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Abstract 

Over the past 30 years, magnetic resonance imaging has become a ubiquitous tool for accurately visualizing the 

change and development of the brain’s subcortical structures (e.g., hippocampus). Although subcortical 

structures act as information hubs of the nervous system, their quantification is still in its infancy due to many 

challenges in shape extraction, representation, and modeling. Here, we develop a simple and efficient 

framework of longitudinal elastic shape analysis (LESA) for subcortical structures. Integrating ideas from 

elastic shape analysis of static surfaces and statistical modeling of sparse longitudinal data, LESA provides a set 

of tools for systematically quantifying changes of longitudinal subcortical surface shapes from raw structure 

MRI data. The key novelties of LESA include: (i) it can efficiently represent complex subcortical structures 

using a small number of basis functions and (ii) it can accurately delineate the spatiotemporal shape changes of 

the human subcortical structures. We applied LESA to analyze three longitudinal neuroimaging data sets and 

showcase its wide applications in estimating continuous shape trajectories, building life-span growth patterns, 

and comparing shape differences among different groups. In particular, with the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) data, we found that the Alzheimer’s Disease (AD) can significantly speed the 

shape change of ventricle and hippocampus from 60 to 75 years old compared with normal aging. 
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KEY WORDS: Alzheimer’s Disease, Elastic Shape Analysis, Longitudinal shape trajectory, 

Principal components analysis, Subcortical structures. 

1 Introduction 

The present study is motivated by using magnetic resonance imaging (MRI) data in 

longitudinal neuroimaging studies, such as the baby connectome project (Howell et 

al., 2019) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner et al., 

2017), to accurately delineate the change and development of the brain subcortical 

structures (e.g., hippocampus) across time and/or groups. Subcortical structures 

include the diencephalon, pituitary gland, limbic structures and the basal ganglia, 

forming a group of diverse neural formations deep within the brain. These structures 

are not only involved in complex activities, such as memory, emotion, pleasure and 

hormone production, but also act as information hubs of the nervous system since 

they relay and modulate information passing to different areas of the brain. As an 

illustration, Figure 1 shows two extracted subcortical regions, lateral ventricle and 

hippocampus, from one randomly selected ADNI subject across four time points. 

After segmenting lateral ventricle and hippocampus across subjects, one may be 

interested in investigating the quantitative changes of their volumes, three 

dimensional (3D) surface shapes, and surface areas over time and the effect of 

some predictors of interest (e.g., disease status) on the shape change. The primary 

goal of this paper is to develop advanced image processing and statistical tools for 

characterizing the dynamic change of shapes of subcortical brain regions in the 

longitudinal setting. 

Compared with cross-sectional shape analysis (Styner et al., 2006; Qiu and Miller, 

2008; Kurtek et al., 2010), a distinctive feature of longitudinal shape data is that it 

has a dense spatial dimension, but a sparse temporal dimension (Hyun et al., 2016). 

Imaging measurements of the same individual often exhibit positive correlation 

temporally and the strength of the temporal correlation decreases with the time 

separation. Moreover, due to the inherent biological structure of the human brain, 

neuroimaging data are spatially correlated in nature and contain spatially contiguous 

regions. Efficiently dealing with such spatial and temporal dimensions raises at least 

three challenges. First, since each subject is only measured at a few time points in a 

typical longitudinal neuroimaging study, it is difficult to accurately reconstruct the 
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longitudinal profile of subcortical structures at the individual level. Second, most 

shape representations are in nonlinear manifolds (or rather than their quotient 

spaces), ruling out the direct application of standard longitudinal data models 

developed for Euclidean data. Third, the variability in individual growth patterns 

across subjects is subtle and can be easily overwhelmed by measurement and 

preprocessing errors. 

There are three major types of shape analysis methods in the literature depending 

on how shapes are represented. The first type of methods uses a set of pre-

determined shape features to quantify shape difference (Morra et al., 2009; 

Thompson et al., 2004; Madsen et al., 2015; Wang et al., 2010; Shi et al., 2015). 

Some examples include radiomics (van Timmeren et al., 2020) and topological data 

analysis (Amézquita et al., 2020). A potential issue is that such shape feature 

vectors only represent partial information about the original structures and thus, it is 

difficult to map them back to their corresponding shapes. The second type of 

methods is based on the large deformation diffeomorphic metric mapping (LDDMM) 

technique (Miller et al., 2002, 2006), which has been applied to longitudinal shapes 

(Tang et al., 2015; Tward et al., 2017; Lee et al., 2020). In LDDMM, a 

diffeomorphism as a smooth and bijective infinite-dimensional transformation with an 

inverse is used to map one shape to another and the size of the diffeomorphism 

provides a metric, called diffeomorphometry, to quantify shape difference. Such 

diffeomorphometry is more natural for quantifying pairwise shape changes than 

modeling the longitudinal shape trajectories (Tang et al., 2015). The third one is 

based on recent developments of longitudinal data modeling on manifolds 

(Muralidharan and Fletcher, 2012; Zhang et al., 2018a,b; Dai et al., 2018, 2020). 

However, since these methods were developed for relatively simple Riemannian 

manifolds, such as 2 , it is nontrivial to extend them to the shape space of surfaces. 

Therefore, one urgently needs a computationally simple but statistically powerful 

framework for the analysis of longitudinal subcortical shapes. 

This paper aims to develop a Longitudinal Elastic Shape Analysis (LESA) 

framework. Our LESA can efficiently extract and represent shape data from raw 

MRIs, while addressing the aforementioned statistical challenges in longitudinal 

shape analysis. We make three important contributions. First, we use a single 
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parameterization-invariant, elastic Riemannian metric to minimize registration 

variability, while accounting for large shape variability. In contrast, most shape 

analysis methods use different metrics (or cost functions) for registration and 

comparisons (Pizer et al., 2003; Zhao et al., 2014). Second, the use of the elastic 

Riemannian metric leads to an effective low-dimension Euclidean representation of 

subcortical shape through using principal component analysis (PCA) in tangent 

spaces of the shape space. Our numerical data analyses demonstrate that the 

shape PCA in LESA has better representation power than popular approaches 

based on spherical harmonics representation (Shen et al., 2009) and sampling 

points on surfaces (Styner et al., 2006). Moreover, trajectories of longitudinal shapes 

reduce to those of scalar numbers in Euclidean space, facilitating the use of 

advanced statistical methods for studying longitudinal shapes (Yao et al., 2005; 

Wood, 2012; Fan and Gijbels, 2018). Our LESA integrates the developmental 

patterns of all subjects together, so it avoids large estimation errors caused by the 

standard two-stage approaches, including the estimation of individual temporal 

trajectories of shapes and the integration of all estimated shape trajectories (Singh et 

al., 2015; Fletcher, 2013). Third, the analysis examples and code for LESA along 

with its documentation are freely accessible from our websites at 

https://wuyx5.github.io/LESA/ and https://github.com/BIG-S2/Longitudinal-Elastic-

Shape-Analysis-of-Brain-Subcortical-Structures. 

