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Morphological feature visualization of Alzheimer’s
disease via Multidirectional Perception GAN

Wen Yu, Baiying Lei, Yong Liu, Zhiguang Feng, Yong Hu, Yanyan Shen, Shuqiang Wang, Michael K. Ng

Abstract—The diagnosis of early stages of Alzheimer’s disease
(AD) is essential for timely treatment to slow further deteriora-
tion. Visualizing the morphological features for the early stages
of AD is of great clinical value for early diagnosis. In this
work, a novel Multidirectional Perception Generative Adversarial
Network (MP-GAN) is proposed to visualize the morphological
features indicating the severity of AD for patients of different
stages. Specifically, by introducing a novel multidirectional map-
ping mechanism into the model, the proposed MP-GAN can
capture the salient global features efficiently. Thus, by utilizing
the class-discriminative map from the generator, the proposed
model can clearly delineate the subtle lesions via MR image
transformations between the source domain and the pre-defined
target domain. Besides, by integrating the adversarial loss,
classification loss, cycle consistency loss and L1 penalty, a single
generator in MP-GAN can learn the class-discriminative maps for
multiple-classes. Extensive experimental results on Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset demonstrate that
MP-GAN achieves superior performance compared with the
existing methods. The lesions visualized by MP-GAN are also
consistent with what clinicians observe.

Index Terms—Alzheimer’s Disease, Lesion visualization, Gen-
erative Adversarial Networks, MR images.

I. INTRODUCTION

ALZHEIMER’S DISEASE (AD) is an irreversible and
chronic neurodegenerative disease with progressive im-

pairment of memory and other mental functions. It is estimated
to be the fifth leading cause of death in elderly people [1].
AD is caused by abnormal cell death in the brain, long
before amnestic symptoms are observable [2]. The resulting
brain atrophy is visible in structural magnetic resonance (MR)
images. To date, AD is incurable but preventable. It is crucial
to diagnose the early stages of AD by MR images for timely
treatment [3]. Significant memory concern (SMC) and mild
cognitive impairment (MCI) are the transitional stages between
normal controls (NC) and AD [4]. SMC and MCI present
mild symptoms, and the disease-related regions are very subtle
in MR images. Currently, the clinical diagnosis procedure is
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time-consuming and requires extensive clinical training and
experience for clinicians. Thus, developing automatic methods
by utilizing deep learning to visualize the brain changes for the
early stages of AD is highly desirable. It can assist clinicians
for early diagnosis and may provide meaningful information
on the pathogenesis of cognitive decline. However, this is
a challenging task due to several reasons, such as the low-
intensity contrast between the lesion and other neighboring
regions, the indistinct boundary of the lesion, and the irregular
lesion shape.

To visualize features of different Alzheimer’s stages in
MR images, there already exist several feature visualiza-
tion methods based on classification. These methods can be
classified into two categories. (1) The Regions Of Interest
(ROI)-based classification approaches [1], [5]–[7] and patch-
based classification approaches [8]. The performance of these
methods is limited since the brain ROIs or patches need to
be selected based on anatomical brain atlases or biological
prior knowledge beforehand. Multiple steps are required to
exact features from ROIs or patches for classification and
subsequent visualization. Therefore, they tend to be sensitive
to parameters and time-consuming; (2) Three strategies to
visualize features for a convolutional neural network (CNN)
classifier. (i)By editing an input image and observing its effect
on the prediction results, the occluded regions which have
a significant impact on prediction can be visualized; (ii)By
analyzing the gradients of the prediction for an input image, a
heatmap can be produced for visualization; (iii)By analyzing
the activations of the feature maps for the image, the regions
which are responsible for making the specific prediction can
be visualized. These classification-based feature visualization
methods make their predictions based on local regions most
relevant to the particular prediction rather than the whole
image, and it may ignore features with low discriminative
power if stronger features for the prediction are available. As a
result, if there is evidence for a category at multiple locations
in the image (such as multiple AD lesions in MR images),
some lesions with low discriminative power may be ignored.
Moreover, visual features strongly depend on the performance
of the classifier, and a large number of labeled samples are
required to train a robust model.

To alleviate these issues, a novel Multidirectional Perception
Generative Adversarial Network (MP-GAN) is proposed to
visualize morphological features in whole-brain MR images.
Generative Adversarial Network (GAN) [9], [10] has attracted
lots of attention as it is capable of generating realistic data
without explicitly modeling the probability density function.
In this paper, MP-GAN with a novel multidirectional mapping
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mechanism is designed to capture the salient global features
efficiently. Specifically, the generator of MP-GAN takes inputs
as both MR images and its target domain. Then it flexibly
learns a class-discriminative map for the target domain. By
adding the class-discriminative map and the input MR image
of the source domain, a synthetic MR image of the target
domain can be produced. Thus the learned class-discriminative
map can capture all brain changes by transforming the MR
image between the source domain and the target domain.
By visualizing the class-discriminative maps, the subtle and
complex lesions that may not be found within one region
can be identified. Besides, by designing the hybrid loss, a
single generator in MP-GAN can learn the class-discriminative
maps for multiple-classes. In this manner, the common fea-
tures unrelated to the specific domain can be reused during
training, therefore the visualization performance is further
improved. With this global lesion visualization, clinicians can
better exclude undesirable biases and potentially even identify
previously unknown characteristics of AD. To the best of
our knowledge, the proposed MP-GAN is the first work to
visualize the morphological features for different Alzheimer’s
stages by a single generator. The contributions of this paper
are summarized as follows:

1) A novel MP-GAN with a multidirectional mapping
mechanism is proposed to capture the salient global
features efficiently. By utilizing the class-discriminative
map from the generator, the proposed model can clearly
delineate the subtle lesions via MR image transforma-
tions between the source domain and the target domain.

