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A B S T R A C T

Background: Subsyndromal symptomatic depression (SSD) is prevalent in older adults. However, it remains
unclear whether there are effects of SSD on brain aging outcomes (cognition and brain structures), especially in
the presence of Alzheimer's Disease (AD) pathology.
Methods: A total of 1,188 adults without dementia were recruited from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database. Participants with SSD were measured using the 15-item Geriatric Depression Scale
(GDS-15). In multivariable models, the cross-sectional and longitudinal associations of SSD with brain aging
outcomes were explored. We further evaluated whether baseline amyloid-β (Aβ) load modifies the relations
between SSD and brain aging outcomes.
Results: SSD at baseline was associated with significantly longitudinal decline in cognition and displayed sig-
nificantly accelerated atrophy in hippocampus (β = –29.53, p = 0.001) and middle temporal gyrus (β = –
77.82, p = 0.006) among all participants and Aβ-Positive individuals. SSD interacted with baseline Aβ load in
predicting longitudinal decline in Mini Mental State Examination (MMSE) (β = – 0.327, p = 0.023), episodic
memory (β = –0.065, p = 0.004) and increase in Alzheimer's Disease Assessment Scale Cognition 13-item scale
(ADAS-cog13) (β = 0.754, p = 0.026).
Limitations: Our study didn't look at AD diagnosis but Aβ status.
Conclusions: Our findings suggested that older people without dementia with both SSD and a high level of Aβ
load may have higher risk of cognitive deterioration and brain atrophy. Therapeutic mitigation of depressive
symptoms, especially in those with abnormal Aβ levels, may help delay progressive decline in cognition.

1. Introduction

Late-life depression (LLD) has been found a risk factor for cognitive
deterioration and has been associated with an approximate 2-fold in-
crease in incident dementia (Diniz et al., 2013). There's emerging evi-
dence indicating that depressive symptoms, including those in the
minimal and mild range, are troubling and prevalent among older in-
dividuals (Laborde-Lahoz et al., 2015; Mackin et al., 2012). These
symptoms might also be considered as modifiers or clinical indicators of
cognitive performance or Alzheimer's Disease (AD). There's limited

longitudinal research showing that each reported depressive symptom
increased the risk of AD by 19% (Sarnowski et al., 2018). Subsyndromal
symptomatic depression (SSD) is previously defined as the presence of
depressive symptoms at an intensity or frequency not consistent with
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
diagnostic criteria for major or minor depression (Lyness et al., 2009).
The prevalence of SSD for older community-dwelling adults is generally
estimated at 15% percent and in mild cognitive impairment (MCI) es-
timated up to 50% percent (Zhao et al., 2016). However, the effect of
SSD on cognition and neurodegeneration is not well understood. The
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association between depressive symptoms and cognitive decline has
been established in previous studies among older individuals, but the
association was restricted to cross-sectional analysis, limiting inferences
of causality (Gonzales et al., 2018). In addition, the association between
SSD and brain aging outcomes, especially in the presence of AD pa-
thology, hasn't been established among older people without dementia.
More comprehensive understanding of the associations among SSD,
brain aging outcomes, and AD pathology plays a crucial role in prog-
nosing among older adults who have depressive symptoms and may be
at high risk for cognitive deterioration. In this study, we sought to
evaluate the cross-sectional and longitudinal associations of SSD with
cognition and brain structures. We also aimed to explore whether
baseline amyloid load modified the associations between SSD and
cognition and brain imaging biomarkers among older people without
dementia. Based on prior studies, in cognitive healthy older adults, the
presence of abnormal levels of amyloid-β (Aβ) is associated with de-
cline in cognition and higher rates of progression to mild cognitive
impairment or dementia (Lim et al., 2014). Depressive symptoms are
related to increased Aβ and cognitive deterioration (Byers and
Yaffe, 2011). We hypothesized that SSD would be significantly asso-
ciated with cognitive decline and brain atrophy, and the effects would
be stronger in those with Aβ-Positive status.

