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Abstract.
Background: Although the abnormal depositions of amyloid plaques and neurofibrillary tangles are the hallmark of
Alzheimer’s disease (AD), converging evidence shows that the individual’s neurodegeneration trajectory is regulated by
the brain’s capability to maintain normal cognition.
Objective: The concept of cognitive reserve has been introduced into the field of neuroscience, acting as a moderating factor
for explaining the paradoxical relationship between the burden of AD pathology and the clinical outcome. It is of high demand
to quantify the degree of conceptual cognitive reserve on an individual basis.
Methods: We propose a novel statistical model to quantify an individual’s cognitive reserve against neuropathological
burdens, where the predictors include demographic data (such as age and gender), socioeconomic factors (such as education
and occupation), cerebrospinal fluid biomarkers, and AD-related polygenetic risk score. We conceptualize cognitive reserve as
a joint product of AD pathology and socioeconomic factors where their interaction manifests a significant role in counteracting
the progression of AD in our statistical model.
Results: We apply our statistical models to re-investigate the moderated neurodegeneration trajectory by considering cog-
nitive reserve, where we have discovered that 1) high education individuals have significantly higher reserve against the
neuropathology than the low education group; however, 2) the cognitive decline in the high education group is significantly
faster than low education individuals after the level of pathological burden increases beyond the tipping point.
Conclusion: We propose a computational proxy of cognitive reserve that can be used in clinical routine to assess the
progression of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a common neurode-
generative disorder with a long preclinical period
and diverse progression across individuals [1–10].
A plethora of neuroimaging studies has found
the presence of AD-related pathologies, such as
amyloid-� (A�) deposition [11–16] and pathological
tau [17–21], among cognitively normal individu-
als, which begins years before the emergence of
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the clinical symptom of mild cognitive impairment
(MCI). In this regard, AD is defined by its under-
lying pathologic processes that can be documented
by postmortem examination or in vivo by biomarkers
[22, 23]. In general, the biomarkers are grouped into
A� deposition [11–16], pathologic tau [12, 13, 15,
17–21], and neurodegeneration [22, 24–29].

A major challenge in the care and management of
AD is the paradoxical relationship between the bur-
den of AD pathology and its clinical outcome [30,
31]. Converging evidence shows that the individual’s
neurodegeneration trajectory is not only regulated by
the abnormal deposition of pathology burden but also
moderated by the brain’s capability to maintain nor-
mal cognition [30, 32–34]. In this regard, the concept
of resilience has been introduced into the field of
neuroscience, acting as a moderate factor to preserve
normal cognition despite underlying neuropathology
[32, 33, 35]. These individual differences could be
explained by higher capital (higher to start with),
better maintenance (slower decline trend), or greater
resilience and compensation capacities [32, 35]. For
example, the most frequently used tests for AD diag-
nosis include verbal memory for the word list, story,
and other verbal materials. There is a lifelong female
advantage in verbal memory that sustains until reach-
ing amnestic MCI [36–38]. The downside is that such
a female advantage is eliminated at higher levels of
pathology burden, resulting in delayed MCI diagno-
sis at the cost of a more severe burden of disease at the
time of diagnosis and decline rapidly, and eventually
missing the window for early intervention [39–41].

Most people with AD have the late-onset form
of the disease, i.e., symptoms become apparent in
their mid-60s and later. Although no specific gene
has been identified as having a direct cause on late-
onset AD, a number of generic risk factors have been
found to be associated with AD. For example, 11
novel susceptibility single nucleotide polymorphisms
(SNPs) were identified in a meta-analysis of genome-
wide association studies (GWAS) that recruited over
74,046 individuals with and without late-onset AD
[42]. Since each of the identified genetic variants has a
small effect size, polygenetic risk scores (PRSs) have
been widely used as a predictor in many AD studies
[43–45], which combine the effects of many individ-
ual SNPs. For example, AD PRS showed promising
results in detecting MCI in adults who were only
in their 50s [46]. Although tremendous strides have
been made in studying genetic associations in AD,
limited attention has been given to investigate the role
of genetic factors in cognitive reserve.

Fig. 1. As the digital zoom is a complementary technique to
achieve super-resolution beyond optical zoom, our computational
model allows us to quantify an individual’s brain resilience using
the current pathology technology and sets the stage for precision
medicine.

