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Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive
impairment (MCI)), has attracted more and more attention recently. So far, multiple biomarkers have been
shown to be sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy
measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid
(CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality
of biomarkers for diagnosis of AD andMCI, although recent studies have shown that different biomarkers may
provide complementary information for the diagnosis of AD and MCI. In this paper, we propose to combine
three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI)
and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF
data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within
18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy
controls are used for development and validation of our proposed multimodal classification method. In
particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest
(ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are
directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification
accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a
classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three
modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers.
Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a
sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best
individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that
91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate
the classification performance when employing a feature selection method to select the most discriminative
MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to
the case of using an individual modality of biomarkers.
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Introduction

Alzheimer's disease (AD) is the most common form of dementia in
elderly people worldwide. It is reported that the number of affected
people is expected to double in the next 20 years, and 1 in 85 peoplewill
be affected by 2050 (Ron et al., 2007). Thus, accurate diagnosis of AD,
especially for its early stage also known as amnestic mild cognitive
impairment (MCI), is very important. It is known that AD is related to
the structural atrophy, pathological amyloid depositions, andmetabolic
alterations in the brain (Jack et al., 2010; Nestor et al., 2004). At present,
severalmodalities of biomarkers have been proved to be sensitive to AD
and MCI, including the brain atrophy measured in magnetic resonance
(MR) imaging (de Leon et al., 2007; Du et al., 2007; Fjell et al., 2010;
McEvoy et al., 2009), hypometabolismmeasured by functional imaging
(De Santi et al., 2001; Morris et al., 2001), and quantification of specific
proteins measured through CSF (Bouwman et al., 2007b; Fjell et al.,
2010; Mattsson et al., 2009; Shaw et al., 2009).

However, most existing pattern classificationmethods just use one
individual modality of biomarkers for diagnosis of AD or MCI, which
may affect the overall classification performance. For example, many
high-dimensional classification methods use only the structural MRI
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brain images for classification between AD (or MCI) and healthy
controls (Cuingnet et al., in press; Fan et al., 2008a, 2007; Gerardin
et al., 2009; Kloppel et al., 2008; Lao et al., 2004; Magnin et al., 2009;
Misra et al., 2009; Oliveira et al., 2010; Westman et al., 2011). Also,
according to the features being extracted from the structural MRI, the
existing classification methods can be roughly divided into three
categories, using 1) voxel-wise tissue probability (Fan et al., 2007;
Kloppel et al., 2008; Lao et al., 2004; Magnin et al., 2009), 2) cortical
thickness (Desikan et al., 2009; Lerch et al., 2008; Oliveira et al., 2010;
Querbes et al., 2009), and 3) hippocampal volumes (Gerardin et al.,
2009; West et al., 2004). It was found that most effective features
for AD or MCI classification are actually extracted from the atrophic
regions, i.e., hippocampus, entorhinal cortex, parahippocampal
gyrus, and cingulated, which are consistent with previous findings
using group comparison methods (Chetelat et al., 2002; Convit et al.,
2000; Fox and Schott, 2004; Jack et al., 1999; Misra et al., 2009). In
addition to structural MRI, another important modality of biomarkers
for AD or MCI detection is fluorodeoxyglucose positron emission
tomography (FDG-PET) (Chetelat et al., 2003; Foster et al., 2007;
Higdon et al., 2004). With FDG-PET, some recent studies have
reported the reduction of glucose metabolism in parietal, posterior
cingulated, and temporal brain regions for AD patients (Diehl et al.,
2004; Drzezga et al., 2003). Besides these neuroimaging techniques,
there are also some biological or genetic biomarkers developed
for diagnosis of AD or MCI. For example, researchers have found that
1) the increased CSF total tau (t-tau) and tau hyperphosphorylated
at threonine 181 (p-tau) are related to the neurofibrillary tangle
pathology, 2) the decreased amyloid β (Aβ42) indicates amyloid
plaque pathology, and 3) the presence of the apolipoprotein E (APOE)
ε4 allele can predict cognitive decline or conversion to AD (Bouwman
et al., 2007b; de Leon et al., 2007; Fjell et al., 2010; Ji et al., 2001).

Actually, different biomarkers provide complementary informa-
tion, which may be useful for diagnosis of AD or MCI when used
together (Apostolova et al., 2010; de Leon et al., 2007; Fjell et al., 2010;
Foster et al., 2007; Landau et al., 2010; Walhovd et al., 2010b). It was
reported that FDG-PET and MRI measures are differentially sensitive
to memory in health and disease (Walhovd et al., 2010b). A recent
study also shows that the morphometric changes in AD and MCI are
related to CSF biomarkers, but can also provide complementary
information to CSF biomarkers (Fjell et al., 2010). A more recent
study has compared the respective prognostic ability of genetic, CSF,
neuroimaging, and cognitive measures obtained in the same partici-
pants, indicating that there exists complementary information among
these biomarkers whichmay aid in the future diagnosis of AD andMCI
(Landau et al., 2010). Inspired by these findings, a few studies have
used two or more biomarkers simultaneously for detection of AD
and MCI, i.e., using MRI and CSF in Bouwman et al. (2007a) and
Vemuri et al. (2009), MRI and cognitive testing in Geroldi et al. (2006),
Visser et al. (2002), FDG-PET and CSF in Fellgiebel et al. (2007), FDG-
PET and cognitive testing in Chetelat et al. (2005), and MRI, CSF, and
FDG-PET in Walhovd et al. (2010a).