2. Material and methods

2.1. ADNI

All data used in this study (including the medical history, baseline
demographic characteristics, biomarkers) were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (ad-
ni.loni.usc.edu). ADNI is a multicenter study which is designed to de-
velop clinical assessments, genetic, imaging and biochemical bio-
markers for the study of AD. The participants are adults aged 55–90
years with Alzheimer's Disease (AD), mild cognitive impairment (MCI)
and without cognitive impairment. More information can be obtained
at http://www.adni-info.org/ or in prior reports (Jack et al., 2010;
Jagust et al., 2010).

2.2. Participants

All participants included in our study were recruited from ADNI-1,
ADNI-2, and ADNI-GO. Here, we restricted the present analyses to
participants without cognitive impairment and with MCI whose base-
line Geriatric Depression Scale (GDS) scores were available. Exclusion
criteria at baseline included: (1) insufficient data on sociodemographic
characteristics; (2) psychiatric illness or neurological disease other than
AD; (3) the presence of major depression or significant symptoms of
depression (GDS > 5). Finally, we included 1,188 older people without
dementia in our study, including 455 without cognitive impairment and
733 with MCI at baseline. The inclusion criteria for individuals without
cognitive impairment or with MCI in ADNI was described in detail
previously (Bertens et al., 2017; Petersen et al., 2010). Participants
were classified into Aβ-Positive (N = 511) and Aβ-Negative (N = 372)
groups (according to the baseline levels of Aβ measured in cere-
brospinal fluid (CSF) or on 18F-AV-45-PET. Aβ-Positive was defined as
the concentration of CSF ≤ 192pg/ml or a florbetapir standard uptake
value ratio (SUVR) above 1.11 using the whole cerebellum reference
region on 18F-AV-45-PET according to previous report (Clark et al.,
2011; Mattsson et al., 2014; Palmqvist et al., 2016). For 305 in-
dividuals, we did not have any information of Aβ markers, and there-
fore they could not be classified into Aβ-Positive or Aβ-Negative group.

2.3. Assessment of depressive and anxiety symptoms

The 15-item version of the Geriatric Depression Scale (GDS-15) was
used to assess depressive symptoms in the ADNI study (Yesavage et al.,

1982). The total scores of GDS range from 0 to 15; higher scores on the
GDS reflect greater depression. Scores of 6 or higher on this scale in-
dicate clinically meaningful depression (Marc et al., 2008;
Yesavage, 1988). Based on baseline GDS scores, participants with SSD
were defined with a score of 1–5 and healthy controls (HC) with a score
of 0 on the basis of prior studies (Bertens et al., 2017). Neuropsychiatric
Inventory Questionnaire (NPI-Q) was used to assess anxiety symptoms
(Kaufer et al., 2000). Individual with anxiety symptoms was defined as
having a score of 1 on the anxiety domain. Medical history at baseline
were obtained at the initial visit by self-report.

2.4. CSF measurements

Data of CSF biomarkers used in our analysis were obtained from the
ADNI dataset. The method for data acquisition was described pre-
viously (Shaw et al., 2009). In sum, CSF was collected by lumbar
puncture and then carried to ADNI Biomarker Core laboratory on dry
ice. CSF Aβ, total tau, and p-tau were measured using Innogenetics
(INNOBIAAlzBio3; Ghent, Belgium) immunoassay kit-based reagents.
The within-batch precision values were <10% (5.1–7.8% for Aβ42,
4.4–9.8% for total tau and 5.1–8.8% for p-tau, respectively).

2.5. 18F florbetapir AV45 PET imaging

Florbetapir data in our analysis was downloaded from ADNI (http://
adni.loni.usc.edu/). The data preprocessing is available online (ad-
ni.loni.ucla.edu/about-data-samples/image-data). Co-registering the
florbetapir scan to the corresponding MRI was used to calculate the
mean florbetapir AV45 uptake (reflecting the Aβ deposition) within
each grey matter region. And florbetapir SUVRs can be created as a
mean binding of four cortical grey matter regions (cingulate, frontal,
lateral temporal, lateral parietal), divided by reference region (whole
cerebellum). More details of the region-of-interest protocol and PET
acquisition have been reported previously (Apostolova et al., 2010).

