
Medical Image Analysis 75 (2022) 102246 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Multi-label, multi-domain learning identifies compounding effects of 

HIV and cognitive impairment 

Jiequan Zhang 

a , 1 , Qingyu Zhao 

a , 1 , Ehsan Adeli a , Adolf Pfefferbaum 

a , d , Edith V. Sullivan 

a , 
Robert Paul b , Victor Valcour c , Kilian M. Pohl a , d , ∗

a Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, United States 
b Missouri Institute of Mental Health - St. Louis, MO 63134, United States 
c Memory and Aging Center, University of California - San Francisco, San Fransisco, CA 94158, United States 
d Center for Biomedical Sciences, SRI International, Menlo Park, CA 94205, United States 

a r t i c l e i n f o 

Article history: 

Received 14 January 2021 

Revised 12 September 2021 

Accepted 14 September 2021 

Available online 13 October 2021 

Keywords: 

Multi-label classification 

Multi-domain learning 

HIV-associated neurocognitive disorder 

Alzheimer’S disease 

MRI 

a b s t r a c t 

Older individuals infected by Human Immunodeficiency Virus (HIV) are at risk for developing HIV- 

Associated Neurocognitive Disorder (HAND), i.e., from reduced cognitive functioning similar to HIV- 

negative individuals with Mild Cognitive Impairment (MCI) or to Alzheimer’s Disease (AD) if more 

severely affected. Incompletely understood is how brain structure can serve to differentiate cognitive im- 

pairment (CI) in the HIV-positive (i.e., HAND) from the HIV-negative cohort (i.e., MCI and AD). To that 

end, we designed a multi-label classifier that labels the structural magnetic resonance images (MRI) of 

individuals by their HIV and CI status via two binary variables. Proper training of such an approach tradi- 

tionally requires well-curated datasets containing large number of samples for each of the corresponding 

four cohorts (healthy controls, CI HIV-negative adults a.k.a. CI-only, HIV-positive patients without CI a.k.a. 

HIV-only, and HAND). Because of the rarity of such datasets, we proposed to improve training of the 

multi-label classifier via a multi-domain learning scheme that also incorporates domain-specific classi- 

fiers on auxiliary single-label datasets specific to either binary label. Specifically, we complement the 

training dataset of MRIs of the four cohorts (Control: 156, CI-only: 335, HIV-only: 37, HAND: 145) ac- 

quired by the Memory and Aging Center at the University of California - San Francisco with a CI-specific 

dataset only containing MRIs of HIV-negative subjects (Controls: 229, CI-only: 397) from the Alzheimer’s 

Disease Neuroimaging Initiative and an HIV-specific dataset (Controls: 75, HIV-only: 75) provided by SRI 

International. Based on cross-validation on the UCSF dataset, the multi-domain and multi-label learning 

strategy leads to superior classification accuracy compared with one-domain or multi-class learning ap- 

proaches, specifically for the undersampled HIV-only cohort. The ‘prediction logits’ of CI computed by 

the multi-label formulation also successfully stratify motor performance among the HIV-positive subjects 

(including HAND). Finally, brain patterns driving the subject-level predictions across all four cohorts char- 

acterize the independent and compounding effects of HIV and CI in the HAND cohort. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Despite the success of antiretroviral therapy in suppressing 

uman immunodeficiency virus (HIV)-mediated immune dysfunc- 

ion, upwards of 30% of older HIV-positive individuals exhibit re- 

uced cognitive functioning ( Rumbaugh and Tyor, 2015; Saloner 

nd Cysique, 2017 ) clinically labelled as HIV-associated neurocog- 

itive disorders (HAND) ( Heaton et al., 2010; Wenzel et al., 2019 ) 
∗ Corresponding author at: Department of Psychiatry & Behavioral Sciences, Stan- 

ord University, Stanford, CA 94305, United States. 
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 Fig. 1 ). HIV-negative individuals exhibiting similar symptoms are 

ften referred to as having mild cognitive impairment (MCI) or, if 

ore severe, are diagnosed with Alzheimer’s disease (AD), which 

e collectively refer to as Cognitive Impairment (CI). To improve 

he long-term treatment of older HIV-positive patients, researchers 

ave been focusing on identifying brain phenotypes that distin- 

uish brain injury associated with HIV versus alternative etiolo- 

ies prevalent among older individuals, particularly AD, and find- 

ng commonalities across HAND (presence of both HIV and CI), 

IV-positive patients not showing CI (a.k.a. HIV-only), CI in HIV- 

egative patients (a.k.a. CI-only), and normal aging ( Ghosh et al., 

017 ). 

https://doi.org/10.1016/j.media.2021.102246
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102246&domain=pdf
mailto:kilian.pohl@stanford.edu
https://doi.org/10.1016/j.media.2021.102246


