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Abstract 

 

Objective  

 

Alzheimer's disease (AD), a common disease of the elderly with unknown etiology, has been 

bothering many people, especially with the aging of the population and the younger trend of this 

disease. Current AI methods based on individual information or magnetic resonance imaging (MRI) 

can solve the problem of diagnostic sensitivity and specificity, but still face the challenges of 

interpretability and clinical feasibility. In this study, we propose an interpretable multimodal deep 

reinforcement learning model for inferring pathological features and diagnosis of Alzheimer's 

disease. 

 

Approach 

 

First, for better clinical feasibility, the compressed-sensing MRI image is reconstructed by an 

interpretable deep reinforcement learning model. Then, the reconstructed MRI is input into the full 

convolution neural network to generate a pixel-level disease probability of risk map (DPM) of the 

whole brain for Alzheimer's disease. Finally, the DPM of important brain regions and individual 

information are input into the attention-based fully deep neural network to obtain the diagnosis 

results and analyze the biomarkers. 1349 multi-center samples were used to construct and test the 

model.  

 

Main Results 

 

Finally, the model obtained 99.6%±0.2, 97.9%±0.2, and 96.1%±0.3 area under curve (AUC) in 

ADNI, AIBL, and NACC, respectively. The model also provides an effective analysis of multimodal 

pathology and predicts the imaging biomarkers on MRI and the weight of each individual 

information. In this study, a deep reinforcement learning model was designed, which can not only 

accurately diagnose AD, but also analyze potential biomarkers. 

 

Significance 

In this study, a deep reinforcement learning model was designed. The model builds a bridge between 

Page 1 of 27 AUTHOR SUBMITTED MANUSCRIPT - JNE-104976

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

mailto:liugh@nankai.edu.cn


2 
 

clinical practice and artificial intelligence diagnosis and provides a viewpoint for the interpretability 

of artificial intelligence technology. 

 

Keywords: deep learning, pathological analysis, biomarker prediction, interpretable artificial 

intelligence, reinforcement learning 

 

 

 

Abbreviation 

AD=Alzheimer’s disease; PET=positron emission tomography; MRI=magnetic resonance imaging; 

MMSE=mini mental state examination; AI=artificial intelligence; ROI=region of interest; ADNI= 

Alzheimer's disease neuroimaging initiative dataset; AIBL=Australian imaging biomarker and 

lifestyle flagship study of aging; NACC= National Alzheimer's coordinating center; t-SNE=t-

distributed stochastic neighbor embedding; CS-MRI=Compresses sensing MRI; HQ-MRI=High-

quality MRI; MDP=Markov decision process; DRL=Deep reinforcement learning; 

A2C=Advantage actor critical algorithm; DDPG=Deep deterministic policy gradient algorithm; 

FCN=Full convolution neural network; MCC=Matthews correlation coefficient; NL=Normal; 

AUC=Area under curve; ROC=Operating characteristic curve; DPM=Disease probability of risk 

map; CNN=Convolution neural network; SS=Sensitivity-specificity curve. 

 

 

Footnotes 

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI 

contributed to the design and implementation of ADNI and/or provided data but did not participate 

in analysis or writing of this report. A complete listing of ADNI investigators can be found at 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

 

 

 

1. Introduction 

 

Alzheimer's disease (AD) is a progressive neurodegenerative disease with a hidden onset and 

unknown etiology [1]. Currently, there is an increasing number of AD patients because of the aging 

population, the younger trend of this disease, and other reasons, so it is urgent to find an efficient 

way to fight against AD [2,3]. 

 

In the current scheme, cerebrospinal fluid biomarkers, PET amyloid, and tau imaging in the 

detection of AD pathology are difficult to be widely used in actual clinical process [4-7]. In addition, 

in clinical applications, the imaging biomarkers revealed by MRI still lack specificity in the 

diagnosis of AD [8-11]. Experienced neuroscientists can only control the sensitivity range of 

70.9%–87.3% and the specificity range of 44.3% - 70.8% according to the comprehensive 

information of patients, such as history, MRI, and bedside Mini Mental State Examination (MMSE) 

[12]. Therefore, if we can propose an AD auxiliary diagnosis method with the following three 
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functions simultaneously, it will be of positive significance to improve the level of AD diagnosis 

and further reveal the pathogenesis of AD. (1) According to the comprehensive information of 

patients, the cognitive state of patients can be accurately and robustly judged. (2) The image 

biomarkers of AD were automatically analyzed according to a large number of clinical practices. (3) 

According to clinical practice data, the importance of different clinical information for the diagnosis 

of AD was automatically analyzed, such as MMSE, age, and gene information. At the same time, 

the model can also speed up the patient's medical treatment process and reduce the scan time to 

obtain high-quality MRI. 

Artificial intelligence (AI) technology has made a great breakthrough in medical information 

analysis, but it still faces challenges when applied in clinical practice [13-18]. First, some AI models 

were trained and tested only in the same dataset. Owing to the lack of additional multi-center 

datasets, the real performance of the model is difficult to evaluate effectively. Second, the potential 

impact of the original data distribution on the diagnosis results is rarely considered, and the accuracy 

of the model prediction may be falsely high. Third, due to the uncertainty of the pathogenesis of 

AD, multi-modal information including individual differences still needs to be further analyzed. 

Some studies have focused on the single modal of AD diagnostic methods, such as MRI, PET, and 

gene information. The individual characteristics of patients are ignored when only the image 

information is used. The heterogeneity of brain symptoms was ignored when only the biological 

information was studied. Fourth, the AI model has black box characteristics, and its interpretability 

is still facing challenges [19, 20]. Fifth, there is a gap between clinical practice and an ideal research 

environment. The acquisition of MRI data is usually very time-consuming, and the patient needs to 

stay still during the scan. This not only reduces the patient's sense of experience, but also makes it 

difficult to ensure that any image obtained is of high quality. Some AI models use data extracted 

from the zero-filled k-space or original compressed k-space data to obtain reconstructed images. 

Although this method can improve the efficiency of MRI image acquisition and improve image 

quality, the process cannot be explained. This makes some pathological features may be subtle 

changes in the process of reconstruction, which makes the clinical data unreliable. Sixth, the 

interpretability of the multimodal model has not been solved. When mining medical image features, 

most models also work around the rule region of interest (ROI), which cannot accurately predict the 

disease risk of each point in the brain. The interpretability of clinical information is usually ignored, 

and the impact of each clinical information on the diagnosis results also needs to be studied. These 

problems prevent AI from being embedded in clinical practice. 