2.6. Cognitive measurement

In the ADNI study, calculation of executive function and episodic
memory composite measures has been described in detail previously.
The memory (ADNI-MEM) and executive function (ADNI-EF) composite
score were leveraged in our present analyses (Crane et al., 2012;
Gibbons et al., 2012). The Alzheimer's Disease Assessment Scale Cog-
nition 13-item scale (ADAS13) and Mini-Mental State Exam (MMSE)
were included to assess global cognition (Skinner et al., 2012). All the
assessments were completed at baseline and 6-, 12-, 24-, 36-, 48-, and
60-month follow-ups.

2.7. Brain structures on MRI

The MRI data of brain structures can be found the ADNI dataset
(https://ida.loni.usc.edu/pages/access/study). In brief, structural MRI
brain scans were acquired via 1.5-T or 3.0-T MRI imaging systems with
T1-weighted scan and average examination time for each person was 45
minutes. The sagittal 3D MP-RAGE sequence was used for each parti-
cipant to collect two high-resolution T1-weighted MRI scans. Herein,
we choose middle temporal volume, hippocampal volume and en-
torhinal cortex as regions of interest (ROIs) based on their established
role in predicting AD progression and risk (Jack et al., 1998;
Kesslak et al., 1991; Simmons et al., 2009; Velayudhan et al., 2013).

2.8. Statistical analyses

We tested demographic and diagnostic variables between SSD and
healthy controls using Mann-Whitney U test (for variables with skewed
distributions), Student t test (for continuous variables with normal
distributions) and Chi-square tests (for categorical variables). In case of
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skewed distribution (Shapiro-Wilk test > 0.05) of data (brain structures
and cognitive measurement), transformation was used to approximate a
normal distribution via “car” package of R software.

Multiple linear regression models were used to estimate baseline
effects. And a series of linear mixed-effects models were conducted to
evaluate the associations between SSD and changes in cognition and
brain ROIs during the 5-year follow-up period. These models had
random intercepts and slopes for time and an unstructured covariance
matrix for the random effects and included the interaction between
(continuous) time and SSD as predictor. In linear mixed-effects models,
all outcome variables were standardized to z scores. All analyses were
adjusted for age, gender, educational level, APOE4 status, clinical di-
agnosis of AD, type 2 diabetes mellitus (DM2), hypertension, hyperli-
pidemia, body mass index (BMI) and intracranial volume (for brain
ROIs). In the secondary analysis, to evaluate whether the effects of SSD
on brain aging outcomes were modified by baseline Aβ levels over the
follow-up period, the interaction term (i.e., SSD × time × Aβ) were
incorporated into linear mixed-effects models. All lower-order interac-
tions of this 3-way interaction term were also included in the linear
mixed-effects models. If significant effects of SSD were observed, we
repeated these analyses by using baseline GDS scores (i.e., continuous
variable) as predictor to evaluate whether magnitudes of cognitive
change differed as a function of severity of baseline depressive symp-
toms.

We additionally conducted sensitivity analyses by classifying the
participants with SSD into subgroups (i.e., SSD only and SSD plus
Anxiety). Further sensitivity analyses were performed using only par-
ticipants in whom NPI-Q were available (N = 524).

Bonferroni method was used to examine significance of SSD after
correcting for multiple comparisons in each subgroup. P < 0.05 was
considered significant in all analyses. All statistical analyses were per-
formed using the software program (R, version3.2.3; The R
Foundation).

3. Results

3.1. Participants demographics

Group characteristics and comparisons are presented in table1.
There were 785 people with SSD (mean age 73.0 years, SD 7.3) and 403
without (mean age 74.5 years, SD 6.4). The classification of participants
resulted in 511 Aβ-Positive (357 SSD, mean age 72.7 years, SD 7.1) and
372 Aβ-Negative (234 SSD, mean age 71.7 years, SD 7.6).