2) By integrating the adversarial loss, classification loss,
cycle consistency loss and L1 penalty, a single generator
in MP-GAN can learn the class-discriminative maps for
multiple-classes. The morphological features indicating
different Alzheimer’s stages can be visualized by a
single MP-GAN model.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. The proposed MP-GAN is
described in detail in Section III. In Section IV, MP-GAN
is tested and compared with existing feature visualization
methods to demonstrate its advantage. Finally, concluding
remarks and future work are discussed in Section V.

II. RELATED WORK

The current feature visualization methods for AD gener-
ally fall into two categories: (1)The ROI-based classification
approaches and patch-based classification approaches; (2)The
CNN-based classification approaches.

For the first category, the brain ROIs or patches were select-
ed based on anatomical brain atlases or biological prior knowl-
edge beforehand, then multiple steps were required to extract
features from ROIs or patches for classification. According
to classification performance, the most frequently selected
ROIs or patches would be visualized. For instance, Lian et al.
[8] proposed a hierarchical fully convolutional network (H-
FCN) to automatically identify discriminative local patches
and regions in MR images for AD computer-aided diagnosis.
The hierarchical discriminative locations of brain atrophy at

both the patch-level and region-level were visualized. Wang
et al. [5] proposed a multi-task exclusive relationship learning
(MTERL) approach to predict the cognitive status. The most
important ten ROIs for estimating clinical scores were visual-
ized. Jie et al. [6] proposed a classification approach to extract
features by integrating both temporal and spatial variabilities
from the constructed dynamic connectivity networks (DCNs).
Then a multi-kernel SVM model was employed for AD
computer-aided diagnosis. The brain ROIs with significant
spatial variability for EMCI vs. LMCI and EMCI vs. NC were
visualized respectively.

For the second category, there were three strategies to
visualize features for CNN.

1) By editing an input image and observing its effect on
the prediction results, the occluded regions which had a
significant impact on prediction can be visualized. For
instance, Zeiler and Fergus [11] proposed an occlusion-
based method to visualize the activity within CNN.
Different portions of the input image were occluded
systematically with a grey square, and the output of
the classifier was observed. The occluded regions which
cause the probability of the correct class drop signifi-
cantly would be visualized. Korolev et al. [12] utilized
3D-ResNet for AD classification, and the important
regions of the MR image most affected by AD were
visualized by the occlusion-based method [11]. Nigri et
al. [13] proposed a Swap Test to visualize the areas of
the brain image most indicative of AD;

2) By analyzing the gradients of the prediction for an
input image, the heatmap can be produced for visu-
alization [14]–[16]. For example, Selvaraju et al. [17]
proposed Gradient-weighted class activation mapping
(Grad-CAM) for making any CNN-based models more
transparent by producing heatmaps. Ancona et al. [18]
analyzed four gradient-based feature visualization meth-
ods from theoretical and practical perspectives. Sprin-
genberg et al. [19] proposed a new variant of the
“deconvolution approach” guided backpropagation for
visualizing features learned by CNNs. Guided backprop-
agation can be applied to a broader range of network
structures. Bohle et al. [20] utilized layer-wise relevance
propagation (LRP) to visualize CNN decisions for AD
based on MR images. Sundararajan et al. [21] proposed
Integrated Gradients by utilizing an axiomatic frame-
work for feature visualization;

3) By analyzing the activations of the feature maps for
the image, the regions which were responsible for
making the specific prediction can be visualized. For
instance, Zhou et al. [22] proposed Class Activation
Mapping (CAM) to visualize the discriminative object
parts detected by CNN in a single forward pass. Khan
et al. [23] utilized VGG with transfer learning for
AD computer-aided diagnosis. CAM was utilized to
visualize the discriminative regions in the MR image for
model interpretation. Lian et al. [24] proposed a multi-
task weakly-supervised attention network (MWAN) by
leveraging a fully-trainable dementia attention block for
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Fig. 1: The flowchart of MP-GAN. It consists of three components: a generator, a classifier, and a discriminator.

regression. The attention maps were visualized by CAM
for AD subjects. Sarraf et al. [25] utilized LeNet-5
to classify structural MR images for AD vs. NC. The
filters and the features were visualized for interpretation.
Furthermore, Baumgartner et al. [26] proposed VA-GAN
to visualize attributions distinguishing between MCI and
AD. Note that CAM and gradient-based methods were
not model-agnostic. They were most limited to neural
networks (except [15]) and many required architectural
modifications [11], [14], [22] or accessed to intermediate
layers [17], [22]

III. THE PROPOSED MP-GAN

A. Overview

The flowchart of MP-GAN is shown in Fig. 1. After data
preprocessing (see Section IV-A), the normalized T1-MR
images of all classes are fed into MP-GAN. The proposed
model learns the class-discriminative maps between all class-
pairs for visualizing morphological features. More specifically,
the generator aims to capture salient global features in class-
discriminative maps. Then the class-discriminative maps are
used to transform MR images between the source domain
and the target domain. To control semantic information, an
auxiliary classifier is introduced based on the generator and
discriminator to form the MP-GAN architecture. While the
generator produces the class-discriminative maps distinguish-
ing between the source domain and the target domain, the
classifier predicts the domain indicating Alzheimer’s stage,

and the discriminator identifies whether the transformed MR
images are real or fake. In this manner, the class-discriminative
maps learned by MP-GAN can highlight exactly which re-
gions of the MR image are significant for discrimination
between the source domain and the target domain at the
voxel-level. The subtle and complex lesions that may not be
found within one region can be identified. Furthermore, since
the input MR images are high-order with complicated brain
structure, MP-GAN is further designed with the following two
improvements: (1) 3D Residual Blocks are exploited in the
conditional generator so that the features from the low-level
can be reused, and the vanishing-gradient problem can be
prevented; (2) 3D-DenseNet is utilized in classifier to capture
more discriminative features.

