZZZZK(i,j,k, c, )

i=1 j=I k=1 c=1I

xXx+i—-1lL,y+j—1l,z4+k—1,¢). (12)

When stride is set as 1 and there is no zero padding, W' =
W—Il+1,H = H—-I[+1and L' = L —[+1. The tensor-train
decomposition is applied to the convolutional kernel K as
follows:

K(x,y,z,¢,8) = Goli, j, klGilci, s1]-- - Galca, sal. (13)
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Red part of Fig. 1 also presents an illustration for (13), and the
3-D convolutional layer is converted to TT-layer as follows:

h: ~
X(x,y,2,6) 8 By, zen e (14)
reshape =~
Y(x,y,2,8) — V(Xx,y,2,51,5,...,5) (15)
and
VX, ¥, 2,815+ -5 5d)

t 4 4
- ZZZ Z Goli, j, k1Gilct, s1]--- Galca, 54l

i=1 j=1 k=1 c1,....ca

xX(i+x—1,j4+y—Lk4+z—1,c1,...,cq) (16)

where ¢ = [[, ¢ s = [[%, s and d is the number of
TT-cores. By replacing the 4-D convolutional kernel with
approximations using lower rank matrices, redundancy in
convolutional layers can be removed implicitly. It is worth
noting that although applying tensor-train decomposition to
neural networks can achieve a large factor of compression,
finding optimal TT-ranks remains difficult [23], [27]. The
TT-layer is compatible with the existing training algorithms
for neural networks because all the derivatives required by
the backpropagation algorithm can be computed using the
properties of the TT-format.

THS-GAN has a generator network composed of six trans-
posed convolutional layers with 3 x 3 x 3 kernel. Each
transposed convolutional layer is followed by batch normaliza-
tion (BN) and ReL.U except the last layer. The tanh is utilized
in the last layer. Furthermore, the conditional variable y is
concatenated to each transposed convolutional layer except
the last layer. DenseNet [21] is utilized in both the classifier
and discriminator. We expand it to 3D-DenseNet by adding
a spatial dimension to all convolutional and pooling layers
in DenseNet for MRI volume. Feature-maps learned by all
preceding layers are concatenating along the last dimension
for the subsequent layers. Through such dense connectivity,
feature-maps are reused and the vanishing-gradient problem
is alleviated. Meanwhile, 3D-DenseNet can extract the local
features related to AD from the whole volumes efficiently.
The details of 3D-denseNet can be referred to [21] and [22].
In this article, the depth is set as 30, the growth rate is set
as 12, the number of the Dense-BC block is set as 3, and the
reduction is set as 0.5. In particular, since the discriminator
of THS-GAN distinguishes between the synthesis distribution
and the target real distribution based on the pairs of generated
samples x, and conditional variable y,, each convolutional
layer is also concatenated to y, along the channel axis in the
discriminator.

Furthermore, the high-order pooling module GSP block can
make full use of the second-order statistics of the holistic MR
images. The long-range dependences between slices of differ-
ent directions can be effectively captured for extracting more
significant features in a self-attention manner. Thus, the GSP
block is added after the Dense-BC block in the classifier,
as illustrated in Fig. 2, aiming to learn more discriminative
representations by recalibrating the 4-D channelwise feature-
maps. There is one more GSP block (in red), which can be
positioned at: 1) GSP block 1; 2) GSP block 2; or 3) GSP
block 3.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Inspired by the study [28], the GSP block is extended to a
4-D tensor as illustrated in Fig. 3. Given a 4-D feature map
outputted by a previous Dense-BC block, we first perform GSP
to model pairwise channel correlations of the holistic feature
map. Then the resulting covariance matrix is processed by
convolutions and nonlinear activations, which is finally used
for scaling the 4-D feature map along the channel dimension.