3.2. SSD and cognition

At baseline analyses, the SSD group had worse performance in
MMSE scores, ADAS-cog13 scores, episodic memory and executive
function among all participants (Table 1). With adjustment for all
covariates, the SSD group displayed worse executive function (β = –
0.133, p = 0.006) among all participants. In the fully adjusted models,
there was no significant group difference between SSD and HC for
episodic memory (β = – 0.042, p > 0.05), MMSE scores (β = – 0.054,
p > 0.05) and ADAS-cog13 scores (β = 0.579, p > 0.05) among all
participants. In subgroup analysis, the same effects were performed
among Aβ-Positive and Aβ-Negative groups (Table 1). No significant
group differences were found in subgroup analysis after correction for
all covariates.

In longitudinal analyses, SSD was associated with more rapid in-
creases in ADAS-cog13 scores (β = 0.848, p < 0.001) and accelerated
decline in MMSE scores (β = – 0.346, p < 0.001) among all partici-
pants during the 5-year follow-up period (Fig. 1A, B). Meanwhile, SSD
was also associated with more rapid decline in episodic memory (β = –
0.049, p < 0.001) and executive function (β = – 0.045, p < 0.001)
among all participants during the 5-year follow-up period (Fig. 1C, D).
Subgroup analyses indicated that SSD was associated with more rapid

increases in ADAS-cog13 scores (β = 1.044, p < 0.001) and ac-
celerated reduction in MMSE scores (β = –0.458, p < 0.001) in Aβ-
Positive group during the 5-year follow-up period (Fig. 1E, F). SSD was
also associated with accelerated decline in episodic memory
(β = –0.072, P < 0.001) and executive function (β = –0.049,
p = 0.034) in the Aβ-Positive group during the 5-year follow-up period
(Fig 1G, H). There were SSD-by-Aβ interactions in relation to changes in
ADAS-cog13 scores (β = 0.754, p = 0.026), MMSE scores (β = –
0.327, p = 0.023) and episodic memory (β = –0.065, p = 0.004) all
participants during the 5-year follow-up period (Supplementary
Fig. 1A-C). When used as continuous variable, higher baseline GDS
scores were associated with accelerated decline in MMSE scores and
more rapid increases in ADAS-Cog13 scores among all participants and
Aβ-Positive individuals during the follow-up period (Supplementary
Table 1). In addition, higher GDS scores at baseline were in relation to
more rapid decline in episodic memory and executive function among
all participants and Aβ-Positive individuals (Supplementary Table 1).
As a sensitivity analysis, the effects were stable for those only with SSD
(Supplementary Table 2). For all above subgroup analyses, only the
associations of SSD with executive function didn't survive the Bon-
ferrroni adjustment.

3.3. SSD and MRI biomarkers

At baseline analyses, participants with SSD showed smaller volumes
in hippocampus and entorhinal cortex without correction for covariates
among all participants and Aβ-Positive group. No significant group
difference was found for above ROIs after adjusting for all covariates
among all participants and subgroups (Table 1).

Longitudinal analyses showed that SSD at baseline was associated
with more rapid atrophy of hippocampus (β = –29.53, p = 0.001) and
middle temporal gyrus (β = – 77.82, p = 0.006) among all participants
during the 5-year follow-up period (Fig. 2A, B). We found no significant
effect of SSD on atrophy of entorhinal cortex (β = –25.5, p = 0.08)
among all participants during the 5-year follow-up period (Fig. 2C).
When stratified by baseline Aβ status, SSD was associated with more
rapid atrophy of hippocampus (β = –31.88, p = 0.034) and middle
temporal gyrus (β = –135.7, p = 0.005) in the Aβ-Positive group
during the 5-year follow-up period (Fig. 2D, E). There was no sig-
nificant effect of SSD on atrophy of entorhinal cortex (β = –15.7,
p = 0.07) in the Aβ-Positive group during the 5-year follow-up period
(Fig. 2F). In the Aβ-Negative group, there was no significant effect of
SSD on the ROIs during the 5-year follow-up period. When used as
continuous variable, higher GDS scores at baseline were associated with
more rapid atrophy of hippocampus (β= –6.693, p = 0.035) among all
participants during the 5-year follow-up period. No significant asso-
ciations of baseline GDS scores with above ROIs were found in sub-
group analyses after Bonferroni correction (Supplementary Table 1).
SSD didn't interact with Aβ in relation to above ROIs in longitudinal
analyses. In a sensitivity analysis, the results barely changed for those
only with SSD (Supplementary Table 2).