The remainder of this paper is structured as follows. Section 2 introduces three 

motivating data sets and their related scientific questions. Section 3 presents all 

major components of the LESA framework. Section 4 presents the data analysis 

results for the three motivating data sets. Section 5 concludes the paper with some 

discussions. 

2 Motivating Data Sets and Scientific Questions 

Understanding the growth pattern of subcortical structures and the effects of disease 

on such pattern is extremely important for aging and neuropsychiatric and 

neurodegenerative disorders. We consider MRIs obtained from three different 

longitudinal neuroimaging studies: the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) (Petersen et al., 2010; Weiner et al., 2013; Basaia et al., 2019), the Human 
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Connectome Project (Glasser et al., 2016), and the OpenPain (Vachon-Presseau et 

al., 2016). 

ADNI data set: We extracted the MRI data set from the ADNI database 

(adni.loni.usc.edu). The initial goal of ADNI was to test whether MRI, positron 

emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of 

mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The ADNI has 

four phases, including ADNI, ADNI-GO, ADNI2, and ADNI3, among which all 

subjects in ADNI-GO, ADNI2, and ADNI3 were scanned on 3T scanners. We 

included subjects with T1 MRI images in ADNI-GO and ADNI2 aged between 60 and 

90 years old. These MRI T1 images were acquired using MPRAGE sequence with a 

resolution around 1 1 1 .2   3
m m . After the data processing (refer to Sections 3.1 and 

3.2), we conducted a careful quality control and removed outlying surfaces. 

Specifically, we first computed the sampled Karcher mean and then calculated the 

geodesic distance between each surface with the template. Next, we used a 95% 

confidence interval to detect potential outlying surfaces. We then visualized the 

potential outlying surfaces to manually remove the abnormal ones. Finally, we 

obtained a data set, called ADNIGO2, containing 1045 subjects with 3443 scans for 

the left lateral ventricle and 974 subjects with 3044 scans for the left hippocampus. 

Human Connectome Project (HCP) test-retest data set: The Human Connectome 

Project (https://db.humanconnectome.org/) contains high-quality MRI data from 

around 1200 healthy young adults aged from 22 to 37. The T1 MRI images were 

acquired on a 3T Siemens Prisma scanner using multi-band sequence with a 

resolution of 0 .7 0 .7 0 .7   mm3. We included all the HCP young-adult subjects. Most 

of them just have one visit, while a small subset of subjects have two visits, resulting 

in longitudinal data with two time points. Similar to the ADNIGO2 data set, we 

applied the same data processing and quality control protocol. We obtained 1113 

subjects with 1158 scans for the left lateral ventricle and 1082 subjects with 1125 

scans for the left hippocampus. 

OpenPain dataset: The OpenPain study (http://www.openpain.org/) is a five-year 

longitudinal study of the transition to chronic back pain. It contains 122 subjects aged 
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from 21 to 69. MRI scans were collected across four visits (two weeks, three months, 

six months, one year, and 2-3 years later). OpenPain’s T1 MRI images were 

acquired on a 3T Siemens Trio whole-body scanner using the MPRAGE sequence 

with a resolution of 1 1 1   mm3. Similar data processing and quality control were 

applied, and we ended up with 429 lateral ventricle and hippocampus surfaces from 

117 subjects. 

Table 1 shows more detailed statistics on the two subcortical regions studied and 

Figure 2 shows the age distribution of the three data sets. The three data sets 

together cover a lifespan age ranging from 20 to 90, allowing us to study the lifespan 

growing pattern during [20, 90] for lateral ventricle and hippocampus. We are 

particularly interested in the following scientific questions: 

• (Q1) How to measure developmental changes in the shape of subcortical 

regions? 

• (Q2) How to quantify the effect of disease or other covariates on 

subcortical shape changes? 

To address (Q1) and (Q2), we need to develop an advanced longitudinal shape analysis 

pipeline below. 

3 Methodology 

In this section, we formally introduce LESA. Figure 3 presents a schematic overview of 

LESA, consisting of four key components: (i) surface extraction and parameterization; (ii) 

elastic shape analysis of surfaces; (iii) Euclidean representation of surface trajectories; and 

(iv) trajectory fitting and regression analysis. In the following subsections, we introduce each 

component in details. 

3.1 Subcortical Surface Extraction and Parameterization 

To analyze longitudinal subcortical shapes quantitatively, LESA represents each subcortical 

shape as a parameterized function given by 2 3
:f  . This representation brings more 

convenience in analyzing the shape of subcortical structure, while removing shape 

confounding transformations, such as translation, rotation, and re-scaling. Our proposed 

LESA can also handle the parameterization variability, which controls the registration 

between surfaces; see Section 3.2 for details. Figure 4 illustrates our three-step pipeline to 

extract a parameterized subcortical shape. The first step is to segment the subcortical region, 

create a three-dimensional (3D) volume, and fill any holes inside the volume. This step is 

performed by using the FIRST tool inside the FMRIB Software Library (FSL) (Patenaude et 

al., 2011). It is done for each MRI T1 image at an individual level without registering them to 

a template. The second step is to build a surface mesh from the volume and use an area-
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preserving, distortion minimizing spherical mapping (Jermyn et al., 2017) to map vertices on 

the mesh to a unit sphere for spherical parametrization. The third step is to refine our shape 

representation by improving the sample grid on 2  through using a uniformly sampled grid 

along the polar and azimuthal angles and fitting the corresponding function values in 3 . 

Finally, we obtain a parameterized surface as a mapping from 2  to 3  as shown in the third 

column of Figure 4. 

