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Abstract

Early diagnosis or detection of Alzheimer's disease (AD) and mild cognitive

impairment (MCI) is crucial so as to intervene in advance and to better under-

stand the neurodegenerative process. Gray matter volume (GMV) plays an

important role in demonstrating unique anatomical characteristics of the brain

regions and further differentiates AD, MCI and normal control (NC). In this

study, 317 subjects (100 NC, 58 stable MCI (sMCI), 53 converted MCI (cMCI)

and 106 AD) are selected from the Alzheimer's Disease Neuroimaging Initia-

tive database. First, the differences of GMV patterns among the between-group

comparisons at different time points and the development of longitudinal pat-

tern within the same group are compared. Next, the longitudinal feature com-

bination strategy is applied to construct the classification model by using a

support vector machine (SVM) combined with the nested leave-one-out cross-

validation (LOOCV) method. The brain structure experiences a gradual change

in the process of developing from NC to AD. In addition, the baseline GMV

combined with the longitudinal measurements for 2 years of follow-up data

yielded optimal classification results. Specifically, the AD-NC comparison

achieves the best classification performance with 98.06% accuracy, 97.17% sen-

sitivity, 99.00% specificity, 99.04% positive predictive value (PPV) and 97.06%

negative predictive value (NPV). The comparison of the two subtypes of MCI

(ie, sMCI and cMCI) also achieves high accuracy. Other between-group com-

parisons also receive high classification performance. According to statistics,

caudate nucleus, hippocampus, temporal pole and lenticular putamen are the

most important contribution areas to the between-group comparisons. Our

research has the potential to improve the clinical diagnosis of subtypes of MCI

and predict the risk of its conversion to AD.
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1 | INTRODUCTION

Mild cognitive impairment (MCI) is usually regarded as a
precursor to Alzheimer's disease (AD). Previous studies

indicate that the pathological time axis of AD may occur
several years to decades before the clinical diagnosis. It
initially happens without any symptoms and then pro-
gresses into the MCI stage.1,2 Therefore, the early
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precaution and detection of AD, as well as its tracking
and prediction, are particularly important. It could help
prevent the occurrence of AD or slow down the speed of
neurodegeneration.

In the past decades, there had been many studies to
find biomarkers that could predict the conversion of MCI
to AD. Some possible biomarkers include genetic, cere-
brospinal fluid proteins, cognitive measurements, glucose
metabolism and structural/functional brain abnormali-
ties. In a review of a large number of studies, Landau
et al3 used data from the Alzheimer's Disease Neuroimag-
ing Initiative (ADNI) to compare biomarkers that could
predict conversion efficiency. They found 73% to 88%
specificity but about 40% less significant sensitivity in
classification. Another notable study on predictive trans-
formation was that of Killiany et al,4 who used a struc-
tural Magnetic Resonance Imaging (MRI) to predict the
transformation of MCI and found that the entorhinal cor-
tex, superior temporal sulcus and anterior cingulate gyrus
were the most significant classification features with 75%
accuracy, but the specificity was only 48%. Davatzikos
et al5 tried to combine the information of MRI and
Cerebro-Spinal Fluid (CSF) biomarkers to predict AD
and obtained the highest accuracy of 61.7%. Therefore,
more explorative researches are needed to improve the
accuracy of predicting the conversion of MCI to AD. In
addition, there are more studies based on structural MRI
to distinguish patients with MCI or AD from normal con-
trols (NC), to distinguish stable MCI (sMCI) from
converted MCI (cMCI) and to track and predict the tran-
sition from NC to MCI and from MCI to AD.

Recently, several longitudinal neuroimaging studies
have collected much longitudinal data to better under-
stand the progress of neuropsychiatric and neurodegener-
ative diseases.6-8 Therefore, the longitudinal parameter
change in MRI may be a crucial factor in the prediction
of future conversion from MCI to AD.6,8,9 Until recently,
only a few researchers started to use longitudinal data for
cMCI/sMCI classification.6,8,10 Li et al8 investigated the
longitudinal cortical thickness changes of 75 MCI sub-
jects to distinguish cMCI from sMCI. Moreover, Zhang
et al6 proposed an AD prediction method with ROI-based
features from longitudinal data. The experiments were
performed on 88 MCI subjects, and the results show that
the performance of their method with longitudinal data
was better than that with baseline data. Despite these
efforts, extracting discriminative features from longitudi-
nal data for the early diagnosis and prediction of AD pro-
gression is still challenging and requires more research.
Specifically, longitudinal images obtained from MCI
patients are researched to acquire valuable information
on the longitudinal changes that can be used to classify
MCI subjects as a cMCI or sMCI subtype. From a clinical