B. The Architecture

The proposed MP-GAN is designed to visualize morpholog-
ical features for multiple-classes. To achieve this, the generator
G is designed to produce class-discriminative map ∆x which
can transform an input MR image x to an output MR image x′

conditioned on the target class y′, [G(x, y′)+x]→ x′. During
training, the target class y′ is randomly selected so that G
learns to produce class-discriminative maps for all class-pairs.
By doing so, the target class y′ can be predefined, and global
features that distinguish between the source domain y and the
desired target domain y′ can be visualized at the testing stage.

As illustrated in Fig. 1, input MR image x is labeled
and y represents the corresponding class. The conditional

Page 3 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

generator aims to capture all salient global features in class-
discriminative maps ∆x. Then ∆x is utilized to transform
input MR image from the source domain y to the target domain
y′ in a bidirectional manner. The classifier predicts label yc
given real MR image x by the conditional distribution pc(y|x),
and the discriminator is trained to identify whether the MR
image is real or fake. Formally, given an MR image x of
source class y and a conditional variable y′, the generator
can produce a synthetic MR image x′ of target class y′ by
adding the generated class-discriminative map ∆x and input
MR image x.

x′ = ∆x+ x = G (x, y′) + x, (1)

which is indistinguishable from the real MR image of the
target domain y′. Thereby, class-discriminative map ∆x
contains all salient global features which distinguish between
two domains y and y′. The change of salient voxels between
the source domain y and the target domain y′ on the MR
image can be visualized by the class-discriminative map.

Adversarial Loss. To make the synthetic target MR images
indistinguishable from real MR images, an adversarial loss is
defined as

Ladv =Ex [logD(x)] +

Ex,y′ [log (1−D(G (x, y′) + x))] ,
(2)

where generator G generates an MR image [G (x, y′) + x]
conditioned on both the input MR image x and the target class
y′, while discriminator D attempts to distinguish between real
and fake MR images. The G tries to minimize this adversarial
loss, while the D tries to maximize it.

Classification Loss. Given an input MR image x and a
target class y′, the goal of MP-GAN is to produce a class-
discriminative map that can transform x into an output MR
image x′. x′ aims to be classified as the target class y′. To
achieve this condition, an independent classifier is introduced
and the classification loss is imposed when optimizing gen-
erator G. Specifically, the loss function is decomposed into
two terms: a classification loss of real images to optimize
classifier C, and a classification loss of fake images to optimize
generator G. In detail, the former is defined as

Lr
cls = E(x,y)∼preal (x,y) [− log pc (y|x)] . (3)

By minimizing this classification loss, classifier C learns to
classify a real MR image x to its corresponding class y. On
the other hand, the loss function for the classification of fake
images is defined as

Lf
cls = E(x′,y′)∼pg(x,y) [− log pc (y′|x′)] . (4)

Generator G tries to minimize the loss Lf
cls to produce the

class-discriminative maps for generating MR images x′ that
can be classified as the target class y′.

Cycle consistency loss. By minimizing the adversarial
and classification losses, generator G is trained to generate
MR images that are realistic and classified as target class.
However, minimizing the losses (Eqs. (2) and Eqs. (4)) does

not guarantee that the final transformed images preserve the
content of input MR images while changing only the disease-
related regions of the input. To alleviate this problem, a
forward cycle consistency loss and backward cycle consistency
loss [27], [28] are applied to the generator. They are defined
as

Lcyc tar = Ex,y′,y [‖x′real − (G (x, y′) + x)‖1] , (5)

Lcyc org

=Ex,y′,y [‖xreal − (G (x′, y) + x′)‖1]

=Ex,y′,y [‖xreal − (G ((G(x, y′) + x), y) + x′)‖1] ,

(6)

where generator G takes in the transformed MR image x′ and
the source class y as input and tries to reconstruct the MR
image Xr = G (x′, y) + x′ of the source domain y. The L1
norm is adopted as the reconstruction loss. Note that a single
generator is reused twice. The generator is first utilized to
transform MR images of the source domain y to MR images
of the target domain y′. Then it is used to reconstruct the
MR image of the source domain y from the synthetic MR
images of the target domain y′. For the first utilization, forward
cycle consistency loss Lcyc−tar is adopted. For the second one,
backward cycle consistency loss Lcyc−org is adopted.

L1 penalty. The smallest class-discriminative map ∆x that
leads to a real MR image of the target domain y′ is encouraged.
Thus L1 penalty is defined as

L1(∆x) = ‖∆x‖1, (7)

where ‖ · ‖1 is the L1 norm.
Total Loss. The total loss functions to optimize D, C, and

G are defined respectively as

LD = −Ladv, (8)

LC = Lr
cls, (9)

LG =Ladv + λclsLf
cls + λ1L1(∆x)

+ λcyc orgLcyc org + λcyc tarLcyc tar,
(10)

where λcls, λ1 , λcyc org and λcyc tar are hyperparameters
that control the relative importance of classification loss, L1
penalty, and cycle consistency loss respectively, compared to
the adversarial loss. λcls = 0.1, λ1 = 10, λcyc org = 10 and
λcyc tar = 1 are fixed throughout the paper. By optimising
Eq.10, MR images of the source domain are transformed to
MR images of the target domain by ∆x , thus the class-
discriminative map ∆x can capture all morphological features
between the source domain and the target domain.