More specifically, the GSP block consists of two modules:
a squeeze module and an excitation module. The squeeze
module aims to model the second-order statistics along the
channel dimension of the input feature map for capturing chan-
nel dependence. Consider a 4-D feature map of i’ x w’ x 1’ x ¢’
as an input, where A’ is the spatial height of the feature-map,
w’ is the width, [’ is depth, and ¢’ is the number of channels.
It can be seen as ¢’ cubes where each cube is of size h' xw' x[’.
First, 1 x 1 x 1 convolution is utilized to reduce the number of
channels from ¢’ to ¢ (¢ < ¢’) to decrease the computational
cost of the following operations. For the 4’ x w’ x 1’ x ¢ tensor
of reduced dimensionality, the pairwise channel correlations
are computed to one ¢ X ¢ covariance matrix. The resulting
covariance matrix has a clear physical meaning, its ith row
indicates the statistical dependence of channel i with all
channels. As the quadratic operations involved change the
order of data, row-wise normalization is performed for the
covariance matrix with respect to the structural information
of the brain. To simplify the block design and to find the
appropriate trade-off between computational complexity and
classification accuracy, we calculate the size of the covariance
matrix as ¢ = ¢’/6 in a self-adaptive manner.

The excitation module aims to scale the channel for feature
recalibration. In the excitation module, before channel scaling,
we perform two consecutive operations of convolution and
nonlinear activation for the covariance matrix. To maintain
the structural information, the covariance matrix is processed
with row-wise convolution, which is followed by a leaky
rectified linear unit (LReLU). Then we perform the second
convolution and the sigmoid function as a nonlinear activation
to compute the weight vector of [W;, W,,..., W, ]. The final
output of the GSP block is obtained by operating the dot
product between the weight vector [W;, W»,..., W] and the
respective channels [Channel 1, Channel 2,..., Channel ¢'].
Individual channels are thus emphasized or suppressed in this
soft manner in terms of the weights. Thus the discriminative
features related to AD lesions are enhanced, and redundant
features are suppressed. As shown in Fig. 3, the feature map
output by the GSP block is close to the benchmark with less
redundant features, and all significant features are discovered.
On the other hand, the feature map without high-order pooling
includes more redundant features compared with the bench-
mark [29].

Furthermore, the network structure of each component in
THS-GAN is further optimized from the following perspec-
tives.

1) For discriminator and generator networks, the condition
variable y is concatenated with each convolutional layer
and transposed convolutional layer as additional chan-
nels, respectively.

2) As suggested by Radford et al. [11], BN is uti-
lized to both the discriminator and the generator in
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Fig. 3. High-order pooling module GSP block. Given an input 4-D feature map, 1 x 1 x 1 convolution is performed to reduce dimension. Then the covariance
matrix is computed followed by convolution and nonlinear activation, finally a weight vector is produced to recalibrate the feature map along the channel
dimension. The high-order pooling can capture the dependence of features at distant positions by computing all pairwise channel correlations. As a result,
significant features will be enhanced. As each channel corresponds to a particular feature, each feature map of all channels is considered as a feature set that
can map back to individual voxels of input MR image. The discriminative features related to AD are shown in the benchmark [29].

the THS-GAN model to prevent the generator from
collapsing all the samples to a single point. However,
adding BN to all layers causes model instability. Hence
we also avoid using BN in the generator output layer
and the discriminator input layer as they suggest.

The first order pooling (average pooling) is still utilized
since the GSP block cannot reduce the dimensions of the
feature-map resulting in a large number of parameters.
Thus the first order pooling is combined with GSP block
to abstract the discriminative representations so that the
proposed THS-GAN model can take advantage of both
first-order and second-order statistics for AD diagnosis.

3)

IV. EXPERIMENTS AND RESULTS
A. Data Set and Preprocessing

T1-weighted MR images from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI') public data set are used for
the evaluation purpose. The ADNI study involves more than
1000 participants including normal control (NC), MCI, and
AD subjects. All subjects will have cognitive assessments, and
they will have MRI scans at regular intervals (6 or 12 months)
throughout the study. A total of 833 MR images are utilized.

"http://adni.loni.usc.edu/

They are collected from 624 participants including both male
and female, and their ages range from 70 to 90. Since a certain
participant’s brain structure makes a progressive change after
a period of time, two scans with the longest interval of one
participant will be chosen as different subjects, as long as
the interval is more than three years. In this manner, 221 AD
subjects, 297 MCI subjects, and 315 NC subjects are collected,
respectively. Table I lists the demographic characteristics of the
subjects.