perspective, an observed trend can show the tendency of
an MCI subject to become an AD patient or to remain
stable. If such trends are dynamically monitored with
longitudinal data, AD-related changes can be deter-
mined, and an AD prediction model can be constructed
with the longitudinal data. In clinical settings, when a
new MRI scan of an MCI subject is provided, the future
development of the MCI subject (progressing to AD or
remaining stable) can be predicted with previous MRI
scans and the constructed prediction model. Therefore,
more valuable information can be extracted from the lon-
gitudinal data to help reinforce prediction accuracy.

Until now, however, most classification studies are
based on cross-sectional data. Considering that the pro-
cess of AD has the natural property of neu-
rodegeneration, we deduce that combining the baseline
and longitudinal changes of brain structure over time
may improve the accuracy of prediction and transforma-
tion and provide a good measurement value for AD. In
addition, tracking individual changes over time can natu-
rally reduce some of the underlying confounding factors,
such as gender, age, education and diet. Inhomogeneity
in populations may be a cause of low accuracy in existing
studies.

In this study, we investigate the change of gray matter
volume (GMV) among the four groups (NC, sMCI, cMCI
and AD) over time and use the machine learning method
to explore whether the GMV can be used as an effective
feature to distinguish NC, sMCI and cMCI from
AD. First, the differences of GMV patterns between
groups at different time points and the development of
longitudinal pattern within the same group is compared.
Then, the longitudinal feature combination strategy is
used to construct the classification model by using a sup-
port vector machine (SVM) combined with the nested
leave-one-out cross-validation (LOOCV) method. Finally,
we relate the discriminating features to the pathological
features of AD.

2 | MATERIALS AND METHODS

2.1 | Participants

In this study, 317 subjects are collected from the ADNI
database, including 100 NCs, 58 sMCI patients, 53 cMCI
patients and 106 AD patients. In each group, MRI images
are collected at baseline period (bl), 12 months after base-
line period (12 m) and 24 months after baseline period
(24 m). All of them have mini-mental state examination
(MMSE) and clinical dementia rate (CDR) scores. During
the tracking period from baseline to 24 months, the MCI
that converted to AD is defined as cMCI. If it remained
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in the MCI state, it is defined as sMCI. The scanning
parameters of whole-brain MRI are as follows: TR, 9 ms;
TE, 3.9 ms; field strength, 1.5 T; slice thickness, 1.2 mm;
and spatial resolution, 1.25 × 1.25 mm. Each parameter
fluctuates slightly across different scans. We carried out a
chi-square test on gender in the four groups and found
that there are significant differences in several between-
group comparisons, including NC-sMCI comparison
(P = .022), sMCI-AD comparison (P = .008) and cMCI-
AD comparison (P = .042). There is no significant differ-
ence in age between the groups. The scores of MMSE and
CDR in cognitive ability assessment are significantly dif-
ferent by analysis of variance (ANOVA) and post-hoc test
(P < .05). The demographic data and cognitive assess-
ment scores for each group are shown in Table 1.

2.2 | Data processing

A GMV map in the Montreal Neurological Institute (MNI)
space is generated for each individual using the SPM12 tool-
box (http://www.fil.ion.ucl.ac.uk/spm/). This processing
procedure includes the following steps: (a) correcting for
bias-field inhomogeneity; (b) segmenting the brain into gray
matter (GM), white matter and cerebrospinal fluid density
maps using the “new-segment” approach; (c) applying dif-
feomorphic anatomical registrations through exponentiated
lie algebra (DARTEL) to generate a custom template11 via
default parameter settings; (d) registering each subject's GM
density (GMD) image of the native space to the customized
template12; (e) registering the resultant image to the MNI
space and standardizing the GMD map; (f) applying the
modulation by multiplying the resulting GMD map with
the nonlinear components of Jacobian determinant, which