Besides aging and biology factors, socioeconomic
status (SES) such as education and occupation also
have a significant role in regulating the progression
of AD. In an early longitudinal study of 593 non-
demented individuals aged 60 years or older, the
follow-up examining results showed that increased
education and occupational attainment might reduce
the risk of AD [47]. Furthermore, lifestyle, physical
illness, health care, and environmental factors asso-
ciated with poverty are considered as other possible
reasons for diminishing the brain’s reserve of persons
with AD [48].

Although the concept of cognitive reserve has been
put forward to account for the individual difference
of cognitive decline in the neuroscience field, many
pathology studies are more likely to attribute the rea-
son for such difference to the limitation of current
pathology technology [49, 50]. However, there is one
common agreement across the AD research commu-
nity that the lack of direct measurement of cognitive
reserve makes it difficult to quantify the degree of
individual differences in susceptibility to age-related
brain changes and pathologic changes in AD. To
address this challenge, we propose a novel statisti-
cal approach to define an operational proxy of the
cognitive reserve by quantifying longitudinal clinical
phenotypic expression in relation to the underlying
neurodegenerative processes on an individual basis.
We demonstrate the rationale of our approach in
Fig. 1, where we analogize the complementary role
between pathology assay technology (hardware) and
computational resilience proxy (software) to the tech-
nology of optical zoom and digital zoom function
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in computer vision. In this regard, the major contri-
bution of our work is a novel operational definition
of cognitive reserve that can improve the precision
of measuring pathological burden and disentangle
the variable relationships between neuropathological
substrates and clinical outcomes.

To do so, we first present a regression model to
investigate the cognitive reserve proxy, where the
response is the diagnosis label (indicating the severity
of AD progression), and the predictors include age,
sex, pathology burden, education, AD PRS, and their
interactions. Our hypothesis is that the pathophys-
iology of AD is defined by AD-specific biological
changes. However, the progression of AD is also
moderated by socioeconomic factors such as educa-
tion. In this context, we conceptualize the mechanism
of the cognitive reserve as a joint product of AD
pathology (measured by tau/A�42 ratio) and socioe-
conomic factors (measured by educational level),
where their counteracting effect size of moderating
the cognitive decline can be used as the computational
proxy of cognitive reserve. Given the new proxy of
cognitive reserve, we further investigate the follow-
ing two hypotheses: 1) Does the high education group
have a higher cognitive reserve to AD pathology? 2)
Does a high level of education have the same down-
side as a female advantage in AD progression in the
way of a more rapid cognitive decline after going
beyond the moderate level of pathology? We per-
form significant testing in our regression model to test
the first hypothesis. Regarding the second hypothesis,
we employ a Cox model [51, 52] on the longitudinal
data from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database to examine the influence of
cognitive reserve across educational differences.

MATERIALS AND METHODS

Data descriptions

The data used in our study were obtained from the
ADNI database (https://ida.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment
can be combined to measure the progression of
MCI and early AD. For up-to-date information, see
https://www.adni-info.org. There are four phases of
the ADNI study (ADNI1, ADNI-GO, ADNI2, and

ADNI3). Some participants were carried forward
from previous phases for continued monitoring, while
new participants were added with each phase to fur-
ther investigate the evolution of AD.

Cerebrospinal fluid (CSF) biomarker data

A�42, CSF t-tau, and phosphorylated-tau181p,
which are biomarkers of amyloid, neuronal injury,
and neurofibrillary, respectively, were measured in
the ADNI baseline. Full details of the collection are
described in a previous study [53]. As shown in
[54], CSF tau/A�42 ratio shows higher sensitivity and
specificity in identifying the risk of AD than either
just using tau or A�42. To that end, we adopted the
CSF tau/A�42 ratio as the AD pathology hallmark in
the following analysis, where higher CSF tau/A�42
indicates the higher risk of developing AD.

Education and occupation

The years of education and occupations were
recorded in the ADNI database in recruiting subjects.
We classified education and occupation using the
same criteria in Lo’s study [55]. Years of education
was divided into three categories: high (years of edu-
cation >17 years), intermediate (years of education
15–17 years), and low (years of education <15 years).
For the occupation that the ADNI subject performed
during most of his/her adult life or with the longest
time of service, it was classified into three levels
according to the National Statistics Socio-economic
classification [56]: 1) high level (professional or man-
agerial), 2) intermediate level (skilled), and 3) low
level (partly skilled or unskilled).