 

To overcome these obstacles, this paper proposes a new AI framework that integrates reinforcement 

learning and deep learning, as shown in Fig 1. The proposed network has the following functions: 

(1) According to the multimodal comprehensive information to accurately judge the health condition 

of patients. (2) This network can explain the process of MRI reconstruction at the pixel level and 

has higher reliability than the black box model. (3) The disease probability of the risk map (DPM) 

of AD was generated based on brain MRI. Predicting the disease risk of each pixel in the MRI image, 

instead of using the ROI set in advance, increases the accuracy of pathological analysis of the model, 

and shows the evidence of the model judging the health status from the medical image. (4) The 

degree of attention of the model to different clinical data (such as age, MMSE, etc.), which shows 

the evidence of the model judging health status from the aspect of physiological parameters. Three 

datasets were used to train and evaluate the model to evaluate the performance of the model more 
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objectively. The above datasets include the Alzheimer's Disease Neuroimaging Initiative dataset 

(ADNI) [21], Australian imaging biomarker and lifestyle flagship study of aging (AIBL) [22], and 

National Alzheimer's Coordinating Center (NACC) [23]. At the same time, t-SNE was used to draw 

the data distribution map to avoid the potential impact of different original data distributions on the 

diagnosis results [24, 25]. 

 

 
Fig. 1 The schematic diagram of deep learning framework (CS-MRI means compressed sensing 

MRI. HQ-MRI means high-quality image. AD means Alzheimer's disease. Step (A) designed in this 

paper is the process of compressed sensing MRI reconstruction. In the deep reinforcement learning 

model, each pixel of CS-MRI image is regarded as an agent, and the pixel matrix of the whole image 

is regarded as the model state. DRL model will select a filter for each pixel to improve its own pixel 

value according to the pathological characteristics, and then use the reward function to evaluate the 

improvement degree of the image. Finally, the high-quality image can be obtained. Step (B) is the 
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process of training convolutional classification network. We randomly sampled 47 * 47 * 47 cubes 

on HQ-MRI, and then these pixels were input into the traditional convolution classification model. 

Step (C) is the process of generating Alzheimer's disease risk map. The classifier of above 

convolution classification network is replaced by convolution kernel, which is transformed into 

FCN. The whole brain pixel level 3D AD risk map can be obtained by inputting HQ-MRI into FCN. 

Step (D) is a multimodal diagnosis model based on attention mechanism. The 3D risk map and 

clinical information are input into the model to obtain the diagnosis results. Attention mechanism 

can analyze biomarkers.) 

 

2. Materials and Methods 

2.1 Data Description 

This was a retrospective study. The data used in the experiment included the patient's head MRI and 

clinical parameters (age, gender, MMSE, and ApoE4). All data can be found in ADNI, AIBL and 

NACC. Demographic information is shown in Table 1. 

 

Table 1 Demographic Information (AD means Alzheimer's disease. NL means Normal.) 

Dataset ADNI AIBL NACC 

Item 
NL 

(n=226) 

AD 

(n=187) 
p 

NL 

(n=395) 

AD 

(n=72) 
p 

NL 

(n=269) 

AD 

(n=200) 
p 

Age(years) 

[range] 

76.0 

[60,90] 

75.4 

[55,91] 

0.311 
72.3 

[60,92] 

73.4 

[55,93] 

0.263 
70.4 

[55,94] 

75.3 

[55,95] 

<0.0001 

Gender (Male,n) 

[ratio] 

117 

[51.8%] 

97 

[51.9%] 
0.984 

169 

[42.8%] 

29 

[40.3%] 
0.693 

91 

[33.8%] 

101 

[50.5%] 
<0.0001 

MMSE(Ave) 

[range] 

29.1 

[25,30] 

23.4 

[18.28] 

<0.0001 
28.7 

[25,30] 

20.4 

[6,28] 

<0.0001 
28.9 

[20,30] 

22.5 

[4,30] 

<0.0001 

APoE4 

(positive,n) 

[ratio] 

58 

[25.7%] 

119 

[63.6%] 
<0.0001 

30 

[7.6%] 

19 

[26.4%] 
0.001 

84 

[31.2%] 

173 

[86.5%] 
<0.0001 

 

Data from 1,349 patients were used to construct and test the AI model. The inclusion criteria were 

as follows: age ≥ 55 years, T1 weighted, 1.5T MRI. The acquisition time of MRI should be within 

6 months of diagnosis. In our work, some outlier samples were excluded, including brain tumor, 

stroke, brain injury, severe depression, Parkinson's disease, epilepsy, Lewy body disease, non-

Alzheimer degenerative dementia, mixed dementia, and severe systemic diseases. The exclusion 

criteria were similar to the ADNI criteria, and the same criteria were used to screen the AIBL and 

NACC datasets. The samples used in this study had MRI scans, age, sex, MMSE, APoE4, and 

samples without any information were excluded. Other parameters of MRI are not strictly limited. 

The serial number of cases used in this paper are shown in the supplementary material Table S1-S3. 

Through the file name, more accurate parameters of the corresponding MRI can be obtained from 

the relevant institutions (ADNI, AIBL, NACC). Such as pulse sequence, acquisition matrix, FOV, 

TR, TE, etc.  

 

The ADNI dataset was divided into three parts: (1) Training sample: 60% of the ADNI data was 

used to update the global parameters. (2) Tuning samples: 20% of the samples were used to adjust 

the super parameters. (3) Test sample: The remaining 20% of the samples were used to test the 
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performance of the model. To verify the robustness and generalization ability of the model, two 

additional datasets (AIBL and NACC) were also used to evaluate the final performance of the model. 

 

2.2 MRI Image Pretreatment 

 

In order to extract the pathological information contained in MRI images more effectively, all MRI 

images used in this study were preprocessed. The FLIRT toolkit was used to register MRI images. 

MNI152 was used as the registration template, and the slice thickness was 1 mm. All registered MRI 

images were manually screened again, and samples with poor registration effects were discarded. It 

should be noted that all discarded samples were not included in the above demographic statistics. 

The above statistics only include all samples that meet the requirements. 