result in the GMV maps representing the local native space
GM volume after correcting for individual differences in
whole brain size; and (g) smoothing GMV maps using a
8-mm full-width at half maximum (FWHM) Gaussian ker-
nel. Finally, we average all subjects' GMD maps to create a
GM mask and apply a threshold of 0.2 to this average map.
The GMV features are then restricted to this GM mask.
Among the existing atlases, the Automated Anatomical
Labeling (AAL-90) atlas is still the most popular atlas in the
brain studies,13 and it has been widely used in discrimina-
tive studies for different disorders.14-16 Therefore, we divide
the whole brain GMV into 90 regions of interest (ROIs)
according to the AAL-90 atlas. By using the volume modu-
lation map generated by the DARTEL method, the cross-
sectional between-group comparisons and longitudinal
intragroup comparisons are statistically analyzed using the
two-sample T-test and paired T test, respectively. At the
same time, the total intracranial volumes (TIV) are
regressed to remove the effect of their differences on the
results. Finally, we use FWE correction (P < .05) for the
cross-sectional between-group comparisons and use
uncorrected P < .05 for longitudinal intragroup compari-
sons to control the effect of false positive results.

2.3 | Machine learning method and
analysis

The goal of machine learning is to construct a classifier
that can accurately predict the category of a new subject.
If it successfully predicts the category, the classifier cap-
tures the difference between the two groups. The analysis
framework of machine learning in neuroimaging data
research mainly includes the following five parts: feature

TABLE 1 Participant demographics and clinical information

Characteristic Sample size Gender (male/female) Age (years) MMSE CDR

NC 100 54/46 75.53 ± 5.34 29.25 ± 0.91 0.03 ± 0.11

NC_12 m 29.21 ± 1.17 0.05 ± 0.26

NC_24 m 29.30 ± 0.89 0.06 ± 0.27

sMCI 58 42/16 74.48 ± 7.63 27.69 ± 1.73 1.26 ± 0.58

sMCI_12 m 27.97 ± 1.97 1.49 ± 1.05

sMCI_24 m 27.55 ± 2.51 1.72 ± 1.40

cMCI 53 36/17 75.30 ± 6.55 26.43 ± 1.77 1.81 ± 1.07

cMCI_12 m 24.85 ± 2.81 3.05 ± 1.48

cMCI_24 m 22.72 ± 3.55 4.65 ± 1.56

AD 106 54/52 75.33 ± 7.35 23.29 ± 1.97 4.31 ± 1.54

AD_12 m 21.12 ± 4.62 5.67 ± 2.70

AD_24 m 18.83 ± 5.79 7.53 ± 3.55

Note: The data are represented as mean ± SD (SD).
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extraction, feature selection, model training and testing,
evaluation of model prediction ability and location of fea-
tures that contribute to prediction.

In this paper, we use a SVM with a linear kernel
(LSVM) combined with the nested leave-one-out cross-
validation (LOOCV) method and use GMV as a feature to
classify the four groups. Then, we use accuracy and
another index to quantify the performance of the classifier.

As GMV is the unique feature in this study, we adopt
the strategy of longitudinal feature combination, which is
to combine the features of each time point.17 There is still
a lack of research on the use of this strategy. We think
that it may have a better ability to distinguish between
groups because it can dig into the existing differences
between groups.

2.3.1 | Feature selection

The feature selection method is an important step of
machine learning. It can select features with significant
differences and filter out redundant features. It has
been extensively used to improve the performance of
classifiers.18,19 This study applies a nested LOOCV using

the outer loop to estimate classification accuracy and the
inner loop to determine the optimal feature selection.
Feature selection using inner LOOCVs avoids overfitting.
The process of this approach is shown as Figure 1: the
selection of N-1 subjects as the training set for each outer
LOOCV fold, and the remaining subject is used as the test
sample, where N is the number of all subjects. Inner
LOOCVs are further applied in each of the outer LOOCV
folds. A two-sample t-test is conducted on each of the fea-
tures in the training set for each of the inner LOOCVs
(N-2 subjects), which yields a p value for each feature. A
P threshold from 0 to 1 with a .01 interval is applied, and
the features below the p threshold are retained and above
the p threshold are excluded. The p threshold is applied
for each inner LOOCV, resulting in 99 inner LOOCVs in
total, and 99 classification accuracies are obtained for
each inner LOOCV. We take the accuracy of each p value
and the average accuracy corresponding to the two p
values adjacent to it as the final classification accuracy,
which is similar to the smoothing operation in image
processing to control some outliers or noise effects. The
optimal p threshold is used to train the final classifier on
the N-1 training samples of the outer LOOCV. The
obtained classifier is used to predict the category of the

FIGURE 1 Nested LOOCV classification process framework using the GMV feature
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remaining test sample. The process is repeated N times
so that each sample is tested once.