J. Zhang, Q. Zhao, E. Adeli et al. Medical Image Analysis 75 (2022) 102246 

Fig. 1. HIV-Associated Neurocognitive Disorder (HAND) is a condition of cognitive 

impairment (CI) found in patients infected by the human immunodeficiency virus 

(HIV). 
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Identifying novel brain phenotypes is increasingly probed by 

raining deep learning models to distinguish the magnetic reso- 

ance images (MRI) of the relevant cohorts ( Basaia et al., 2018; 

hao et al., 2020; Shen et al., 2017 ), such as multi-class classifiers 

n the case of multiple cohorts ( Majid and Anwar, 2018 ). Multi- 

lass classifiers label each cohort with a categorical number based 

n the simplifying assumption that conditions are mutually ex- 

lusive. Thus, they ignore compounding effects of multiple con- 

itions (such as HIV and CI in HAND patients), which often re- 

ult in inconclusive or contradicting findings ( Wosiak et al., 2017 ). 

ompounding effects can be modelled by multi-label classifiers 

 Tsoumakas and Katakis, 2007 ) as they explicitly encode each con- 

ition as a binary label. For example, a binary label representing 

he HIV status (0 for HIV-negative, 1 for HIV-positive) and one for 

he CI status could specify cohort assignment of participants of a 

tudy containing healthy controls (HIV = 0, CI = 1), CI-only (HIV = 0,

I = 1), HIV-only (HIV = 1, CI = 0), and patients diagnosed with HAND

HIV = 1, CI = 1). 

Given the large number of model parameters, the leading chal- 

enge in accurately training multi-label classifiers on brain MRIs is 

he relatively small number of subjects recruited by MRI studies 

 Shen et al., 2017; Willemink et al., 2020 ). “Multi-domain” strate- 

ies deal with the small sample size problem by training a clas- 

ifier on multiple, independently acquired datasets ( Popuri et al., 

020 ). However, this strategy assumes that all datasets used for 

raining contain samples from each of the conditions under inves- 

igation ( Mei and Deng, 2018 ), which rarely exist as studies gen- 

rally focus on a single condition. For example, the Alzheimer’s 

isease Neuroimaging Initiative (ADNI) ( Jack et al., 2008 ) excludes 

IV-positive subjects (and thus anybody with HAND). Herein, we 

ropose to reduce the low sample-size problem for training multi- 

abel classifiers by being the first to augment a multi-label cohort 

ith single-label datasets specific to only one of the conditions. 

To do so, our model first learns common patterns underlying 

he conditions by using a shared convolutional block to extract 

eatures across all training datasets ( Fig. 2 ). We then use domain- 

pecific classifiers to separately handle each dataset in an either 

ulti-label or single-label setting. By doing so, our experiments re- 

eal that these predictors are robust against domain differences re- 

ated to demographic factors, scanner type, imaging protocols, and 

rocessing pipelines. We test this classification framework on dif- 

erentiating the T1w MRIs of a study performed by Memory and 

ging Center at the University of California - San Francisco (PI: V. 

alcour). The training data are augmented with Controls and CI- 

nly individuals from the ADNI dataset ( Jack et al., 2008 ) and a

eparate dataset of Controls and HIV-only individuals acquired at 

RI International (mPI: A. Pfefferbaum and E.V. Sulllivan). Com- 

ared with single-domain and multi-class classifiers, our multi- 

omain, multi-label model achieves superior classification accuracy 

cross all four cohorts with a significant increase in accuracy for 

he small sample of HIV-only patients. We further legitimize the CI 

redicted score by correlating it with motor performance of HIV- 

ositive subjects (including those with HAND). Finally, we derive 

 brain pattern for each of the three neurological conditions via 
2 
ack-propagation highlighting compounding and differentiating ef- 

ects of HIV and CI in the HAND cohort. 

. Related work 

.1. Multi-domain classification 

Multi-domain classification refers to training classifiers on data 

rom different domains (e.g., studies). While increasing the size of 

he training data is an effective strategy for reducing the risk of 

odel overfitting, the primary challenge of multi-domain classi- 

cation is to handle the “domain shift”, i.e., the discrepancy in 

ata distribution across domains. A popular approach for dealing 

ith this issue is domain-invariant feature learning ( Ranzato et al., 

007; Zhao et al., 2019 ), which aims to encourage the distribu- 

ion of image representations (i.e., intermediate features learned by 

he model) to be similar across different domains. This harmoniza- 

ion of distributions can be formulated via representation cross- 

titching ( Misra et al., 2016 ), minimizing Maximum Mean Discrep- 

ncy ( Baktashmotlagh et al., 2013; Hoffman et al., 2013 ), minimiz- 

ng the domain confusion loss ( Tzeng et al., 2014 ), or adversarial 

raining ( Xie et al., 2017; Ganin et al., 2016; Akuzawa et al., 2019; 

deli et al., 2021; Wang et al., 2019 ). 