 

After obtaining all registered MRI images, we standardized their pixel values. After standardization, 

the original data are converted into dimensionless data, eliminating the impact of different pixel 

ranges caused by different measurement conditions on the performance of the model. In other words, 

the effects of different MRI parameters on model performance are eliminated. The assignment 

method was used to eliminate singularity. All pixels less than - 1 are assigned - 1, and all pixels 

greater than 2.5, are assigned 2.5. After the singularity of the MRI image was eliminated, we further 

eliminated the background of the MRI image, and all the pixels outside the skull were set to − 1.  

 

2.3 Deep Reinforcement Learning (DRL) 

 

Compressed sensing technology can speed up the efficiency of MRI image acquisition and reduce 

the scanning time for patients. Due to frequency domain down-sampling, compressed sensing MRI 

(CS-MRI) is usually blurry. Therefore, CS-MRI needs to be reconstructed to obtain high-quality 

MRI images (HQ-MRI) for diagnosis. HQ-MRI is used to generate DPM. Finally, DPM and patient 

clinical and genetic information are used to diagnose AD. Simulate the acquisition of CS-MRI by 

down-sampling the raw T1 image. Here, Cartesian mask with 50% sampling ratio is used to simulate 

down-sampling columns in k-space. In order to reconstruct MRI, classical methods usually use 

sparsity constraints, discrete wavelet transform, dictionary learning, etc. Although these classic 

algorithms have achieved good performance, they still face challenges. One of them is the 

personalized processing of image different features. It is difficult to design different processing 

methods for many different image features at the same time. For example, the method of designing 

filters is usually difficult to automatically use different filters for different pixels simultaneously. 

Deep learning methods show the potential to solve the above problems. Existing deep learning 

methods usually input low quality data into the model and obtain high-quality reconstructed images. 

Although the reconstruction algorithm based on deep learning can achieve better performance, its 

interpretability still faces challenges. This black box feature may cause potential risks. For example, 

some small anatomy has changed and it is difficult to be found. And the process of AI model 

improving image quality is also unknown. In order to solve the above problems, a model based on 

a reinforced deep learning algorithm is designed. In this study, a deep reinforcement learning 

framework was designed to reconstruct CS-MRI to make the reconstruction process interpretable, 

speed up the acquisition of MRI in clinical practice, and improve the quality of MRI images. This 

principle is shown in Fig 1 (A). The image reconstruction process can be regarded as a Markov 
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decision process (MDP). In this MDP model, each pixel corresponds to an agent that is used to 

model multi-agent problems. The input image of each time step is regarded as the state of the DRL 

model. After acquiring state 𝑠𝑡 at time step t, each agent selects an action from the action space to 

change its own pixel value, and receives a reward value 𝑟𝑡, which is used to evaluate the degree of 

improvement of the image. Compared with the traditional methods, this study designs a reward 

function that considers both the MRI content and the improvement of MRI features, as shown in the 

Equation 1.  

 

( )(0) ( ) (0)

(targert ) (targert ) (targert )

( )

(targert )

0.1 T

T

R MRI MRI MRI MRI MRIF MRIF

MRIF MRIF

= − − − + −

− −
     (1) 

Where, 𝑀𝑅𝐼(0) means the MRI image should be reconstructed at the initial time step. 𝑀𝑅𝐼(𝑡𝑎𝑟𝑔𝑒𝑡) 

means target MRI image. 𝑀𝑅𝐼(T) represents the reconstructed MRI image at time step T. 𝑀𝑅𝐼𝐹(0) 

means the features of MRI image should be reconstructed at the initial time step. 𝑀𝑅𝐼𝐹(𝑡𝑎𝑟𝑔𝑒𝑡) 

means the features of target MRI image. 𝑀𝑅𝐼𝐹(T) represents the features of the reconstructed MRI 

image at time step T. Here, the VGG16 model pre-trained by Google is used to extract MRI features. 

Remove the classification layer of the VGG16 model and input the MRI image to obtain image 

features. 

 

In this study, CS-MRI is generated using Cartesian sampling in k-space. Cartesian sampling is a 

Gaussian distribution with a sampling rate of 50%. Cartesian mask with 50% sampling ratio is used 

to simulate down-sampling columns in k-space. The DRL model is divided into three parts: the 

feature extraction module, policy selection module, and parameter optimization module. The overall 

structure of the model is shown in the Supplementary Material Figure S1. The feature extraction 

module is realized by the convolution network, which is used to extract the potential features of the 

image. In the above process, the spatial resolution of the image remained unchanged. The core of 

the policy selection module is the advantage actor critical algorithm (A2C), which aims to generate 

state-to-action mapping [26]. The output of the feature extraction module is sent to the strategy 

selection module, and the strategy selection module outputs the probability distribution of actions. 

The probability distribution generated was evaluated using the value calculation part. The core of 

the parameter optimization module is the deep deterministic policy gradient (DDPG) algorithm [27]. 

After the policy selection module selects the action for each agent, a parameter optimization module 

is used to optimize the parameters of the filter. Finally, the value calculation part reevaluates the 

parameter optimization module. The loss function of each module is shown in Equation 2-6.  

 

𝐿𝑆𝑆 = 𝐿𝜋 + 0.25𝐿𝑉𝐶 + 0.1𝐿𝐸                          (2) 

The loss function of the DRL model is 𝐿𝑆𝑆. 𝐿𝜋 is shown by Equation 3. 𝐿𝑉𝐶 is shown by Equation 

4. 𝐿𝐸 is shown by Equation 5. 

𝐿𝜋 = − 𝑙𝑜𝑔 𝜋 (𝑎|𝑠; 𝜃𝑠, 𝜃𝑓) (𝑅 − 𝑉(𝑠; 𝜃𝑣; 𝜃𝑓))                   (3) 

𝐿𝜋represents the loss of the strategy selection module part. 𝑎 represents the selected action (filter). 

𝑠  represents the model state. 𝜃𝑠  represents the parameters of strategy selection module. 𝜃𝑓 

represents the parameters of feature extraction module. R is reward. V is value which is the output 

Page 7 of 27 AUTHOR SUBMITTED MANUSCRIPT - JNE-104976

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



8 
 

of the value calculation section. 𝜃𝑣 represents the parameters of value calculation section. 

𝐿𝑉𝐶 = ‖𝑅 − 𝑉(𝑠; 𝜃𝑣; 𝜃𝑓)‖
2
                             (4) 

𝐿𝑉𝐶represents the loss of the value calculation section. R is reward. V is value which is the output 

of the value calculation section. 𝜃𝑣  represents the parameters of value calculation section. 𝜃𝑓 

represents the parameters of feature extraction module. 