4. Discussion

The present study indicated that the presence of SSD at baseline
contributed to AD-related cognitive decline and brain atrophy in-
dependently or with Aβ deposition. Moreover, there was interaction
between SSD and baseline Aβ load in cognition among older people
without dementia, indicating that the associations between cognition
and symptoms of depression were modified by Aβ load. When treated as
continuous variable, higher baseline GDS scores were associated with
more rapid decline in cognition, especially in the presence of abnormal
Aβ load.

The association of cognitive decline with symptoms of depression
observed from our results is in line with most previous studies. As such,
there's prior study showing that future cognitive performance may be
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strongly predicted by the severity of baseline depressive symptom
(Butters et al., 2004; Ganguli et al., 2009). Furthermore, the association
between cognition and symptoms of depression in the presence of ab-
normal baseline amyloid was also elucidated. The finding that the

interaction between Aβ and time and SSD was significant for global
cognition and episodic memory indicates that Aβ-Positive status and
SSD have a specifically negative effect on cognitive performance,
especially in the domains of cognition that are related to hippocampus

Figure 1. Effects of SSD at baseline on Alzheimer's disease-related cognition measurements in linear mixed-effects analysis among all participants and Aβ-positive
group. Data from linear mixed-effects analysis adjusted for age, sex, educational level, APOE4 status, clinical diagnosis, DM2, hypertension, cardiopathy, hyperli-
pidemia and BMI indicating correlation of SSD with ADAS-cog13 scores (A), MMSE scores (B), episodic memory (C) and executive function (D) among all parti-
cipants, and ADAS-cog13 scores (D), MMSE scores (E), episodic memory (F) and executive function (G) in Aβ-Positive group. Abbreviation: Aβ, β-amyloid; SSD,
subsyndromal symptomatic depression, HC, healthy controls.

Table 1
Participant demographics and clinical information at baseline.

All participants (N = 1,188) Aβ-Positive (N = 511) Aβ-Negative (N = 372)
SSD (N = 785) HC (N = 403) p value SSD (N = 357) HC (N = 154) p value SSD (N = 234) HC (N = 138) p value