Genotyping data and quality control

The genetic data of four phases: ADNI-1, ADNI-
GO/2, ADNI-GO/2nd, and ADNI-WGS have been
used in our study. The ADNI-1, ADNI-GO/2, ADNI-
GO/2nd, and ADNI-WGS contain 757, 432, 361,
and 812 subjects with genotyping data, respectively.
The ADNI-WGS phase consists of 261 subjects from
ADNI-1, 427 subjects from ADNI-GO/2, and 124
new subjects.

For 757 subjects in ADNI-1, genotyping was per-
formed by the Human610-Quad BeadChip (Illumina,
Inc., San Diego, CA) included 620,901 SNP and
CNV markers. For 432 subjects in ADNI GO/2,
genotyping of 730,525 SNPs and CNVs were per-
formed by Illumina HumanOmniExpress BeadChip.

https://ida.loni.usc.edu
https://www.adni-info.org
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For 361 subjects in ADNI GO/2nd, genotyping of
716,503 SNPs and CNVs were performed by Illumina
HumanOmniExpress BeadChip. For 812 subjects in
ADNI WGS, genotyping of 3.7 million SNPs were
performed by Illumina Omni 2.5M (WGS Platform).

We performed quality control on the genotype data
of each phase of ADNI by plink 1.90, similar to
the procedure described in [57]. We only consider
autosomal SNPs and SNPs are excluded from fur-
ther analysis if they do not meet any criteria listed:
1) call rate per SNPs >95%; 2) minor allele fre-
quency ≥1%; 3) Hardy-Weinberg equilibrium test of
p ≥ 10−6. Subjects are excluded from further analy-
sis if they do not meet any criteria listed: 1) call rate
per participant ≥95%; 2) genotypic sex check with
reported sex; 3) genotypic check for cryptic relat-
edness (3 related pairs were identified with PI HAT
>0.2, one of them was randomly excluded). The same
quality control procedures were repeated for ADNI
GO/2 and ADNI WGS.

After the quality control procedure, 541,007 SNPs
in 751 participants in ADNI-1 were left for impu-
tation. For ADNI-GO2 643,511 SNPs and 429
participants were left for imputation. For ADNI-
GO2nd 637,069 variants and 359 subjects were left
for imputation. ADNI-WGS left 1527166 SNPs, 808
subjects for imputation. Then we used the Michigan
Imputation Server to impute each phase of the ADNI
genotype data. ADNI-1 data was lifted from hg18
to hg19, as it was recorded on the human reference
genome, GRCh37. While the other ADNI data are
originally in GRCh38. Here, we follow the workflow
in [58] to perform the imputation: 1) 1000 Genome
Phase 3 v5 (hg19) as the reference panel; 2) Phased by
Eagle; 3) used mixed population as reference panel;
4) Rsq filter was 0.3. After the imputation, we merged
all four ADNI phases data together and filtered the
SNPs by MAF >0.05 and performed an identity check
for cryptic related pairs (7 related pairs were identi-
fied with PI HAT >0.2, one of each pair was randomly
excluded). For the subjects genotyped in multiple
phases, we keep the most recent genotyping record for
further analysis. After all the former quality control
procedures, 9,432,719 SNPs in 1,661 subjects were
kept.

Calculation of PRS

We are interested in testing the association between
PRS of AD and the AD pathophysiology. First,
we filtered the SNP in the GWAS results in CTG
lab (https://ctg.cncr.nl/software/summary statistics)

by MAF greater than 0.01. Then, the SNPs were LD
pruned with r2 = 0.1 in a 1000 kb window, 324,982
SNPs were left after the pruning. And we utilized
Plink 1.9 to calculate the weighted PRS of AD using
SNPs with AD association of p < 10–4.

Statistical methods

In the following, we first seek for the operational
definition of the cognitive reserve by applying a logis-
tic regression model on the baseline data. Second,
we examine the prognostic value of the cognitive
reserve proxy by applying the Cox proportional haz-
ards model on the longitudinal data.