 

𝐿𝐸 = ∑ 𝜋(𝑎|𝑠; 𝜃𝑠, 𝜃𝑓) 𝑙𝑜𝑔 𝜋 (𝑎|𝑠; 𝜃𝑠, 𝜃𝑓)𝑎                     (5) 

 

𝐿𝐸represents the negative entropy loss. It is used to encourage action exploration. 

 

 𝐿𝑃𝑂 = −0.5𝑉(𝑠, 𝜃𝑝)                            (6) 

 

The action here refers to the filter, and the action space used in this study is shown in Table 2. At 

time t, an image is input as state 𝑠𝑡, and the output image is 𝑠𝑡+1. The DRL model used in this 

study included three-time steps for each episode. 

 

Table 2 Strengthen the Learning Action Space in Deep Reinforcement Learning 

Action size Action size 

nothing - Sobel filter(down) 3*3 

Laplace filter 3*3 Box filter 5*5 

Unsharp masking 5*5 Bilateral filter 5*5 

Sobel filter(left) 3*3 Median filter 5*5 

Sobel filter(right) 3*3 Gaussian filter 5*5 

Sobel filter(upper) 3*3 Gaussian_s filter 3*3 

 

The number of training iterations was 30,000. When the strategy selection module is trained, the 

parameter optimization module is frozen, otherwise, strategy selection module is frozen. The model 

is iterated twice, and the two modules above are alternately. The model optimizer was Adam. The 

learning rate attenuation method was used in the training process. ReLU was used as an activation 

function for the entire network. The experimental platform was a workstation with NVIDIA GTX 

1080Ti GPU. 

 

2.4 Full Convolution Neural Network (FCN) 

 

This part is used to generate the whole-brain AD DPM. Displaying diagnostic evidence can improve 

the interpretability of the AI model [28, 29]. The model construction includes two steps: building a 

convolution classification model and a 3D DPM generation model, as shown in Fig. 1 (B) and (C). 

The working principle of this part is shown in Fig 2.  
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Fig. 2 Schematic diagram of building a fully convolutional neural network to obtain DPM and 

matthews correlation coefficient distribution maps (The size of each HQ-MRI is 181*217*181. HQ-

MRI is randomly sampled by cubes, and each HQ-MRI is randomly sampled 5000 times. The cube 

pixel block is input into the convolutional neural network for binary classification. According to the 

classification results, we can calculate the matthews correlation coefficient (MCC) score of each 

part of the brain. The MCC score reflects the model's attention in different brain regions when 

diagnosing AD. After obtaining a satisfactory classification model, the convolutional block is frozen, 

and the dense layers are replaced with convolutional layers. The parameters of the original fully 

connected layer are filled into the new 3D convolutional layer. The parameter of dropout is 0.1. 

Here, the FCN construction is completed. The risk map of the whole brain can be obtained) 

 

The convolution classification model needs first to sample 5000 voxel blocks with a size of 47 × 47 

× 47 from each original image with a size of 181 * 217 * 181 and then to be trained by the above 

voxel blocks with the classification function softmax. The output of the classification model is 

health status. The MCC was used to weigh the degree of model attention on different voxel blocks 

reflecting the different brain regions while diagnosing AD. Through cube sampling and statistics of 

the corresponding MCC, the importance of any part of the brain to the diagnosis of AD can be 

determined. The higher the MCC score of the brain domain, the more important it is to diagnose 

AD. The principle of MCC is shown in Equation 7. 

 

 

MCC =
[(TP×TN)−(FP×FN)]

√(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
                     (7) 

Where, TN means true negative, TP means true positive, FN means false negative and FP means 

false positive.  

 

The 3D DPM generation model is based on the convolution classification model described above. 

The output of this model is a convolution block with dimensions of 2 × 1 × 1 × 1. The 1 × 1 × 1 

convolution block represents a 3D voxel. The number 2 of the block refers to the two channels of 

AD and normal (NL). Therefore, the AD DPM of the whole brain region can be obtained by 

inputting a 3D MRI image. The optimizer of this model is Adam, and the training technique of this 
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model is the learning rate decay method. LeakyReLU is the activation function of the entire network, 

and dropout technology is used to increase the generalization ability of the model.  

 

2.5 Multi-modal Diagnosis Model 

 

In this part, the DPM of high MCC score brain regions and individual clinical information are used 

to comprehensively judge the health status of patients using a multilayer perceptron network and 

explain the diagnosis basis of the model. As shown in Fig 1D, we embed the attention mechanism 

in the multilayer neural network. Through the attention map, we can obtain the attention degree of 

the model to different clinical information explaining the parameter weights for AD diagnosis. The 

individual clinical information used in this study included age, gender, MMSE score, and APoE4. 

A schematic diagram of the model is shown in Supplementary Material Figure S2. 

 

 

3 Results 

 

This section describes the performance of the model in diagnosing AD. In addition, the 

interpretability of each part is presented. This includes an interpretable image reconstruction process, 

interpretable image diagnosis process, and interpretable biological information diagnosis process. 

 

3.1 Interpretable MRI Reconstruction Process 

 

The reinforcement deep learning model designed in this study can explain the reconstruction process 

of CS-MRI. Here, we use different colors to represent different filters. If the relevant agent is 

processed by a certain action, the pixel represented by the above agent is overlaid by the color 

corresponding to the filter. Traditional AI methods usually input low-quality images into the model, 

and then output high-quality images. Although these methods can achieve good performance, 

researchers are not sure how AI reconstructs images. At the same time, the above situation also has 

hidden dangers, that is, in the process of reconstructing the image, some subtle pathological features 

may have been changed. The model in this paper can design a reasonable filter for each pixel 

according to the image characteristics, and visualize the distribution of different filters. Different 

colors were used to represent different certain actions, so that relevant researchers can intuitively 

observe how the model reconstructs the MRI. At the same time, it is also convenient to judge 

whether the above reconstruction process is reasonable and whether the important pathological 

features have undergone substantial changes, which increases the interpretability and reliability of 

the model to a certain extent. Compared with the traditional deep learning model with black box 

characteristics, this model has higher interpretability and reliability, as shown in Fig 3. 
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Fig. 3 Example of filter distribution on pixels. (Different colors represent different types of filters. 

where a, d and g represent target images. b, c, e, f, h and i show Laplace filter, unsharp filter, 

sobel_left filter, sobel_right filter, box filter and subtraction filter, respectively.) 