3.2 Elastic Shape Analysis of Surfaces 

For a given subcortical region, we observe longitudinal surface data fij for subject i at time 

point (or age) tij for 1, .. . ,i n  and 1, ...,
i

j m . We use an elastic Riemannian metric to 

compare all surfaces {fij} under a Riemannian framework, called elastic shape analysis. Such 

elastic shape analysis refers to a set of comparison methods of shapes of surfaces in a manner 

that is invariant to rigid motions, global scaling, and re-parameterization. These methods 

solve for dense, optimal registrations of points across surfaces, while comparing their shapes 

and not as a pre-processing step. Therefore, the registered surfaces reserve the shape 

heterogeneity, but they minimize the cross-sectional variance. Examples of elastic shape 

analysis of 3D objects include Younes (2010) and Bauer and Bruveris (2011). In this paper, 

we take the approach introduced in Jermyn et al. (2012) that uses a specific square-root 

representation to transform complicated, but important invariant Riemannian metrics into 

standard Euclidean metrics. 

Let  be the set of surfaces consisting of all smoothed maps 2 3
:f   with a finite 

2
 

norm, and Γ be the set of all orientation-preserving diffeomorphisms of 2 . For any surface 

f   and    , the composition f   is simply a re-parameterization of f and has the 

same shape as f. We consider any two surfaces, f1 and f2 such that 
1
( )f s  is registered to 

2
( )f s  

for all 2
s  . If we re-parameterize f2 by a    , then 

1
( )f s  is now registered to 

2
( ( ))f s . 

Thus, γ here controls the correspondence or registration among points between surfaces. In 

order to compare shapes of surfaces, we need a metric that can invariantly compare surfaces 

with arbitrary reparameterizations, motivating the following normal vector field 

representation of surfaces. 

For 2
s  , the vector ( ) ( ) ( )

f

f f
n s s s

u v

 
 

 
 denotes the normal to f at the point f(s), where 

( , )u v s  are the local coordinates on 2 . Then, the square-root normal field (SRNF) of f is 

defined to be the normal vector field 2 3
:q   by ( ) ( ) / | ( ) |

f f
q s n s n s , where |·|  

denotes the vector norm. As described in Jermyn et al. (2012), the 2 -metric under SRNF 

representation has some critical invariant properties and can be used to compare shapes of 

surfaces. The essential advantage of using such representation is that it is easy to remove 

shape-preserving transformations (reparameterizations) from this representation. The SRNF 

of a surface is already invariant to its translation. Scaling can be separated by re-scaling all 

surfaces to have unit area: ( ) ( ) /
f

f s f s  , where 
2
| ( ) |

f f
n s d s    is the surface area of 

f. However, the size of subcortical regions is an important feature, so it will be preserved and 

analyzed separately. 
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After appropriately removing scaling and translation, we handle rotation and re-

parameterization as follows. Let SO(3) be the rotation group (the set of all 3 × 3 rotation 

matrices). Applying a rotation S O (3 )O   and a re-parametrization     to a surface f is 

given by ( )O f  . Thus, the SRNF representation of ( )O f   becomes 

( ) ( )O q O J q


   , where J


 is the determinant of the Jacobian of γ. The removal of 

rotation and re-parameterization leads to the following registration problem: 

* *

1 2

S O ( 3 ),

( , ) a rg m in ( ) ,
O

O q O q


 
 

 

 (1) 

where q1 and q2 are the SRNFs of normalized and centered f1 and f2, respectively. The 

optimal *
O  is solved by using Procrustes Analysis, and the optimal *

  is solved by using a 

gradient-based optimization over Γ (Jermyn et al., 2012; Kurtek et al., 2010). The minimum 

value of the objective function, call it ds, forms the elastic shape metric between f1 and f2, and 
*

  represents the optimal registration of points across the two surfaces. 

3.3 PCA-based Dimension Reduction 

The goal of this step is to jointly align all surfaces and then perform principal 

component analysis (PCA) to obtain their finite-dimensional representations. It allows 

us to transform the complex shape trajectory into a trajectory in r , leading to a 

simple downstream analysis. 

Let { }
i j

f  be a set of normalized surfaces (after removing translation and scaling). 

The group alignment of { }
i j

f  involves (i) the computation of a template shape and (ii) 

the pair-wise alignment of every fij to the template. Specifically, we use the Karcher 

mean under our elastic shape metric as the template, which is defined as 

2

1 1

a rg m in ( , )

i
mn

f s ij

i j

f d f f


 

   , where (·,·)
s

d  denotes the shape metric. We 

approximate the optimum using an iterative approach. In each iteration, we register 

the given surfaces to the current estimate of the mean, and then we update this 

estimate by a mean of the current registered shapes. In the process of calculating 

Karcher mean, we also have all fijs aligned to the Karcher mean. Denote the aligned 

surface as *

i j
f , and * * *

( )
ij ij

f O f   , where * *

S O ( 3 ),
( , ) a rg m in ( )

O ij
O q O q

 
 

 
  , in 

which q

 is the SRNF of f


. 
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With the Karcher mean f


 and aligned shapes *

i j
f , we perform dimension reduction 

in the tangent space at f


. Specifically, we compute the shooting vectors or 

deformations, that take the mean shape f


 to individual surfaces *

i j
f s as follows. 

Although there is an elaborate procedure for computing these deformations using the 

geometry of the shape space as described in Kurtek et al. (2010), we approximate 

these deformations by taking simple differences according to *

ij ij
v f f


   for 

simplicity. This Euclidean metric is different from the 2  metric in (1) used for 

aligning surface shapes. The metric in (1) provides optimal registrations between 

surfaces, but the subsequent analysis can get computationally expensive. If the 

underlying variability is small, the results from the two approaches are not that 

different, motivating us to use the simple Euclidean metric for downstream analyses. 

Next, we use the Gram-Schmidt procedure to generate an orthogonal basis for the 

set { }
i j

v . Let { }
k

v
  be the new orthogonal basis resulting from the Gram-Schmidt 

process. Thus, each original shooting vector vij can be projected onto the basis { }
k

v
  

and is represented as a vector of coefficients 
i j

c  with its k-th element , 
i jk ij k

c v v


 . 

The original aligned surface *

i j
f  can be recovered by *

1

.
i j i jk k

k

f f c v






    In this step, 

there is no loss of information since { }
k

v
  is just a new orthogonal basis for the 

subspace spanned by the shooting vectors { }
i j

v  at the tangent space of f


. 