Logistic regression model for the computational
proxy of cognitive reserve

We assume that the pathophysiology of AD is
defined by the AD-specific biological changes (i.e.,
the increasing CSF tau/A�42 ratio), which underlines
the clinic manifestations. However, the progression
of AD is also moderated by socioeconomic statuses,
such as education and occupation. In this regard, we
conceptualize the mechanism of cognitive resilience
as a joint product of pathology risk indicators and
socioeconomic factors, where the resistant level can
be captured by modeling the relationship between
pathological burden and the clinical manifestation of
cognitive decline.

Each subject has the diagnostic label where y = 1
indicates being diagnosed as AD and otherwise y =
0. The response of our model is the probability of
being diagnosed as AD with logit link function, i.e.,

log it(P(y = 1) = log
(

p(y=1)
1−p(y=1)

)
, which is modeled

as a linear function of age, gender, education, occupa-
tion, tau/A�42 ratio, and AD PRS. In order to measure
the counteract of cognitive reserve, we also included
the interactions between AD pathology and educa-
tional levels in the model. The logistic model was
represented as:

logit(P(yi = 1)) = β0 + β1xAge,i + β2xGender,i

+ β3xMid Edu,i + β4xHigh Edu,i + β5xMid Occ,i

+ β6xHigh Occ,i + β7xPA,i + β8xPRS,i

+ β9(xPA,i · xMid Occ,i)

+ β10(xPA,i · xHigh Occ,i) (1)

where xAge,i is age (in years), xGender,i is gender
(male: 1; female: 0), xPA,i is pathological burden
measured by CSF tau/A�42 ratio, and xPRS,i is AD

https://ctg.cncr.nl/software/summary_statistics
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Fig. 2. The correlation heap map of demographic data for the logistic model (left) and Cox model (right).

polygenetic risk score for the ith subject. Educational
levels and occupational levels were categorized into
three levels, and we used dummy coding for all the
categorical variables. Female, low educational level,
and low occupational level were set as the refer-
ence group, respectively. xHigh Edu,i equals 1 if the
ith subject has a high educational level and equals
0 otherwise. xMid Edu,i equals 1 if the subject i has
the medium educational level, and equals 0 other-
wise. So are xMid Occ,i and xHigh Occ,i. The odds
ratio (OR) quantifies the expected change in the odds
of being diagnosed as AD, for a one-unit increase
in the predictor. The area under the curve (AUC)
for receiver operating characteristic (ROC) was cal-
culated to access the logistic model’s performance.
Nagelkerke pseudo R-Squared was used to evaluate
the goodness-of-fit of logistic models. Since educa-
tional levels are correlated with occupational levels
(please see the correlation analysis in Fig. 2), we addi-
tionally conducted a sensitivity analysis by excluding
occupational levels from the logistic model.

Cox model for investigating the influence of
cognitive reserve

The Cox proportional hazards model is used to
investigate possible factors that affect the progression
from MCI to AD longitudinally for subjects with a
baseline diagnosis of MCI. Specifically, the time (in
months) is defined as the time between baseline visit
and the first visit date of being diagnosed as AD for
participants as known as MCI-converter. For partic-
ipants whose progression remains at MCI stage (as
known as non-converter), the time is defined from
the baseline visit date to the last visit date. We use
the same predictors as those in the logistic model.

The Cox model is represented as:

h(t) = lim
�t→0+

P(t ≤ T < t + �t|T ≥ t)

�t

hi(t|xi) = h0(t) exp(β0 + β1xAge,i + β2xGender,i

+ β3xMid Edu,i + β4xHigh Edu,i + β5xMid Occ,i

+ β6xHigh Occ,i + β7xPA,i + β8xPRS,i

+ β9(xPA,i · xMid Occ,i)

+ β10(xPA,i · xHigh Occ,i)) (2)

where T denotes for time, h(t) is the hazard function
(instantaneous rate for progression to AD to occur for
subjects that have survived up to time t), hi(t|xi) was
the hazard function at time t for the ith participant,
h0(t) was the unspecified baseline hazard function
when all predictors are 0, and others are the same
as the logistic model. The hazard ratio (HR) quanti-
fies the relative hazard of progression from MCI to
AD with a one-unit increase in the predictor. HR > 1
indicates that the progression hazard increased with
a larger value of the predictor. Similarly, we addi-
tionally conducted a sensitivity analysis by excluding
occupational levels from the Cox model.

