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Highlights 

 Multi-modal classification can achieve better performance by fusing different 

information 

 Expanding the early and the late fusion into a hierarchical fusion to effectively 

exploit low-level and high-level features 

 The attention complementary strategy is introduced to extract the synergy 

between multi-modal images  

 The attention strategy is introduced in the feature extraction task to suppresses 

the irrelevant information 

 Experiments on ADNI show the effectiveness of proposed method and its 

superiority 

 

 

Abstract 

Background: Compared with single-modal neuroimages classification of AD, multi-modal 

classification can achieve better performance by fusing different information. Exploring synergy 

among various multi-modal neuroimages is contributed to identifying the pathological process of 

neurological disorders. However, it is still problematic to effectively exploit multi-modal 

information since the lack of an effective fusion method. 

New method: In this paper, we propose a deep multi-modal fusion network based on the attention 

mechanism, which can selectively extract features from MRI and PET branches and suppress 

irrelevant information. In the attention model, the fusion ratio of each modality is assigned 

automatically according to the importance of the data. A hierarchical fusion method is adopted to 

ensure the effectiveness of Multi-modal Fusion. 
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Results: Evaluating the model on the ADNI dataset, the experimental results show that it 

outperforms the state-of-the-art methods. In particular, the final classification results of the NC/AD, 

SMCI/PMCI and Four-Class are 95.21%, 89.79%, and 86.15%, respectively. 

Comparison with existing methods: Different from the early fusion and the late fusion, the 

hierarchical fusion method contributes to learning the synergy between the multi-modal data. 

Compared with some other prominent algorithms, the attention model enables our network to focus 

on the regions of interest and effectively fuse the multi-modal data. 

Conclusion: Benefit from the hierarchical structure with attention model, the proposed network is 

capable of exploiting low-level and high-level features extracted from the multi-modal data and 

improving the accuracy of AD diagnosis .Results show its promising performance. 

 

Keyword: Alzheimer’s Disease; Deep Learning; Classification; Multi-modal 

Fusion; Attention Model; 

Introduction 

With the growth of population, the population aging has become a problem that cannot be ignored 

in social development. The aging population will bring a series of disease. Alzheimer’s Disease 

(AD) is a potential onset neurodegenerative disease primarily characterized by progressive episodic 

memory loss and accompanied by several kinds of cognitive and functional impairments [23]. Mild 

Cognitive Impairment (MCI) is the transition period between Normal Control (NC) and possible 

AD. 44% of MCI patients may eventually convert to AD within a few years [14]. The diagnosis of 

AD mainly relies on clinical examinations and psychometric assessments, and there is no definitive 

and effective treatment for patients with advanced AD. Timely medical intervention could slow 

down the deterioration process, so it is of great significance to discover the irreversible change in 

the brain of patients before the onset of clinical symptoms. 

With the rapid development of neuroimaging technology, neuroimaging has become the most 

intuitive and reliable method for the auxiliary diagnosis of AD. In neuroimaging methods, Magnetic 

Resonance Imaging (MRI) has high resolution for soft tissues of the brain, which can clearly 

distinguish the gray and white matter of the brain and reflect the degree of brain atrophy [9][10]. 

Positron Emission computed Tomography (PET) is also a common neuroimaging technique for 

diagnosis of AD, it can show the distribution of lesions and the rate of glucose metabolism by 

imaging agents [12]. Diffuse Tensor Imaging (DTI) can reflect the structural properties of white 

matter cellulose in the brain, so it is often applied to analyze water diffusion at the microstructural 

level of the brain for determining the abnormal diffusion pattern of AD [13]. Since the single-modal 

neuroimage only contains a part of information related to the brain atrophy, it may be insufficient 
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for the MCI conversion prediction. However, the multi-modal neuroimage can provide more 

complementary information, which could be fused to learn the synergy between different 

neuroimages. 

Multi-modal fusion is one of the frontiers in multi-modal machine learning with the early, the 

late and the mixed fusion approaches. Multimodal learning is widely applied in image classification 

[5][18] and image registration [6]. Interests in multi-modal fusion arise from two main benefits. 