Instead of focusing on image representation, one can design 

etworks specifically for multi-domain learning ( Ruder, 2017 ). For 

xample, Caruana (1993) implemented a single network perform- 

ng the classification for each domain separately based on the as- 

umption that the same set of model parameters can be shared 

etween multiple domains. An alternative to the single model is 

o implement a network for each domain with the corresponding 

odel parameters being encouraged to be similar across networks 

 Duong et al., 2015; Yang and Hospedales, 2017 ). A hybrid imple- 

entation of these two strategies is to share certain layers across 

omains while using domain-specific branches for prediction ( Lu 

t al., 2017; Nam and Han, 2016 ). Recently, Wang et al. (2020) pro-

osed domain-specific learning by designing an ND -way classifier, 

hich uses a shared feature extractor across the D domains and 

erforms independent N-class classification for each domain. In 

his article, we generalize this strategy to the multi-label setting, 

hich allows combining domains that vary in their cohort compo- 

ition. 

.2. Multi-label deep learning 

Multi-label classification involves simultaneously predicting 

ultiple labels associated with a single instance ( Tsoumakas and 

atakis, 2007 ). Unlike the multi-class classification where each in- 

tance can only be categorized into one class, multi-label classifiers 

an assign a sample to multiple mutually non-exclusive classes. In 

he computer vision community, multi-label classification is widely 

sed for semantic annotation to jointly label various attributes 

e.g., object, scene, and action) of an image ( Wang et al., 2016; 

u et al., 2015; Gong et al., 2014 ). In medical imaging studies, 

ulti-label classification is increasingly used for jointly segmenting 

ultiple tissue types in MRIs and computed tomography images 

 Payer et al., 2018 ), analyzing concurrent chronic diseases includ- 

ng fatty liver and diabetes ( Zhang et al., 2019 ), and studying the 

omorbidity of HIV infection and alcohol use disorder ( Adeli et al., 

018a ). To the best of our knowledge, we are the first to create 

 multi-label classifier for distinguishing the T1w MRIs of Controls, 

IV-only, CI-only, and HAND. With respect to this application, prior 

lassifiers were confined to two of the four cohorts, e.g. between 

AND ( Tu et al., 2019; Xu et al., 2021 ), between HAND and CI-only

 Zhang et al., 2016 ), between HIV-only and Controls ( Adeli et al.,

018; Tu et al., 2019; Xu et al. 2021 ), and between sub-populations 

f HIV individuals ( Paul et al., 2020 ). 
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Fig. 2. The proposed domain-specific prediction model for multi-label classification. 
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. Materials and methods 

We now briefly describe three independently acquired MRI 

atasets ( Section 3.1 ) with a focus on the one containing HAND 

amples, i.e., the data acquired by the Memory and Aging Center 

t University of California, San Francisco (UCSF). We then present 

n Section 3.2 our multi-label formulation for achieving our pri- 

ary goal of classifying MRIs of UCSF into Control, HIV-only, CI- 

nly, and HAND subjects. In Section 3.3 , we extend this formula- 

ion to a multi-domain setting, which separately performs HIV and 

I single-label classification based on the data made available by 

DNI and SRI International. 

.1. Datasets 

The UCSF dataset ( N = 673 ) includes T1-weighted MRIs from 

56 Controls, 335 CI-only adults, 37 HIV-only participants, and 145 

AND patients. Among the 335 CI-only subjects, 169 were cate- 

orized as MCI ( Albert et al., 2011 ) and the remaining 166 were

iagnosed with AD ( Bondi et al., 2014 ). 79 of the MCI subjects

nderwent a followup cognitive test (average time between base- 

ine and followup was 2.3 years) revealing that 14 subjects had 

rogressed to AD (a.k.a. Progressive) while 65 remained stable 

a.k.a. Stable). Diagnosis of HAND and MCI were determined based 

n comprehensive neuropsychological testing at consensus confer- 

nce, guided by published criteria ( Albert et al., 2011; Antinori 

t al., 2007 ). All HIV-positive subjects (both HIV-only and HAND) 

nderwent a 60-minute neuropsychological assessment covering 

omains needed to identify HAND, including a finger tapping (FT) 

est to assess their motor control integrity of the neuromuscular 

ystem ( Axelrod et al., 2014 ). 

The second dataset (used for augmenting the training data) was 

ollected at SRI International (SRI, N = 150 ) and consisted of T1- 

eighted MRIs from 75 Controls and 75 age-gender-matched HIV- 

nly infected patients ( Murri et al., 1996; Adeli et al., 2018b ). The

hird dataset was made publicly available by ADNI-1 ( N = 626 , re-

erred to as ADNI in the following), which consisted of baseline 

1 scans of 229 Controls and 397 individuals labeled as MCI from 

DNI 2 ( Bondi et al., 2014 ). Table 1 summarizes the demographics 

f the three datasets with respect to age, sex, and brain size. 