Although the use of multiple biomarkers yields promising results,
the abovemethodsmay be limited. First, only a fewmanually selected
brain regions are generally considered for MRI and PET based
classification of AD or MCI. However, the structural and functional
features measured from a limited set of pre-defined regions may be
not able to reflect the spatial–temporal pattern of structural and
physiological abnormalities in their entirety (Fan et al., 2008b).
Second, most of the above methods are primarily designed to char-
acterize group differences, and are not for individual classification.
Although there exist some methods combining two modalities of
biomarkers for individual classification, i.e., using both MRI and PET
(Fan et al., 2008b; Hinrichs et al., 2009a, 2009b; Ye et al., 2008), both
MRI and CSF (Davatzikos et al., in press), or both MRI and APOE
biomarkers (Ye et al., 2008), there are still a few methods that
combine all three modalities of biomarkers (MRI, PET, and CSF) for
classification, and in this paper the benefit of combining all three
biomarkers for AD or MCI diagnosis will be shown.

Specifically, we will combine the measurements from all three
biomarkers, i.e., MRI, PET, and CSF, to discriminate between AD and
healthy controls, or between MCI and healthy controls. To effectively
combine three different biomarkers for classification, we use a simple-
while-effective multiple-kernel combination method. This method
can be naturally embedded into the conventional SVM classifier
without extra steps. Our experimental results show that the com-
bination of different measurements from MRI, PET, and CSF dem-
onstrates much better performance in AD or MCI classification,
compared to the case of using even the best individual modality of
biomarkers.

Methods

The data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administra-
tion (FDA), private pharmaceutical companies and non-profit orga-
nizations, as a $60 million, 5-year public–private partnership. The
primary goal of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assessments
can be combined to measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials.

ADNI is the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to
participate in the research — approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people withMCI to be
followed for 3 years, and 200 people with early AD to be followed for
2 years (see www.adni-info.org for up-to-date information). The
research protocol was approved by each local institutional review
board and written informed consent is obtained from each
participant.

Subjects

The ADNI general eligibility criteria are described at www.adni-
info.org. Briefly, subjects are between 55–90 years of age, having a
study partner able to provide an independent evaluation of func-
tioning. Specific psychoactive medications will be excluded. General
inclusion/exclusion criteria are as follows: 1) healthy subjects: Mini-
Mental State Examination (MMSE) scores between 24–30, a Clinical
Dementia Rating (CDR) of 0, non-depressed, non-MCI, and nonde-
mented; 2) MCI subjects: MMSE scores between 24–30, a memory
complaint, having objective memory loss measured by education
adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR
of 0.5, absence of significant levels of impairment in other cogni-
tive domains, essentially preserved activities of daily living, and an
absence of dementia; and 3) mild AD: MMSE scores between 20–26,
CDR of 0.5 or 1.0, and meets the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer's Disease
and Related Disorders Association (NINCDS/ADRDA) criteria for
probable AD.

In this paper, only ADNI subjects with all corresponding MRI, CSF
and PET baseline data are included. This yields a total of 202 subjects
including 51 AD patients, 99MCI patients (43MCI converterswho had
converted to AD within 18 months and 56 MCI non-converters who
had not converted to AD within 18 months), and 52 healthy controls.
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Table 1 lists the demographics of all these subjects. Subject IDs are
given in Supplemental Table 5.

MRI

All structural MR scans used in this paper were acquired from 1.5 T
scanners. Data were collected across a variety of scanners with pro-
tocols individualized for each scanner, as defined at www.loni.ucla.
edu/ADNI/Research/Cores/index.shtml. Briefly, raw Digital Imaging
and Communications in Medicine (DICOM) MRI scans were down-
loaded from the public ADNI site (www.loni.ucla.edu/ADNI),
reviewed for quality, and automatically corrected for spatial distortion
caused by gradient nonlinearity and B1 field inhomogeneity.

PET

We downloaded the baseline PET data from the ADNI web site
(www.loni.ucla.edu/ADNI) in December 2009. A detailed description
of PET protocols and acquisition can be found at www.adni-info.org.
Briefly, PET images were acquired 30–60 min post-injection, aver-
aged, spatially aligned, interpolated to a standard voxel size, intensity
normalized, and smoothed to a common resolution of 8-mm full
width at half maximum.