For AD computer-aided diagnosis, the following class set-
tings are defined to train so that all features between any
two domains y and y′ can be visualized completely. More
specifically, y denotes the source class of the input MR image
x, such as NC. y′ denotes the target label, such as EMCI. At
the training stage, y′ is selected randomly according to the
following rule.

(1) y={NC}, y′={SMC,EMCI,LMCI,AD},
(2) y={SMC}, y′={NC,EMCI,LMCI,AD},
(3) y={EMCI}, y′={SMC,NC,LMCI,AD},
(4) y={LMCI}, y′={SMC,EMCI,NC,AD},
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Fig. 2: The network structure of (a) Generator, (b) Classifier, and (c) Discriminator.

(5) y={AD}, y′={SMC,EMCI,LMCI,NC}.

In this manner, the generator is able to learn the class-
discriminative maps between any two classes. At the testing
stage, y′ is pre-defined according to the requirement of user. In
this paper, at the testing stage, the morphological features of
NC versus all Alzheimer’s stages including SMC, EMCI, and
LMCI are visualized. MCI is characterized by a slight decline
in cognitive abilities. Note that patients with MCI are at
increased risk of developing to AD, but do not always do. Thus
MCI is significant for morphological feature visualization and
further diagnosis.

The network structure of generator, classifier, and discrim-
inator is shown respectively in Fig. 2. The network utilized
in the generator is ResNet. 3D-ResNet is expanded by adding
a spatial dimension to all convolutional and pooling layers
in ResNet for the MR image. By utilizing the shortcut con-
nection, ResNet explicitly reformulates the layers as learning
residual functions regarding the input layer, and it transfers
feature representations from low layers to the high layers.
More specifically, the generator network is composed of two
convolutional layers with a stride size of 2 for downsampling,
three residual blocks [29], and two transposed convolutional
layers with the stride size of two for upsampling. Instance
normalization [30] is used in all layers except the last output
layer for the generator. 3 × 3 × 3 and 1 × 1 × 1 con-
volutional filters are employed in generator. The network
utilized in the classifier is DenseNet [31]. 3D-DenseNet is
expanded by adding a spatial dimension to all convolutional
and pooling layers in DenseNet for the MR image. Feature-

maps learned by all preceding layers are concatenating along
the last dimension for the subsequent layers. Through such
dense connectivity, feature-maps are reused and the vanishing-
gradient problem is alleviated. Meanwhile, 3D-DenseNet can
extract discriminative features related to Alzheimer’s stage
from the whole MR images efficiently. The details of 3D-
denseNet can be found in [31], [32]. In this paper, the depth
is set to 30, the growth rate is set to 12, the number of the
Dense-BC block is set to 3, and the reduction is set to 0.5.
A standard CNN architecture with 7 convolutional layers with
4× 4× 4 and 1× 1× 1 convolutional filters is adopted in the
discriminator. Each convolutional layer is followed by batch
normalization [33] and ReLU.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Preprocessing

T1-weighted MR images from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) public dataset are used for
the evaluation purpose. 5316 MR images in ADNI-1, ADNI-
go, and ADNI-2 are utilized. It includes 1736 NC subjects, 288
SMC subjects, 1582 EMCI subjects, 616 LMCI subjects, and
1094 AD subjects. Both 1.5T and 3T field strength MR images
are used. Table I lists the demographic characteristics of the
subjects. Note that the ADNI-2 assessed participants from the
ADNI-1 phases in addition to new participant groups in 20111.
Different from the ADNI-1 dataset, MCI is divided into two
subtypes, including early mild cognitive impairment(EMCI),

1http://adni.loni.usc.edu/about/
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TABLE I: Demographic characteristics of the subjects in ADNI dataset.

Magnet strength 3T 1.5T
Source ADNI-1 ADNI-GO ADNI-2 ADNI-1 ADNI-GO ADNI-2
Subject NC AD EMCI NC SMC EMCI LMCI AD NC AD NC NC
Number 42 29 142 190 121 309 177 159 171 175 16 81
Gender(F/M) 27 / 15 20 / 9 67 / 75 95 / 95 64 / 47 139 / 169 80 / 97 68 / 91 89 / 82 85 / 90 8 / 8 45 / 36
Age 76.1±5.1 75.6±7.9 71.7±7.7 74.9±6.8 72.9±5.6 72.3±7.3 72.9±7.6 75.4±7.9 77.7±5.4 76.6±7.5 80.2±4.8 82.5±4.5
Education 16±2.8 14.7±2.9 15.8±2.7 16.4±2.7 16.8±2.5 16±2.7 16.5±2.6 15.8±2.7 16.0±2.9 14.6±3.2 15.5±2.5 15.9±2.9
MMSE 29.3±1.0 20.03±4.8 28.2±1.8 28.7±1.5 28.6±1.7 28.0±2.1 26±3.5 20.8±4.4 29.1±1.2 21.5±4.4 29.4±1.0 28.5±2.6
CDR 0±0.14 1.07±0.4 0.45±0.19 0.07±0.19 0.13±0.23 0.46±0.22 0.58±0.37 0.99±0.46 0±0.19 0.93±0.49 0.07±0.18 0.2±0.35
Samples 149 73 471 723 288 1111 616 501 587 520 72 205

and late mild cognitive impairment(LMCI) in the ADNI-2
dataset. SMC is the transitional stage between NC and MCI.
The diagnostic criteria are described in the ADNI procedures
manual2.