Image processing for the MRIs of all three datasets complied 

ith our prior studies ( Zhao et al., 2020; Adeli et al., 2020 ), which

nvolved bias field correction via the Computational Morphometry 

oolkit (CMTK) ( Rohlfing et al., 2003 ), skull stripping via majority 

oting of Robust Brain Extraction (ROBEX) ( Iglesias et al., 2011 ), FSL 

ET ( Jenkinson et al., 2012 ), and AFNI ( Cox, 1996 ), affine registra-

ion to the SRI24 atlas ( Rohlfing et al., 2010a ), and resampling to
2 MRIs of 14 Control and 15 MCI subjects were omitted from the analysis as im- 

ge processing failed on them. 

t

d

s

a

3 
4 × 64 × 64 resolution. Image intensities within the brain mask 

ere normalized to z-scores. 

.2. Multi-label classification to distinguish control, HIV-only, CI-only, 

nd HAND 

We encode the four cohorts of the UCSF dataset as the combi- 

atorial status of two binary labels ( Table 2 ), i.e., whether a sub- 

ect is HIV-positive (HIV) and whether a subject shows cognitive 

mpairment (CI). To solve this multi-label classification problem, 

 typical deep learning framework first uses convolutional layers 

o extract a set of features from the raw MRIs ( Lu et al., 2017;

ang et al., 2020 ). Then the features are fed into a classifica- 

ion network consisting of a fully connected Multi-Layer Percep- 

ion (MLP), which outputs a binary prediction for each label (see 

ingle-Domain Classification in Fig. 2 ). To formalize this model, 

et X := { x 1 , . . . , x N } be the dataset containing the MRIs of N sub-

ects. Let y i and z i be the two ground-truth labels for HIV and 

I of the i th subject, and let { ̂  y i , ̂  z i } := P (FE ( x i )) be their pre-

icted values generated by the network. We then design an ob- 

ective loss function based on the Binary Cross-Entropy function 

CE (v , ̂  v ) := −v log ( ̂ v ) − (1 − v ) log (1 − ˆ v ) : 

 := 

∑ 

x i ∈X 
w i 

[
BCE (y i , ̂  y i ) + BCE (z i , ̂  z i ) 

]
(1) 

here w i determines the weight of a training sample. 

.3. Multi-domain classification 

Now the UCSF dataset only contains 37 HIV-only subjects 

 Table 1 ), which is much smaller than the number of training sam- 

les of other cohorts. Moreover, HIV-positive subjects are signif- 

cantly younger than the Controls, and (unlike any other cohort) 

nly one HIV-only subject is female. This will potentially bias the 

IV prediction towards young male participants. To address this 

otential bias, we augment the dataset with the MRIs of 75 Con- 

rols and 75 HIV-only patients from SRI, whose age and sex are 

trictly matched (see Table 1 ). As the SRI dataset does not contain 

ny participants with CI, we only measure the prediction loss on 

his dataset with respect to the HIV binary classification task. Fur- 

her extending this multi-domain setting, we include the Control 

nd age-matched MCI subjects from ADNI and perform prediction 

nly with respect to the CI label ( Fig. 2 ). Note, the ADNI data is

ot strictly gender matched as the CI-only cohort of UCSF is more 

alanced with respect to gender than the HIV-only cohort. 

To ensure the robustness of model and reduce potential over- 

tting, we use a shared convolutional feature extractor across all 

hree datasets. Given the differences in image acquisition across 

he three datasets, the extracted features most likely will have 

omain-specific distributions, so it will be extremely difficult for a 

ingle predictor to distinguish those effects from the fine-grained 

nd interesting cues related to a neurological condition. While 
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Table 1 

Class distribution and demographics for each dataset. 

Dataset Class # of subjects Age Sex Brain size ∗ (mm3) 

UCSF 

Control 156 70.1 ± 5.9 146 M / 10 F 1311107 

HIV-only 37 64.9 ±3.8 36 M / 1 F 1287105 

CI-only 335 67.3 ±7.3 165 M / 170 F 1217134 

HAND 145 64.1 ±5.0 136 M / 9 F 1304128 

SRI 
Control 75 51.7 ±10.6 53 M / 22 F 1305125 

HIV-only 75 51.0 ±12.5 53 M / 22 F 1316166 

ADNI 
Control 229 75.9 ±5.0 119 M / 110 F 1234120 

CI-only 397 74.8 ±7.4 254 M / 143 F 1250141 

∗ Brain size is defined by the supratentorial volume. 

Table 2 

Multi-label definition of the four cohorts of Control, 

CI-only, HIV-only, and HAND. 