These coefficients { }
i j

c  denote Euclidean representations of original shapes, and we 

perform PCA in the coefficient space. We calculate the sample covariance matrix as 

1 1 1

/ ( 1)

i
mn n

T

ij ij i

i j i

m

  

   K c c  and its spectral decomposition T
U U K , where 

1 2
d iag ( , , )    is a diagonal matrix formed from the eigenvalues of K  and the 

columns of U form the eigenvectors of K . Let uj be the j-th column of U 

corresponding to the j-th largest eigenvalue of K . Thus, the Euclidean 

representation of *

i j
f  can now be approximated using the projection: T

ij r i j
Uc c , 

where 
1

[ , ..., ]
r r

U  u u  is the first r columns of U, and r

ij c . The k  th element in i jc  

is denoted as 
i jk

c , representing the k  th principal component (PC) score for the 

shape surface *

i j
f , and its corresponding PC direction is given as 

1

k k i i

i

v u v



  , where 

uki is the i  th elements in uk. 
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Figure 5 (a) shows the Karcher mean of all 3443 left ventricles in the ADNIGO2 

dataset discussed in Section 2. Figure 5 (b) shows the cumulative percentage of 

variance explained by the number of principal components. As shown here, the use 

of 32 PCs can represent the 95% variation of all surfaces. Figure 5 (c) shows the first 

PC direction in the shape space by reconstructing the principal geodesic as 

1 1
* P Cf t


 , where 

1
P C  represents the first principal direction, i.e., 

1
v . The PC1 

mainly describes the shape change of anterior and posterior ends of the ventricle. In 

the following ADNI data analysis, significant differences can be observed in these 

regions between normal controls and AD people. We then bring the temporal labels 

back (the time of each observation) and plot the area trajectories for 1045 subjects in 

Figure 5 (d) and PC1 score trajectories in Figure 5 (e). 

3.4 Dense Trajectory Fitting and Longitudinal Data Analysis 

The goal of this step is to estimate continuous trajectories of shapes for all subjects 

and conduct longitudinal data analysis based on the outputs of Sections 3.1-3.3, 

including a surface area trajectory 
1

[ , .. . , ]
i

i im
   and PC score trajectories 1[ , ... , ]

i
i imc c  

for each subcortial region from subject i. There are two challenges. The first 

challenge is that we only have sparse observations per subject in longitudinal 

neuroimaging studies, i.e., each mi is a small integer. The second challenge is the 

non-uniform spacing of time points, i.e., the surfaces are observed at different times 

for different subjects. Due to these challenges, the independent fitting of sparse 

longitudinal points to trajectories does not work (James et al., 2000). 

We develop two approaches for estimating continuous curves by borrowing 

information from all trajectories in the data set. The first approach is a semi-

parametric mixed-effects model and the second approach is the functional data 

analysis of sparse longitudinal data. 

Mixed Effects Model. We first use a semi-parametric mixed effects model to model 

the k-th PC (or area) trajectory as follows: 

·
( ) ( ) ( ) ( )     fo r     1, , ,

T

i k k k i i
c t t P t t i n      η

 (2) 
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where k is the PC index, 
·

( ) , ( )
i k ij i jk k

c t c t  is an unknown fixed function of t, P(t) represents 

the polynomial vector (1, , , )
p T

t t , and ( )
i

t  is a random noise process with mean zero and 

variance 2
 . Moreover, 

i
η  is a ( 1) 1p    vector of random effects. We approximate the 

fixed effect function ( )
k

t  by using penalized regression spline. The covariance component 

associated with 
i

η  are estimated using restricted maximum likelihood. Moreover, the fixed 

effect ( )
k k

t   models the mean trajectory for the population and the random effects 

( )
T

i
P t η  allows for individual variation. The Akaike information criterion is used to select the 

number of spline basis functions (i.e., p). To fit model (2), we use the gamm function 

provided in publicly available package mgcv (Wood, 2012). 

The proposed mixed-effects model has many advantages when compared with an 

independent fit of each trajectory. The model estimates the continuous trajectory 
·

( )
i k

c t  using 

all observed data rather than just those from the subject i. Therefore, when there is 

insufficient data for subject i, we can borrow information from all other subjects and still 

have a reasonable estimate at the individual level. From a theoretical perspective, the 

maximum likelihood method used to estimate unknown parameters in the model allows 

different weights to different observations, resulting in estimators with asymptotic optimality 

properties. 

To estimate the covariance component for 
i

η , we must estimate ( 1)( 2 ) / 2p p   different 

parameters. Given the sparse data (sometimes, we only have one to two observations for 

some individuals), these estimates can be highly variable, and the estimation algorithm may 

be trapped in local maxima. A possible solution is to employ a more adaptive and 

representative basis to fit each trajectory. This motivates the use of functional principal 

component analysis (fPCA) and principal components analysis through conditional 

expectation (PACE) (Yao et al., 2005). 

PACE. The PACE model assumes 

·

1

( ) ( ) ( ) ( ) ,
i k k ikp p i

p

c t t t t  





  
 (3) 

where ( )
k

t  describes the population mean for the k-th PC trajectory, ( )
i

t  is random noise 

with mean zero and variance 2
 , and 

1

( )
ik p p

p

t 





  models the individual trajectory’s deviance 

from the population mean. Moreover, { ( )}
p

t  is the set of basis functions, { }
ik p

  is the vector 

of corresponding coefficients, and 
·

1

i k k ik p p

p

   





    denotes the unobserved true k-th PC 

score trajectory for subject i. The goal of PACE is to estimate 
·i k

 . 