CSF

We downloaded the baseline CSF Aβ42, t-tau and p-tau data from
the ADNI web site (www.loni.ucla.edu/ADNI) in December 2009. The
CSF collection and transportation protocols are provided in the ADNI
procedural manual on www.adni-info.org. Briefly, CSF was collected
in the morning after an overnight fast using a 20- or 24-gauge spinal
needle, frozen within 1 hour of collection, and transported on dry ice
to the ADNI Biomarker Core laboratory at the University of
Pennsylvania Medical Center. In this study, CSF Aβ42, CSF t-tau and
CSF p-tau are used as the features.

Image analysis

Image pre-processing is performed for all MR and PET images.
First, we do anterior commissure (AC)–posterior commissure (PC)
correction on all images, and use the N3 algorithm (Sled et al., 1998)
to correct the intensity inhomogeneity. Next, we do skull-stripping
on structural MR images using both brain surface extractor (BSE)
(Shattuck et al., 2001) and brain extraction tool (BET) (Smith, 2002),
followed by manual edition and intensity inhomogeneity correction.
After removal of cerebellum, FAST in the FSL package (Zhang et al.,
2001) is used to segment structural MR images into three different
tissues: gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF). After registration using HAMMER (Shen and Davatzikos,
2002), we obtain the subject-labeled image based on a template
with 93 manually labeled ROIs (Kabani et al., 1998). For each of the 93
ROI regions in the labeled MR image, we compute the volume of GM
tissue in that ROI region as a feature. For PET image, we first align it to
its respective MR image of the same subject using a rigid transfor-
Table 1
Subject information.

AD(n=51;18F/33M) MCI (n=99;32F/67M) HC (n=52; 18 F/34M)

Mean SD Range Mean SD Range Mean SD Range

Age 75.2 7.4 59–88 75.3 7.0 55–89 75.3 5.2 62–85
Education 14.7 3.6 4–20 15.9 2.9 8–20 15.8 3.2 8–20
MMSE 23.8 2.0 20–26 27.1 1.7 24–30 29 1.2 25–30
CDR 0.7 0.3 0.5–1 0.5 0.0 0.5–0.5 0 0.0 0–0

The numbers refer to baseline data. AD=Alzheimer's Disease, MCI=Mild Cognitive
Impairment, HC=Healthy Control, MMSE=Mini-Mental State Examination, CDR=
Clinical Dementia Rating.
mation, and then compute the average intensity of each ROI region in
the PET image as a feature. Therefore, for each subject, we totally
obtain 93 features from the MRI image, another 93 features from the
PET image, and 3 features from the CSF biomarkers.

Multimodal data fusion and classification

A general framework based on kernel methods (Scholkopf and
Smola, 2002) is presented here to combine multiple biomarkers
(MRI, PET, and CSF) for discriminating between AD (or MCI) and
healthy controls. This kernel-based method can be easily embedded
into the conventional SVM classifier for high-dimensional pattern
classification, without extra steps. Moreover, unlike other combining
methods which can only process one type of data, i.e., numeric data
type, our method can combine multiple types of data such as numeric
data, string, and graph.

Before introducing the kernel combinationmethod, we first briefly
review the standard single-kernel SVM algorithm. The main idea of
SVM is summarized as follows. First, the linearly nonseparable
samples are mapped from their original space to a higher or even
infinite dimensional feature space, where they are more likely to
be linearly separable than in the original lower-dimensional space,
through a kernel-induced implicit mapping function. Then, a
maximum margin hyperplane is sought in the higher-dimensional
space.

Now we will present the multiple-kernel SVM which can be used
to integrate multiple modalities of biomarkers (i.e., MRI, PET and CSF)
for individual classification of AD (or MCI) from healthy controls.
Suppose that we are given n training samples and each of them is ofM
modalities. Let x i

(m) denote a feature vector of them-thmodality of the
i-th sample, and its corresponding class label be yi∈{1,−1}. Multiple-
kernel based SVM solves the following primal problem:

min
w mð Þ ;b;ξi

1
2

∑
M

m=1
βm‖w

mð Þ‖
2
+ C∑
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i=1
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ξi ≥ 0; i = 1;…;n:

Where w mð Þ, ϕ(m) and βm ≥ 0 denote the normal vector of
hyperplane, the kernel-inducedmapping function, and the combining
weight on the m-th modality, respectively.

Similarly as in the conventional SVM, the dual form of multiple-
kernel SVM can be represented as below:

max
α

∑
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i=1
αi−

1
2
∑
i;j
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βmk
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i

� �T
ϕ mð Þ x mð Þ

j
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is the kernel

function for the two training samples on the m-th modality. The
symbol n is the number of training samples.

For a new test sample x = x 1ð Þ;x 2ð Þ;…;x Mð Þ� �
, we first denote

k mð Þ x mð Þ
i ; x mð Þ
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i
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as the kernel between the

new test sample and each training sample on them-thmodality. Then,
the decision function for the predicted label can be obtained as below:
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It's easy to know that the multiple-kernel based SVM can
be naturally embedded into the conventional single-kernel
SVM if we interpret k xi;xj

� �
= ∑mβmk mð Þ x mð Þ

i ;x mð Þ
j

� �
as a mixed

kernel between the multimodal training samples xi and xj, and
k xi; xð Þ = ∑mβmk mð Þ x mð Þ

i ;x mð Þ
� �

as a mixed kernel between the
multimodal training sample xi and the test sample x. In fact, our
method can be viewed as a way for a kernel combination which
combines multiple kernels into one kernel.