All MR images are in the neuroimaging informatics technol-
ogy initiative (NIfTI) format. They are processed using stan-
dard operations in the FSL3 toolbox [34]–[36] for registering
the MR images to MNI space. The preprocessing pipelines
contain three parts: (1) removal of redundant tissues; (2) brain
area extraction by BET; (3) linear registration by FLIRT [37],
[38]. Lastly, the T1-MR image is normalized into the range
[-1,1], and is fed into the MP-GAN model as a tensor directly
without compressing or downsizing. For evaluation, 80% of
the data are allocated for training. The remaining 20% of the
data are equally partitioned and used as validation and test
data sets respectively. A single MP-GAN model is trained on
a training dataset of all categories as mentioned above, then
the morphological features between the source domain and
the predefined target domain are visualized on the test set.
The validation set is used for hyperparameter optimization.

B. Experiment Settings

The proposed MP-GAN is trained on the ADNI dataset from
scratch in an end-to-end manner. All methods are implement-
ed in TensorFlow4. All experiments are conducted on four
NVIDIA GeForce GTX 2080 Ti GPUs. ‘Adam’ is utilized
as the optimizer for stochastic gradient descent (SGD). The
batch size is set to 8. The learning rate of both generator and
classifier is set to 0.001. The learning rate of the discriminator
is set to 10−4.

C. Qualitative Analysis

In this section, comprehensive experiments are conducted
to show the effectiveness of MP-GAN. First, the proposed
model is compared with 4 methods: (1)Guided Backpropa-
gation [19]; (2)Integrated Gradients [21]; (3)Class Activation
Mapping(CAM) [22]; and (4)GAN [26]. For Guided Back-
propagation, Integrated Gradients, and CAM, a conventional
CNN architecture is used for these networks. Besides, for the
CAM method, the last layer is designed as described in [22]
and the last two max-pooling layers are omitted. This allows
more accurate heatmaps due to the higher resolution of the last
feature maps. The proposed method is also compared with the
conventional GAN [26] to demonstrate our advantages. For a

2http://www.adni-info.org
3www.fmrib.ox.ac.uk/fsl
4http://www.tensorflow.org/

fair comparison, the network structure of the generator and
discriminator in GAN is the same as the proposed MP-GAN,
and the loss function of GAN is the conventional adversarial
loss. The GAN is trained to visualize important regions in
MR images between two predefined demains. Furthermore, the
following 4 evaluation groups are set up when compared with
the 4 existing methods: (1)NC vs. SMC, (2)NC vs. EMCI,
(3)NC vs. LMCI, and (4)NC vs. AD. The main reason for
this setup is that more meaningful pathological features can
be found by comparing with healthy people. It is worth noting
that MR images of all 5 classes are trained using only one
MP-GAN model, and the class-discriminative map for each
evaluation group is visualized at the test stage. But for the 4
compared methods, one independent binary model is trained
for each evaluation group respectively.

To visually show the quality of heatmaps produced by
the proposed model and the 4 existing methods, one MR
image is taken from each evaluation group for qualitative
analysis. From Fig. 3 to Fig. 6, the heatmaps from the sagittal,
coronal, and axial views are illustrated for each evaluation
group respectively. The figures are shown by progression from
SMC to AD in order. From Fig. 3 to Fig. 6, it can be
seen that the proposed MP-GAN can visualize subtle lesions
with contour edge at a finer scale (i.e., voxel-level). More
detailed discriminative regions can be depicted, such as the
hippocampus, and the corners and boundaries of the ventricle.
The highlighted subtle lesions predicted by MP-GAN are
relatively more precise than those generated by the other
4 methods. For example, from Fig. 4, it can be observed
that the lesions that have much more blurred boundary and
are difficult to recognize can be delineated by MP-GAN.
More specifically, the corpus callosum with irregular sulcus
is depicted accurately by MP-GAN from the sagittal-view
and coronal-view in Fig. 4. Atrophy of the corpus callosum
may lead to functional disability because of reduced inter-
hemispheric integration. It is a region that has been examined
intensively for indications of EMCI [39]. On the other hand,
Integrated Gradients and Guided Backprop tend to focus on
some small parts of the lesions rather than the whole lesions.
Because some subtle voxels of the lesion might be more salient
than the other voxels of the whole lesion. This proves that
the feature visualization methods based on classification only
focus on the most discriminative features and ignore the rest.
It is difficult to interpret the results produced by CAM due
to the low-resolution. Moreover, the regions visualized by
GAN seem to cover parts of ground-truth affected by the AD
for NC vs. AD as shown in Fig. 6. However, they are not
close to ground-truth, this is because the training of GAN
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Fig. 3: Heatmaps predicted by Integrated Gradients, Guided Backprop, CAM, GAN, and our method are shown in
sagittal,coronal, and axial views for NC vs. SMC respectively.

Fig. 4: Heatmaps predicted by Integrated Gradients, Guided Backprop, CAM, GAN, and our method are shown in
sagittal,coronal, and axial views for NC vs. EMCI respectively.