Assuming that 
·

{ }
i k

  for 1, ,i n   are realizations of a stochastic process with the mean 

function μk and covariance function (·,·)
k

C . Let 
1 2 1 2

1

( , ) ( ) ( )
k p p p

p

C t t t t  





   be the eigen-
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decomposition of (·,·)
k

C . By the Karhunen-Loéve theorem, with probability one we have 

·

1

( ) ( ) ( )
i k k ip p

p

t t t   





   , indicating that any realization of this stochastic process can be 

represented as a linear combination of { (·)}
p

  and coefficients. The basis { (·)}
p

  derived 

from the eigen-decomposition of (·,·)
k

C  also facilitates a parsimonious representation of 
·i k

  

using the first P basis functions (eigenfunctions) in terms of minimum expected mean 

integrated squared error. That is, if 
1

{ }
p p

e



 is a complete orthogonal basis system for 

representing any 
·i k

 , then 
2

· ·
1

[ , ]

P

i k k i k k p p
p

e e   


      is minimized by taking 

p p
e   for 1, 2 , ,p P  . PACE utilizes this important theoretical result by estimating an 

empirical ˆ
k

C  from the given sparse data and utilizing its first P eigenfunctions ˆ
p

  to replace 

the 
p

  in (3). Both the empirical population mean ˆ
k

  and covariance function ˆ
k

C  are 

estimated using local linear smoothers (Yao et al., 2005; Fan and Gijbels, 2018). To obtain a 

good estimate of { }
ik p

 , PACE assumes that ξikp and ( )
i

t  are jointly Gaussian. Let 

1
( , , )

i

T

ik i k im k
c c c , 

1
ˆ ˆ( ( ) , , ( ))

i

T

k k mik
t t  μ , and 

1

ˆ ˆ( ( ) , , ( ))
i

T

p p mip
t t  . Under 

Gaussian assumptions, the best estimate of ξikp is given by the conditional expectation 

1ˆ ˆ( | ) ( )
ik

T

ik ikikp ikp p ip ik
E  


  Σ

c
c c μ , where the (a, b)-th element of 1

ik


Σ

c
 is 

2ˆ ˆ( , )
k a b a b

C t t    with 1
a b

   if a = b and 0 if a b . The final estimated trajectory for the k-

th PC score for subject i is given as 
·

1

ˆ ˆˆ ˆ( ) ( ) ( ) .

P

i k k ik p p

p

t t t   



    The P is selected using the 

cross-validation method introduced in Yao et al. (2005). Note that ˆ
ik p

  is the best estimator 

under Gaussian assumptions and best linear prediction of ξikp given the information from the 

i-th subject irrespective of the Gaussian assumptions. 

Using either the mixed effects model or the PACE model, we can estimate smooth and 

continuous shape trajectories *

·

1

ˆ ˆ( ) ( ) * ( ( ) )

r

i i i k k

k

f t t f t v


 



   , where ˆ ( )
i

t  and 
·

ˆ
i k

  are, 

respectively, the recovered surface area trajectory and the k-th shape PC trajectory for the i-th 

subject. 

Longitudinal Data Analysis. Assuming that there is a set of covariates K

i
x  from each 

subject (e.g., gender and disease status), we are interested in learning the effects of xi on 

longitudinal surface trajectories. We refer to this analysis as shape-trajectory-on-scalar 

regression. Let *
( , )

i
f t s , in which t indexes the time and s indexes the location on the surface, 

e.g., 2
s  , be the shape trajectory. It is assumed that the mean of *

( , )
i

f t s  is a function of 

scalar predictive variables, given by 
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*

1

( ( , ) | ) ( , ) ( , ) ,

K

i i ij j

j

E f t s t s x t s 



  x

 (4) 

where ( ,·)t  is a 3D shape and 
1

( ,·)

K

ij j

j

x t



  deforms ( ,·)t  to the mean of *
( ,·)

i
f t . 

With PACE, each sparsely observed shape trajectory * *

1
{ ( ,·), ..., ( ,·)}

i
i i m

f t f t  is 

represented as a 1rP   vector 
1 1 1 1

ˆ ˆ ˆ
[ , , , , , ,

i i i P ir
    y  ˆ ]

T r P

ir P
  , where 

1

ˆ ˆ
[ , , ]

T

ik ik P
   comes from the k-th PC score trajectory after applying PACE (or mixed 

effects model). The elements in yi are obtained by two layers of PC analysis, and 

therefore, they are independent of each other. This nice property significantly 

reduces the complexity of our regression problem in (4) - we can conduct a simple 

regression for each element in yi, separately. With the fitted models, for a given new 

xi, we can easily predict 
i

y , the corresponding PC score trajectories, and the shape 

trajectory. 

4 Longitudinal Shape Data Analysis Results 

In this section, we carry out a comprehensive data analysis of the three data sets 

introduced in Section 2 in order to address (Q1) and (Q2). 

4.1 Efficient Representation of Surface Shapes in LESA 

We compare LESA with spherical harmonic-based point distribution model 

(SPHARM-PDM) (Styner et al., 2006) in terms of terseness and efficiency of 

representation. The SPHARM-PDM is a widespread technique in medical shape 

analysis. The efficiency of a representation is quantified using the number of PCA 

coefficients needed for representing shapes up to a fixed reconstruction error. Let f 

be a surface and ˆ
r

f  be the reconstructed surfaces with r PCs. We also define the 

reconstruction error as 
2

2ˆ ˆ( ) ( )
r r

f f f s f s d s   . For a fix r, the method that 

leads to smaller reconstruction error is more efficient in shape representation. Figure 

6 presents the obtained results for left lateral ventricle surfaces in ADNIGO2 dataset. 

Similar results are found for other subcortical region and data sets. Figure 6 (a) 

presents the reconstruction errors of all individual surfaces versus r for the SRNF 

representation in LESA (blue lines) and SPHARM-PDM (red lines). Figure 6 (b) 

shows the total distances of all reconstructed surfaces to their original surfaces 
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under different r, showing that SRNF outperforms SPHARM-PDM in representation 

efficiency. Figure 6 (c) quantifies this out-performance by the percentage of 

improvement, indicating that our SRNF framework has much better performance in 

the sparse cases when only a few PC scores are used to represent the shape. 

4.2 From Discrete to Continuous – Fitting Shape Trajectory 

We compare PACE with the mixed-effects model (denoted as MGCV from here) in 

LESA by using them to fit continuous shape trajectories based on the observed 

discrete data for the left ventricle and hippocampus in ADNIGO2. Figure 7 shows the 

observed sparse data and the fitted smooth trajectories (with PACE and MGCV) for 

the surface area (the first row) and PC1 score (the second row). The solid lines in 

different colors present individual trajectories, whereas the black dashed lines 

present the mean trajectories. We observe that the mean trajectories fitted by PACE 

and MGCV follow very similar trajectories, but some individual trajectories fitted by 

MGCV diverge from the range of observed data significantly, which is probably 

caused by the high variability of the estimated parameters in MGCV. The third row of 

Figure 7 illustrates the surface trajectories reconstructed based on 

·

1

ˆ ˆ( ) ( ) * ( ( ) ) , w ith  [6 0 , 9 0 ]

r

i i i k k

k

f t t f t v t


 



    and 3 2  fo r  le f t  v e n tr ic ler   and 

6 4  fo r  le f t  h ip p o c a m p u s , respectively. The surface trajectories built under PACE and 

MGCV have some agreements with the aging process. Specifically, the left ventricle 

surface tends to enlarge and its shape mainly deforms at the anterior and posterior 

ends. The left hippocampus surface tends to shrink and its shape mostly changes in 

both anterior and posterior ends. 