It is worth noting that our formulation of multiple-kernel SVM is
similar, but different from, the existingmulti-kernel learningmethods
(Hinrichs et al., 2009b; Lanckriet et al., 2004; Wang et al., 2008). One
key difference is that we do not jointly optimize the weights βms
together with other SVM parameters (e.g., α) in an iterative way.
Instead, we constrain ∑mβm = 1 and use a coarse-grid search
through cross-validation on the training samples to find the optimal
values. After we obtain the values of βms, we use them to combine
multiple kernels into a mixed kernel, and then perform the standard
SVM using the mixed kernel. The main advantage of our method is
that it can be conveniently solved using the conventional SVM solvers,
e.g., LIBSVM (Chang and Lin, 2001).

As explained above, this kernel combination method can provide a
convenient and effective way for fusing various data from different
Fig. 1. Schematic illustration of multimodal
modalities. Inour case,we focusonmultimodal classificationusing three
modalities, i.e., MRI, PET, and CSF biomarkers. Fig. 1 gives a schematic
illustration of our multimodal data fusion and classification pipeline.

Validation

To evaluate the performance of different classification methods,
we use a 10-fold cross-validation strategy to compute the classifica-
tion accuracy (for measuring the proportion of subjects correctly
classified among the whole population), as well as the sensitivity (i.e.,
the proportion of AD or MCI patients correctly classified) and the
specificity (i.e., the proportion of healthy controls correctly classified).
Specifically, the whole set of subject samples are equally partitioned
into 10 subsets, and each time the subject samples within one subset
are successively selected as the testing samples and all remaining
subject samples in the other 9 subsets are used for training the
multiple-kernel classifier. This process is repeated for 10 times
independently to avoid any bias introduced by randomly partitioning
dataset in the cross-validation. The SVM classifier is implemented
using LIBSVM toolbox (Chang and Lin, 2001), with a linear kernel
and a default value for the parameter C (i.e., C=1). The weights in the
multiple-kernel classification method are learned based on the
data fusion and classification pipeline.
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training samples, through a grid search using the range from 0 to 1 at a
step size of 0.1. Specifically, in each fold of the 10-fold cross-
validation, we perform another 10-fold cross-validation on the
training samples to determine the optimal values for the weights.
Also, for each feature fi in the training samples, a common feature
normalization scheme is adopted, i.e., fi = fi−

–
f i

� �
= σi, where

–
f i

and σi are respectively the mean and standard deviation of the i-th
feature across all training samples. The estimated

–
f i and σi will be

used to normalize the corresponding feature of each test sample.

Results

Multimodal classification based on MRI, PET, and CSF

We first test the performance of our multimodal classification
method in identification of AD (or MCI) from healthy controls, based
on MRI, PET, and CSF biomarkers of 202 baseline subjects in ADNI.
Table 2 shows the classification rate of our multimodal classification
method, compared with the methods using each individual modality
only. Note that Table 2 shows only the averaged results of 10
independent experiments, along with the minimal and maximal
values given in brackets; and the detailed results can be found in the
Supplemental Figs. 8, 9 for each experiment. Besides, Fig. 2 further
plots the corresponding ROC curves of different classificationmethods
for AD or MCI, respectively. As we can see from Table 2 and Fig. 2, the
combined measurements of MRI, PET, and CSF consistently achieve
more accurate discrimination between AD (or MCI) patients and
healthy controls. Specifically, for classifying AD from healthy controls,
our multimodal classification method can achieve a classification
accuracy of 93.2%, a sensitivity of 93%, and a specificity of 93.3%, while
the best accuracy on individual modality is only 86.5% (when using
PET). On the other hand, for classifying MCI from healthy controls,
our multimodal classificationmethod achieve a classification accuracy
of 76.4%, a sensitivity of 81.8%, and a specificity of 66%, while the
best accuracy on individual modality is only 72% (when using MRI). In
addition, the area under the ROC curve (AUC) is 0.976 and 0.809
for AD classification and MCI classification respectively with our
multimodal classification method (see Fig. 2), while the best AUC on
individual modality is 0.938 (when using PET) for AD classification
and 0.762 (when using PET) for MCI classification.

Table 2 also indicates that, for AD classification, there are little
differences among accuracy, sensitivity, and specificity of each
classification method (a total of 5 methods examined), while for MCI
classification the differences is relatively large, e.g., a relatively large
sensitivity, but low specificity, for each method. This characteristic of
possessing high sensitivity may be advantageous for the purpose of
diagnosis, because the cost is different for misclassifying anMCI patient
into a healthy control (with sensitivity reduced in this case) and
misclassifying a healthy control into an MCI patient (with specificity
Table 2
Comparison of performance of single-modal and multimodal classification methods. The
independent experiments.