All MR images have already been processed with Grad-
wrap, B1 nonuniformity correction, and N3 correction using
standard methodology from ADNI. FSL? toolbox is utilized
to preprocess MR images following three steps: 1) removal
of redundant tissues; 2) brain extraction by FSL-BET; and
3) linear registration to the MNI152 template by FSL-FLIRT
[30]. The dimension of each image is 109 x 91 x 91 in
the neuroimaging informatics technology initiative (NIfTI) file
format. Each image comprises 109 2-D slices of 91 x 91.

To evaluate the effectiveness of our model, we set up three
groups of experiments: 1) AD versus NC; 2) MCI versus NC;
and 3) AD versus MCI classification. It is worth noting that
the second classification is significant to distinguish MCI from

2www.fmrib.ox.ac.uk/fsl
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TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE SUBJECTS
Subject NC MCI AD
Number 315 297 221
Gender(F/M)) 150/165 157/140 100/121
Age 77.7+£5.4 76.0+7.2 76.6£7.5
Education 16.0+£2.9 15.6+3.1 14.6+3.2
MMSE 29.1£1.2 25.8+3.6 21.5+4.4
CDR 040.19 0.57+0.28 0.93+0.49

NC for early diagnosis so that timely therapeutic interventions
can be carried out to slow down the progression of MCI
to AD.

The MR image is normalized into the range [—1,1], and
the whole volume of 109 x 91 x 91 voxels is fed into
the proposed THS-GAN model as a tensor directly without
compressing or downsizing to ensure no information loss.
No data augmentation was used. For evaluation, 80% of the
MR images are allocated for training. The remaining 20% of
the MR images are equally partitioned and used as validation
and test data sets, respectively. For avoiding prediction bias,
the training set, validation set, and test set do not have the MR
images from the same subject simultaneously. The validation
data set is utilized to tune hyperparameters to obtain the best
model out of several epochs during the training process.

B. Experimental Setup

The proposed THS-GAN model is trained on the ADNI
data set from scratch in an end-to-end manner, and it is
implemented by TensorFlow.®> The experiments are conducted
on NVIDIA GeForce GTX 1080 GPU. The initial learning
rate is 0.01 and will decrease to 103 at 75 epochs and 10~
at 110 epochs. Stochastic gradient descent (SGD) optimizer
with Nesterov momentum [31] of coefficient 0.9 is utilized in
classifier and discriminator. Meanwhile, the Adam optimizer
with f; = 0 and f, = 0.9 is utilized in generator. During
the training process, discriminator, classifier, and generator are
trained iteratively with 1:1:1 balanced updates in turn. The
validation accuracy will be evaluated once for each training
epoch. Besides, the batch size of both labeled data and unla-
beled data is set as 7, and the number of epochs is set as 150.
The loss Rp is not applied until the number of epochs reaches
a threshold when the generator can generate meaningful MR
images. The threshold is searched in {60,120} based on the
validation performance, and ap is set as 0.05 empirically.

C. Effect of TT-Core Number

As mentioned in Section III-B, the TT-core number and
the TT-rank are two parameters that have a great impact
on classification results. This section provides a comparative
evaluation of the proposed THS-GAN with respect to a range
of TT-core numbers. The GSP block is fixed at the position of
“GSP block 3.” TT-rank of the classifier and discriminator was
fixed at 14 and 6, respectively. Fig. 4 shows that as the TT-core
number increased from 3 to 6, the classification accuracy
decreased for AD/NC classification. Meanwhile, for AD/MCI
and MCI/NC classification, there are no specific trends of
accuracy as the core number increased from 3 to 6. But similar

3http://www.tensorflow.org/
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Fig. 4. Comparison of different TT-core numbers.

to AD/NC classification, the best accuracy is achieved at the
minimal core number. This observation is consistent with [23].
Thus we set the TT-core number as 3 in the rest of the
experiments.

