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a b s t r a c t 

Machine learning has been used in the past for the auxiliary diagnosis of Alzheimer’s Disease (AD). How- 

ever, most existing technologies only explore single-view data, require manual parameter setting and fo- 

cus on two-class (i.e., dementia or not) classification problems. Unlike single-view data, multi-view data 

provide more powerful feature representation capability. Learning with multi-view data is referred to as 

multi-view learning, which has received certain attention in recent years. In this paper, we propose a new 

multi-view clustering model called Consensus Multi-view Clustering (CMC) based on nonnegative matrix 

factorization for predicting the multiple stages of AD progression. The proposed CMC performs multi- 

view learning idea to fully capture data features with limited medical images, approaches similarity rela- 

tions between different entities, addresses the shortcoming from multi-view fusion that requires manual 

setting parameters, and further acquires a consensus representation containing shared features and com- 

plementary knowledge of multiple view data. It not only can improve the predication performance of AD, 

but also can screen and classify the symptoms of different AD’s phases. Experimental results using data 

with twelve views constructed by brain Magnetic Resonance Imaging (MRI) database from Alzheimer’s 

Disease Neuroimaging Initiative expound and prove the effectiveness of the proposed model. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The social population of elderly people is increasingly seri- 

us. Various diseases affect our human physical and mental health 

hrough the ages, which is heavily impacting on our families and 

ociety. For instance, Alzheimer’s disease (AD) is a chronic neu- 

odegenerative disease that usually progresses slowly and then 

orsens dramatically over time. It often happens in the elderly, 

nd its clinical manifestations are characterized by memory im- 

airment, aphasia, visual space disorders, executive dysfunction 

nd other comprehensive dementias [7,12,45] . AD is predicted to 

ffect 1 of 85 people worldwide by 2050, one billion people ap- 

roximately [4] . Given such huge amount of AD patients, however, 

he number of clinicians and medical resources is shown very lim- 

ted. As this, to alleviate the burden (e.g., diagnosis, care, etc.) for 
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he limited resources to help treat the AD patients is appearing 

ramatically urgent. 

Computer-aided diagnosis technologies can provide an alter- 

ative way to alleviate doctors’ burden. The intuitions here are 

t least two-folds: (1) with the rapid development of machine 

earning, the performance of many relevant models has been re- 

arkably improved, and many machine learning models have 

een exploited and used as auxiliary diagnosis methods to as- 

ist the diagnosis and prediction of many diseases including AD 

10,30,32,36,61] , and (2) a large amount of medical related data 

ave been collected, e.g., medical text data, medical image data, 

hich can be explored to learn an effective machine learning 

odel. Existing medical neuroimaging technologies mainly include 

agnetic resonance imaging (MRI), functional magnetic resonance 

maging (fMRI), and positron emission tomography (PET). Among 

hese, MRI is a type of tomography, which performs magnetic reso- 

ance phenomena to sample electromagnetic signals from the test 

bject. The sampled electromagnetic signals are used to represent 

he health condition of the test object [35] . In this work, we use 

https://doi.org/10.1016/j.cmpb.2020.105895
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2020.105895&domain=pdf
mailto:yyang@swjtu.edu.cn
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wo different brain MRI data sets by the Alzheimer’s Disease Neu- 

oimaging Initiative (ADNI) platform, 1 which provides some pub- 

icly available data sets for research works in the world [54] . There 

re all six subjects corresponding to each stage of AD progression 

n the two MRI data sets, that is, Control Normal (CN) i.e. stage 1 of

D progression, Subjective Memory Consider (SMC) i.e. stage 2 of 

D progression, Early Mild Cognitive Impairment (EMCI) i.e. stage 3 

f AD progression, Mild Cognitive Impairment (MCI) i.e. stage 4 of 

D progression, Lately Mild Cognitive Impairment (LMCI) i.e. stage 

 of AD progression and confirmed AD (AD) i.e. stage 6 of AD pro-

ression [54] . 