First, more robust predictions could be achieved from multiple modalities that observe the same 

phenomenon [8]. Second, the complementary information could be extracted from multiple 

modalities to improve the accuracy of classification results [11]. Liu et al. [15] used Sparse Auto 

Encoder (SAE) to obtain high-level features, and a zero-masking strategy is applied to extract the 

synergy between MRI and PET images. Suk et al. [16] used multi-modal Deep Boltzmann Machines 

(DBM) representation to perform AD classification from MRI and PET images. Zhang et al. [17] 

used a simple but effective Multiple Kernel Learning (MKL) method to combine three different 

biomarkers for classification. Zhou et al. [18] proposed a stage-wise deep feature learning and fusion 

framework. Each stage of the network learns feature representations for independent modality or 

different combinations of modalities. Due to registration deviation and noise interference, Regions 

of Interest (ROI) based feature vectors extracted by the above methods depend largely on image 

preprocessing, so ROI-based feature engineering requires knowledge from domain experts. Only a 

very small amount of training data can be used to learn discriminative patterns in high-dimensional 

feature spaces. Besides, the traditional multi-modal fusion algorithms ignore not only many 

available and extractable features in images, but also the differences in brain volume levels of 

different patients. 

Deep learning methods, especially Convolutional Neural Network (CNN), outperform existing 

machine learning methods in image classification task [29]. In CNN, the original images are used 

directly as the input, and then learning is automatically conducted with the training data. In most 

recent studies, CNNs were used to extract the features of MRI and PET respectively. Cheng et al. 

[19] used image patches to transform the local images into high-level features from the 3D original 

MRI and PET images and combine their results to run 2D CNN. The early fusion focus on the 

combination of low-level features, but the original features will be destroyed after fusion. Liu et 

al.[20] used the correlation analysis to compute the consistency of two CNNs outputs. The late 

fusion focuses on the analysis of results but ignores the synergy between the low-level features. 

However, neither the early fusion nor the late fusion contributes much to the synergy between the 

multi-modal data. In other words, the current multi-modal fusion method cannot take full advantage 

of the complementarity between different neuroimages. 
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To solve the problems of traditional and current algorithms, this paper proposes a novel Deep 

Multi-modal Fusion Network (DMFNet), which has three branches corresponding to the data stream 

of MRI, PET and the merge information. More precisely, MRI and PET images are input into two 

independent branches for feature extraction. At each stage of DMFNet, an attention-based model is 

applied to fuse the information of the two modalities. The main contributions of this paper are as 

follows. 1) The attention complementary strategy is introduced in multi-modal fusion task to extract 

the synergy between multi-modal images. The fusion ratio of each modality is assigned 

automatically. 2) The attention strategy is introduced in the feature extraction task, which models 

the importance of each feature channel to enhance or suppress different channels for different 

classification tasks. 3) Expanding the early and the late fusion into a hierarchical fusion to effectively 

exploit low-level and high-level features and improve the accuracy of auxiliary diagnosis. 

Material and Methods 

Data acquire and Image preprocessing 

Data used in the preparation of this paper are obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has 

been to test whether serial MRI, PET, other biological marker, clinical and psychometric assessment 

can be combined to measure the progressions of MCI and early AD. 

ADNI assesses the process of NC to Early Mild Cognitive Impairment (EMCI), Late Mild 

Cognitive Impairment (LMCI) or AD through clinical, imaging, genetic and biospecimen 

biomarkers. Individuals with EMCI are still diagnosed with MCI, but have less memory impairment 

than MCI subjects recruited during ADNI1. For a comprehensive validation of the proposed method, 

we select 500 ADNI subjects including 163 NC, 113 EMCI, 105 LMCI and 119 AD subjects with 

both T1-weighted MRI scans and FDG-PET images. MCI may convert to AD in a few years. For 

further identifying the progress of MCI conversion, MCI subjects are divided into 153 Stable MCI 

(SMCI) and 65 Progressive MCI (PMCI) subjects according to the standard of ADNI. The 

definitions of SMCI and PMCI in both ADNI are based on whether MCI subjects would convert to 

AD within 36 months after the baseline time. Demographic and clinical information of the subjects 

are shown in Table 1. 