Figure 8 presents trajectory fitting results of three randomly selected individual 

subjects. Inspecting Figure 8 (a) and (b) reveals that both approaches can capture 

the patterns of original trajectories and make reasonable predictions. The 

reconstructed dense individual surface trajectories in panel (c) are also consistent 

with the raw observations. 

Let 
1 1 2

1 1

ˆM S P E { ( ) ( )}

i
mn

i i ij i i j

i j

n m t t


 
 

 

    be the mean square-root prediction error 

(MSPE) of surface area trajectories. Moreover, we also define 
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1 1 2

··

1 1

ˆM S P E { ( ) ( )}

i

k

mn

i ki i k ij i j

i j

n m t t



 

 

   c  to be the MSPE of PC score trajectories. 

To compare trajectory fitting methods, we compute M S P E


 and M S P E
k


, in which 

we set n = 1045 for the left ventricle and n = 974 for the left hippocampus. Table 2 

shows that results are consistent across the two brain regions: PACE results in 

better prediction accuracy on the area and PC trajectories. Therefore, in the 

following data analysis, we will utilize only the PACE method for trajectory fitting. 

4.3 Life-span Shape Change 

To address (Q1) for the left ventricle and left hippocampus, we integrate the 

ADNIGO2, HCP test-retest, and the OpenPain datasets into a single data set and 

then apply LESA to it. Figure 9 shows the observed sparse area trajectories (from all 

three data sets used in this paper) and their mean trajectories fitted by PACE. The 

area of the left ventricle keeps increasing after the age of approximately 30 years 

old. The speed of change is relatively slow before 60 years old, but after 60 years 

old, the enlargement of the ventricle speeds up. In contrast, the size of the 

hippocampus reduces with age, while the speed of the shrinking increases after 

around 60 years old. Figure 9 (c) shows the mean surface trajectories for the two 

brain regions from the age of 22 to 90 years old. In addition to size change, we 

observe the changes in shapes due to aging. Specifically, for the left ventricle, the 

anterior end becomes smoother and fatter with aging, while the posterior end 

enlarges the most among the whole surface. The whole left hippocampus surface 

gets thinner with aging, while the anterior and posterior ends atrophy the most. 

4.4 Longitudinal Analysis of Shape Trajectories 

LESA facilitates simple but effective longitudinal analysis of surface trajectories. We 

use LESA to analyze the ADNIGO2 data set in order to address questions similar to 

the Q2 through (i) identifying group differences in longitudinal shape data and (ii) 

quantifying the contributions of the covariate(s) to the longitudinal shape change. 

Group Difference Analysis: In the ADNIGO2 data set, we have three diagnosis 

groups: AD, mild cognitive impairment (MCI), and normal control (NC). To delineate 

the group difference, we computed mean trajectories for each of the three groups. 
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Figure 10 (i) and (ii) presents the mean trajectories of the three groups for the left 

ventricle and those for the left hippocampus. Within each panel, panel (a) shows the 

surface area trajectory, panel (b) shows the area changing rate, defined as 

1
1 0 0 { ( ) ( )} / ( )

i i i
t t t  


  , as a description of shape deforming speed with positive 

numbers representing enlarging and negative numbers representing shrinking, and 

panel (c) shows the reconstructed shape trajectory. The shape trajectory is 

recovered as 
·

1

ˆ( ( ) )

r

i k k

k

f t v






  , which is different from the previous surface trajectory 

that incorporates the area information. From Figure 10 (i), we observe the following 

patterns for the left ventricle: 

• The AD group has the largest surface area from 60 to 90 years old, 

followed by the MCI and NC groups. 

• The surface area increases with age for all groups, but at different speeds 

(see Figure 10 panel (b)). Between 60 and 75 years old, the AD group has 

the largest enlarging speed. The MCI group also enlarges faster than the 

NC group, but is slower than the AD group. The enlarging speeds of 

different groups converge at around the age of 75 years old. After 85 years 

old, due to smaller sample sizes and potential sampling bias, our 

estimation might have larger variation and so we do not try to interpret it to 

avoid over-interpretation. 

• Most of the shape differences between the AD and NC groups are visible 

in the anterior and posterior ends. The AD group has the fattest ends, and 

the NC group has a similar trend in turning fatter with aging but at a much 

slower pace than the AD group. 

From Fig. 10 (ii), for the left hippocampus, we observe the following patterns: 

• The AD group has the smallest mean surface area all the time from 60 to 

90 years old, followed by the MCI group; 

• The surface area tends to shrink with age in most of the time for all three 

groups. Between 65 and 80 years old, the AD group shrinks the fastest. 

The shrinkage speeds of different groups converge at around 82 years old. 

Given the significant acceleration of the AD group’s shrinkage speed from 
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60 to around 70 years old, it seems that the hippocampal atrophy happens 

much more rapidly for the AD group. 

• The atrophy or shrinking happens mainly at the posterior end for all three 

groups. The posterior end contains a mixture of several essential sub-

fields, including CA1, CA1, CA2, and CA4 (DeKraker et al., 2020). The AD 

group has the sharpest posterior end (severest atrophies), and the NC 

group deforms the least with aging. 

Overall, normal aging, MCI, and AD have a similar effect on the subcortical structure. At 60 

years old, the AD group already has a significant shape difference in hippocampi compared 

with normal controls. However, most subjects were diagnosed with AD after 60 years old, 

indicating that subcortical brain atrophy may happen long before the clinical diagnosis 

(Coupé et al., 2019). 