Age (Mean± SD, year) 73.0±7.3 74.5±6.4 < 0.001 72.7±7.1 75.3±6.2 < 0.001 71.7±7.6 72.2±6.1 0.581
Gender (M/F) 440 / 345 220 / 183 0.632 204 / 153 77 / 77 0.147 120 / 114 76 / 62 0.520
Education (Mean± SD, year) 15.9±2.9 16.2±2.7 0.06 16.0±2.8 16.1±2.7 0.727 16.1±2.7 16.5±2.6 0.135
APOE Ɛ4 carrier status (+/-) 359 / 426 148 / 255 0.003 153 / 204 88 / 66 0.004 46 / 188 24 / 114 0.681
Hypertension (yes/no) 366 /419 194 / 209 0.621 164 / 193 79 / 75 0.289 118 / 116 56 / 82 0.069
Hyperlipemia (yes/no) 346 / 439 194 / 209 0.183 164 / 193 80 / 74 0.247 99 / 135 59 / 79 0.999
Cardiopathy (yes/no) 158 / 627 89 / 314 0.431 58 / 299 27 / 127 0.700 40 / 194 24 / 114 0.999
BMI (Mean± SD, kg/m2) 27.0±4.8 27.0±4.8 0.978 26.8±4.3 26.6±4.6 0.640 28.0±4.9 28.0±5.1 0.960
DM2 (yes/no) 65 / 720 25 / 378 0.200 25 / 332 10 / 144 0.999 23 / 211 7 / 131 0.118
GDS score (Mean± SD) 2.0± 1.8 0±0 < 0.001 2.0± 1.1 0± 0 < 0.001 2.1± 1.2 0± 0 < 0.001
Antidepressant use (yes/no) 32 / 753 9 / 394 0.002 13 /344 1 /153 0.001 2 / 232 0 / 138 0.001
CN/MCI 219 / 566 236 / 167 < 0.001 69 / 288 80 / 74 < 0.001 99 / 135 98 / 40 < 0.001
MMSE score 28.0±1.8 28.5±1.6 < 0.001 27.7±1.9 28.3±1.7 0.003 28.6±1.5 28.8±1.3 0.104
ADAS13 score 14.7±7.1 12.1±6.4 < 0.001 16.2±7.2 13.1±6.9 < 0.001 11.3±5.5 10.1±5.5 0.054
ADNI_MEM 0.4± 0.8 0.7± 0.7 < 0.001 0.2± 0.7 0.6± 0.8 < 0.001 0.7± 0.7 0.9± 0.7 0.007
ADNI_EF 0.3± 0.9 0.6± 0.9 < 0.001 0.7± 0.9 0.4± 0.9 0.036 0.6± 0.7 1.0± 0.7 < 0.001
Hippocampus (Mean± SD, mm3) 6594±1083 7192±1047 < 0.001 6841±1035 7137±995.4 0.005 7378±1050 7448±981.7 0.553
Entorhinal cortex (Mean± SD, mm3) 3591±710.8 3706±718.9 0.015 3550±683.8 3686±860.6 0.055 3806±662.8 3815±673.2 0.899
Middle temporal gyrus (Mean± SD,

mm3)
19583±2966 19997±2744 0.45 19829±2957 19905±2586 0.800 20607±2693 20537±2766 0.821

Abbreviation: SSD, Subsyndromal symptomatic depression; HC, Healthy controls; BMI, Body Mass Index; DM2, Diabetes Mellitus Type 2; GDS, Geriatric Depression
Scale; MMSE, Mini-Mental State Exam; ADAS13 = Alzheimer's Disease Assessment Scale Cognition 13-item scale; CN, individuals without cognitive impairment;
MCI, mild cognitive impairment individuals; Aβ-Positive was defined as the concentration of Aβ42 in CSF≤192pg/ml or a florbetapir standard uptake value ratio
(SUVR) above 1.11 using the whole cerebellum reference region on 18F-AV-45-PET.
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and temporal function. The observed result is also in accordance with
research of amyloid imaging showing that Aβ retention is associated
with memory deterioration and pronounced in above regions
(Villain et al., 2012).

There are several hypotheses that link cognitive impairment, brain
atrophy and depression symptoms. The glucocorticoid cascade hy-
pothesis suggests that elevated depressive symptoms may increase en-
dogenous levels of glucocorticoids to exacerbate Aβ related cognitive
deterioration (Butters et al., 2008). High levels of glucocorticoids may
consequently damage brain regions especially the hippocampus and
lead to more accelerated decline in memory or other related cognitive
functions overtime (Alves et al., 2014; Sierksma et al., 2010). In addi-
tion, changes of inflammation factor and mediators may also play a
very important part in cognitive decline. Prior studies have shown that
both depression and dementia have high levels of pro-inflammatory
cytokines (Leonard, 2007; Maes et al., 2009). Studies also have shown
that depression and amyloid beta have an interaction through in-
flammatory-mediated pathways. Based on in vivo and in vitro studies,
microglia can be activated by Aβ to release proinflammatory cytokines,
and microglial activation has been observed in older adults diagnosed
with mild cognitive impairment (Okello et al., 2009). Finally, it's re-
ported that changes in brain derived neurotrophic factor (BDNF) have

been also associated with both depression and cognitive impairment
(Caraci et al., 2010).