Image pre-processing is performed for all MRI and PET images. First, Anterior Commissure 

(AC) – Posterior Commissure (PC) correction is implemented on all images, and the N3 algorithm 

[27] is applied to correct the intensity inhomogeneity. Next, skull stripping on structural MR images 

is conducted using CAT12 in the SPM package [25]. After the removal of the cerebellum, CAT12 
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in the SPM package is applied to segment structural MR images into three different tissues: grey 

matter, white matter, and cerebrospinal fluid. For PET image, head alignment (Realign) is applied 

to eliminate differences between the slices caused by slight brain shaking during scanning. Then 

PET image is aligned to its corresponding MR image of the same subject using a rigid 

transformation. The realigned image is normalized to MNI space. A spatial filter with a full width 

at half maxima of 6 is used to improve the signal-noise ratio of the image. 

Network structure 

The residual networks [4] have shown to be effective in training a deep network. The identity 

mapping and the bypass path play an important role in making the training of deep networks easy. 

Following the architecture of ResNet, DMFNet is proposed based on an attention mechanism to 

extract and fuse features of MRI and PET. There are three branches in DMFNet, two of which extract 

features of MRI and PET respectively, and the channel attention model [7] applied to extract the 

features of each branch and fuse the reweighted feature maps. The third branch is used to further 

extract fused features. 

A new residual block is designed based on the basic block of ResNet. The proposed residual 

block is divided into four stages, and the corresponding numbers of channels are 64, 128, 256 and 

512 respectively. Besides, an attention model is introduced to build our residual block. The structure 

of DMFNet is shown in Fig. 1. MRI and PET images are input to the network. During the process 

of network inference, a set of feature maps at each stage is output in each branch, and then weights 

are assigned to fuse the two sets of features maps through the attention model automatically. The 

reorganized feature maps and the fused feature map in the previous stage are fused together by 

concatenating and adding. In this way, low-level and high-level features could be utilized at the 

same time in DMFNet. Moreover, the combination of identity mapping and residual block ensures 

the effectiveness and the depth of the attention network. 
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Figure 1 | The Architecture of the proposed DMFNet. MRI image and PET image are processed by 

two branches separately. ○A represents the channel attention model.  represents the feature fusion 

operation, which contains addition and concatenation. 

Attention Model 

The essence of the attention mechanism is a series of attention distribution coefficients or weight 

parameters, which can be applied to enhance or select important information of the target, and 

suppress some irrelevant detailed information. For AD patients, the atrophy region is usually 

concentrated on the hippocampus and the entorhinal cortex, which means that most regions of the 

input image are unrelated to the disease. Indistinguishable information will increase the difficulty of 

AD classification, especially for images with an extremely high similarity of the human brain. In 

addition, the fusion ratios of each branch need to be assigned according to the importance of the 

features extracted from MRI and PET images. Therefore, the attention mechanism is introduced to 

explore potential characteristics of corresponding ROI, while different ratios are assigned 

automatically in each fusion branch. The architecture of the channel attention model is shown in 

Fig. 2. Jo
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Figure 2 | The architecture of the channel attention model. X  represents the input feature map. 

'X  represents the output feature map after channel reweighting. 

Inspired by [7], an improved channel attention model is proposed. For an input feature map X 

with C channels, the deployment of the attention model is completed in the following three steps. 

1)We perform feature compression along the spatial dimensions, transforming the two-dimensional 

feature of each channel into a real number. The real number has a global receptive field to some 

extent, and the dimensions of output are in accordance with the number of input feature channels. 

This process can be implemented by global pooling, and the corresponding equation of squeeze 

operation is shown as follows. 

i j

1
Z  =Fse = ( , )

*

H W

C CX i j
H W

                  (1) 

Where H , W  and C  represent the height, the width and the number of channels of each 

feature map, respectively. 2)In order to map the importance of each channel with a compressed set 

of real numbers, new weights for each feature channel are generated to explicitly model the 

correlation between feature channels. A 1 * 1 convolution is able to explore the correlation among 

different channels, thereby obtaining the weight distribution of these channels. The corresponding 

calculation is formularized in Eqn. (2). 