Methods AD vs. HC

ACC (%) SEN (%) SPE (%)

MRI 86.2 86 86.3
(82.9–89.0) (82.7–88.7) (83.1–89

CSF 82.1 81.9 82.3
(80–84.9) (80–84.7) (80–85.1

PET 86.5 86.3 86.6
(82.9–90.5) (82.7–90.3) (83.1–90

Combined 93.2 93 93.3
(89.0–96.5) (88.7–96.3) (89.1–96

Baseline 91.5 91.4 91.6
(88.5–96.5) (88.3–96.3) (88.6–96

AD=Alzheimer's Disease, MCI=Mild Cognitive Impairment, HC=Healthy Control, ACC=
reduced in this case), and the former cost ismuch higher than the latter.
Inspired from this observation, we further divide the MCI cohort into
MCI converters who converted to AD within 18 months and the MCI
non-converters who had not convert to ADwithin 18 months, and then
compute how many MCI converters and MCI non-converters are
correctly classified as MCI. The results with our multimodal classifica-
tion method reveal that the 91.5% MCI converters and 73.4% MCI non-
converters are correctly classified. It's worth noting that in practice the
cost ofmisclassifyingMCI converters is usuallymuchhigher than that of
misclassifying MCI non-converters. Thus, this characteristic of posses-
sing a higher classification rate for theMCI converters by ourmethod is
potentially very useful.

For comparison with other multimodal classification methods, we
also perform the use of direct feature concatenation as a baseline
method for multimodal AD (or MCI) classification. Specifically, for
each subject, we first concatenate 93 features from MRI, 93 features
from PET, and 3 features from CSF, into a 189 dimensional vector.
Remember that each feature has been normalized to have zero mean
and unit standard deviation. Then, we perform SVM-based classifica-
tion on all samples with a 10-fold cross-validation strategy as
described above, and obtain the classification results in the bottom
row of Table 2. As we can observe from Table 2, our kernel
combination method consistently outperforms the baseline method
on each performance measure.

Furthermore, in Table 3 we compared the proposedmethod with a
recent method proposed in Hinrichs et al. (in press). The latter used
114 ADNI subjects (48 AD+66HC) for AD classification, and it
reported both results of using only imaging modalities (MRI+PET)
and all modalities (MRI+PET+CSF+APOE+Cognitive scores), as
included in Table 3. The proposed method uses a similar number of
ADNI subjects, i.e., 103 subjects (51 AD+52HC), with results given in
Table 2. For comparison, we also include the proposed method's
results in Table 3. As we can observe from Table 3, the proposed
method is superior to Hinrichs et al.'s method in case of using only
imaging modality (MRI+PET) or all modalities (MRI+PET+CSF).
It's worth noting that, in Hinrichs et al. (in press), both baseline and
longitudinal data are used for MRI and PET modalities, while the
proposedmethod uses only the baseline data. In the second case, even
if the additional APOE and cognitive scores were used in Hinrichs et
al.'s method, our result is still better. These results further validate the
efficacy of the proposed method for multimodal classification.

Comparison of different combination schemes

To investigate the effect of different combining weights, i.e., βMRI,
βCSF, and βPET, on the performance of our multimodal classification
method, we test all of their possible values, ranging from 0 to 1 at a
step size of 0.1, under the constraint of βMRI+βCSF+βPET=1. Figs. 3
and 4 show the classification results, including accuracy (top row),
numbers in each bracket denote the minimal and maximal classification rate in 10

MCI vs. HC

ACC (%) SEN (%) SPE (%)

72.0 78.5 59.6
.1) (68.4–74.7) (75.6–80.6) (55.1–63.7)

71.4 78 58.8
) (68.2–73.3) (75.6–79.4) (54.3–61.7)

71.6 78.2 59.3
.6) (67.4–74.7) (75–80.6) (52.9–63.7)

76.4 81.8 66.0
.6) (73.5–79.7) (79.4–84.4) (62.6–70.3)

74.5 80.4 63.3
.6) (71.9–78.2) (78.3–83.3) (59.7–68.3)

classification ACCuracy, SEN=SENsitivity, SPE=SPEcificity.
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Fig. 2. ROC curves of different methods, for AD classification (top) and for MCI
classification (bottom).
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sensitivity (bottom left), and specificity (bottom right), with respect
to different combining weights of MRI, PET, and CSF. Note that, in each
subplot, only the squares in the upper triangular part have valid
values because of the constraint βPET+βCSF+βMRI=1. For each plot,
the three vertices of the upper triangle, i.e., the top left, top right, and
bottom left squares, denote individual-modality based classification
results using only PET (βPET=1), CSF (βCSF=1), and MRI (βMRI=1),
respectively.

As we can observe from Figs. 3 and 4, nearly all inner squares of the
upper triangle have larger values (better classification) than the three
vertices, which demonstrates the effectiveness of combining three
modalities in AD (or MCI) classification. Moreover, for most plots,
there are substantially a large set of squares owning higher
classification accuracy. Further observation indicates that the squares
with higher accuracy mainly appear in the inner squares of each
Table 3
Comparison of performance of different multimodal classification methods.