Fig. 5: Heatmaps predicted by Integrated Gradients, Guided Backprop, CAM, GAN, and our method are shown in
sagittal,coronal, and axial views for NC vs. LMCI respectively.
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Fig. 6: Heatmaps predicted by Integrated Gradients, Guided Backprop, CAM, GAN, and our method are shown in
sagittal,coronal, and axial views for NC vs. AD respectively.

is unstable. In summary, the results of the proposed MP-
GAN are closer to the ground-truth compared with the other
4 existing methods. This implies that MP-GAN can benefit
from the multidirectional mapping mechanism and the hybrid
loss function. MP-GAN is more sensitive to subtle structural
changes in MR images caused by cognitive decline.

The ADNI diagnostic criteria for each Alzheimer’s stage
are briefly described as following. (1) NC participants have no
subjective or informant-based complaints of memory decline,
and they have a normal cognitive performance; (2) SMC
participants have subjective memory concerns assessed by
the Cognitive Change Index(CCI). They have no informant-
based complaint of memory impairment or decline, and they
have a normal cognitive performance on the Wechsler Logical
Memory Delayed Recall (LM-delayed) and the Mini-Mental
State Examination (MMSE) [40]; (3) EMCI participants have
a subtle cognitive decline. Their abnormal memory function
is approximately 1 standard deviation below normative per-
formance, and their MMSE total score is greater than 24; (4)
LMCI participants have a memory concern. Clinical Dementia
Rating (CDR) of LMCI participants is 0.5, and the Memory
Box (MB) score must be at least 0.5; (5) AD participants
have a significant memory concern. The MMSE score of AD
participants is between 20 and 26, and CDR is 0.5 or 1.0.

To further analyze the visualization results of the proposed
MP-GAN from a clinical perspective, the two-view slices in
another coordinate of (33,55,39) are shown in Fig. 7. Note
that the three-view slices shown from Fig. 3 to Fig. 6 are
in the coordinate of (44,55,47). From Fig. 7, the following
observations can be made. (1) For all four evaluation groups,
the proposed MP-GAN can delineate the discriminative lesions
clearly. More specifically, lesions visualized by MP-GAN are
hippocampus, thalamus, putamen, pallidum, caudate nucleus,
amygdala, and insula [12], [41], [42]. It is worth noting that
the discriminative capability of these brain regions in clinical
diagnosis has already been validated by previous studies [1],
[43]–[45]. This implies the feasibility of the proposed MP-
GAN; (2) The morphological changes including global atrophy

(e. g. smaller volumes of hippocampus or amygdala) and shape
changes are visualized by class-discriminative map (indicated
by color). These morphological changes are related to AD
disease progression and cognitive decline severity; (3) For 4
evaluation groups, identified multiple regions are overlapped
or localized at similar brain regions. For instance, the regions
of NC vs. LMCI and NC vs. AD are similar because LMCI
might develop to AD. Meanwhile, since the features between
LMCI and AD are very subtle, thus some visualized regions of
NC vs. LMCI and NC vs. AD are overlapped, but the atrophy
severity of each lesion is different (indicated by color). The
lesions visualized for EMCI vs. AD and NC vs. AD also have
some common regions, such as the hippocampus and pallidum.
Furthermore, it is reasonable that the overlap regions between
NC vs. EMCI and NC vs. AD might not be identified for
EMCI vs. AD, and some regions such as the amygdala which
are specific to EMCI vs. AD can be identified; (4) Along with
the progression from EMCI to AD, from Fig. 7(a) to Fig. 7(c),
it can be observed that the intensity values (i.e., light salmon
color) in the heatmaps are gradually increased (i.e., change
to crimson) at various brain locations, and some of them are
accumulated at the annotated regions. These results suggest
that the class-discriminative maps generated by the proposed
MP-GAN have the potential to provide some extra information
regarding the AD progression, and it may reveal the gradual
atrophic process of the human brain due to cognitive decline.
Furthermore, the severity of cognitive decline is also reflected
in ADNI diagnostic criteria for each Alzheimer’s stage as
described above. In summary, the above observations imply the
robustness of MP-GAN in visualizing morphological features
for different Alzheimer’s stages.

For further visualization analysis, 5 evaluation groups are
investigated respectively in Fig. 8. The results show that the
important brain regions visualized by the proposed method
are consistent with regions in Fig. 7. More specifically, by
aligning the automatic anatomical labeling (AAL) map with
the class-discriminative maps visualized in Fig. 8, each region
in the class-discriminative map will be matched to the specific
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Fig. 7: Class-discriminative maps generated by MP-GAN are shown as a colored overlay over the MR images. The regions
affected by the progression of AD are reliably captured by MP-GAN for four evaluation groups respectively.

Fig. 8: Distribution of class-discriminative maps visualized by MP-GAN for five evaluation groups respectively.
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TABLE II: Indices and names of regions visualized by MP-GAN using the AAL template.