S  = Fex(Z) = (conv(Z )) C C                   (2) 

Where   represents the Sigmod activation function. 3)Weights regenerated in the second 

step reflect the importance of each channel. Then the origin features are multiplied gradually to 

complete the redistribution of the original features in the channel dimension. The transition of the 

input feature map XC  to 
'X C  can be expressed as Eqn. (3). 

'X  = Frw(x  s) = S  XC C C，                     (3) 

In this way, feature maps XC  are transformed into new feature maps 
'X C with reweighted 

channel information. To some extent, the attention model essentially introduces additional dynamic 

characteristics on the input, which can be considered as a self-attention function on the channel. 
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Attention for feature extraction 

In ResNet, the network consists of a series of basic blocks and bottleneck blocks. Each residual 

block contains two subbranches: the identity mapping branch and the residual branch. The residual 

block is given as Eqn. (4). 

1X  = H (X ) + Xt t t t                        (4)  

Where tX  represents the input of the t-th residual block, Ht  represents the conversion 

equation corresponding to the t-th residual block. The attention model is embedded into each 

residual block. However, stacking attention model simply may not bring significant performance 

improvement [1]. There are two main reasons for this problem. First, repeating the dot product in 

the deep network will decrease the value of the feature maps. Second, the attention model potentially 

breaks the identity mapping structure of the residual branch, which increases the difficulty for the 

network expanding to a deeper level. Therefore, identity mapping and the attention model are 

combined into the new residual block, as defined in Eqn. (5). 

1X  = A H (X ) +H (X ) + Xt t t t t t t                (5) 

Where At  represents the function of attention model. The network image can be expanded 

effectively to a deeper level by a similar identity mapping structure, obtaining high-level features. 

As shown in Fig. 3, in the basic block of ResNet, the feature map is convolved by two 3 * 3 

convolutional layers, and the convolutional output is added to the input feature map to build the 

identity mapping. In the residual block of DMFNet, an attention-based model is connected for 

further feature extraction, and then the output of the attention model is added to the feature map and 

the convolutional output. 

 

Figure 3 | The comparison of basic block and the proposed building block. Relu and Sigmod 

represent an activation function commonly used in artificial neural networks. 
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Attention for feature fusion 

In most traditional multi-modal fusion algorithms, SAE or DBM is used to map features into a lower-

dimensional space, and then the features for classification are fused. But the low-level feature fusion 

will destroy the original information of MRI and PET. Currently some studies vote on the 

classification results of two networks at the decision level or concatenate features extracted from 

two networks. This method ignores the synergy between different features, which leads to inefficient 

use of carried information. 

The information characterized by MRI and PET images is not the same, so it is critical to use 

the complementary relationship between the two modalities. In past research, this point was usually 

ignored by researchers. It was used as hyperparameters to adjust the ratio of each modality, but the 

cost of such human intervention is usually time-consuming. This paper introduces an attention 

mechanism to automatically assign the proportion of each modality during fusion. It is defined in 

Eqn. (6). 

, , 1 , , , ,X  = X  + A X  + A XF t F t M t M t P t P t                 (6) 

Where ,AM t  and , AP t  respectively represent attention models corresponding to the t-th 

building block of MRI and PET, ,XM t , ,XP t  and ,XF t represent the feature map corresponding 

to the t-th building block of MRI, PET, and the fusion branch respectively. 

Experimental Results and Discussions 

Slice Selection 

The format of the original image archived from the ADNI database is NIfTI, so it is necessary to 

take out 2D slices from the 3D image for AD classification. In some studies based on 2D image 

classification [2], the selection of brain slices has not caught the attention of researchers. Introducing 

indiscriminate data into the dataset is usually unfriendly for image classification, so the slice with 

the subtle lesion region should be selected precisely. The numbers of slices of MRI and PET are 

different due to different scanning methods. To align the slices of the two modalities, the images of 

both modalities are resampled with the size of 180 * 180 * 180, and then 60 slices gathered in the 

image center are taken out from each axial. Although the spatial information of a sample in a 2D 

image taken from a 3D image will be greatly destroyed, slices from all axial are selected to minimize 

this loss. To screen out more descriptive slices, a slice screening network based on AlexNet [3] is 

designed. The slices located in the same position of all samples are taken out as a slice-dataset. Then 

the slices are filtered according to the classification accuracy corresponding to each slice-dataset. 
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Finally, 20 slices are selected out of 180 slices from each sample as the data set. The data set is 

divided into the training set, the validation set and the test set at a ratio of 6: 2: 2. 