D. Effect of TT-Rank and GSP Block Position

To investigate the effect of TT-rank and different GSP
block position on classification performance, this section pro-
vides a comparative evaluation of the proposed THS-GAN
with respect to a range of TT-rank values and different
GSP block positions for each evaluation group. The TT-core
number is fixed as 3. As far as we know, there have
been no published studies that adopt tensor-train decompo-
sition in GAN for semisupervised classification. Thus the
most suitable TT-rank remains to be explored. Nonetheless,
we conducted a variety of preliminary experiments, and
have empirically chosen TT-ranks according to the perfor-
mances in our validation sets. More specifically, we con-
sider the effect of TT-ranks on classification performance
when C_rank = {14,15,16,17,18,19,20} and D_rank =
{6,7,8,9,10, 11, 12}. Note that C_rank and D_rank rep-
resent TT-rank of classifier and discriminator, respectively.
SS-GAN [12] and triple-GAN [32] are used as two baseline
models for comparison purposes. With respect to SS-GAN,
the discriminator has three output units corresponding to
[CLASS-1, CLASS-2, FAKE]. CLASS-1 and CLASS-2 cor-
respond to one of the classes AD, MCI, NC, respectively,
according to the evaluation group. In this case, the discrim-
inator can also act as a classifier. For a fair comparison,
the two baselines have the same structure and hyperparameter
settings as our model but without tensor-train decomposition
and high-order module GSP block.

From Table II, it can be observed that the best AUC can
be achieved using C_rank = 20 and D_rank = 12 no matter
the GSP block is at the position of either GSP block 1, GSP
block 2 or GSP block 3 in the context of AD/NC classification.
The best AUC of 95.92% is obtained when GSP block 2 is
inserted after Dense-BC block 2. On the other hand, in the
context of MCI/NC classification, Table III shows that the opti-
mal TT-rank is not consistent with AD/NC classification when
GSP block is positioned at different locations. With respect
to GSP block 1, a good AUC of 85.71% is obtained when
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TABLE 11
COMPARISON OF THS-GAN USING DIFFERENT GSP BLOCK POSITIONS AND TT-RANKS FOR AD/NC CLASSIFICATION

GSP block Position | C_rank | D_rank | #parameters | AUC(%) | Accuracy(%) | Class | precision(%) | recall(%) | fl-score(%)
14 6 118,210 50.00 56.00 o 26090 10 (AN
15 7 139,611 50.00 44.00 e Sall o SISL
16 8 163,516 50.00 60.00 o o090 10 RRl
GSP block 1 17 9 189,925 84.00 84.00 o AR A AR
18 10 218,838 63.33 7755 o U 216(')%7 hcRE!
19 1 250,255 69.64 62.22 ] o D o
20 12 284,176 91.99 92.00 o =1 =L =1
14 6 120,034 83.33 79.59 a2 L E BT
15 7 141,435 50.00 48.98 o . o s
16 8 165,340 93.18 93.88 ) S0 8050 o
GSP block 2 17 9 191,749 4471 55.10 o o Rt R
18 10 220,662 83.36 83.67 o e ey St
19 11 252,079 83.88 83.67 o A el gg:gg
20 12 286,000 95.92 95.92 o b oo oo
EEEECEENECEE = ==
s T [ [ | e R e e R
T e e | we 0 e T hE B
GSP block 3 17 9 192,763 80.77 79.59 o 619(')3)0 UL e
18 10 221,676 73.82 73.47 o LAY ey el
19 1 253,093 69.40 69.39 o EX gg:? Lk
20 12 287,014 92.00 91.84 ] ekt U =1l
SS-GAN [12] 251,637 80.02 80.39 2 27 27 27
triple-GAN [32] 506,386 86.83 87.76 o R R R

C_rank = 18 and D_rank = 10. Similarly regarding GSP
block 2, a good AUC of 88.32% is obtained when C_rank =
15 and D_rank = 7. In the same manner, with respect to
GSP block 3, a good AUC of 88.72% is obtained when
C_rank = 19 and D_rank = 11. The best AUC of 88.72%
is obtained when GSP block 3 is utilized. In the context
of AD/MCI classification, Table IV also indicates the same
trend that the optimal TT-rank is different when GSP block is
positioned at different locations. With respect to GSP block 1,
a good AUC of 69.37% is obtained when C_rank = 14 and
D_rank = 6. Similarly regarding GSP block 2, a good AUC
of 85.35% is obtained when C_rank = 17 and D_rank = 9.
In the same manner, with respect to GSP block 3, a good AUC
of 74% is obtained when C_rank = 15 and D_rank = 7.
The best AUC of 85.35% is obtained when GSP block 2 is
utilized.