2.3.2 | SVM implementation

The SVM is one of the most widely used supervised
machine learning methods, which takes into account the
experience error and the complexity of the model at the
same time to train a classifier with higher prediction capa-
bility.20,21 We apply the LIBSVM toolbox for MATLAB to
implement the SVM classification (http://www.csie.ntu.
edu.tw/cjlin/libsvm/).22 It has a parameter C to control
the tradeoff between empirical errors and model extensi-
bility, which is set to the default value of 1. Specifically,
each subject can be regarded as a point in multi-
dimensional space, and each dimension is associated with
a feature. The SVM algorithm uses some training data as
input to fit a hyperplane in this multidimensional space,
which best separates the input data into two categories
matching with the known class labels. The hyperplane is
represented as a decision function y = f(x), in which y is
the classification score and x is the multidimensional

feature vector. Once the decision function is learned from
the training data, it will be implemented to predict the
class of new testing samples.

2.3.3 | Evaluation of classification
performance

Accuracy, sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV) are computed to
quantify the classification performance. Specifically, accu-
racy is the proportion of subjects who are correctly classified
into the disease group or control group. Sensitivity and
specificity are the proportion of patients and controls classi-
fied correctly, respectively. PPV and NPV are the proportion
of correct patient predictions and control predictions,
respectively. Furthermore, we use receiver operating char-
acteristic (ROC) analysis to evaluate the performance of the
classifiers. The area under the ROC curve (AUC) represents
the classification power of a classifier, and a larger AUC
indicates a better classification power.23 The ROC curve is
generated using sequential thresholding at the classification
score of each subject.

FIGURE 2 Significantly different regions in sMCI-NC and cMCI-NC comparisons at different scanning time (p-FWE < 0.05). Time

point: baseline, bl; 12 months, 12 m; 24 months, 24 m. Red and yellow represent the decreased gray matter volume of brain regions [Color

figure can be viewed at wileyonlinelibrary.com]
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2.3.4 | Discriminative features

Feature selection in each fold of the outer LOOCV is
implemented using a slightly different sample subset,
which leads to a different set of selected features across
folds. The recurrent features that are selected on all
folds of the outer LOOCV are defined as the discrimi-
native features as described previously. The discrimina-
tive weight for each feature is defined as the average of
their absolute weights across all folds. A higher abso-
lute value of the discriminative weight indicates a
greater contribution of the corresponding feature to the
classification.

3 | RESULTS

3.1 | Voxel-based morphometry analysis

The different patterns of the whole brain are found in
each time point in Figures 2, 3 and 4. According to the
pattern of changes in the whole brain, AD-NC

comparison is the most significant difference among all
between-group comparisons, and the decrease of GMV
is almost all over the brain. cMCI-NC comparison and
AD-sMCI comparison take the second place. cMCI will
gradually develop into AD with progression of disease,
yet sMCI remains stable. According to the comparison
of the degree of whole-brain GM atrophy, we find that
cMCI-NC is more serious than AD-sMCI. cMCI and
sMCI are two subtypes of MCI, and the lesion degree
between them expands gradually with the development
of time. Finally, compared with sMCI-NC and AD-
cMCI, sMCI stays in the stable stage for a long time,
while cMCI will eventually transform into AD, which
is more similar to AD. Therefore, the difference in AD-
cMCI comparison is smaller than that of sMCI-NC
comparison.

The GMV change patterns of the whole brain in dif-
ferent time periods (ie, 12 m-bl and 24 m-bl), as shown in
Figure 5. It is obvious that the development pattern of
the NC group is similar to that of the sMCI group. A sim-
ilar development pattern was observed for the cMCI
group and the AD group.