Training 

For AD patients, there are usually large morphological differences between AD and NC, which 

makes the patients easier to be distinguished. But for MCI patients, the morphological differences 

between MCI and NC are insufficient to distinguish the patients with a simple method. In order to 

verify the performance of our method for predicting AD and MCI conversion, three sets of 

experiments: AD vs NC, SMCI vs PMCI, and four classifications are set up. In order to verify the 

superiority of our proposed multi-modal fusion method, several comparative experiments are set up 

based on the same dataset: 1) A single-modality MRI classification task based on ResNet (Baseline); 

2) Multi-modal classification task based on ResNet (ResNetCom). Specifically, two branches are 

used to extract features of MRI and PET images, and the separate feature maps are set up and then 

SoftMax is used to complete the classification; 3) Multi-modal classification task based on 

DMFNet_v1. Compared with ResNetCom, the reorganized feature maps are fused at each stage of 

DMFNet; 4) Multi-modal classification task based on DMFNet_v2. Compared with ResNetCom, 

feature extraction and feature fusion based on attention mechanism are appended in DMFNet. 

Implementation Details 

Random scaling, cropping, and flipping are applied for data enhancement. The Adam optimizer 

with an initial learning rate of 0.002, a momentum of 0.9 and a weight decay of 1e-5 is applied in 

gradient descent. When performing batch training on an NVIDIA RTX2080Ti, the size is set to 32. 

The optimization of the learning rate is adjusted in two ways. One is to update by an exponential 

decay. The size of the learning rate is exponentially as the number of epochs increased. The other is 

to adjust the learning rate with the help of the train set. As the loss increases, the learning rate is 

further reduced with an exponential decay. 

Results 

As shown in Table 2, the final classification results of AD classification, MCI conversion prediction 

and Four-Class based on test set are 95.21 %, 89.79%, and 86.15%, respectively. The results of our 

proposed method are obviously better than other comparative methods in each group of experiments. 

In the experiments of AD vs NC, because of large differences between AD and NC images, which 

is easy to be distinguished, our algorithm does not have a significant performance improvement. 

Comparing single-modal and multi-modal based on ResNet, we can find that the simple decision-

level fusion does not bring about significant performance improvement because the late fusion 
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ignores the synergy between the low-level features. In the classification of SMCI vs PMCI, the 

classification accuracy of traditional algorithms has not been very high, because the samples in the 

stable and the progressive stages of MCI have no significant difference. According to the 

experimental results, our method is significantly better than single-modal and simple multi-modal 

fusion methods. The reason is that the attention model in the residual block can explore potential 

features between data. In the four-class classification, our method could provide great improvement. 

In general, the complexity of a network increases with its depth. When a complex model is applied 

to a simple classification problem, not much performance improvement could be achieved. In other 

words, a deep network tends to solve more complex classification task. As the category number of 

multi-category classification raises from 2 to 4, the classification accuracy improves significantly. 

Data Visualization and Statistical Analysis 

To understand how the attention model works better, we visualize the feature maps from Conv1 

layer of DMFNet (shown in Fig. 4) since low-level features are more consistent with visual intuitions. 

Note that we visualize three branches feature maps for better illustration. The number of images 

corresponds to the number of channels. According to the Eqn. (6), we could find how do the features 

of MRI and PET impact on the fused features. The attention model tends to give a higher weight to 

the branch which contains more valid information, it means that the importance of feature channel 

plays a crucial role feature fusion. 

 

(a)                                     (b) Jo
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(c) 

Figure 4 | Visualization of local feature maps extracted by DMFNet. (a) feature maps extracted from 

MRI images, (b) feature maps extracted from PET images, (c) feature maps fused by (a) and (b). 