From Table II to Table IV, the following overall observa-

tions can be made.

1) THS-GAN with optimal hyperparameter settings can
achieve the best classification performance in terms
of AUC and accuracy compared with triple-GAN and
SS-GAN. The triple-GAN performs better than the

SS-GAN, which confirms that the triple-GAN can
alleviate the competing problem of SS-GAN that the
discriminator has two incompatible convergence points.

2) Compared with the triple-GAN, THS-GAN can
obtain AUC gains of 9.09% (95.92%-86.83%) for
AD/NC classification, 15.28% (88.72%-73.44% ) for
MCI/NC classification, and 13.21% (85.35%—72.14%)
for AD/MCI classification, improving the performance
by a large margin. This indicates that the performance of
the proposed model is significantly improved by intro-
ducing tensor-train decomposition and high-order pool-
ing. Furthermore, THS-GAN used far fewer parameters,
compared with the triple-GAN which used 506 386 para-
meters. The compression rates are 506386/286000 =
1.77 for AD/NC classification, 506386/253093 = 2 for
MCI/NC classification, and 506386/191749 = 2.64 for
AD/MCI classification, respectively.

3) According to our results, the best classification results
are obtained by utilizing either GSP block 2 or GSP
block 3, but not GSP block 1. This observation indicates
that exploiting the second-order statistics in the later
layers can improve the predictive power significantly.
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TABLE III
COMPARISON OF THS-GAN USING DIFFERENT GSP BLOCK POSITIONS AND TT-RANKS FOR MCI/NC CLASSIFICATION
GSP block Position | C_rank | D_rank | #parameters | AUC(%) | Accuracy(%) | Class | precision(%) | recall(%) | fl-score(%)
MCI 69.77 96.77 81.08
14 6 118,210 70.13 74.07 N 5097 1593 =53
MCI 81.25 92.86 86.67
15 7 139,611 84.89 85.19 NE 597 T2 573
MCIT 4872 90.48 63.34
16 8 163,516 64.94 59.26 NE SEET 5.3 = TE
MCI 84.21 69.57 76.19
GSP block 1 17 9 189,925 79.94 81.48 NE SO0 5057 55
MCIT 100 71.43 §3.33
18 10 218,838 85.71 85.19 NE e 100 e
MCI 62.16 92.00 74.19
19 11 250,255 71.56 70.37 NE S35 =17 =5
MCI 51.22 95.45 66.67
20 12 284,176 66.48 61.11 NC 3737 3750 =513
MCI 54.55 96.00 69.57
14 6 120,034 65.74 62.50 NC o657 53 =116
MCI 96.15 80.65 87.72
15 7 141,435 88.32 87.50 NC §0.00 96.00 §7.27
MCI 57.14 1481 2352
16 8 165,340 52.23 53.57 NG =206 5966 e
MCI 63.89 85.19 73.02
GSP block 2 17 9 191,749 70.18 69.64 e 2000 =77 750
MCI 67.74 67.74 67.74
18 10 220,662 63.87 64.29 e 2000 2000 2000
MCI 83.87 76.47 80.00
19 11 252,079 76.87 76.79 NC 200 75 530
MCI 81.82 75.00 78.26
20 12 286,000 81.25 82.14 NC 555 570 e
MCI 66.67 89.66 76.47
14 6 121,048 70.75 71.43 NE T e 323
MCI 65.91 100 79.45
15 7 142,449 7222 73.21 NE T0G PR 153
MCI 70.00 70.00 70.00
16 8 166,354 67.69 67.86 NC = == =
MCI 68.97 83.33 7547
GSP block 3 17 9 192,763 77.60 76.79 NE 5510 T8 e
MCI 78.13 86.21 81.97
18 10 221,676 80.14 80.36 NC 55 167 513
MCI 85.29 96.67 90.62
19 1 253,093 88.72 89.29 NC 9545 7T 5
MCI 66.67 93.33 7778
20 12 287,014 69.74 71.43 NC = TS Z0.00
MCI 61.54 9231 73.85
SS-GAN [12] 251,637 7115 69.64 e 25 =550 T
A MCI 61.76 87.50 72.41
triple-GAN [32] 506,386 73.44 71.43 NE ST s 07T
The conjectured reason for this is that the features applications. Under optimal TT-ranks, THS-GAN can achieve
extracted in the earlier layers are simple and common, better performance than triple-GAN and our model uses fewer
but in the later layers representative features will be parameters, which indicates that TT-decomposition can utilize
abstracted, and by inserting the high-order pooling mod- parameters more efficiently, and is less likely to converge to
ule GSP block in the later layers, more discriminative local minima. Note that the optimal hyperparameter settings
features can be enhanced and redundant features will be  for each evaluation group will be utilized in the rest of the
suppressed; thus the predictive performance is improved. experiments.
Although inserting GSP block at the later layers will
increase the number of parameters, the best trade-off E. Effect of the Amount of Labeled Data
between accuracy and number of parameters should In this subsection, the effect of the number of labeled
be chosen at GSP block 2. GSP block 2 arrange- data for semisupervised classification is investigated. For the
ment leads to the best accuracy with the optimal proposed THS-GAN, the architecture and hyperparameters
TT-ranks. are set as the optimal settings found in Section IV-D. The
4) TT-rank has a significant effect on testing accuracy, 3D-DenseNet architecture is the same as the classifier of