FIGURE 3 Significantly different regions in cMCI-sMCI and AD-NC comparisons at different scanning time (p-FWE < 0.05). Time

point: baseline, bl; 12 months, 12 m; 24 months, 24 m. Red and yellow represent the decreased gray matter volume of brain regions [Color

figure can be viewed at wileyonlinelibrary.com]
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3.2 | Classification performance

The SVM classification of the four groups is performed
using the GMV features. The classification performance
is reported using accuracy, sensitivity, specificity, PPV,
NPV and AUC. The criteria for determining the best fea-
ture dimension is that the SVM should achieve the best
comprehensive performance that would consist of a bal-
ance between accuracy, sensitivity, specificity, PPV, NPV
and AUC. The primary measure considered is the accu-
racy, followed by the sensitivity, specificity, PPV, NPV
and AUC. Each subject has 90 baseline GMV features
and 90 longitudinal GMV features at each time point (eg,
12 and 24 months).

We first calculate the classification performance without
feature selection (Table 2). By comparing Tables 2 and 3
(with feature selection), it is obvious that feature selection
can improve the classification performance to some extent.
As shown in Table 3, when using the combined features
from all time points, the accuracies, sensitivities, specific-
ities, PPVs, NPVs and AUCs of all between-group compari-
sons achieve great improvement. No matter in the baseline

period or after the longitudinal combination, the classifica-
tion performance of AD-NC comparison is higher than that
of other between-group comparisons. After the longitudinal
feature combination strategy, the classification performance
of cMCI-sMCI comparison improves most obviously, and
the accuracy rate increases from 74.77% to 91.89%. In addi-
tion, the classification performance of AD-cMCI compari-
son is significantly improved, along with an AUC increase
from 72.41% to 91.05%. The sensitivity of sMCI-NC and
cMCI-sMCI comparisons increases from 63.79% to 89.08%
and from 69.81% to 90.57%, respectively. The specificity and
NPV of AD-cMCI comparison increases from 39.62% to
70.44% and from 53.85% to 80.00%, respectively. With the
exception of AD-cMCI comparison, the accuracies among
other between-group comparisons are over 90% after longi-
tudinal feature combination. Specifically, using the selected
baseline features, the SVM produces poor accuracies rang-
ing from 68.55% to 94.66%, low sensitivities ranging from
63.79% to 95.28%, low specificities ranging from 39.62% to
94.00%, low PPVs ranging from 73.33% to 94.39%, low NPVs
ranging from 53.85% to 94.95% and low AUCs ranging from
72.41% to 97.22% for all the comparisons. However, the

FIGURE 4 Significantly different regions in AD-cMCI and AD-sMCI comparisons at different scanning time (p-FWE < 0.05). Time

point: baseline, bl; 12 months, 12 m; 24 months, 24 m. Red and yellow represent the decreased gray matter volume of brain regions [Color

figure can be viewed at wileyonlinelibrary.com]
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classifier performs better using the selected baseline and
longitudinal features in 12 months with accuracies of
78.62% to 97.57%, sensitivities of 76.72% to 97.17%, specific-
ities of 60.38% to 98.00%, PPVs of 81.58% to 98.10%, NPVs
of 71.11% to 97.49% and AUCs of 84.76% to 99.10%, and it
achieved the highest performance with accuracies of 84.28%
to 98.06%, sensitivities of 89.08% to 97.17%, specificities of
70.44% to 99.00%, PPVs of 86.05% to 99.04%, NPVs of
80.00% to 97.36% and AUCs of 91.05% to 99.49%.

3.3 | Distinguishing GM feature

Features with different weight values will be obtained in
the process of classification and will reflect the contribu-
tion to the classification. As Table 4 shows, we apply the

combination of three scanning time points (bl + 12 m
+ 24 m) to obtain the weight values. According to statis-
tics, caudate nucleus, hippocampus, temporal pole and
lenticular putamen are the most important contribution
areas to the between-group classification.