Methods Subjects Modalities

Hinrichs et al., in press 48 AD+66 HC MRI+PET
MRI+PET+CSF+APOE

Proposed method 51 AD+52 HC MRI+PET
MRI+PET+CSF

AD=Alzheimer's Disease, HC=healthy control, ACC=classification ACCuracy, SEN=SENs
triangle, instead of the boundary, implying that each modality is
indispensable for achieving good classification. Similar to what we
have observed from Table 2, Figs. 3 and 4 also show that, for AD
classification, the differences among accuracy, sensitivity, and
specificity are small, while, for MCI classification, it tends to have a
higher sensitivity but lower specificity.
Classification performance with respect to the number of selected ROI
features

We have shown the effectiveness of our multiple-kernel combi-
nation method on using whole-brain ROI features (without feature
selection) for AD or MCI classification. Here, we investigate how the
performance of our multiple-kernel combination method changes
with respect to the number of the selected ROI features. To this end,
we first use a paired t-test, respectively, on MRI and PET data of
training samples to choose the most discriminative brain regions or
features for guiding AD orMCI classification (Gerardin et al., 2009). It's
worth noting that the feature selection is performed using only
the training samples, instead of all samples. Specifically, in each fold
of the 10-fold cross-validations, we perform a t-test only on the
training samples to select the most discriminative feature subset.
Table 4 lists the top brain regions (or ROIs) detected from both MRI
and PET data in MCI classification, and Figs. 5 and 6 show these top
brain regions in the template space. Totally, 11 top brain regions,
with corresponding p-values less than 0.002, are determined in MRI
images. Notice that the top regions selected for AD classification are
not listed, since the number is too large. As shown in Table 4 and
Figs. 5 and 6, most of the selected top regions, e.g., hippocampal,
amygdale, entorhinal cortex, uncus, temporal pole and parahip-
pocampal regions, are known to be related to the AD by many studies
using group comparison methods (Chetelat et al., 2002; Convit et al.,
2000; Fox and Schott, 2004; Jack et al., 1999; Misra et al., 2009). For
example, the hippocampus is a structure highly related to the
memory, which is always affected in the AD.

Then, we test the classification performances of different methods
with respect to the different number of brain regions selected for AD
(or MCI) classification, with results shown in Fig. 7. As we can see
from Fig. 7, for both AD classification and MCI classification, our
multimodal classification method (using all MRI, PET, and CSF)
achieves consistent improvement over those using only one individ-
ual modality, for any number of brain regions selected. Moreover,
compared with individual-modality based methods, our multimodal
classification method is more robust to the number of brain regions
used for classification. For example, Fig. 7 shows that, even only one
brain region is selected for MRI and PET images, our multimodal
classification method can still achieve a reasonable classification
accuracy, compared to the individual-modality based classification
methods. Another interesting observation from Fig. 7 is that more
brain regions are needed for achieving higher accuracy for MCI
classification than AD classification. This indicates that, with the
progress of disease, more atrophies are produced in AD, thus a small
number of brain regions with relatively large atrophies is sufficient for
successful classification of AD.
ACC (%) SEN (%) SPE (%)

87.6 78.9 93.8
+cognitive scores 92.4 86.7 96.6

90.6 90.5 90.7
93.2 93 93.3

itivity, SPE=SPEcificity.

image of Fig.�2
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Fig. 3. AD classification results with respect to different combining weights of MRI, PET and CSF.
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Discussion

In this paper, we have proposed a new multimodal data fusion
and classification method to automatically discriminate patients with
AD (or MCI) from healthy controls, using a kernel combination
method. This kernel combination method can be naturally embedded
into the conventional SVM and solved efficiently. The results on 202
baseline subjects from ADNI show that our multimodal classification
method can consistently and substantially improve the classification
performance of the individual-modality based classification methods.
Specifically, our method can achieve a high accuracy (93.2%) for AD
classification, a relatively high sensitivity (81.8%) for MCI classifica-
tion, and especially a high sensitivity (91.5%) for classification of MCI
converters.

Multimodal data fusion and classification

A lot of studies have shown that biomarkers from different
modalities may contain complementary information for diagnosis of
AD (Apostolova et al., 2010; de Leon et al., 2007; Fjell et al., 2010;
Foster et al., 2007; Landau et al., 2010; Walhovd et al., 2010b).
Recently, several works on combining different modalities of
biomarkers have been reported (Bouwman et al., 2007a; Chetelat
et al., 2005; Fan et al., 2008b; Fellgiebel et al., 2007; Geroldi et al.,
2006; Vemuri et al., 2009; Visser et al., 2002;Walhovd et al., 2010a). A
common practice in these works is the concatenation of all features
(from different modalities) into a longer feature vector. However, this
may be not enough for effective combination of features from
different modalities. In this paper, we provide an alternative way by
using a kernel combination to integrate different biomarkers.
Compared with the direct feature concatenation method, the kernel
combination method has the following advantages: 1) it provides a
unified way to combine heterogeneous data when a different type of
data cannot be directly concatenated; and 2) it offers more flexibility
by using different weights on biomarkers of different modalities. For
instance, we cannot directly concatenate data represented by strings
or graphs with numeric data while we can possibly construct separate
kernels for string, graphs and numeric data respectively and then
fuse them by kernel combination. In our case, since MRI, PET, and CSF
are different types of features, the kernel combination provides us a
better way to integrate them for guiding the classification.