and the optimal value of TT-rank depends on network
architecture and data. It is difficult to specify an optimal
value for TT-rank in advance. Again, this observation
is consistent with [23] that finding optimal TT-rank
remains a challenge.
According to the experimental results, the optimal value of
TT-rank lies in the range [14, 20] for classifier and [6, 12] for
discriminator. It is not time-consuming to find it in practical

THS-GAN but without tensor-train decomposition and GSP
block. Similarly, the structure of SS-GAN is also the same as
THS-GAN but without tensor-train decomposition and GSP
block. It can be seen from Fig. 5 that as the number of labeled
data increased, our THS-GAN outperforms SS-GAN by a large
margin and performs better than 3D-DenseNet when there are
less labeled data for AD/MCI classification. Fig. 6 shows that
as the number of labeled data increased, THS-GAN always
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TABLE IV
COMPARISON OF THS-GAN USING DIFFERENT GSP BLOCK POSITIONS AND TT-RANKS FOR AD/MCI CLASSIFICATION

GSP block Position | C_rank | D_rank | #parameters | AUC(%) | Accuracy(%) | Class | precision(%) | recall(%) | fl-score(%)
14 6 118,210 69.37 68.89 1\1ch1 gi:gg 32:2; Zj:(l);
15 7 139,611 50.00 46.94 o oot o o
16 8 163,516 59.08 59.18 1\/2ch gg:gz 212(1)(7) 2?25
GSP block 1 17 9 189,925 63.83 64.44 o UL Jo.0 Sl
18 10 218,838 59.45 6122 o ;g:gg R o5
19 11 250,255 55.18 55.10 o 2 202 Sl
LRI = = ==
o [ e | os [Aa 1 wE o
AR = = =
AR i = =
GSP block 2 17 9 191,749 85.35 85.71 - gg:;i gf:gg ggﬁ;
EEEECEETIREN: = = =
IR i =
NI i =
14 6 121,048 63.44 71.43 o R b 2029
AREECIENCE: i = ==
16 8 166,354 72.07 71.43 o e ol Ll
GSP block 3 17 9 192,763 59.47 55.10 o Lol ;‘g:gg Ay
18 10 221,676 49.56 57.14 o ég:gg L ekl
19 1 253,093 69.05 71.43 o e o s
20 12 287,014 7037 67.35 o LU il Al
SS-GAN [12] 251,637 50.00 48.98 L B8 10 o5
triple-GAN [32] 506,386 72.14 7347 1\/2ch ;?‘8‘; gg:(l)g gg:g;

outperforms both 3D-DenseNet and SS-GAN for MCI/NC
classification. The same trend can be found in Fig. 7. We can
also observe that the THS-GAN requires fewer labeled sam-
ples to achieve comparable results. In Fig. 5, when the number
of labeled data is small such as 300, THS-GAN can still
achieve better performance than SS-GAN and 3D-DenseNet
which use more labeled data such as 330, 360, 390, and
420, respectively, in the context of AD/MCI classification.
Similar trends can also be found for MCI/NC and AD/NC
in Figs. 6 and 7, respectively. This improvement is beneficial
from real unlabeled MR images and the synthetic MR images
produced by the generator.