4 | DISCUSSION

As is known to all, voxel-based morphometry (VBM)
analysis has been widely used in cross-sectional and lon-
gitudinal studies to detect the difference between the
aged and AD patients and predicts the transformation of
MCI to AD.24 We observe the GMV change pattern of
four groups in the whole brain from a cross-sectional and
longitudinal viewpoint, especially the changes in sMCI

FIGURE 5 The GMV changes of intragroup during longitudinal comparison (uncorrected P < .01). Red and yellow represent the

decreased gray matter volume of brain regions [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Classification performance without feature selection

Between-group comparison Feature number ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) AUC (%)

sMCI-NC(bl) 90 74.05 51.72 87.00 69.77 75.65 79.45

sMCI-NC(bl + 12 m) 180 80.70 67.24 88.50 77.23 82.33 89.95

sMCI-NC(bl + 12 m + 24 m) 270 85.44 71.26 93.67 86.71 84.89 93.12

cMCI-NC(bl) 90 84.97 75.47 90.00 80.00 87.38 92.28

cMCI-NC(bl + 12 m) 180 91.83 89.62 93.00 87.16 94.42 97.59

cMCI-NC(bl + 12 m + 24 m) 270 93.03 88.05 95.67 91.50 93.79 98.34

sMCI-cMCI(bl) 90 74.77 75.47 74.14 72.73 76.79 80.45

sMCI-cMCI(bl + 12 m) 180 89.19 88.68 89.66 88.68 89.66 94.20

sMCI-cMCI(bl + 12 m + 24 m) 270 93.39 94.97 91.95 91.52 95.24 96.48

AD-NC(bl) 90 92.23 92.45 92.00 92.45 92.00 96.27

AD-NC(bl + 12 m) 180 95.63 94.34 97.00 97.09 94.17 98.07

AD-NC(bl + 12 m + 24 m) 270 96.60 95.60 97.67 97.75 95.44 98.92

AD-sMCI(bl) 90 86.59 89.62 81.03 89.62 81.03 92.65

AD-sMCI(bl + 12 m) 180 93.60 93.87 93.10 96.14 89.26 97.83

AD-sMCI(bl + 12 m + 24 m) 270 94.92 96.23 92.53 95.92 93.06 98.75

AD-cMCI(bl) 90 66.67 80.19 39.62 72.65 50.00 71.61

AD-cMCI(bl + 12 m) 180 76.10 85.85 56.60 79.82 66.67 83.58

AD-cMCI(bl + 12 m + 24 m) 270 79.87 88.36 62.89 82.65 72.99 85.51

Abbreviations: ACC, accuracy; SEN, sensitivity; SPE, specificity.

TABLE 3 Classification performance after feature selection

Between-group comparison
Optimal feature
dimension

ACC
(%)

SEN
(%)

SPE
(%)

PPV
(%)

NPV
(%)

AUC
(%)

sMCI-NC(bl) 65 79.75 63.79 89.00 77.08 80.91 85.93

sMCI-NC(bl + 12 m) 69 87.34 76.72 93.50 87.25 87.38 96.09

sMCI-NC(bl + 12 m + 24 m) 84 92.83 89.08 95.00 91.18 93.75 98.49

cMCI-NC(bl) 61 83.66 73.58 89.00 78.00 86.41 93.89

cMCI-NC(bl + 12 m) 84 96.41 95.28 97.00 94.39 97.49 98.83

cMCI-NC(bl + 12 m + 24 m) 87 97.17 94.97 98.33 96.79 97.36 99.39

sMCI-cMCI(bl) 56 74.77 69.81 79.31 75.51 74.19 82.30

sMCI-cMCI(bl + 12 m) 77 91.44 91.51 91.38 90.65 92.17 93.94

sMCI-cMCI(bl + 12 m
+ 24 m)