RESULTS

Demographic data

We show the demographic characteristics of par-
ticipants in the logistics model and the Cox model
in Table 1, where data are presented in mean (std)
for continuous variables and in (%) for categorical
variables. For participants in the logistic model, the
average age at baseline is 73.82 years old, 55.79%
are male, 8.77% have a professional or managerial
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Table 1
Demographic characteristics of participants in the logistics analysis and survival analysis

Models Logistic Model, N = 889 Cox Model, N = 531

Total AD Non-AD Total MCI convert Non-convert
(n = 889) (n = 217) (n = 672) (n = 531) (n = 211) (n = 320)

Age 73.82 (7.18) 74.75 (8.17) 73.52 (6.81) 72.8 (7.50) 73.52 (7.35) 72.32 (7.57)
Gender

Male 496 (55.79) 125 (57.60) 371 (55.21) 320 (60.26) 130 (61.61) 190 (59.38)
Female 393 (44.21) 92 (42.40) 301 (44.79) 211 (39.74) 81 (38.39) 130 (40.63)

Occupation
Low 78 (8.77) 29 (13.36) 49 (7.29) 45 (8.47) 16 (7.58) 29 (9.06)
Medium 292 (32.85) 70 (32.26) 222 (33.04) 183 (34.46) 75 (35.55) 108 (33.75)
High 519 (58.38) 118 (54.38) 401 (59.67) 303 (57.06) 120 (56.87) 183 (57.19)

Education
Low 247 (27.78) 81 (37.33) 166 (24.70) 165 (31.07) 63 (29.86) 102 (31.88)
Medium 307 (34.54) 76 (35.02) 231 (34.38) 168 (31.64) 72 (34.12) 96 (30.00)
High 335 (37.68) 60 (27.65) 275 (40.92) 198 (37.29) 76 (36.02) 122 (38.12)

tau/A�42 0.6536 (0.5090) 0.9786 (0.5460) 0.5486 (0.4490) 0.6557 (0.5242) 0.8605 (0.5412) 0.5207 (0.4666)
AD PRS 0.0346 (0.9838) 0.3046 (0.9565) –0.0526 (0.9773) 0.0509 (1.0036) 0.2074 (1.0589) –0.0524 (0.9532)

Table 2
The statistical summary of the logistic regression model

Predictors Coefficient Std. Odds ratio (95% CI) p

Age β1 = 0.022 0.012 1.022 (0.999, 1.047) 0.065
Gender β2 = 0.395 0.187 1.484 (1.029, 2.143) 0.035
Medium education β3 = 0.568 0.433 1.765 (0.754, 4.125) 0.190
High education β4 = 0.259 0.450 1.296 (0.536, 3.133) 0.565
Medium occupation β5 = −0.554 0.314 0.575 (0.310, 1.063) 0.077
High occupation β6 = −0.375 0.320 0.687 (0.367, 1.287) 0.241
tau/A�42 β7 = 2.482 0.384 11.965 (5.641, 25.381) <0.001
AD PRS β8 = 0.160 0.092 1.174 (0.981, 1.405) 0.081
tau/A�42 × Med. education β9 = −1.199 0.465 0.301 (0.121, 0.750) 0.010
tau/A�42 × High education β10 = −1.240 0.480 0.289 (0.113, 0.742) 0.010

occupation, and 27.78% have years of education
longer than 17 years. Among 889 participants, 217
(24.41%) patients are diagnosed as AD at baseline
visit. Regarding the statistical difference between AD
and non-AD group, participants of AD group had
larger tau/A�42 ratio (t = 10.51, p < 0.001) and AD
PRS (t = 4.76, p < 0.001) than non-AD group.

For participants in the Cox model, the average age
at baseline is 72.80 years old, 60.26% are male, 8.47%
have the professional or managerial occupation, and
31.07% have years of education longer than 17 years.
Among 531 participants, 211 (39.74%) are MCI con-
vertors, which have greater tau/A�42 ratio (t = 7.47,
p < 0.001) and AD PRS (t = 2.88, p = 0.004) than
non-convertors. For the logistic model, AD and Non-
AD are defined by baseline diagnosis. For the Cox
model (right columns in Table 1), the label MCI con-
vert means participants developing AD from MCI
during the study, and non-convert means participants
remaining at MCI stage.