NC vs. SMC SMC vs. EMCI NC vs. EMCI EMCI vs. LMCI LMCI vs. AD
ROI index ROI name ROI index ROI name ROI index ROI name ROI index ROI name ROI index ROI name

1 Precentral L 17 Rolandic Oper L 7 Frontal Mid L 5 Frontal Sup Orb L 9 Frontal Mid Orb L
8 Frontal Mid R 29 Insula L 36 Cingulum Post R 12 Frontal Inf Oper R 14 Frontal Inf Tri R
10 Frontal Mid Orb R 39 ParaHippocampal L 43 Calcarine L 37 Hippocampus L 37 Hippocampus L
12 Frontal Inf Oper R 42 Amygdala R 45 Cuneus L 39 ParaHippocampal L 38 Hippocampus R
34 Cingulum Mid R 49 Occipital Sup L 46 Cuneus R, 40 ParaHippocampal R 43 Calcarine L
39 ParaHippocampal L 51 Occipital Mid L 50 Occipital Sup R 43 Calcarine L 48 Lingual R
40 Parahippocampal R 52 Occipital Mid R 56 Fusiform R 47 Lingual L 52 Occipital Mid R
50 Occipital Sup R 58 Postcentral R 57 Postcentral L 50 Occipital Sup R 67 Precuneus L
57 Postcentral L 60 Parietal sup R 74 Putamen R 54 Occipital Inf R 68 Precuneus R
78 Thalamus R 67 Precuneus L 90 Temporal Inf R 55 Fusiform L 74 Putamen R

ROI index and name in AAL. The disease-related regions
visualized by MP-GAN are listed in Table II. Note that the
suffix ‘L’ denotes the left brain, and the suffix ‘R’ denotes
the right brain. The following observations can be made from
Fig. 8 and Table II. (1) The brain regions visualized by
the proposed method for NC vs. SMC are precental gyrus,
middle frontal gyrus, inferior frontal gyrus, median cingulate,
paracingulate gyri, parahippocampal gyrus, superior occipital
gyrus, postcentral gyrus and thalamus; (2) The brain regions
visualized by the proposed method for SMC vs. EMCI are
rolandic operculum, insula, parahippocampal gyrus, amygdala,
superior occipital gyrus, middle occipital gyrus, postcentral
gyrus, superior parietal gyrus and precuneus; (3) The brain
regions visualized by the proposed method for NC vs. EM-
CI are the middle frontal gyrus, posterior cingulate gyrus,
calcarine fissure and surrounding cortex, cuneus, superior
occipital gyrus, fusiform gyrus, postcentral gyrus, lenticular
nucleus, putamen and inferior temporal gyrus; (4) The brain
regions visualized by the proposed method for EMCI vs.
LMCI are the superior frontal gyrus, orbital part, inferior
frontal gyrus, opercular part, hippocampus, parahippocampal
gyrus, calcarine fissure and surrounding cortex, lingual gyrus,
inferior occipital gyrus and fusiform gyrus; (5) The brain
regions visualized by the proposed method for LMCI vs. AD
are the middle frontal gyrus, orbital part, inferior frontal gyrus,
triangular part, hippocampus, calcarine fissure and surrounding
cortex, lingual gyrus, middle occipital gyrus, precuneus, lentic-
ular nucleus and putamen. These regions also agree with the
existing research findings. To sum up, the lesions visualized
by the proposed model are highly suggestive and effective for
tracking the progression of AD.

The performance of MP-GAN to visualize the subtle le-
sions in the hippocampus is further investigated. The class-
discriminative maps of the hippocampus in the sagittal view
are visualized in Fig. 9. Specifically, the following 4 neigh-
borhood evaluation groups are further explored: (a) NC vs.
SMC; (b) SMC vs. EMCI; (c) EMCI vs. LMCI; (d) LMCI vs.
AD. From Fig. 9, it can be observed that the zoomed regions
preserve more details in the hippocampus. In particular, in
the earlier stages of AD such as (a) NC vs. SMC and (b)
SMC vs. EMCI, the visualized lesions are extremely subtle
and scattered around the boundary of the hippocampus. In
the later stages of AD such as (c) EMCI vs. LMCI and (d)
LMCI vs. AD, the visualized lesions are accumulated at the
core region of the hippocampus. Furthermore, Fig. 9(a) to Fig.
9(d) reflect the shape change and atrophy of the hippocampus
qualitatively as the progressive deterioration from SMC to AD.

Fig. 9: Visualization results of hippocampus by MP-GAN in
sagittal view and corresponding zoomed regions. The
subfigures at the bottom are the zoom of the original

subfigures for better observation.

It has already been validated by the previous studies [46] that
the hippocampus is significant for identifying biomarkers in
clinical practice. Although the volume loss and shape change
of the hippocampus can not be quantitatively measured in this
work, the visualized lesions of the hippocampus are beneficial
for identifying the biomarkers in future work. Based on these
visualized lesions in Fig. 9, the existing biomarkers such as
Brain boundary shift integral (BBSI) [47], Scoring by Non-
local Image Patch Estimator(SNIPE) [48], and other grading
biomarkers [49] can be computed. Furthermore, new potential
biomarkers reflecting the shape change and brain atrophy
might be discovered based on these visualized lesions in the
hippocampus in future work.

D. Quantitative Analysis

In this section, the following 4 metrics are computed
to assess visual quality. (1) Normalized Cross-Correlation
(NCC). NCC is calculated between the ground-truth maps
and the predicted class-discriminative maps. The higher the
NCC, the more correlation between ground-truth maps and the
predicted class-discriminative maps. For Integrated Gradients,
Guided Backprop, and CAM, the visualized heatmaps for
predicting positive class are utilized to calculate the NCC;
(2) Peak Signal-to-Noise Ratio (PSNR). PSNR is also calcu-
lated between the ground-truth maps and the predicted class-
discriminative maps on the test data set. Similar to NCC, the
higher the PSNR, the closer between ground-truth maps and
the predicted class-discriminative maps; (3) Structural Simi-
larity Index Measure (SSIM) [50]. Different from NCC and
PSNR, SSIM in each iteration is calculated between synthetic
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Fig. 10: Box-plots of NCC for different models.

images and real images on the validation dataset. Higher SSIM
indicates better reconstructed MR image quality. By comput-
ing SSIM in each iteration, the convergency of the model
is further validated; (4) Classification metrics such as AUC,
ACC, Sensitivity, and Specificity for data augmentation. Note
that the purpose of SSIM and the classification metrics is to
demonstrate that the proposed MP-GAN can generate images
close to real distribution, thus it validates that MP-GAN can
capture salient global features in class-discriminative maps.
For NCC and PSNR, the 4 existing methods are compared. For
SSIM, only GAN is compared since the other 3 methods are
based on classification. Similarly, for the classification metrics,
only GAN is compared since the classification performance is
based on synthetic data augmentation by the proposed MP-
GAN and GAN.