F. Effect of Number of Parameters

In this section, we investigate the properties of THS-GAN
and compare it with triple-GAN uncompressed for AD/MCI
classification. In order to compare the performance for the
same range of parameters, various TT-ranks are utilized for
THS-GAN. The result in Fig. 8 illustrates that THS-GAN
can obtain the best AUC with optimal TT-ranks when the
number of parameters is compressed in the range [10%, 2 x 10°]

100 - [C=J3D-denseNet
[CSS-GAN
I THs-GAN

80

60

AUC(%)
[

40

20 4

T T T T
330 360 390 420

Number of Labelled data

Fig. 5. Comparison of different number of labeled data for AD/MCI
classification.

T
300

(in red dashed circle). Furthermore, THS-GAN can achieve
comparable AUC when TT-ranks are set to large numbers,
and the number of parameters is in the range of [2 x 10°,
3x10°] or [3x 10°, 4 x 10°]. Overall speaking, THS-GAN can
achieve much better performance when TT-rank is not large,
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and the number of the parameter is compressed between 10°
and 2 x 10°.

G. Convergence Comparison

Figs. 9 and 10 show the convergence curves of the pro-
posed THS-GAN and SS-GAN for evaluation group MCI/NC
and AD/MCI, respectively. THS-GAN converges faster than
conventional SS-GAN. In the case of AD/MCI classification,
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Fig. 9. Convergence curves for MCI/NC classification.
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Fig. 10. Convergence curves for AD/MCI classification.

(b)

Fig. 11.  Visualization of AD-related regions recognized by THS-GAN.
The number in the figure denotes specific brain region (1 Hippocampus,
2 Entorhinal cortex, and 3 Parahippocampal cortex). (a) Coronal view.
(b) Sagittal view.

SS-GAN cannot converge since the differences between AD
and MCI are so subtle that the MR images of AD, MCI,
and fake are hard to be distinguished by the discriminator.
These results are also consistent with Tables III and IV in
Section IV-D. More specifically, for MCI/NC classification,
AUC of THS-GAN (88.72%) is much higher than SS-GAN
(71.15%) since THS-GAN converges faster than SS-GAN. For
AD/MCI classification, the AUC of SS-GAN is only 50%,
and SS-GAN cannot converge during the training process.
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TABLE V
COMPARISON WITH EXISTING METHODS

BT MCI vs NC(%) AD vs MCI(%) AD vs NC(%)
Model Classification Method - —4—T"RecaT T AUC | ACC | Recall | AUC | ACC | Recall | AUC
Plocharski et al. [37] Feature Selection+SVM 84.40 82.30 84.00 81.50 81.70 83.00 92.30 91.30 98.00
Peng et al. [38] Feature Selection+SVM 71.60 83.90 - 65.40 41.20 - 88.40 84.10 -
Xu et al. [39] Feature Selection+SVM 70.89 61.39 79.02 - - - 90.40 92.36 95.36
Neffati et al. [40] Feature Selection+SVM - - - - - - 91.11 85.00 -
Li et al. [41] 3D-DenseNet+RNN 75.00 81.90 75.80 - - - 89.10 84.60 91.00
Cui et al. [42] 3D-CNN+RNN - - - - - - 91.33 86.87 93.22
Ren et al. [43] 2D-CNN 88.50 82.16 82.00 85.32 78.79 80.00 93.75 94.23 93.00
Liu et al. [44] CNN 77.84 76.81 82.72 - - - 84.97 82.65 90.63
Cheng et al. [45] 3D-CNN 82.33 80.65 81.66 79.38 82.24 78.55 87.13 86.31 91.24
Our method THS-GAN 89.29 96.67 88.72 85.71 88.89 85.35 95.92 95.83 95.92
30 Epoches 60 Epoches 90 Epoches
Sagittal Coronal Axial Sagittal Coronal Axial Sagittal Coronal Axial

SS-GAN

GAN

THS-GAN

Real
Fig. 12.

On the other hand, THS-GAN converges faster and an AUC
of 85.35% can be achieved.