79 91.89 90.57 93.10 92.31 91.53 96.84

AD-NC(bl) 86 94.66 95.28 94.00 94.39 94.95 97.22

AD-NC(bl + 12 m) 87 97.57 97.17 98.00 98.10 97.03 99.10

AD-NC(bl + 12 m + 24 m) 87 98.06 97.17 99.00 99.04 97.06 99.49

AD-sMCI(bl) 70 87.20 89.62 82.76 90.48 81.36 92.52

AD-sMCI(bl + 12 m) 83 93.90 94.34 93.10 96.15 90.00 98.07

AD-sMCI(bl + 12 m + 24 m) 85 96.14 96.23 95.98 97.76 93.30 98.67

AD-cMCI(bl) 37 68.55 83.02 39.62 73.33 53.85 72.41

AD-cMCI(bl + 12 m) 54 78.62 87.74 60.38 81.58 71.11 84.76

AD-cMCI(bl + 12 m + 24 m) 74 84.28 91.19 70.44 86.05 80.00 91.05

Abbreviations: ACC, accuracy; SEN, sensitivity; SPE, specificity.
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and cMCI. The GMV atrophy of cMCI from the baseline
to 12 months appears to be significantly higher than that
of sMCI. From the longitudinal pattern of AD-cMCI com-
parison, it is possible to speculate that the brain atrophy
pattern of cMCI is similar to that of AD because the
cMCI patients will develop into AD within 2 years. Simi-
larly, for the longitudinal pattern of sMCI-NC compari-
son, the sMCI patients remains stable for 2 years, and it
is possible to speculate that the brain atrophy is slow,
which is similar to that of the NC group. The GM atrophy
rate of AD-NC comparison is significantly faster than

that of other groups, which also reflects that MCI is a
transitional state between NC and AD. In addition, from
the viewpoint of differences in the longitudinal intra-
group comparisons, the NC group is roughly the same as
the sMCI group, and the cMCI group is roughly the same
as that of the AD group, which reflected the development
trend of two different subtypes of MCI.

In the classification of the four groups, we use the
SVM with linear kernel and combine the nested LOOCV
method. This method also has a feature selection func-
tion. Table 3 shows that the nested LOOCV method can

TABLE 4 The discriminative features of SVM classifier

sMCI-NC Weight cMCI-NC Weight

Caudate nucleus (L) 0.408 Hippocampus (R) 0.339

Temporal pole: superior temporal gyrus (L) 0.294 Caudate nucleus (L) 0.337

Hippocampus (R) 0.251 Insula (R) 0.277

Superior frontal gyrus, medial (L) 0.228 Lenticular nucleus, putamen (L) 0.274

Heschl gyrus (L) 0.209 Temporal pole: superior temporal gyrus (L) 0.260

Calcarine fissure (R) 0.208 Hippocampus (L) 0.260

Lingual gyrus (R) 0.180 Temporal pole: middle temporal gyrus (L) 0.227

Lenticular nucleus, putamen (R) 0.174 Calcarine fissure (R) 0.214

Lenticular nucleus, putamen (L) 0.162 Lenticular nucleus, putamen (R) 0.184

Lenticular nucleus, putamen (R) 0.161 Inferior parietal gyrus (R) 0.183

cMCI-sMCI Weight AD-NC Weight

Temporal pole: superior temporal gyrus (R) 0.260 Caudate nucleus (L) 0.403

Hippocampus (L) 0.227 Lenticular nucleus, putamen (L) 0.371

Temporal pole: middle temporal gyrus (R) 0.223 Hippocampus (R) 0.359

Olfactory cortex (L) 0.213 Temporal pole: superior temporal gyrus (L) 0.316

Posterior cingulate gyrus (R) 0.206 Hippocampus (L) 0.274

Parahippocampal gyrus (L) 0.204 Temporal pole: superior temporal gyrus (R) 0.174

Insula (R) 0.200 Calcarine fissure (R) 0.169

Superior parietal gyrus (R) 0.191 Temporal pole: middle temporal gyrus (L) 0.150

Precentral gyrus (R) 0.184 Heschl gyrus (L) 0.139

Inferior parietal gyrus (R) 0.182 Insula (R) 0.138

AD-sMCI Weight AD-cMCI Weight

Temporal pole: superior temporal gyrus (R) 0.306 Parahippocampal gyrus (L) 0.319

Posterior cingulate gyrus (R) 0.300 Median cingulate gyrus (R) 0.266

Hippocampus (L) 0.243 Caudate nucleus (R) 0.246

Middle frontal gyrus (R) 0.222 Temporal pole: superior temporal gyrus (L) 0.239

Gyrus rectus (R) 0.188 Temporal pole: middle temporal gyrus (R) 0.225

Middle frontal gyrus (R) 0.182 Inferior parietal gyrus (L) 0.215

Calcarine fissure (L) 0.178 Inferior occipital gyrus (R) 0.214

Heschl gyrus (R) 0.175 Lenticular nucleus, putamen (R) 0.209

Inferior frontal gyrus, triangular part (R) 0.148 Posterior cingulate gyrus (R) 0.201