Cohorts CI Label HIV Label 

Control 0 0 

CI-only 1 0 

HIV-only 0 1 

HAND 1 1 
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any studies solve this problem by domain adaption techniques 

hat explicitly merge the domain shift across datasets, we sepa- 

ately classify the features from each dataset (in the multi-label 

r single-label setting) via domain-specific predictors ( Wang et al., 

020 ). Specifically, let X = {X UCSF , X SRI , X ADNI } be the ensemble of

RIs from all three datasets, and P UCSF , P SRI , P ADNI be the three

LP predictors for the three domains 

 ̂

 y i , ̂  z i } := P UCSF (FE ( x i )) , if x i ∈ X UCSF 

ˆ y i := P SRI (FE ( x i )) , if x i ∈ X SRI (2) 

ˆ z i := P ADNI (FE ( x i )) , if x i ∈ X ADNI 

hen the final multi-label and multi-domain classification objective 

unction is defined as 

 := 

∑ 

x i ∈X UCSF 

w i 

[
BCE (y i , ̂  y i ) + BCE (z i , ̂  z i ) 

]

+ 

∑ 

x i ∈X SRI 

w i BCE (y i , ̂  y i ) + 

∑ 

x i ∈X ADNI 

w i BCE (z i , ̂  z i ) , (3) 

.e., we measure the multi-label prediction loss on the UCSF 

ataset and measure the single-label loss with respect to HIV and 

I on the other two datasets. 

. Experimental setup 

This section describes the implementation of the baseline ap- 

roaches and our proposed three-domain model, their evaluation, 

nd determining ROIs critical for predicting the three conditions. 

.1. Implementation 

The one-domain model contained a feature extractor and an 

LP predictor. The feature extractor was designed as 4 stacks of 

 × 3 × 3 convolution with dimension (16, 32, 64, 32), ReLU activa- 

ion, batch normalization, and max-pooling layers. The MLP P UCSF 

onsisted of 3 fully connected layers with dimension (2048, 128, 

6) and ReLU activation. The two output logits for HIV and CI pre- 

iction were activated by the sigmoid function. The training of the 

ne-domain model was confined to the UCSF dataset. 

The two-domain model also predicted the HIV label for the SRI 

ataset by adding another MLP predictor P SRI to the feature extrac- 

or of the one-domain model. Note, we did not consider training 

nly on MRIs of ADNI and UCSF as it further exacerbated the issue 
4 
ssociated with the low sample size in the HIV-only cohort. Finally, 

 ADNI was added for CI prediction on the ADNI dataset, which re- 

ulted in a three-domain model trained on all datasets. The archi- 

ecture of the MLP predictor in the multi-domain models was the 

ame as in the one-domain model. 

To evaluate the benefit of our multi-label formulation, we im- 

lemented a multi-class model that used a single MLP predictor 

ith a soft-max activation to directly differentiate the four cohorts 

rom the 3 datasets. Finally, to justify the strategy of using sepa- 

ate predictors for each domain, we implemented a model (called 

single-predictor’ here) that applied a single MLP predictor to data 

rom all three domains (BCE loss only evaluated on the HIV predic- 

ion for the SRI domain and only on the CI prediction for ADNI). 

.2. Evaluation of prediction accuracy 

In our experiments, 5-fold cross validation was used to evaluate 

he prediction accuracy of the models. For each of the 5 training 

uns, the models were trained for 100 epochs using the AdamW 

ptimizer with its default setting ( Paszke et al., 2019 ). A weight 

ecay of 0.01 and 0.1 was applied to the feature extractor and the 

redictors. Focusing on modeling the bilateral effects linked to cog- 

itive decline and HIV, we flipped each brain hemisphere ( Prez- 

arca et al., 2020 ) which also doubled the size of the training data.

n addition, each resulting training image was augmented by ap- 

lying random translation ( ± 2 voxels in each direction) and ro- 

ation ( ± 2 degrees in each direction). We randomly sampled 10 

ubjects from each cohort of a dataset and combined them into a 

ini-batch. This practice implicitly set the parameter w i = 

1 
|X | , if 

he i th sample belongs to dataset X ( |X | is the number of subjects

n X ). This practice reduces the risk of the model biasing predic- 

ions towards the larger dataset. 

For each epoch, we measured the prediction accuracy for each 

ohort of the UCSF dataset as the recall rate averaged over the 5 

esting folds (bAcc). To do so, we computed the average prediction 

cores (after sigmoid activation) over the last 10 epochs to avoid 

otential oscillation caused by the stochastic gradient descent. The 

verage scores of the two labels were then binarized and compared 

ith their ground-truth. We also recorded the balanced accuracy, 

.e., the average recall over the four cohorts, and the standard de- 

iation of the per-cohort accuracy to measure the overall perfor- 

ance of the models. 