 

In Fig 3, the DRL model can explain the individual filter for each pixel of the CS-MRI. Different 

filters are marked with different colors. In other words, the DRL model can show which processing 

method is selected for each pixel values. For example, the blue pixels are shown in Fig 3b represents 

the pixels processed using the Laplace filter. The well-trained DRL model can select the filter 

according to the anatomical structure of the brain. The filter with contrast enhancement function is 

mainly used to optimize regions such as the skull and cerebrospinal fluid as shown in Fig. 3b and 

Fig. 3c. Sobel_ Left and sobel_right filters strengthen the left and right sides of the skull, as shown 

in Fig. 3e and Fig 3f. In this way, researchers in related fields can intuitively judge whether the 

model reconstruction strategy is reasonable. Fig 4 shows the distribution of Gaussian filters with 

different time steps. It can be found that as the quality of the picture improves, the frequency of use 

of the Gaussian filter is also decreasing. Through reinforcement learning to visualize the 

optimization strategy of each step of the model, the interpretability of the model is improved to a 

certain extent.  
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Fig. 4 Distribution of Gaussian filters at different time steps 

 

We also compared the performance of our model with other advanced models on the same dataset, 

such as DAGAN [30] and Unet [31]. Peak signal-to-noise ratio (PSNR) and structural similarity 

index (SSIM) are used to evaluate the model. The principles are shown in Equation 8-9. 

 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝑥𝜇𝑦 + 𝑐1)(𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2+𝜎𝑦

2 + 𝑐2)
                                          (8) 

Here, 𝜇𝑥 and 𝜇𝑦 represent the average of the two images respectively. 𝜎𝑥 and 𝜎𝑦 represent the 

standard deviation of the two images respectively. 𝜎𝑥𝑦  represents the covariance between two 

images. 𝑐1 and 𝑐2 are constants. 

 

𝑃𝑆𝑁𝑅 = 20log10 (
𝑀𝐴𝑋

√𝑀𝑆𝐸
)                                                      (9) 

MAX means maximum value of pixels. MSE means mean square error. The performances of the 

models in the three test sets are presented in Table 3. 

 

Table 3 Performance of Different Algorithms in Different Test Sets 

 PSNR SSIM  PSNR SSIM  PSNR SSIM 

DAGAN   Unet   DRL(our)   

ADNI 36.01 0.98  36.77 0.99  36.78 0.98 

AIBL 35.27 0.97  35.98 0.97  36.03 0.98 

NACC 35.96 0.97  36.69 0.98  36.76 0.98 

 

 

We randomly selected samples from three test sets to show the effect of the DRL model on MRI 

image reconstruction, as shown in Fig 5. 
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Fig. 5 Results of CS-MRI reconstruction by deep reinforcement learning (Figure a, b and c show 

the reconstruction of three random CS-MRI samples randomly obtained from ADNI, AIBL and 

NACC. Zero represents the experimental results of the traditional zero filling method, and DRL 

represents the experimental results of the reinforcement deep learning framework in this paper. 

Mask shows the image information of Cartesian mask. Target represents the raw data. It also is 

ground truth) 

 

According to the experimental results, the quality of HQ-MRI is higher than CS-MRI, so HQ-MRI 

is more suitable for the diagnosis of AD. The performance of using CS-MRI and HQ-MRI to 

diagnose AD is shown in Supplemental Material Figure S3 and S4. 

 

3.2 The Generation of 3D DPM of Brain 

 

The AD DPM of the whole brain region can be generated quickly. AD DPM at the pixel level can 

help neurologists find early pathological features in the patient’s brain and provide evidence of early 

AD diagnosis. CS-MRI was reconstructed to generate HQ-MRI, and HQ-MRI was used to generate 

3D DPM, as shown in Fig 6. Fig 6a shows the DPM of AD and NL in each test set, with red for 

high-risk areas and blue for low-risk areas. In the three test datasets, it is obvious that the high-risk 

area (red) of the AD sample is very obvious, while the NL sample is dominated by the low-risk area 

(blue). High-risk area refers to the area where the inferred probability of Alzheimer's disease is 
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greater than 0.5, and low-risk area refers to the area where the inferred probability is less than 0.5. 

The color depth has a linear relationship with the probability of brain diseases. Fig 6. b-d shows the 

DPM of different MRI slices of the same AD sample from axial, coronal, and sagittal images. Fig 

6. e-g shows the DPM of different slices of the same NL sample. The experimental results show that 

the model can effectively predict the AD risk at any position of the brain according to MRI images, 

and the model can be used for pathological interpretation. To a certain extent, the model in this paper 

can assist neurologists to discover more pathological features of AD. At the same time, the model 

can provide the basis for the diagnosis of AD, and it can also allow relevant clinicians to judge 

whether the AI diagnosis result is reasonable. 

 

Fig. 6 Disease probability of risk map of different subject. (The DPM of different health samples 

from different datasets is shown in the chart a of DPM of different health conditions from axial, 

coral and digital. Blue represents low risk, red for high-risk. Red refers to the area where the inferred 

probability of Alzheimer's disease is greater than 0.5, and blue refers to the area where the inferred 

probability is less than 0.5. The DPM highlights the anatomical areas of the brain associated with 

AD pathology. Figure 5. b-d shows DPM of different MRI sections of the same ad sample from 

axial, coral and digital. Figure 3. e-g shows the DPM of different MRI sections in NL samples.) 

 

To evaluate the anatomic consistency of the AD regions concerned by the model, the MCC heat map 

was established. Fig 7a shows the distribution of the MCC scores in different datasets. The MCC 

thermogram can show which pathological changes play an important role in the diagnosis of AD, 

indicating that the model has the ability to analyze the disease from the perspective of anatomy and 

pathology. Fig 7b shows that the model gives different attention to different morphological positions. 

The experimental results show that the model has focused attention on the temporal lobe, 

hippocampus, cingulate cortex, corpus callosum, parietal lobe, and frontal lobe. The region of 
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interest of the model is similar to the diagnosis basis of the clinician. This proves the interpretability 

of the method proposed in this paper to a certain extent. For morphological information that is not 

helpful in the diagnosis of AD, the model does not show great interest, such as the skull and cervical 

spine. This helps neurologists to observe neuropathological changes in AD patients.  