The correlation heatmaps of the demographic
data used in the logistical model and Cox model

are displayed in the left and right of Fig. 2,
respectively. It is clear that education and occu-
pation exhibit the highest correlation, followed by
the correlation between AD-PRS and the CSF
biomarker. It is worth noting that neither educa-
tion nor occupation shows a positive correlation with
the biological indicators (AD-PRS) and pathological
burden. Although the magnitude of the correlation
is small, the anti-correlation relationship partially
supports the biological intuition of characterizing
cognitive reserve through modeling the interaction
between socioeconomic factors and AD risk factors.

Computational proxy of cognitive reserve

Significance testing
The statistical testing results of our logistic model

(in Eq. 1) are summarized in Table 2. First, we
observed significant effects (p < 0.05) of gender,
tau/A�42 ratio, and interaction between tau/A�42
ratio and educational levels on being diagnosed as
AD. Second, the likelihood ratio test showed that the
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Fig. 3. The boxplot of tau/A�42 ratio stratified by baseline diagnostic and educational levels.

prediction of being diagnosed as AD based on our
model with interaction terms is stronger than predic-
tion without interaction (Chi-Square = 8.8533, p =
0.012). Third, males are more likely to be diagnosed
as AD compared to females (p = 0.035), where the
odds of being diagnosed as AD for males is 1.484
(95% CI 1.029–2.143) times of the odds for females.
Fourth, tau/A�42 ratio is a significant risk factor of
being diagnosed as AD (p < 10−3). However, the
effect of CSF tau/A�42 ratio decreases as the educa-
tional level increases, which is strongly suggested by
the significant negative interaction coefficients (β9
and β10). Specifically, the odds of being diagnosed
as AD increase by 11.965 (95% CI 5.641–25.381)
times with an increase of one unit of tau/A�42 ratio
for the low educational level group (<15 years), 3.607
times for the medium educational level group (15–17
years), and 3.463 times for the high educational level
group (>17 years).

Computational definition of cognitive reserve
Our model shows that participants with higher edu-

cational level are less likely to be diagnosed as AD
and have high resilience to pathology burden com-
pared to lower educational level after controlling
for tau/A�42 ratio. As shown in Fig. 3, the differ-
ence of tau/A�42 ratio between participants with
AD and non-AD diagnosis at baseline visit has been
attenuated with higher educational levels. Since the
interaction between AD pathology and education not
only pass significant testing but also exhibit negative

estimations, cognitive reserve can be defined as the
multiplication of CSF tau/A�42 and categorical edu-
cation label. As a result, our new cognitive reserve
can be calculated for each subject as follows: 1) If
the underlying subject received less than 15 years
of education, the cognitive reserve is zero since our
model takes the low education group as the reference;
2) If the subject’s education attendance is between
15 and 17 years, the cognitive reserve is −1.199 ×
CSF (tau/ A�42 ratio); 3) if the subject received more
than 17 years of education, the cognitive reserve is
−1.24× CSF (tau/A�42 ratio). Note, the negative
value reflects the fact that cognitive reserve acts as
a moderating role in counteracting the progression of
AD pathology (positive value).

DISCUSSION

Age, occupational levels, and AD-PRS show
moderate significance (0.05 < p < 0.1) in our sta-
tistical model. The AUC for logistic model with
the interaction term (parameterized by β9 or β10)
is 0.78 (0.62% higher than that of the model with-
out interaction terms), which indicates the interaction
between tau/A�42 ratio and educational levels has
a better capability of distinguishing between AD
and non-AD. Specifically, the Nagelkerke pseudo
R-Squared for logistic model with interaction is
22.53%, and the Nagelkerke pseudo R-Squared for
logistic model without interaction is 21.26%. In
conclusion, the interaction is significant; however,
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Table 3
The statistical summary of the logistic regression model without occupational levels