We tested whether the accuracy scores of a model were sig- 

ificantly higher than those of a null classifier (random classifier) 

ased on a non-parametric permutation testing. Specifically, on the 

CSF dataset we ran the null classifier 5,0 0 0 times, which ran- 

omly assigned each sample into one of the four cohorts with 

n impartial probability of 25%. We then built the null distribu- 

ions for the per-cohort and balanced accuracy and derived p- 

alues based on the true accuracy scores of our model. Further, we 

ested whether the proposed three-domain model was significantly 

ore accurate than other models using the Hardin-Shumway test 

 Hardin and Shumway, 1997 ), which is also a non-parametric test 
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Fig. 3. Prediction accuracy (averaged over 5 testing folds and last 10 epochs) for each cohort and the balanced accuracy (bAcc) over the four cohorts. The prediction accuracy 

of a null (random) classifier is 25%. 
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hat builds the null distribution of accuracy scores by bootstrap- 

ing model predictions. 3 Two-tailed p < 0 . 05 was used as the sig-

ificance level for these two statistical tests. 

Finally, we tested if predictions (i.e, CI or HIV) were signifi- 

antly affected ( p < 0 . 05 ) by potential confounders age, sex, and

ead size. We did so by fitting for each prediction a general lin- 

ar model (GLM) between the corresponding prediction logit (i.e, 

efore sigmoid activation) and the three confounders. The fitting 

as confined to the Controls across the 5 folds as we have done in

rior publications ( Adeli et al., 2018b; Zhao et al., 2020; Park et al.,

018 ). 

.3. Identifying critical ROIs for prediction 

We identified brain regions significantly driving model predic- 

ions via a saliency visualization technique based on guided back- 

ropagation ( Springenberg et al., 2014 ). Given an MRI of the test 

et (registered to the SRI24 atlas), the approach quantified the 

aliency of a voxel as the partial derivative of the prediction value 

ith respect to the voxel intensity. Since our model had two pre- 

iction outputs, we derived two saliency values s HIV and s CI at 

ach voxel and used (s HIV + s CI ) / 2 to encode the saliency associ-

ted with HAND (i.e., a small change in the voxel intensity could 

ncrease the prediction values for both labels). The saliency values 

ere then averaged between the left and right hemispheres in line 

ith the data augmentation pipeline. We further normalized the 

aliency map by the 95% quantile of the saliency values (to avoid 

utliers in the map) and computed the average saliency map over 

he entire cohort. Voxels with z-score > 3 were identified as the 

atterns associated with HAND, and they were overlaid with the 

RI24 atlas ( Rohlfing et al., 2010b ) to identify critical brain regions. 

n addition, we also visualized regions that were more critical for 

IV prediction relative to CI by computing max (s HIV − s CI , 0) , and 

isualized the CI patterns with max (s CI − s HIV , 0) . Steps of bilateral 

verage, normalization, group average, z-score thresholding, and 

verlaying with the SRI24 atlas were repeated for either saliency 

ap. 
3 The typical Fisher’s exact test can only be applied to binary classification setting 

ut not to our multi-cohort scenario. 
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. Results 

We first present the prediction accuracy of the model in com- 

arison to the baselines. A post-hoc analysis then further legit- 

mizes the prediction scores of the CI label. We end the section by 

isplaying brain regions critical for HIV, CI, and HAND prediction. 

.1. Cross validation 

The bAcc curves of all models converged after 100 epochs 

 Fig. 3 ) as there was no significant increase in bAcc over the last

0 epochs (one-tailed p > 0 . 5 ). Fig. 4 a plots the bAcc of each model

ver the last 10 epochs. 

According to Fig. 4 a and Table 3 , the multi-class model resulted 

n lower bAcc than all other models based on multi-label clas- 

ification, which highlighted the efficacy of multi-label formula- 

ion in studying the interaction of multiple conditions. Among the 

our multi-label models, the accuracy scores generally increased 

ith the number of domains used during training. Specifically, the 

ne-domain model resulted in a bAcc of 49.4%, which was sig- 

ificantly lower than the three-domain model ( p = 0 . 015 , Hardin- 

humway test). Moreover, the accuracy (recall rate) of HIV-only 

rediction from the one-domain model was not significantly higher 

han chance ( p = 0 . 21 , permutation test). The one-domain model 

lso recorded the largest variation in terms of per-cohort accuracy 

 ±18 . 4% ), indicating the predictive power of the model was highly 

mbalanced across cohorts. When the SRI dataset was added to 

he model, the bAcc of the two-domain model increased to 52.6%. 

lthough this accuracy was not significantly lower than that of 

he three-domain model, the accuracy in HIV-only remained low 

nd not significantly higher than chance ( p = 0 . 19 , permutation 

est). Moreover, the across-cohort variation in prediction accuracy 

till remained large for the two-domain model ( ±18 . 0% ). Finally, 

hen all three datasets were considered, the three-domain model 

chieved the highest bAcc (55.2%), lowest across-cohort variation 

 ±13 . 2% , see also confusion matrix in Fig. 4 b), and best prediction

or the HIV-only cohort (43% recall, p = 0 . 0019 , permutation test). 