 

 

 

Fig. 7 Distribution of MCC scores of brains in different data sets (Figure 6a shows the Matthew's 

correlation coefficient (MCC) of all regions of the brain in different dataset samples, which shows 

the brain area that the AI model focuses on. Figure 7a shows three lines of images from top to bottom, 

corresponding to axial, national and digital stacks. Figure 7b shows the distribution of MCC scores 

for different MRI sections in the same sample.) 

 

In order to further evaluate the rationality of the model, we also compared the DPM generated by 

different methods. The attention mechanism is proven to be an effective method for processing 

medical images [32-34]. Therefore, in addition to the cube sampling method proposed in this paper, 

this paper also constructs an attention-driven model to generate DPM. More theoretical analysis can 

be found in [32-34]. The results as shown in Fig 8.  

 

 

Fig.8 DPM generated by different methods. (a is MRI of random case. b is the DPM generated by 

model designed in this paper. c is the DPM generated by attention model. The attention mechanism 

model refers to a three-dimensional image attention mechanism model. The model takes the entire 

3D MRI as input and then generates DPM through a 3D attention full convolutional network.) 

 

As shown in Fig. 8, both models believe that the frontal lobes and temporal lobes have a higher risk 

Page 15 of 27 AUTHOR SUBMITTED MANUSCRIPT - JNE-104976

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



16 
 

of AD. This result is consistent with the current clinical diagnostic criteria. This phenomenon shows 

that the AD analysis method based on cube sampling designed in this paper is reasonable to a certain 

extent. In addition, we found that compared with the 3D attention method, the method in this paper 

may be more granular in predicting the risk of diseases in different regions of the brain. It depicts 

the edges of high-risk areas more clearly. We speculate that this is because the small cube sampling 

strategy can help the model better learn the disease risk of each pixel. The attention mechanism pays 

more attention not to pixels, but to areas that are more important to the diagnosis. Although the 

model in this paper shows potential, the above viewpoints still need to be further verified. Since the 

etiology of AD is not yet clear, it is difficult for even human experts to accurately draw all the lesion 

areas in MRI. Autopsy is an effective method to verify neuropathology. Therefore, in future work, 

we will further collect cases including autopsy reports to further study the reliability of the model. 

 

 

3.3 Multi-modal AD Diagnosis  

 

In this study, we used both morphological and clinical information to diagnose AD. To eliminate the 

influence of the initial data distribution on the model performance, this study uses the t-SNE method 

to study the original data distribution, as shown in Fig 9A and 9B. The pixel matrix of the registered 

image was employed for the t-SNE analysis. In Fig 9A, the original data distribution of the three 

datasets is consistent. The original data of all datasets did not show obvious polarization. Fig 9B 

shows the t-SNE analysis of the DPM for each dataset. In Fig 9B, an obvious polarization between 

AD samples and NL samples is illustrated, indicating the high efficiency of learning the AD 

pathological characteristics and the high accuracy of the generated brain AD DPM. 

 

Fig. 9 The t-SNE analysis of image data and ROC of model (Figure 9A shows t-SNE analysis of 

MRI images of three datasets (ADNI, AIBL, NACC). The pixel matrix of MRI image is used as 

input, and t-SNE output two-dimensional data distribution map. Figure 9B shows the t-SNE analysis 

of the disease risk graph for three datasets. The red data represents the AD sample, and the blue data 

represents the NL sample.) 

 

After analyzing the raw data using t-SNE, the performance of various models is evaluated. The 

sensitivity-specificity curve (SSC) of our model and other ablation experiments are shown in Fig 

10. The area under the curve (AUC) was used to evaluate the performance of the framework and 

related ablation experiments. To explore the robustness and universality of the model, two additional 
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datasets (AIBL and NACC) were also used to evaluate the performance of the model.  

 

 

Fig. 10 The sensitivity-specificity curve of our AI model and other models (Figure A shows the 

performance of the model considering only individual clinical information, APoE represents the 

performance of the model considering APoE status, and clinic represents the performance of the 

model not considering APoE status. Figure B shows the performance of the model considering only 

image information, DPM represents the performance of the model using only disease risk map, and 

CNN represents the performance of the convolutional neural network using only MRI. Figure C is 

SS of our model) 

 

The receiver operating characteristic curve (ROC) of each model on ADNI is shown in Figure S3. 

The precision-recall curve of each model is shown in Fig 11. 
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Fig. 11 Precision-Recall curve of each model (Figure A shows the performance of a model that only 

considers individual clinical information. Here, APoE represents the performance of a model that 

considers the APoE state, and Clinic represents the performance of a model that does not consider 

the APoE state. Figure B shows the performance of the model considering only image information. 

Here, DPM represents the performance of the model using only the disease risk map, and CNN 

represents the performance of the convolutional neural network using only the MRI image. Figure 

C shows the performance of the multi-modal diagnostic model designed in this paper.) 

 

Finally, the multi-modal model designed in this study achieved an AUC of 99.6% in the ADNI test 

set, 97.9% AUC for AIBL, and 96.1% AUC for NACC. The comprehensive performance of the 

model was superior to that of other comparative experiments. To evaluate the performance of the 

models more comprehensively, in addition to AUC, a variety of indicators are used to evaluate the 

performance of each model, as shown in Table 4. The calculation principles of sensitivity, specificity, 

and F1 score are shown in Equation 10-11. 

 

SEN =
TP

TP+FN
      SPE =

TN

TN+FP
                         (10) 

Where, SEN means sensitivity, SPE means specificity. TN means true negative, TP means true 
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positive, FN means false negative and FP means false positive.. 

 

𝐹1 =
2×TP

(2×TP+FP+FN)
                          (11) 

In Equation 11, F1 means F1 score. The meaning of other parameters is the same as Equation 10. 

 

Table 4 Performance Statistics of Different Models (Here, Clinic represents the performance of a 

model that does not consider the APoE state, and APoE represents the performance of a model that 

considers the APoE state. CNN represents the performance of the convolutional neural network 

using only the MRI image, and DPM represents the performance of the model using only the disease 

risk map. DP+AP shows the performance of the multi-modal diagnostic model designed in this 

paper.) 