Although several machine learning techniques have been de- 

eloped to assist AD diagnosis, existing methods may have two 

eaknesses. First, they mainly focus on classification or predic- 

ion problems of AD, which are supervised learning models and 

equire labeled data to train the models. However, it is costly and 

ime-consuming to collect enough AD data with labels in real ap- 

lications. Second, learning with multiple views (called multi-view 

earning) is seldom studied for MRI data. While multi-view learn- 

ng technology can fully learn the effective features of multiple 

iews and improve the accuracy of data prediction. Also, the moti- 

ation of multi-view data combination is that different views have 

ifferent im portance and their own prior knowledge. Thus, it is 

ecessary to generate multi-view MRI data and to develop unsu- 

ervised learning models for the automatic auxiliary diagnosis of 

D. 

Multi-view clustering algorithms have been concerned in recent 

ears. Yang et al. introduced existing multi-view clustering algo- 

ithms with a taxonomy according to the mechanisms and princi- 

les involved in each algorithm [58] . In addition, some more tar- 

eted multi-view clustering techniques are also developed, such as 

inary multi-view clustering method for multiple view image data 

64] and incomplete multiview clustering for incomplete multiview 

ata [55] . In summary, multi-view clustering algorithms can effec- 

ively improve the learning performance by combining consistent 

nd complementary information among multiple views. Among 

hese algorithms, non-negative matrix factorization (NMF) based 

ethods belong to a type of representative methods. NMF [17] is 

ble to obtain low-dimensional approximations of non-negative 

atrices to learn effective f eatures for the data. Liu et al. stud- 

ed the NMF-based multi-view clustering algorithm (MultiNMF) by 

earching for a factorization which gives compatible clustering set- 

lements across multiple views [26] . However, it requires manually 

etting weight parameters for multiple views. 

To address the above-mentioned problems, in this work, we 

ropose a C onsensus M ulti-view C lustering model (denoted as 

MC) for predicting the multi-stages of AD progression to assist 

edical diagnosis and medical detection. Here the item ’consensus’ 

enotes that fusing mutiple views automatically to learn a unified 

epresentation across all views. In brief, the proposed model inte- 

rates consensus fusion, NMF, multi-View learning, and clustering 

ointly. The proposed model basically works as follows. It first cre- 

tes twelve views from the original MRI data using several feature 

xtraction algorithms with Scale Invariant Feature Transform (SIFT) 

24] , KAZE [2] and Gabor filter [47] . Then, all the created views are

reprocessed with principal component analysis (PCA) [46] and a 

ormalized processing method. Finally, the processed multi-view 

ata are fed into the proposed matrix factorization model to per- 

orm the final predicting task. We approach predicting in a cluster- 

ng way. The major contributions of this paper are summarized as 

ollows: 

1) Data . It constructs several brain MRI datasets that fully contain 

multiple views by using SIFT, KAZE and Gabor filter technolo- 
1 www.loni.ucla.edu/adni-2 , www.loni.ucla.edu/adni-3 

g

l

n

2 
gies for medical data with a small data size in real scenes. In 

this way, the number of initial samples is expanded, and the 

data features are enhanced, which is conducive to the effect of 

machine learning. 

2) Methodology . It proposes a novel unsupervised consensus multi- 

view clustering model (or simply CMC) via non-negative matrix 

factorization to predict the multi-stages of AD progression. The 

key novelty is that it explores multi-view data, avoids manu- 

ally parameter settings and learns a consensus representation 

across multiple views. 

3) Results . Experimental results using two real MRI datasets with 

twelve views demonstrate that the proposed CMC achieves su- 

perior performance compared to other baselines. Experimental 

results also with two initial views comparing to twelve views 

verify that constructed new views are useful and beneficial for 

clustering. This also provides a new solution to the medical ex- 

amination and prevention of AD. 