Predictors Coefficient Std Odds ratio (95% CI) p

Age β1 = 0.023 0.012 1.023 (0.999, 1.048) 0.060
Gender β2 = 0.404 0.184 1.498 (1.044, 2.148) 0.028
Medium education β3 = 0.526 0.427 1.692 (0.733, 3.908) 0.219
High education β4 = 0.257 0.431 1.293 (0.556, 3.009) 0.551
tau/A�42 β7 = 2.483 0.382 11.977 (5.665, 25.323) <0.001
AD PRS β8 = 0.156 0.091 1.169 (0.978, 1.397) 0.086
tau/A�42 × Med-Edu β9 = −1.195 0.463 0.303 (0.122, 0.750) 0.010
tau/A�42 × High-Edu β10 = −1.260 0.478 0.284 (0.111, 0.724) 0.008

Table 4
The results of Cox proportional hazards model

Variable Coefficient Std Hazard ratio (95% CI) p

Age β1 = 0.023 0.010 1.023 (1.003, 1.044) 0.027
Gender β2 = 0.125 0.151 1.133 (0.844, 1.523) 0.406
Medium education β3 = 0.111 0.273 1.117 (0.654, 1.906) 0.685
High education β4 = −0.390 0.295 0.677 (0.380, 1.206) 0.185
Medium occupation β5 = −0.138 0.283 0.871 (0.501, 1.516) 0.626
High occupation β6 = −0.173 0.289 0.841 (0.478, 1.480) 0.548
tau/A�42 β7 = 0.524 0.191 1.689 (1.161, 2.455) 0.006
AD-PRS β8 = 0.100 0.072 1.105 (0.960, 1.273) 0.166
tau/A�42 × Medium education β9 = 0.143 0.238 1.154 (0.724, 1.839) 0.548
tau/A�42 × High education β10 = 0.673 0.268 1.960 (1.160, 3.310) 0.012

the gain of modeling additional variability over the
logistic model without interaction term is marginal.
Comparing the regression result in Table 2 (with
modeling occupation) and Table 3 (without modeling
occupation), the interaction term between tau/A�42
and educational levels still shows significance (p <

0.01).

Understand the role of cognitive reserve by
longitudinal analysis

Significance testing in Cox model
The statistical results of the Cox model are summa-

rized in Table 4. Without doubt, age is the significant
factor of cognitive decline (p = 0.027). Specifically,
our Cox model shows that an increase of one year
of aging results in 1.023 (95% CI 1.003–1.044)
times increasement of the hazard (progression from
MCI to AD). Since CSF biomarker is the hallmark
of neurodegenerative process, the tau/A�42 ratio
also exhibits a strong significance in determining
the neurodegeneration (p = 0.006). Besides these
two determinant factors, our cognitive reserve proxy
defined in our statistical model also shows signifi-
cant effects (p = 0.012) in moderating the trajectory
of cognitive decline, which suggests the associa-
tion between the hazard of progression to AD and
tau/A�42 ratio depended on educational levels.

The role of cognitive reserve in AD
After fitting the parameters in our Cox model,

we can quantitatively investigate the influence of
cognitive reserve (i.e., interaction of tau/A�42 and
education) in moderating neurodegeneration. As the
log-slope shows in Fig. 4, an increase of one unit
of tau/A�42 results in 1.689 (95% CI 1.161–2.455)
times of the hazard of converting to AD for the low
educational level group (red line), 1.948 (95% CI
1.450–2.616) times for the medium educational level
group (green line), and 3.310 (95% CI 2.243–4.879)
times for the high educational level group (blue
line), respectively. Furthermore, the plot of log-
hazard function in Fig. 4 suggests that participants
with higher educational level have smaller hazard
of progression from MCI to AD before the pathol-
ogy burden reaches the tipping point. However, the
education advantage shows downside after the tip-
ping point, where the risk of converting to AD in
the high education group grows much faster than low
education group.

Discussion
The likelihood ratio test showed that prediction

of progression from MCI to AD based on model
with interaction was stronger than prediction without
interaction (Chi-Square = 6.8023, p = 0.0333). The
concordance index for the model with interaction is
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0.675, while the concordance index for the model
without interaction is 0.669. The model with inter-
action has a better predictive ability than the model
without interaction. Furthermore, we apply the Cox
model without including the occupation level on
the same longitudinal dataset. Compared to the Cox
model with occupation level, the statistical results in
Table 5 suggests that our cognitive reserve proxy (the
interaction between tau/A�42 and educational levels)
shows consistent effect with and without considering
occupation.