Note, the CI-only cohort of ADNI was composed of all MCI in- 

ividuals. When further augmenting it with subjects diagnosed 

ith AD from ADNI, the prediction accuracy for the CI-only co- 

ort of the UCSF dataset did not further improve. The limited im- 

act of adding AD samples to the training was potentially due 
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Fig. 4. (a) Distribution of bAcc over the last 10 epochs for each model. (b) Confusion matrix of the three-domain model. 

Table 3 

Prediction accuracy of each cohort and the balanced accuracy (bAcc) of the four cohorts for different models. Each model is 

characterized by either multi-class or multi-label prediction and by the datasets used for training (in brackets). The best result 

in each row is bold. 

Multi-class (All) Multi-Label 

Ours 

One-Domain (UCSF) Single-Predictor (ALL) Two-Domain (UCSF + SRI) Three-Domain (All) 

Control 55.7 ±8.0% 51.8 ±10.2% 43.5 ±13.4% † 51.9 ±9.1% 51.8 ±7.5% 

CI-only 65.3 ±6.1% † 73.4 ±4.8% 71.6 ±5.3% 76.1 ±6.7% 74.0 ±3.4% 

HIV-only 24.6 ±12.3% †∗ 29.6 ±4.7% †∗ 43.6 ±16.4% 32.9 ±13.7% ∗ 43.9 ±13.6% 

HAND 49.6 ±8.6% 42.8 ±9.3% † 49.6 ±5.8% 49.6 ±12.6% 51.0 ±13.6% 

bAcc 48.8 ±3.6% † 49.4 ±1.7% † 52.1% ±3.7 52.6% ±7.6 55.2 ±4.7% 

Std 17.5% 18.4% 13.4% 18.0% 13.2% 

∗ Accuracy not significantly higher than chance (two-tailed p > 0 . 05 , permutation test). † Accuracy significantly lower than the 

three-domain model (two-tailed p < 0 . 05 , Hardin-Shumway test). 
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Fig. 5. CI prediction scores for the stable and progressive CI cohorts produced by 

our three-domain model. 

t

F

t

n

a

(  
o AD classification being a much easier task compared to MCI 

lassification. Furthermore, the predictions of the three-domain 

odel were not confounded by age, gender, or brain size (based 

n the GLM test). Finally, training the single-predictor model on 

ll three datasets (without using domain-specific predictors) re- 

ulted in lower prediction accuracy for all four cohorts than the 

hree-domain model, which was significant for Controls ( p = 0 . 012 ,

ardin-Shumway test). These results further motivate our mod- 

lling decision for using domain-specific predictors to account 

or the potential ‘domain-shift’ of the features extracted across 

atasets. 

.2. Analysis of CI prediction score 

Further supporting our three-domain model was that it was 

he only model whose CI prediction scores for the 65 stable MCIs 

ere significantly lower (two-tailed p = 0 . 03 , Mann-Whitney U - 

est) than the 14 progressive MCIs ( Fig. 5 ). Furthermore, of the 

4 progressive MCIs, 13 were successfully predicted as CI by our 

odel ( Table 4 , recall = 92.9%) while the recall rate of the stable

CIs was as expected much lower (i.e., 69.5%). 

In addition to encoding CI subtypes, results from all multi-label 

odels revealed that the logit of the CI prediction was also associ- 

ted with motor performance. Specifically, we tested if the variance 

f the finger tapping (FT) score was significantly explained by age, 

ex, the binary group indicator g (0 for HIV-only, 1 for HAND) or 

he predicted CI logit ˆ z by first fitting the following GLM model 4 
4 Head size was omitted in the model as FT is a non-imaging measure. 

t

t

i

6 
o the HIV-only and HAND cohorts: 

T = α0 + α1 ∗ age + α2 ∗ sex + α3 ∗ g + α4 ∗ ˆ z . (4) 

-tests were then used to examine whether each α coefficient sig- 

ificantly differed from 0. 

Supporting our prior statement, the FT score was significantly 

ssociated with the CI logit ˆ z produced by the three-domain model 

 α4 � = 0, p = 0 . 009 , Pearson’s r = −0 . 21 , Fig. 6 b). This indicates

hat the model learned morphological information relevant to mo- 

or control, as the CI logit was able to stratify the HIV-infected 

ndividuals (including HAND) with respect to their motor per- 
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Fig. 6. (a) Finger tapping scores of the HIV-only and HAND cohorts; (b) The finger tapping score correlates with the CI prediction score in either the HIV-only or HAND 

cohort. 