H. Visualization of AD-Related Regions Recognized by
THS-GAN

It is significant to identify the relevant biomarkers for
AD diagnosis. The biomarker can quantitatively measure the
neurodegeneration and brain atrophy in MR images. Various
biomarkers in MR images have been discovered, such as
cortical thickness, volumetric decline, shape changes, and
annualized rates of atrophy in specific brain regions. In par-
ticular, the annual atrophy rate of the hippocampal for MCI
and AD patients is much higher than that for healthy elderly
subjects. The annual atrophy of the hippocampus for healthy
elderly subjects is 1.6% to 1.7% per year, while the annual
atrophy of the hippocampus for MCI patients is 2.8% per year,
and for AD patients is 3.5% to 4% per year.

In this work, the AD-related regions recognized by the
proposed THS-GAN are shown in Fig. 11. It can be observed
that the lesions recognized by THS-GAN focus on the hip-
pocampus, entorhinal cortex, and parahippocampal cortex.
It has already been validated by the previous studies [33]

Comparison of brain MRI slices generated by SS-GAN, GAN, and THS-GAN.

that these recognized regions are discriminative for AD diag-
nosis, meanwhile, the hippocampus and entorhinal cortex
are significant for identifying biomarkers in clinical prac-
tice. Although the volume loss and shape changes of these
recognized regions cannot be quantitatively measured in this
work, they are beneficial for identifying the biomarkers in
future work. Based on these recognized regions, the existing
biomarkers such as brain boundary shift integral (BBSI) [34],
scoring by nonlocal image patch estimator (SNIPE) [35], and
other grading biomarkers [36] can be computed. Furthermore,
new potential biomarkers might be discovered based on these
recognized regions in future work.

L. Visualization of Generated Images

In this section, we visualize the center-cut slices of the
generated MR images from random latent vectors during the
training process as shown in Fig. 12. In the beginning, gener-
ated samples are blurry, and the detailed features of the brain
disappear. In the latter stage, compared with SS-GAN and
GAN, the generated samples from the proposed THS-GAN can
reflect more detailed attributes of the brain (e.g., sulci, gyri).
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J. Comparison With Existing Methods

Several machine learning methods have been proposed for
AD diagnosis using MR images. Table V shows the compar-
ison results with the existing methods. Except classification
method of [40] used MR images from the OASIS data set,
the other eight methods all used the ADNI data set. Although
3D-CNN in [45] did not release the source code, the network
structure of the model is described in detail in their article.
Thus we reimplemented the model by TensorFlow according
to their paper. The other eight papers neither released the
source code nor provided a detailed description of the model.
Therefore the experimental results reported in these papers
are referred directly for comparison in Table V. It can be seen
that the proposed THS-GAN model achieves the best classifi-
cation performance with ACC of 89.29% for MCI versus NC,
85.71% for AD versus MCI, and 95.92% for AD versus NC.
Meanwhile, the best recall is also obtained by the proposed
THS-GAN. More specifically, compared with the machine
learning methods based on feature selection and support
vector machine (SVM) [37]-[40], the proposed THS-GAN
not only achieves better classification performance by a large
margin but also requires less image-preprocessing steps for
model training. No segmentation and rigid registration are
required for feature extraction in the proposed THS-GAN.
Moreover, THS-GAN also outperforms the existing deep
learning models such as 2D-CNN [43], 3D-CNN [44], [45]
and the hybrid network combining CNN and recurrent neural
networks (RNNSs) [41], [42]. It demonstrates the benefit of
tensor-train decomposition and the high-order pooling module
leveraged in THS-GAN. Furthermore, THS-GAN achieves
superior classification performance, indicating its potential
capability of assessing MCI and AD.

V. CONCLUSION

In this article, we developed a novel THS-GAN for assess-
ing MCI and AD. The three-player cooperative game-based
framework is tensorized so that THS-GAN can benefit
from the structural information of the brain. By introducing
high-order pooling in THS-GAN, more significant features
can be extracted by making full use of the second-order
statistics of the holistic MR images. To the best of our
knowledge, THS-GAN is the first work to consider tensor-train
decomposition in GAN and leverage GAN for semisupervised
classification on MR images for AD diagnosis. The experi-
mental results demonstrate that the proposed THS-GAN model
can obtain promising results. We will focus on identifying the
relevant biomarkers in future work.
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