Depressive symptoms were associated with cognitive decline and
atrophy of hippocampus and middle temporal gyrus, which suggested
that treatment of depressive symptoms may help delay or slow pro-
gressive cognitive decline. SSD interacted with baseline Aβ load in
predicting longitudinal decline in cognition, and identifying these
symptoms may also help manage or inform risk stratification for in-
dividuals in the phases of preclinical and prodromal AD before the
antiamyloid therapies are available.

There are certain strengths and limitations in our study. Firstly, our
study was based on a relatively long follow-up period and a well
characterized cohort. The results of our analyses also extend prior work
further elucidating the association among symptoms of depression, Aβ
load and cognitive decline. Though the magnitude of our findings might
be influenced by limited range of depressive symptoms, it also made it
possible to explore the effect of minimal to mild depressive symptoms
very common in elderly individuals. Previous study has also shown that
depressive symptoms within above range have more close relation to
trajectory of cognition compared to major or severe symptoms of de-
pression. While the GDS self-report was used to evaluate depressive
symptoms, the GDS is considered to have more clinical relevance

Figure 2. Effects of SSD at baseline on Alzheimer's disease-related neuroimaging markers in linear mixed-effects analysis among all participants and Aβ-positive
group. Data from linear mixed-effects analysis adjusted for age, sex, educational level, APOE4 status, clinical diagnosis, DM2, hypertension, cardiopathy, hyperli-
pidemia, BMI and intracranial volume indicating correlation of SSD with hippocampal volume (A), middle temporal gyrus (B), and entorhinal cortex (C) among all
participants, and hippocampal volume (D), middle temporal gyrus (E), and entorhinal cortex(F) in Aβ-Positive group. Abbreviation: Aβ, β-amyloid; SSD, sub-
syndromal symptomatic depression; HC, healthy controls.
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because it's similar to assessments of depression in clinical trials
(Shin et al., 2019).

Despite these strengths, our study had certain limitations that
should be highlighted. First, it's necessary to notice that we didn't re-
quire any specific symptoms of depression or individual items of the
GDS self-report to be included or excluded from our statistical analyses
for our designation of SSD because of our intention to elucidate the
effects of SSD evaluated by GDS on brain aging outcomes among pro-
dromal Alzheimer's Disease. The results scarcely changed after ex-
cluding the GDS item referring to memory complaints in sensitivity
analysis. Second, we concentrated on symptoms of depression at
baseline to predict cognitive decline and brain atrophy during the
follow-up period. And therefore, there's possibility that the severity or
range of depressive symptoms might have changed over time at follow-
up evaluations. We did not exclude any participants of whom the de-
pressive symptoms changed over the 5-year follow-up period from our
study because of our initial aims to explore the effects of baseline de-
pressive symptoms on brain aging outcomes over time. Third, our study
didn't look at AD diagnosis. Although some individuals may be Aβ
positive, they may not actually develop dementia. Fourth, anxiety was
associated with the risk of AD and its presence is a strong predictor for
future cognitive decline (Santabarbara et al., 2020; Sinoff and
Werner, 2003). Given that there is an overlap and a mixed etiology
between depression and anxiety in some cases, we have conducted a
sensitivity analysis by classifying participants with SSD into subgroups
in our study. However, we have to note that the sample of participants
with assessment of anxiety symptoms was small. For some participants
with SSD, the absence of assessment for anxiety symptoms is likely to
limit the generalizability of our results.

5. Conclusion

Our findings suggested that cognitive healthy people with both SSD
and a high level of Aβ deposition may have higher risk of cognitive
deterioration and brain atrophy. In summary, these findings suggested
that, among elderly individuals without dementia, especially those in
the presence abnormal Aβ load, treatment of depressive symptoms may
help delay progressive cognitive decline. Given that symptoms of de-
pression (especially minimal to mild range) remain amenable to treat-
ment, identifying these symptoms may also help manage or inform risk
stratification for individuals in the phases of preclinical and prodromal
AD before the antiamyloid therapies are available.
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