It's worth noting that the kernel combination method has been
successfully applied to many other fields, i.e., protein function
prediction (Lanckriet et al., 2004), cancer diagnosis (Yu et al., 2010),
and gene prioritization (De Bie et al., 2007). Recently, several
researches have started to use this powerful kernel combination
method for AD study (Hinrichs et al., 2009b; Ye et al., 2008).
Specifically, in Ye et al. (2008), MRI and APOE data as well as the age
and sex information were combined using the existing multiple-
kernel learning method. In Hinrichs et al. (2009b), MRI and PET data
were combined also using the samemultiple-kernel learning method.
However, both studies aimed only for AD classification, while in
this paper we studied for both AD classification andMCI classification.
The latter is actually more important than the former for early
detection and treatment of AD. More importantly, we combine not
only MRI and PET, but also CSF, which was rarely investigated before
in the multiple-kernel combination study. Our experimental result
shows that each modality (MRI, PET, and CSF) is indispensable for
achieving good combination and classification. Also, we use a more
advanced feature extraction method with atlas warping, compared to



Fig. 4. MCI classification results with respect to different combining weights of MRI, PET and CSF.
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those in Hinrichs et al. (2009b) and Ye et al. (2008). Thus, we can
achieve much better performance compared to those reported in
Hinrichs et al. (2009b) and Ye et al. (2008). Even for their new
method using baseline MRI, PET, CSF, and additional longitudinal
MRI and PET data, biological measures, and cognitive scores (Hinrichs
Table 4
Top 11 brain regions selected for MCI classification detected from MRI and PET
modalities (ranked according to the p-values in the brackets).

MRI PET

1 Amygdala right Angular gyrus left
(pb0.0001) (p=0.0003)

2 Hippocampal formation left Precuneus left
(pb0.0001) (p=0.0005)

3 Hippocampal formation right Precuneus right
(pb0.0001) (p=0.0021)

4 Uncus left Inferior temporal gyrus left
(pb0.0001) (p=0.0146)

5 Entorhinal cortex left Anterior limb of internal capsule right
(p=0.0001) (p=0.0154)

6 Amygdala left Angular gyrus right
(p=0.0001) (p=0.0189)

7 Middle temporal gyrus left Anterior limb of internal capsule left
(p=0.0001) (p=0.0204)

8 Temporal pole left Globus palladus left
(p=0.0004) (p=0.021)

9 Perirhinal cortex left Globus palladus right
(p=0.0004) (p=0.0259)

10 Uncus right Posterior limb of internal capsule right
(p=0.0006) (p=0.0272)

11 Parahippocampal gyrus left Entorhinal cortex left
(p=0.0009) (p=0.0286)
et al., in press), its performance is still inferior to our method using
only baseline MRI, PET and CSF, as shown in Table 3.

Diversity of individual modalities in classification

As mentioned earlier, a lot of studies have indicated that different
modalities contain complementary information for discrimination.
Here, we quantitatively measure the discrimination similarity and
diversity between any two different modalities, i.e., MRI vs. CSF, MRI
vs. PET, and CSF vs. PET, by comparing their individual classification
results. Both Jaccard similarity coefficient and Kappa index are used to
measure the similarities and diversities, respectively. Small values on
both indexes imply a low similarity and a high diversity on the two
modalities. For AD classification, the averaged similarities (diversities)
over 10-fold cross-validation are 0.75 (0.53), 0.80 (0.62), and 0.74
(0.49) for MRI vs. CSF, MRI vs. PET, and CSF vs. PET, respectively. On
the other hand, for MCI classification, the averaged similarities
(diversities) are 0.65 (0.33), 0.67 (0.38), and 0.63 (0.28), respectively.
These results indicate that CSF and PET have the highest comple-
mentary information, while MRI and PET have the highest similar
information for classification.

Data fusion vs. ensemble

In this paper, we combine data from different modalities using
kernel combination, which first combines multiple kernel matrices
from different modalities into a single kernel matrix and then trains a
single SVMmodel from the combined kernel matrix. Interestingly, we
can also combine results from multiple modalities at classification
stage. That is, we first train multiple SVM models on multiple kernel

http://dx.doi.org/10.1016/j.neuroimage.2010.10.081
http://dx.doi.org/10.1016/j.neuroimage.2010.10.081
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Fig. 5. Top 11 brain regions selected for MCI classification detected from MRI.
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matrices from different modalities. Then, for a new testing sample,
each of these models will have a predication on it, and finally we
aggregate all predictions to get the final decision on the new testing
sample. This technique is also called ensemble learning, which has
been a very popular learning method for decades in the machine
learning community (Tan and Gilbert, 2003).