 

 ACC AUC Sen Spe F1 MCC 

clinic       

Test 0.947±0.020 0.994±0.003 0.969±0.054 0.930±0.036 0.942±0.023 0.898±0.039 

AIBL 0.916±0.029 0.980±0.002 0.893±0.050 0.920±0.045 0.772±0.052 0.736±0.052 

NACC 0.863±0.011 0.933±0.005 0.814±0.046 0.899±0.028 0.840±0.017 0.721±0.023 

APoE4       

Test 0.949±0.015 0.995±0.002 0.986±0.024 0.938±0.032 0.957±0.015 0.922±0.027 

AIBL 0.919±0.029 0.981±0.002 0.914±0.045 0.920±0.041 0.782±0.051 0.750±0.051 

NACC 0.872±0.007 0.940±0.003 0.841±0.030 0.895±0.022 0.848±0.010 0.738±0.014 

CNN       

Test 0.766±0.019 0.823±0.007 0.724±0.076 0.800±0.029 0.732±0.035 0.527±0.044 

AIBL 0.843±0.055 0.902±0.013 0.783±0.097 0.854±0.079 0.617±0.060 0.556±0.067 

NACC 0.796±0.044 0.877±0.012 0.738±0.090 0.839±0.131 0.757±0.027 0.597±0.066 

DPM       

Test 0.772±0.028 0.820±0.018 0.690±0.034 0.838±0.041 0.730±0.030 0.538±0.057 

AIBL 0.913±0.009 0.896±0.012 0.581±0.065 0.973±0.018 0.671±0.029 0.639±0.030 

NACC 0.830±0.021 0.903±0.012 0.689±0.060 0.934±0.021 0.774±0.037 0.656±0.039 

DP+AP       

Test 0.956±0.025 0.996±0.002 0.961±0.026 0.968±0.031 0.961±0.018 0.930±0.031 

AIBL 0.958±0.007 0.979±0.002 0.864±0.022 0.975±0.011 0.863±0.018 0.839±0.022 

NACC 0.907±0.010 0.961±0.003 0.873±0.024 0.932±0.027 0.889±0.001 0.810±0.020 

 

When only using clinical information data without APoE4, the model reached 94.7%±0.2% 

accuracy (ACC) and 99.4%±0.3%AUC in the ADNI test set. When the APoE4 state is considered 

by the model, the model achieves 94.9%±1.5%ACC and 99.5%±0.2%AUC in the same dataset. 

When the APoE4 state is added, the performance of the model was improved. When only using 

DPM to diagnose AD, the diagnosis level of the model is similar to that of a traditional convolutional 

neural network (CNN). The high-risk areas of AD predicted by our model overlapped with the MRI 

images, as shown in Fig 12A. According to the experimental results, the model's main focus area is 

the hippocampus and the medial temporal lobe. Cortical atrophy also occurred in the high-risk area 

given by the model. This is very consistent with the existing clinical diagnosis basis. This 
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phenomenon proves the rationality of the method in this paper to a certain extent.  

 

Fig. 12 The pathological analysis of the model (Figure A shows the overlap between the high-risk 

areas predicted by the model and the MRI images. The risk area in Figure A refers to the area where 

the risk probability is greater than 0.8. Figure B shows the model's attention to different individual 

physiological parameters, which shows whether the model speculates that a certain physiological 

parameter will affect the formation and development of AD) 

 

When using multimodal information (DMP and clinical information containing APoE4) at the same 

time, the model reached 95.6%±2.5%ACC and 99.6%±0.2%AUC in the ADNI test set. To make 

the model multimodal and interpretable, the attention mechanism is integrated into the analysis of 

personal clinical information. The attention map expresses the degree of attention of the model to 

different physiological parameters, that is, the basis of the diagnosis of AD. The average attention 

of the model to different physiological parameters on the ADNI is shown in Fig 12B. 

 

MMSE and APoE4 are the two physiological parameters with the highest degree of concern, which 

are consistent with the clinical diagnostic criteria [35-38]. In addition, the model also shows a certain 

degree of attention to age and gender. The model suggests that age and gender are also related to 

AD, and gender is more important than age in the diagnosis of AD. In recent studies, age and sex 

have also been found to be related to the formation of AD [39-42]. This phenomenon shows that the 

AI model designed in this study can not only analyze the biomarkers directly related to diseases, but 

also have the ability to discover potential biomarkers of diseases. 

 

4. Discussion 

 

This paper presents a multimodal AI framework with the entire process interpretability that can 

diagnose AD accurately. CS-MRI is first used to reduce the scanning time and improve the clinical 

experience of patients. Second, CS-MRI is converted to HQ-MRI using an MRI reconstruction 

module based on deep reinforcement learning. Third, HQ-MRI is employed by the DPM generation 

module to generate AD DPM in the whole brain region. Finally, the DPM of important areas of the 

brain and individual clinical information are input into the multimodal diagnosis module based on 

the attention mechanism to obtain the diagnosis results. 

 

In this study, we designed a deep reinforcement learning framework for converting CS-MRI to HQ-
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MRI. Compressed sensing technology is applied to acquire CS-MRI to solve the time-consuming 

problem of continuous sampling in k-space. However, compressed sensing technology will reduce 

the image quality. Although the end-to-end black box model based on traditional AI can reconstruct 

CS-MRI, the reconstruction process cannot be explained. The deep reinforcement learning 

framework designed in this study regards each pixel as an agent, and then each agent will choose 

different individual filters according to pathological features to change its own pixel value, so as to 

achieve the purpose of optimizing image quality. This method not only enhances the interpretability 

of the model but also enhances its reliability. The experimental results show that the selection of the 

filter by the model is generally consistent with the selection of human experts. An unsharp filter and 

a Laplace filter will be selected in the skull and cerebrospinal fluid, which need to enhance contrast. 

For the gap between the skull and brain tissue, the model infers that a box filter is used to smooth 

the pixels. For aliasing in the image, the model uses a subtraction filter. The final model achieved 

acceptable results in the ADNI test set and two external test sets, as shown in Fig 5. At the same 

time, we also compare the performance of our model with other advanced models on the same 

dataset, as shown in Table 3. 

 

HQ-MRI was used to generate the AD DPM. The core of the DPM generation module is the FCN 

obtained by reforming the trained classification CNN network. The module can map complex 

anatomical information into a simple and intuitive DPM. Disease risk in any position in the brain 

can be accurately predicted, and the prediction granularity reaches the pixel level, as shown in Fig 

6. Compared with the traditional method of pathological research using regular-shaped ROIs, this 

method can determine the high-risk area of AD more accurately. Thus far, the etiology of AD is still 

unclear, and the above strategies can lay a foundation for further pathological research on AD. 