Fig. 7. (a) Patterns associated with HAND identified by the multi-domain model. Important cortical regions with high saliency are displayed on the pial surface (top), 

and important subcortical and cerebellar regions are displayed in the glass brain (bottom); (b) Critical regions for HIV prediction (blue) and for CI prediction (red). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Recall rates of 14 subjects who later progressed to 

Alzheimer’s disease and of 65 subjects with stable cog- 

nitive impairment. 

# of subjects TP FN Recall 

Progressive CI 14 13 1 92.9% 

Stable CI 65 45 20 69.2% 

Overall 79 58 21 73.4% 
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ormance 5 . FT was also significantly associated with g ( α3 � = 0, 

p < 0 . 001 , Fig. 6 a), which encodes the group difference in cogni-

ive ability between HIV-only and HAND subjects. This association 

omports with the exist literature frequently reporting strong link 

etween cognitive impairment and motor dysfunction ( Aggarwal 

t al., 2007; Wu et al., 2015 ). 

.3. Model interpretation 

Figure 7 (a) shows the brain regions critical for HAND predic- 

ion; i.e., regions that drove the model to produce positive pre- 
5 Other multi-label models also resulted in significant association. 

(

p

j

7 
ictions for both the HIV and CI labels. We observed that the 

trongest saliency associated with HAND was present in the tem- 

oral lobe, inferior frontal cortex, cerebellum, corpus callosum, and 

ubcortical regions including the hippocampus. Among these re- 

ions, cerebellum and temporal lobe atrophy has been indepen- 

ently reported for HIV ( Klunder et al., 2008; Sullivan et al., 2011; 

ahr et al., 2019 ) and CI ( Visser et al., 2002 ), suggesting that

hese regions are highly probable targets of HAND. Disruption to 

he cerebellum, which supports motor functions, also comported 

ith the findings in the finger tapping analysis ( Fig. 6 ). Among 

he other HAND-associated regions, the rectus located in the in- 

erior frontal cortex and the corpus callosum were more specific 

o HIV infection (blue in Fig. 7 (b)), which is in line with pub- 

ished data ( Thompson et al., 2006 ) and our prior work noting 

rontal lobe atrophy ( Clifford et al., 2017; Pfefferbaum et al., 2012, 

014, 2018 ). On the other hand, the hippocampus was found to be 

ore affected in CI compared to HIV (red in Fig. 7 (b)), which is

onsistent with the recognition of hippocampal atrophy as a key 

arker of MCI and AD ( Mueller et al., 2010 ). However, as cognitive

esting patterns have changed in the era of antiretroviral therapy 

 Woods et al., 2009 ), it is reasonable to speculate that hippocam- 

al atrophy patterns may differ between HAND and CI-only sub- 

ects, particularly for older patients ( Pfefferbaum et al., 2018 ). 
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. Limitations 

The present study investigated prediction accuracies of all mod- 

ls on a fixed number of training epochs. A more principled way 

ould have been to define the stopping criteria using a valida- 

ion set. In our scenario, however, a further split (e.g., using a 

0%/10%/20% split) of the undersampled HIV-only cohort ( N = 37 ) 

ould result in too few HIV-only cases in the validation set, po- 

entially creating an excessive variation in the bAcc. 

As it was, the small sample size in the HIV-only cohort neg- 

tively impacted the convergence of the approach ( Fig. 3 ) as the 

ccuracy curves for HIV-only exhibited the largest variation over 

pochs compared to the other three groups. Specifically, the model 

as overly sensitive (high recall) towards the HIV-only cohort in 

he beginning phase of the training as it could repeatedly sample 

hrough the very few HIV-only cases within a few mini-batches. 

s the training continued, the model tended to overfit on the few 

IV-only cases resulting in poor generalizability to test data. This 

ssue can be potentially resolved in future studies by adding more 

amples to the analysis as data collection of the UCSF study is on- 

oing. 

Another limitation of the study was our approach for augment- 

ng the training data by flipping the brain hemispheres. This re- 

ulted in the model only estimating the bilateral effects associated 

ith the conditions. A principled way of disentangling unilateral 

ffects ( Kim et al., 2011; Shi et al., 2009 ) from the bilateral ones

eeds further investigation. 

. Conclusion 

We have proposed a multi-label, multi-domain deep learning 

trategy to differentiate HIV-only, CI-only, and HAND based on 

RI data. Results indicated that our classification accuracy out- 

erformed baseline strategies and revealed factors explaining the 

everity of cognitive and psychomotor impairment. Brain regions 

elated to the compounding effects of HAND converged with find- 

ngs of recent studies that focused on HIV and CI. Our work not 

nly sheds light on solving the small sample size problem in the 

ontext of analyzing multiple conditions, but also shows the po- 

ential in advancing the current HIV research focusing on rapid 

creening of cognitive impairment in clinical practice, improving 

ur current understanding of HAND pathogenesis, and identifica- 

ion of potential biomarkers for therapeutic intervention. 
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