We have compared our kernel combination method with the
ensemble learning method for AD (or MCI) classification. Specifically,
the ensemble learning method trains 3 SVM classifiers from MRI, PET,
and CSF, respectively; and then the majority voting is used to get the
final class labels for each new testing sample. The ensemble learning
method obtains a classification accuracy of 91.8% for AD classification,
and an accuracy of 75.6% for MCI classification, which are slightly
inferior to the corresponding classification numbers achieved by our
kernel combination method. These results indicate the effectiveness
of the ensemble learning method as a useful and general way in
improving classification accuracy of individual modalities. It may be
evenmore interesting to investigate adding themixed kernel from the
kernel combination into the ensemble or just ensembling different
mixed kernels with different weights. However, the full investigation
on this topic is beyond the focus of this paper. On the other hand, it is
worth noting the disadvantage of the ensemble learning, i.e., the
difficulty in interpreting the model since multiple models are used in
the ensemble learning. This issue may limit its use in some medical
applications where in addition to the accuracy, interpretability is also
concerned and important.

Effect of feature selection

We test the kernel combination method on two cases, i.e. without
and with feature selection. It is worth noting that the main concern
of using feature selection in the current study is to validate the
effectiveness of the kernel combination on the selected brain regions.
Therefore, we adopt a simple feature selection method based on t-test
statistics, which has been widely used in the neuroimaging analy-
sis. Fig. 7 shows that even a simple feature selection method can
potentially select effective features (or regions) for achieving higher
classification accuracy than the original methods using all features.
We expect that the use of more advanced feature selectionmethods in
the future can lead to further improvement for our multimodal
classification.

On the other hand, in the current study we adopt a linear SVM as
the classifier, which intrinsically uses a feature weighting mechanism,
i.e., the absolute values of components in the normal vector of
SVM's hyperplane can be regarded as weights on features (Kloppel
et al., 2008). In this way, we can rank the features according to their
averaged SVM weights. We find that the top-ranked features are
partially identical with those top features obtained from a separate

image of Fig.�5


Fig. 6. Top 11 brain regions selected for MCI classification detected from PET.
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feature selection method we used. For example, among the top-
ranked eleven features selected (according to SVM weights) for
MCI classification on MRI modality, six features, namely, ‘amygdala
right’, ‘hippocampal formation left’, ‘hippocampal formation right’,
‘entorhinal cortex left’, ‘temporal pole left’, and ‘parahippocampal
gyrus left’, are identical to those selected by the t-test statistics as
shown in Table 4. Notice that these six brain regions are known to be
related to AD andMCI bymany studies in the literature (Chetelat et al.,
2002; Convit et al., 2000; Fox and Schott, 2004; Jack et al., 1999; Misra
et al., 2009).

Limitations

While aiming to develop a multimodal diagnostic tool, the current
study is limited by at least two factors. First, besidesMRI, PET, and CSF,
there are also other modalities of data, i.e., APOE. However, since not
every subject has data on all modalities and the number of subjects
with all modalities available is too small for reasonable classification,
the current study does not consider APOE for multimodal classifica-
tion. Second, in the current study, we investigate only the classifica-
tion between one stage of dementia (either MCI or AD) and healthy
controls, and do not test the ability of the classifier to simultaneously
discriminatemultiple stages of dementia, i.e., multi-class classification
of AD, MCI, and healthy controls. Although the conversion from
binary-class classification to multi-class classification seems straight-
forward, with many multi-class classification methods available
(Duda et al., 2001), there may be some problem and this will be our
future work.

Conclusion

This study proposes a new multimodal data fusion and classifica-
tion method based on kernel combination for AD and MCI. Compared
with the conventional direct feature concatenation method, our
method provides a unified way to combine heterogeneous data, par-
ticularly for the case where different types of data cannot be directly
concatenated. Moreover, our method offers more flexibility by using
different weights for different data modalities. The results on 202
baseline subjects of ADNI show that our multimodal classification
method achieves a high accuracy for AD classification and an
encouraging accuracy for MCI classification.

The current study only considers the baseline data of the subjects
in ADNI. In the future, we will use both baseline and longitudinal data
to predict the conversion from MCI to AD by finding the spatiotem-
poral pattern of brain atrophy in multiple modalities. Moreover, we
will involve usingmoremodalities of data (i.e., APOE) into our current
multimodal classification method. To overcome the limitation of the
possible small number of subjects available for training and testing

image of Fig.�6
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Fig. 7. Classification accuracy of four different methods, with respect to different
number of regions selected for AD classification (top) and MCI classification (bottom).
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classifier as discussed earlier, we will seek more advanced methods in
machine learning which can use missing data for classification, i.e.,
semi-supervised classification.We expect that, by usingmore samples
(with both complete and missing modality information), the semi-
supervised method will improve the classification performance
further.
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