The NCC results shown in Fig. 10 are mostly consistent
with the qualitative results shown from Fig. 3 to Fig. 6. The
proposed MP-GAN achieves significantly higher NCC than
the other 4 existing methods. It indicates that the distribution
of class-discriminative maps generated by MP-GAN is the
closest to ground-truth maps. The three methods based on
classification (Integrated Gradients, Guided Backprop, and
CAM) achieve a low NCC score due to its exclusive focus
on local features. GAN performs better than 3 classification-
based feature visualization methods for NC vs. SMC, NC vs.
LMCI, and NC vs. AD. This implies that the GAN architecture
can capture global features, which alleviate the limitations of
feature visualization methods based on classification. Above
all, the proposed MP-GAN achieves the highest correlation
scores compared with the other 4 existing methods in all 4
evaluation groups.

From Fig. 11, it can be seen that the proposed MP-GAN
achieves the best PSNR compared with the other 4 existing
methods. This is also consistent with NCC results in Fig.
10 and the qualitative results shown from Fig. 3 to Fig. 6.
The class-discriminative maps visualized by MP-GAN are
closer to ground-truth. This is because MP-GAN benefits from
the multidirectional mapping mechanism and the hybrid loss
function. Meanwhile, MP-GAN can be trained on MR images

Fig. 11: Box-plots of PSNR for different models.

Fig. 12: Convergence curves for NC vs. SMC.

of all classes with only one model. In this manner, the common
features unrelated to the disease can be reused, thus all salient
global features can be captured in class-discriminative maps
for different Alzheimer’s stages.

Furthermore, the generation diversity with SSIM is evaluat-
ed in each iteration on the validation dataset. The convergence
curves of the proposed MP-GAN and GAN are given for 4
evaluation groups: (1)NC vs. SMC, (2)NC vs. EMCI, (3)NC
vs. LMCI, and (4)NC vs. AD respectively. From Fig. 12 to Fig.
15, it can be observed that the proposed MP-GAN converges
faster than GAN. Meanwhile, MP-GAN performs stably in all
4 evaluation groups. On the other hand, the training of GAN is
extremely unstable for NC vs. LMCI, and it can not converge
for NC vs. EMCI and NC vs. AD. Again, these results are
consistent with the NCC score in Fig. 10. The NCC score of
GAN is low for NC vs. EMCI in Fig. 10, because GAN can’t
converge for NC vs. EMCI as shown in Fig. 13. These results
also indicate that the proposed MP-GAN can generate diverse
MR images close to the real distribution.

To evaluate the reliability of synthetic MR images generated
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Fig. 13: Convergence curves for NC vs. EMCI.

Fig. 14: Convergence curves for NC vs. LMCI.

Fig. 15: Convergence curves for NC vs. AD.

Fig. 16: The classification results of synthetic data
augmentation for NC vs. SMC.

Fig. 17: The classification results of synthetic data
augmentation for NC vs. EMCI.

by MP-GAN, the CNN classifier is further trained using
synthetic data augmentation. More specifically, the 100 syn-
thesized MR images of each class by MP-GAN and GAN are
added to the original training set to form two new augmented
training sets separately. Then the CNN model is trained on the
two new augmented training sets separately for each evaluation
group. During the test stage, the same test set of real MR
images are used. From Fig. 16 to Fig. 19, it can be seen
that adding synthesized samples by the proposed MP-GAN
achieves better classification performance in terms of AUC,
accuracy, specificity, and sensitivity. Overall, the synthetic data
samples generated by MP-GAN can add additional variability
to the original training set, which in turn leads to better perfor-
mance. This implies that the synthesized MR images generated
by MP-GAN not only provide meaningful visualizations but
also capture the discriminative features for AD computer-aided
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Fig. 18: The classification results of synthetic data
augmentation for NC vs. LMCI.

Fig. 19: The classification results of synthetic data
augmentation for NC vs. AD.

diagnosis. The proposed MP-GAN can be used as an effective
data augmentation method.

V. CONCLUSION

In this paper, a novel MP-GAN is proposed to visualize the
morphological features indicating the severity of AD in whole-
brain MR images. By introducing a novel multidirectional
mapping mechanism into the model, MP-GAN can capture the
salient global features efficiently. Thus, by utilizing the class-
discriminative map from the generator, the proposed model
can clearly delineate the subtle lesions via MR image trans-
formations between the source domain and the target domain.
Besides, by integrating the adversarial loss, classification loss,
cycle consistency loss, and L1 penalty, a single generator in
MP-GAN can learn the class-discriminative maps for multiple-
classes. Experimental results on the public ADNI dataset has

demonstrated that MP-GAN can visualize multiple lesions
affected by the progression of AD accurately. Furthermore,
MP-GAN may visualize some new disease-related regions that
have not been investigated yet. This can be studied further to
discover potential new AD biomarkers in future work.
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