Shape-trajectory-on-scalar Regression Analysis: 

We are interested in understanding the effects of some predictors of interest on the variability 

in subcortical shape trajectories by using the ADNIGO2 data set for both the left ventricle 

and left hippocampus. We included gender, marriage status, education years, diagnostic 

status (NC, MCI, AD), and ApoE4 type (type 0: e3/e3, type 1: e3/e4, type 2: e4/e4) as 

covariates of interest. The whole data were split into training (80%) and testing (20%). The 

training data were used to fit continuous surface trajectories and perform the shape-trajectory-

on-scalar regression. We then conducted two sets of analyses: (i) shape prediction accuracy 

evaluation using the test data; and (ii) controlling the other covariates, only change one 

covariate to explore its effect on the surface trajectory. 

Figure 11 shows the result for the first set of analyses. After training the regression model, we 

used the covariates in the testing data to predict surface trajectories. To evaluate the 

prediction accuracy, we defined a metric named average prediction error (APE): 

1

ˆA P E (1 / ) ( ( ) ( )) ,

i
m

i i i ij i i j

j

m f t f t



   where ( )
i i j

f t  is the observed surface at time point tij for 

subject i, and ˆ ( )
i i j

f t  is the predicted surface using the regression model. Note that the 

regression model only predicts ξijk, we need to use these ξijks’ to recover the PC score 

trajectories, and then the surface trajectories. We compared the regression model with a 

baseline model that uses the mean trajectory f


 to predict every subject’s surface trajectory 

ˆ
i

f . Figure 11 (a) presents the percentage of APE improvement compared with the baseline 

model. Figure 11 (b) presents some examples of ( )
i i j

f t  (original surface), ˆ ( )
i i j

f t  

(reconstructed surface based on the regression model), and ( )
i j

f t


 (mean surface). The 

results clearly indicate that the regression model explains part of the variation in the surface 

trajectories and gives better prediction than the baseline model. 

Next, we explore how some covariates of interest would affect the shape trajectory of either 

the left ventricle or hippocampus. Figure 12 (i) presents some results for the left ventricle. In 
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the sub-panel (a), we show the predicted area trajectories and PC1 score trajectories by letting 

gender   female (0), marriage status   married (1), education years   16, and ApoE type = 

1 (e3/e4), and varying the diagnosis status to be AD, MCI, and NC. Comparing the AD group 

with the MCI and NC groups, we can see that in the AD group the left ventricle tends to be 

larger and moves along the positive direction of the first shape PC. A similar analysis is 

performed in the sub-panel (b) by varying the ApoE4 types. We observe that type 2 (with two 

e4 alleles) has a pretty different effect than types 0 and 1. Specifically, subjects having two e4 

alleles tend to have larger left ventricle and more deformation along the first shape PC 

direction. The sub-panel (c) shows the reconstructed shape trajectories for varying the 

diagnosis status to be AD, MCI, and NC. We observe that the AD status has more effect on 

the left ventricle shape trajectory compared with the MCI, and the AD is making the ventricle 

fatter. Figure 5 (c) presents how an increasing PC1 score changes the ventricle shape. 

Figure 12 (ii) shows a similar set of analyses for the left hippocampus. The sub-panel (a) 

shows how diagnosis status changes the predicted area and PC1 score trajectories. We see 

that AD makes the hippocampus smaller and changes the shape mainly along the positive 

PC1 direction. The sub-panel (b) shows how ApoE4 type changes the predicted area and PC1 

score trajectories. We observe that the double e4 alleles have a shrinking effect on the 

hippocampus’s size and change the shape along the positive PC1 direction. Existing studies 

also found that double e4 alleles have significant effect to the volume and shape change in 

aging (Striepens et al., 2011; O’Dwyer et al., 2012; Li et al., 2016). The sub-panel (c) shows 

the predicted shape trajectories by varying the diagnosis status, and we see that compared 

with NC, the AD status contributes to the shape change at the posterior end. Moreover, the 

difference between NC and MCI is much less the difference between NC and AD. 

5 Discussions 

This paper introduces a comprehensive LESA framework for statistically analyzing 

longitudinal brain subcortical regions. LESA contains five major components, including 

subcortical surface extraction, elastic shape analysis, principal components analysis (PCA) of 

shapes, continuous shape trajectory fitting, and shape-trajectory-on-scalar regression. We 

then applied LESA to study the ADNIGO2, HCP, and OpenPain data sets with subjects 

ranging from 20 to 90 years old and demonstrated several key properties and applications of 

LESA. First, we illustrated that the elastic shape analysis and PCA in LESA are efficient in 

creating low-dimensional representations of each shape surface, making statistical modeling 

much more straightforward. Next, we solved the challenge of estimating a continuous shape 

trajectory from super sparse longitudinal observations using two advanced functional data 

analysis techniques - mixed-effects model and PACE. The PACE outperforms the mixed-

effects model in the three data sets due to its flexibility and parsimonious representation of 

the longitudinal data. Another advantage of LESA is that each shape trajectory is eventually 

represented as a low-dimensional vector with uncorrelated elements (under the PACE 

model). Consequently, a simple shape-trajectory-on-scalar regression can be developed and 

applied to study the shape change in ADNI data. The results clearly show that AD has strong 

adversarial effects on the ventricle and hippocampus. 

Applying LESA to the three data sets (totally, 2275 subjects and 9628 shape surfaces), we 

studied the developmental shape trajectories of left ventricle and left hippocampus in the life-

span from 20 to 90 years old. We found that shape change (the atrophy) of these subcortial 

regions starts very early (~30 years old) and speeds up after 60 years old. Moreover, the AD 
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further speeds up the atrophy compared with normal aging between 60 and 70 years old. The 

use of LESA allows us to accurately identify the location of the shape change on the 

subcortical surfaces. For the left hippocampus (see Figure 10), the atrophy mainly happens at 

the posterior end, which includes several essential sub-fields, including CA1, CA1, CA2, and 

CA4 (DeKraker et al., 2020). Moreover, the regression component of LESA estimate the 

covariates’ effect to the surface trajectory. Applying LESA reveals that the AD status and 

genetic risk (two ApoE4 alleles) all contribute to more severe atrophy of subcortical regions 

in the aging process. 

Although we focus the analysis results of the left ventricle and hippocampus, those for the 

right ventricle can be found in the Supplementary Materials (Supplementary Figures 5-9). 