Inferior temporal gyrus (R) 0.143 Precuneus (R) 0.195

Abbreviations: L, left hemisphere; R, right hemisphere.
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select the optimal feature dimension for different
between-group comparisons and receives the best classifi-
cation performance in this dimension. The accuracy rates
obtained by the classification method and the feature
combination strategy are all higher than those of previ-
ous studies.25-28 The accuracies, sensitivities, specificities,
PPVs, NPVs and AUCs have been greatly improved after
the combination of longitudinal time points (ie, bl
+ 12 m and bl + 12 m + 24 m). The reason for high clas-
sification performance of the classifier model mainly
depends on the following two aspects1: the nested
LOOCV method used in this study has the function of
feature selection and can select the best feature dimen-
sion2; compared with single feature classification, the
strategy of longitudinal feature combination greatly
improves the classification performance of the classifier
model. These findings suggest that longitudinal change is
a crucial factor for the prediction of future conversion of
MCI to AD. The longitudinal changes in the GMV could
provide effective information for discrimination and
improved the performance of the classifier.

In order to link the discriminative features extracted
from the classifier with the pathological mechanism of
AD, we list the features/brain regions that have impor-
tant contributions on between-group classification
(Table 4). In earlier anatomic studies of some nonhuman
primates, the temporal pole was considered to be an
important area of interaction that mediated the marginal
cortex and interconnected with visual, auditory, olfactory
and multichannel-associated cortex.29,30 In addition, it
was considered to be important for visual recognition,
nonverbal memory, spontaneous activity, sociality and
other complex behaviors in human and primate behavior
studies.31-33 Several early studies of AD also confirmed
that the temporal pole was one of the most severely dam-
aged cortical areas.34,35 The temporal pole extracted from
the classification model in this study has a high weight
value in each between-group comparison, indicating that
the temporal pole is an important area for identifying
AD, which indirectly provides clues to its pathological
mechanism. De et al36 found that the volume of the bilat-
eral lenticular putamen in AD significantly decreased
compared with that in MCI, and the reduced lenticular
putamen was positively correlated with cognitive func-
tion. However, few studies have been conducted on the
role of the lenticular putamen in cognition. As a part of
the striatum, it had been found that the lenticular puta-
men was activated in the probability learning task37,38

and working memory task.39 The reason for the cognitive
effects of the lenticular putamen in AD is because of the
damage of the primary cognitive function in lenticular
putamen or the incomplete neurochemical function or
the disconnected cortical thalamic projection, which

remains unknown. So, it will be a hot spot in the future.
In addition to the lenticular putamen, which has a signif-
icant contribution to the classification, this study also
found that the caudate nucleus plays an important role
in the classification of AD. A number of studies40,41

found that the volume of the caudate nucleus in AD
patients is significantly lower than that in NCs. The cau-
date nucleus plays a vital role in acquiring explicit mem-
ory and in sport learning,42,43 and its damage will result
in the implementation of control and cognition.44 There-
fore, the combination of the caudate nucleus and other
regions may be an effective target in exploring the bio-
markers of AD. In addition, a large number of
research45-49 point out the hippocampal area was seri-
ously injured in AD patients and caused episodic memory
disorder, which also played a key role in guiding the clin-
ical symptoms of patients.

5 | CONCLUSION AND
PERSPECTIVE

This study mainly analyzes AD and MCI in two aspects.
First, the GMV is used as a feature to explore the changes
in the brain structure in AD and MCI. In this study, the
differences among the NC, sMCI, cMCI and AD groups
are compared, and the longitudinal time course is used to
prove that the brain structure gradually changes in the
development of NC to AD. Therefore, it is proved that
MCI is the transition stage from NC to AD from the per-
spective of brain structural change. Second, linear SVM
with nested LOOCV are used to classify the four groups
of population. The longitudinal combination strategy is
used to improve the classification performance and exca-
vate the features that have a distinguished ability, which
provides a new idea for the diagnosis of AD in the future.

In the follow-up study, we hope to focus on the fol-
lowing aspects: (a) cooperation with the hospital to
obtain different subtypes of AD, mining internal patterns
of differences, to establish a more specific diagnostic
model; (b) in order to seek a more sensitive and effective
biological feature for the transformation of MCI, more
imaging modes and biomarkers should be added to com-
pare; (c) seek a better classification algorithm to further
improve the diagnostic performance; and (d) a more com-
prehensive analysis should be carried out on the level of
brain network to study the process of the change of dis-
ease topological pattern.
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