 

Before training the diagnosis model, we used t-SNE to study the distribution of the original data to 

avoid the huge difference in the distribution of the original data. T-SNE can project high-

dimensional data into two-dimensional space to visualize the data distribution. We used t-SNE to 

analyze the pixel matrix of the registered MRI image, and found that there was no significant 

difference in the distribution of the original data, indicating that the AD and NL samples of all 

datasets do not show obvious pixel value differences, and will not affect the effectiveness of the 

model, as shown in Fig 9A. After analyzing the DPM of AD disease by t-SNE, polarization was 

found in AD and NL samples, as shown in Fig 9B. The AD and NL samples without distribution 

differences showed obvious differences after the model processing. The results show that the model 

can effectively learn the pathological features of AD and generate a DPM of AD with different 

degrees. Pixel-level brain AD DPM can help neurologists find the early pathological features of 

patients' brains and provide evidence of early AD diagnosis. 

 

This study uses multimodal data to diagnose AD. The AD DPM of important brain regions and 

clinical information with individual characteristics (age, gender, MMSE, and APoE4) were used to 

diagnose AD. The model reached 95.6%±2.5%ACC and 99.6%±0.2%AUC in the ADNI test set. 

For multi-center study, the reproducibility of this method is also very important [43]. Therefore, in 

addition to the ADNI data set, we also verified the performance of the model in AIBL and NACC. 

The model reached 95.8%±0.7%ACC and 97.9%±0.2%AUC in the AIBL. And it reached 

90.7%±1.0%ACC and 96.1%±0.3%AUC in the NACC. In order to verify the influence of different 
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modal information on the diagnosis of AD, ablation experiments were implemented. When using 

only DPM, the diagnosis level of the model is similar to that of the traditional CNN. This 

phenomenon means that the model proposed can effectively extract the effective features from the 

raw data. The original MRI was abstracted as DPM without the loss of a large amount of effective 

information. The predicted high-risk AD areas overlapped with the MRI images, as shown in Fig 

9A. The model showed great attention to the hippocampus and medial temporal lobe. Combining 

Fig 7 and Fig 12, we found the phenomenon of cerebral cortex atrophy in the high-risk areas 

predicted by the model, which is the same phenomenon that neurologists are concerned about. The 

experimental results prove the rationality of this method to a certain extent. In addition, the model 

also pays attention to other regions, such as parietal lobe, frontal lobe, corpus callosum and so on. 

We speculate that this is related to amyloid-𝛽 and Tau protein deposition in important brain regions. 

The model in this paper has the ability to assist clinicians in analyzing pathological characteristics 

to a certain extent. However, since the etiology of AD is still unclear, the result still needs to be 

further verified by anatomical results. For example, the autopsy report overlaps with the prediction 

results of the model in this paper. Therefore, in our future work, we will collect samples containing 

anatomical reports to further verify the reliability of this method from a clinical perspective. 

 

When only clinical information was used, the model performance with APoE4 status was higher 

than that without APoE4 status. This suggests that APoE4 may be a target for AD treatment. When 

using multimodal information, the model performance is further improved. This shows that not only 

the anatomical pathology, but also the clinical information with personal characteristics plays a 

crucial role in the diagnosis of AD, implying the better potential development of multimodal models. 

The attention mechanism is embedded in the model to improve the interpretability of the multimodal 

model. The attention map expresses the attention of the model to different physiological parameters 

as an AD diagnostic basis. In Fig 12B, the model shows the strongest attention to MMSE and APoE4, 

agreeing with the results of clinical practice and the above ablation experiment. From a biomedical 

point of view, typical histopathological changes in AD include amyloid deposition and neuronal 

fiber entanglement [44, 45]. Some studies have shown that APoE4 can reduce the stability of the 

nerve cell membrane, leading to neurofibrillary tangle and cell death, which are important factors 

for AD [46, 47]. In addition, the model also shows a certain degree of concern regarding age and 

gender and pays more attention to gender. Recent studies have shown that gender can regulate the 

effect of APoE4 on Tau protein precipitation in the brain. Women with APoE4 mutations are more 

likely to have Rau accumulation than men [48, 49]. The actual biomarker research results were the 

same as the model analysis results in this study. Studies have also shown that as age increases, the 

probability of suffering from AD increases year by year. This phenomenon shows that the AI model 

designed in this study can not only analyze the biomarkers directly related to diseases, but also has 

great potential to discover potential biomarkers of diseases. 

 

Although the model in this study shows potential, there are still limitations. First, this study only 

included AD and NL health conditions, which makes it difficult to meet the needs of neurologists in 

clinical practice. In the future, we will collect more data on the types of diseases and study how to 

further expand the function of the model. Second, the personal physiological information used in 

this study only included age, gender, MMSE, and APoE4. With the deepening of research, more 

biological information related to AD has been found. In the future, we plan to collect more types of 
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physiological information, hoping that the AI model can guide the targeted treatment of AD. At the 

same time, we will also collect more center data to further verify the reliability of the model. The 

influence of acquisition sequence on diagnosis will be further studied. Third, the risk area predicted 

by the model needs further analysis and comparison with the actual anatomic report. So far, the 

pathogeny of AD is not clear, so it is difficult to get accurate lesion markers. Therefore, the purpose 

of this paper is to propose a multimodal AI auxiliary diagnosis model that can be explained to a 

certain extent, rather than a model for accurately segmenting lesions. However, the model’s ability 

to predict disease risk still needs to be further evaluated. We will collect autopsy data with more 

relevant institutions in future work to specifically evaluate the model's ability to segment the lesion. 

For example, to evaluate the uncertainty of the model and verify the relationship between β-amyloid 

deposition in autopsy report and model prediction results. We will collect autopsy data with more 

relevant agencies in our future work. The importance of each physiological parameter in the 

development of AD requires further quantitative analysis. Fourth, although the method in this paper 

achieves a better performance, it still does not meet the clinical requirements. In future work, we 

will continue to study the optimization methods of the model, such as fusing attention-driven to 

further increase the performance and interpretability of the model. In addition, non-AI algorithms 

also have advantages that AI methods do not have in MRI reconstruction. Therefore, how to 

integrate AI and non-AI is also one of our future works. 

 

In conclusion, a multi-mode deep reinforcement learning with the whole process interpretability is 

designed, which can not only diagnose AD accurately but also analyze potential biomarkers. The 

model can speed up the process of patients' medical treatment, improve the experience of patients' 

medical treatment, and provide a point of view for the combination of AI and medical diagnosis 

technology. 
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