The softmax layer outputs a probability distribution. Cross entropy indicates the distance 

between the output distribution and the original distribution. Cross entropy loss function is used to 

evaluate the training process of the neural network. Fig. 5 shows the trend of the observed value 

changing with the number of iterations. It can be seen that the DMFNet_v2 network converges after 

fewer iterations in training process. After each network model iterates for 100 cycles in the 

verification set, the loss function value tends to be stable. Due to the introduction of the attention 

model and the fused branch, the complexity of our model increases within an acceptable range. 

However, the convergence of the proposed model has been greatly improved. 

 

(a) (b) 

 

(c)                             (d) 
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Figure 5 | Accuracy and loss curves achieved by three different methods in AD classification on 

ADNI. (a) and (b) indicate the trend of accuracy and loss in the training step, (c) and (d) indicate the 

trend of accuracy and loss in the verification step. 

Receiver Operating Characteristic (ROC) curves and of different classification models tested 

on the 20% ADNI dataset are shown in Fig. 6. The Area Under the ROC Curve (AUC) for 

classification of AD/NC is 0.994, 0.981, 0.974 and 0.944 respectively. The AUC for classification 

of SMCI/PMCI is 0.953, 0.911, 0.893 and 0.783 respectively. To investigate the significance of 

classification performance between different methods, we have carried out a non-parametric 

statistical analysis, namely DeLong’s test [33], for the comparison of each two ROC curves for 

classification of SMCI/PMCI on ADNI dataset, with a confidence interval of 95%. The results 

indicate that DMFNet_v2 performs significantly better than DMFNet_v1, ResNet_com and ResNet 

with p values = 0.003, 3.57×10−6 and 5,34×10−9, respectively. The above AUCs and p values indicate 

that the proposed network has reasonable ability to distinguish the early AD patients. Especially in 

the classification of SMCI/PMCI, the DMFNet outperforms ResNet-based model. 

 

(a)                                 (b) 

Figure 6 | ROC curves achieved by three different methods in AD classification on ADNI. (a) 

indicates ROC curves for classification of AD/NC, (b) indicates ROC curves for classification of 

SMCI/PMCI. 

Classification Performance 

Following a denoising fashion, Liu et al. [15] used SAE and a zero-mask strategy for feature fusion 

to extract complementary features from multi-modal data. SAE was applied to obtain high-level 

features in the unsupervised pretraining stage, which achieved an AD/NC classification accuracy of 

91.4%. Liu et al. [31] proposed a classification framework based on combination of 2D CNN and 

Recurrent Neural Networks (RNNs), which learns the intra-slice and inter-slice features for 

classification after decomposition of the 3D PET image into a sequence of 2D slices, which achieved 

an AD/NC classification accuracy of 91.2%. Beheshti et al [32] used a voxel-based morphometry 

technique to investigate global and local gray matter atrophy. SVM is applied to learn the feature 

extracted from gray matter, which achieved an AD/NC classification accuracy of 93.01%. Liu et al. 
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[20] proposed a landmark-based deep multi-instance learning framework for brain disease diagnosis. 

A data-driven learning approach was used to select discriminative patches from MRI images based 

on AD-related anatomical landmarks identified, which achieved an AD/NC classification accuracy 

of 91.09% and a MCI conversion prediction accuracy of 76.9%. Lu et al. [21] proposed a deep multi-

modal and multiscale neural network to discriminate individuals with AD and used SAE for pre-

training, which achieved an AD/NC classification accuracy of 84.6% and a MCI conversion 

prediction accuracy of 82.93%. Shi et al. [28] used a multi-modal stacked deep polynomial networks 

algorithm to fuse and learn feature representation from multi-modal neuroimaging data, which 

achieved an AD/NC classification accuracy of 97.13% and a MCI conversion prediction accuracy 

of 78.88%. Zhang et al. [22] proposed a dual branch network based on VGG19, and the multi-modal 

medical images were trained by two independent branches. The results of multi-modal neuroimaging 

diagnosis were combined with the results of the clinical neuropsychological diagnosis, which 

achieved an AD/NC classification accuracy of 88.20%. 

Deep learning has been applied to AD classification using original neuroimaging data without 

any feature selection procedures, which greatly preserves the information of the sample [25]. Table 

3 shows the comparison of the state-of-the-art method and the proposed methods in this paper. Shi 

et al. [28] achieved an AD/NC classification accuracy of 97.13%, but their experimental results 

lacked the verification of proper untrained test data after cross-validation. Benefiting from the 

attention mechanism, our model has made great improvements in the MCI conversion prediction. 