DISCUSSION

In this paper, we present an operational definition
for measuring cognitive reserve by investigating the
relationship between clinical data, CSF biomarker,

Fig. 4. AD risk curves of neuropathology burden in three education
groups.

and SES in the aging population. In general, our
statistical model suggests that 1) the high education
group has the advantage in preserving cognition com-
pared to the low education group; 2) the education
advantage has the downside of more rapid neurode-
generation after the pathological burden is beyond the
tipping point.

Converging evidence shows that the individual’s
neurodegeneration trajectory is not only regulated
by the abnormal deposition of pathology burden but
also moderated by the brain’s capability to maintain
normal cognition [30, 32–34, 59]. In current cog-
nitive studies [30, 34, 47, 59], SES in factors of
education, wealth, and occupation are widely used
as the proxy to measure cognitive reserve. One pos-
sible explanation regarding the role of SES factors in
cognitive reserve is neural compensation [34], where
task-related activation occurs in the presence of struc-
tural brain changes, and this may results in improved
performance for those who compensate.

In our previous work, we found education exhibits
a strong association with cognitive reserve [60].
Figure 5 shows the scatter plot of the dementia
stage (quantified by ADAS-Cog 11 [61]) versus
whole-brain neurodegeneration burden (measured in
tau/A�42 biomarker). We used a linear regression
model to fit the latent relationship for relatively higher
education (in red) and relatively lower education (in

Fig. 5. Individual differences in the relationship between neu-
ropathology level and clinic score with respect to education level.

Table 5
The results of Cox proportional hazards model excluding occupational levels

Variable Coefficient Std. Hazard ratio (95% CI) p

Age β1 = 0.023 0.010 1.023 (1.003, 1.044) 0.027
Gender β2 = 0.118 0.150 1.125 (0.839, 1.510) 0.431
Medium education β3 = 0.086 0.269 1.090 (0.643, 1.846) 0.748
High education β4 = −0.428 0.284 0.652 (0.374, 1.137) 0.132
tau/A�42 β7 = 0.525 0.190 1.690 (1.165, 2.453) 0.006
AD-PRS β8 = 0.100 0.072 1.105 (0.960, 1.273) 0.164
tau/A�42 × Med education β9 = 0.139 0.237 1.149 (0.722, 1.829) 0.557
tau/A�42 × High education β10 = 0.668 0.267 1.950 (1.156, 3.291) 0.012
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blue) cohorts separately. The fitting for the higher
education group shows a lower negative slope than the
lower education group, suggesting that individuals
with more educational attainment have the poten-
tial to reserve more neurodegeneration burdens at the
same cognition level.

Regarding the neuroscience insight of our cog-
nitive reserve proxy, our model assumes the
AD-specific neuropathological changes (such as
tau/A�42 biomarker) are the determinant factors in
dementia progression, where SES factors (such as
education and occupation) might moderate the trajec-
tory of cognitive decline. To that end, our regression
model in Eq. 1 is designed to characterize the inter-
action between the neurodegeneration process and
environmental factors, which allows us to quantify
the degree of cognitive reserve.

Although the definition of cognitive reserve works
well for CSF biomarkers, there are several lim-
itations. 1) Simple logistic model might not be
less powerful to capture the non-linear relationship
between clinical manifestations and neuropatholog-
ical data. 2) The response is currently binarized
to AD and non-AD. Since AD is a multi-factorial
disease with heterogenous progression pathway, a
fine-grained stratification (such as including early-
MCI and late-MCI) is necessary to address the
heterogeneity issue in AD. 3) AD-PRS does not show
the strong effect in our model. The gloss simplifica-
tion of the whole genome-wise polygenetic risk score
might be the reason for the less sensitivity of AD-
PRS. One possible solution is the pathway-specific
PRS [62], which is the weighted effect from the pre-
selected AD risk genes.

Mounting evidence shows that AD pathologies
preferentially affect the aging brain [63–66]. We will
further extend this computational framework of the
cognitive reserve from CSF biomarkers to amyloid
and tau PET imaging, which will allow us to mea-
sure cognitive reserve for each anatomical region and
understand the spatial association with the develop-
ment of neuropathology burden.
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