These results are similar to those of left surfaces. In conclusion, LESA is an easy but 

powerful tool for analyzing longitudinal subcortical surfaces. Implementation of LESA and 

detailed documentation can be found at https://wuyx5.github.io/LESA/. 
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ventricle and hippocampus. 
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Fig. 1 An example of three different representations of lateral ventricle and hippocampus 

across four time points for a randomly selected subject. The first row shows the repeated MRI 

data with segmented lateral ventricle and hippocampus and the second and third rows show 

their 3D volumes and 3D surface shapes across time, respectively. 
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Fig. 2 Panel (a) shows the age distributions of the ADNIGO2, HCP, and OpenPain data sets. 

Panels (b), (c), and (d) show the temporal information on scans for each subject in the HCP, 

OpenPain, and ADNIGO2 data sets, respectively. 
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Fig. 3 A schematic overview of LESA consisting of four key components: 1. surface 

extraction, 2. elastic shape analysis of surfaces, 3. Euclidean representation of shapes, and 

shape trajectory fitting and regression analysis. 
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Fig. 4 An illustration on how to extract a parameterized subcortical shape in LESA. 
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Fig. 5 The PCA results of the ADNIGO2’s left ventricle surfaces: (a) the Karcher mean of all 

left ventricle surfaces; (b) the cumulative percentage of variance explained by the number of 

PCs; (c) the first dominant PC direction reconstructed as 
1 1
P Cf t


 , in which the five 

shapes in the front view from left to right correspond to { 1, 0 .5 , 0 , 0 .5 ,1}t     and the color 

denotes the relative shape change; (d) surface area trajectories, and (e) 
1

P C  score trajectories. 
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Fig. 6 Comparison of the representation efficiency of the SRNF framework in LESA to that 

of SPHARM-PDM using left lateral ventricle surfaces from ADNIGO2. (a) Individual 

surface reconstruction error versus the number of PCs. (b) Total reconstruction error of all 

surfaces versus the number of PCs, and (c) percentage of performance improvement of our 

SRNF method over the SPHARM-PDM in Styner et al. (2006). 
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Fig. 7 Trajectory fitting results of LESA from the observed sparse data in ADNIGO2. In the 

first two rows, the first column shows observed sparse trajectories (for area and PC1 score), 

and the second and third columns show the continuous trajectories fitted by PACE and 

MGCV, respectively. In the third and fourth rows, we show the reconstructed mean surface 

trajectories fitted by PACE and MGCV, respectively, in which color indicates the shape 

deformation compared with the first shape and we use abbreviations, including A - anterior 

and P - posterior. 
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Fig. 8 Individual surface trajectories fitted with LESA in ADNIGO2. Panels (a) and (b) show 

the raw and fitted trajectories for the surface area and PC1 score, respectively. Panel (c) 

illustrates the reconstructed surface trajectories based on the fitted surface area and PC score 

trajectories. 
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Fig. 9 The life-span growth trajectories from 22 to 90 years old for the left ventricle and left 

hippocampus. Panels (a) and (b) show the observed sparse data and fitted mean trajectories 

(black solid line), respectively; and panel (c) shows the reconstructed life-span mean surface 

trajectories. Color on each surface indicates the surface’s deformation size compared with the 

surface at age 22 years old. 
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Fig. 10 Comparisons of shape change patterns among AD, MCI and NC using ADNIGO2 

data. (a) Mean surface area trajectories of the three groups (blue: AD; red: MCI; yellow: NC); 

(b) Changing rate of the area trajectories-calculated as 
1

1 0 0 * ( ( ) ( )) / ( )
i i i

t t t  


 ; and (c) 

reconstructed mean shape trajectories (
·

1

ˆ ( )

r

i k k

k

f t v






  ). Color on the surface represents 

shape difference compared with the NC surface at the corresponding time point. 
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Fig. 11 Evaluation of the shape-trajectory-on-scalar regression in the ADNIGO2 data. Panels 

(i) and (ii) show results for the left ventricle and the left hippocampus, respectively. Each 

sub-panel (a) shows the histogram of the percentage of improvement in prediction error when 

comparing the shape-trajectory-on-scalar regression with the baseline model. Each sub-panel 

(b) shows some examples of original sparse surface, surface reconstructed by the regression’s 

prediction, and the global mean surface. The color on the reconstructed and mean surfaces 

indicates their difference to the original surface. 
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Fig. 12 Exploration of the covariates’ effect to the surface trajectory in the ADNIGO2 data 

set. In each sub-panel (a), we fixed gender, marriage status, education years and ApoE4 type 

and varied the diagnosis status. In each sub-panel (b), we fixed the others and varied the 

ApoE4 type. Each sub-panel (c) shows the reconstructed shape trajectory by only varying the 

diagnosis status. Color on each surface represents shape deformation compared with the NC 

surface at the same age. 
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Table 1 Summary characteristics of the three data sets included in our study. 

Regions  Dataset 

Name 

Subject 

Number 

Scan 

Number 

Age Range (Median) 

(Years)  

Gender 

Ratio (M/F) 

Lateral 

Ventricle 

ADNIGO2  1045  3443  [6 0 , 9 0 ](7 4 .5 )  547/498  

 HCP  1113  1158  [ 2 2 , 3 7 ]( 2 9 )  503/610  

 OpenPain  117  429  ( 2 1, 6 9 )( 4 4 .1 2 8 8 )  65/52  

Hippocampus  ADNIGO2  974  3044  [6 0 , 9 0 ](7 4 .2 )  491/483  

 HCP  1082  1125  [ 2 2 , 3 7 ]( 2 9 )  486/596  

 OpenPain  117  429  ( 2 1, 6 9 )( 4 4 .1 2 8 8 )  65/52  
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Table 2 Mean square-root prediction errors (MSPEs) of PACE and MGCV in ADNIGO2 

 PACE  MGCV 

Area  59.7086 70.537

5 

PC1  0.0357  0.0424  

PC2  0.0248  0.0256 

PC3  0.0448  0.0526  

PC4  0.0208  0.0225  

PC5  0.0531  0.0580  

...  ...  ...  

PC Average 0.0383  0.0400  

(a) Left ventricle  

 PACE  MGCV 

Area  17.7408 

22.786

5 

PC1  0.0238  0.0239  

PC2  0.0462  0.0474 

PC3  0.0316  0.0383  

PC4  0.0695  0.0852  

PC5  0.0272  0.0293  

...  ...  ...  

PC Average 0.0350  0.0359  

(b) Left hippocampus 
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