We combine accuracy, specificity and sensitivity together to objectively evaluate the results, and the 

results of the proposed model show its superiority to the most state-of-the-art algorithms. 

Conclusion 

In this paper, a novel deep multi-modal fusion model is proposed for the early auxiliary diagnosis 

of AD and MCI conversion. MRI and PET images are trained to learn the synergy between the 

multi-modal data. The hierarchical architecture in the proposed model ensures that the features of 

MRI and PET are extracted independently without destroying the information of the original features. 

In the attention models, features are selectively extracted from MRI and PET branches and the 

irrelevant information is suppressed, and the weighted features are fused to build the fusion branch. 

In our model, potential features between different multi-modal data can be explored and combined. 

Low-level and high-level features are fused so that complementary data could be effectively 

exploited. The experiments show that the proposed model outperforms the state-of-the-art methods 

on the ADNI dataset. 

In the future, more possibilities could be explored for AD classification and MCI conversion. 
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The following are our upcoming work. 1) Image segmentation based on Neural Network. The 

original 3D image of MRI is segmented into gray matter, white matter, etc. It not only means that 

the tedious work of segmentation using software such as SPM could be reduced, but also provides 

the possibility for the integration of scanning and predicting of neuroimaging of AD patients. 2) 

Multi-modal fusion based on 3D CNN. Relative to 2D slice images, 3D images completely preserve 

the spatial information of a sample, but this method has to face the dilemma of so few available data. 

3) Further feature fusion with a new model. Complementary information between MRI and PET 

features could be learned so that when the inference exists, or even if a kind of modal data is missing, 

AD could still be predicted based on the single input and corresponding complementary information 

learned from the pre-trained model. 
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Table 1 | The statistical information for the subjects in ADNI. Values are reported as Mean ± 

Standard Deviation (Std); MMSE: mini-mental state examination. 

Group NC EMCI LMCI AD  

Sample size 163 113 105 119  

Male/female 75/88 63/50 49/56 59/60  

Age 76.74±6.80 71.45±7.09 71.66±7.67 74.67±+7.82  

MMSE [30] 29.08±1.07 27.81±2.08 26.93±2.48 22.51±2.95  

 

 

 

Table 2 | The Results of classification on ADNI among different methods. 

Group Baseline ResNet_com DMFNet_v1 DMFNet_v2 

AD / NC 88.70% 85.37% 94.86% 95.21% 

SMCI / MCI 77.87% 81.19% 87.27% 89.79% 

Four-Class 62.10% 66.15% 84.30% 86.15% 
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Table 3 | The comparison results of AD classification, MCI conversion prediction with state-of-

the-art methods. 

References Modality 

NO. of  

subjects 
method 

ACC 

(AD vs NC) 

SEN SPE 
ACC 

(SMCI vs PMCI) 

SEN SPE 

Liu et al. (2015) MRI, PET 800 SAE 91.4 92.32 90.42 82.1 (MCI vs NC) 60.0 92.32 

Liu et al. (2018a) PET 339 RNN 91.2 91.4 91.0 78.9(MCI vs NC) 78.1 80.0 

Beheshti et al. (2017) MRI 322 3D SVM 93.01 89.13 96.80 75.00 76.92 73.23 

Liu et al. (2018b) MRI 636 3D CNN 91.09 88.05 93.50 76.9 42.11 82.43 

Lu et al. (2018) MRI, PET 1242 DNN 84.6 80.2 91.8 82.93 79.69 83.84 

Shi et al. (2018) MRI, PET 202 DPN 97.13 95.93 98.53 78.88 68.04 86.81 

Zhang et al. (2019) MRI, PET 400 VGG19 88.20 97.43 84.31 85.74 (MCI vs NC) 90.11 91.82 

proposed MRI, PET 500 DMFNet 95.21 93.56 97.48 89.79 81.15 93.46 

Note: SEN = TP/ (TP + FN), SPE = TN/ (TN + FP). TP, True Positive; TN, True Negative; FP, False 

Positive; FN, False Negative. 
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