The rest of this paper is organized as follows. Section 2 in- 

roduces the related work of the AD prediction based on ma- 

hine learning methods. Section 3 presents the proposed consen- 

us multi-view clustering (CMC) model. The optimization algo- 

ithm for CMC is shown in Section 4 . Experiments are conducted 

n Section 5 . Finally, Section 6 concludes this paper. 

. Related work 

In order to recognize different AD classes of patients, Huang 

t al. developed an random forest architecture based on nonlinear 

upervised sparse regression for predicting a variety of longitudi- 

al AD clinical scores [14] . Liu et al. provided a multi-scale model- 

ng variantto-function-to-network model to inquire into the causal 

ffect of rare noncoding variants for AD [28] . Previtali et al. pro- 

osed a novel feature extraction method from brain MRI scans for 

lassifying AD patient [41] . Vaithinathan et al. presented a new al- 

orithm for the classification problems of AD, which belongs to a 

ind of texture extraction technique with T1 weighted MRI [49] . 

ichhariya et al. studied an alternative algorithm based on pro- 

ection axes termed as least squares projection twin support vec- 

or clustering for recognizing AD from MRI data [42] . Wang et al. 

howed a subspace-based sparse feature learning technique with 

nion-of- subspace representation for AD identification from MRI 

ata [53] . 

AD using multi-model data has also been studied by some re- 

earchers. Li et al. considered a multi-modal supervised within- 

lass-similarity distinctive dictionary learning method based on the 

eighted combination for AD diagnosis by using the neuroimaging 

ata sets [21] . Tong et al. proposed a multi-modality classification 

odel with nonlinear graph fusion to utilize the complementary 

nformation among different modal data of AD [48] . Zhang et al. 

resented a deep learning model with different convolutional neu- 

al networks for the auxiliary diagnosis of AD from multi-modal 

edical images [60] . Hao et al. studied a novel multi-modal neu- 

oimaging feature selection method with consistent metric con- 

traint for the classification of AD diagnosis, which exploits the ad- 

antages of random forest strategy and multi-kernel support vector 

achine [11] . 

Deep learning technology can integrate feature learning into the 

odel’s building process and reduce the incompleteness from the 

rtificially generated features, which also makes contributions to 

he prediction of AD [6] . Zhang et al. proposed a new deep learn-

ng method based on dense convolutional network, which builds 

pon the ResNeXt, Adam algorithm and takes the advantages of 

roup convolution technologies [62] . Li et al. furnished a 4D deep 

earning framework by utilizing a series of 3D convolutional neural 

etworks and the long short-term memory network for AD dis- 

http://www.loni.ucla.edu/adni-2
http://www.loni.ucla.edu/adni-3
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Fig. 1. General framework for our CMC. X = [ X 1 , X 2 , . . . , X V ] is the original multi-view data matrices; d is the dimension of consistent representation; maxiter denotes the 

maximum number of iterations; stop a denotes the stop coefficient. 
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rimination using 4D fMRI data sets [23] . Lee et al. studied a novel

eep learning framework based on magnetic resonance imaging 

ata for AD and mild cognitive impairment diagnosis, which sys- 

ematically integrated voxel, region, and patch techniques [18] . Liu 

t al. built a multi-model deep learning method based on con- 

olutional neural network for AD prediction using the structured 

RI data [27] . Besides, Zhang et al. developed a discriminative 

argin-Sensitive Autoencoder approach for automated AD diagno- 

is, which mainly implemented the complementary information of 

ulti-view biomedical image features across a semantic-sensitive 

ncoderdecoder paradigm [65] . 

In addition, other factors related to AD were also studied re- 

ently. Fiscon et al. presented a classification approach in a super- 

ised learning manner from the EEG biomedical signals of AD to 

elp medical doctors in the diagnosis formulation [8] . Zhang et al. 

roposed a novel multi-view learning model for AD detection us- 

ng the neuroimaging and genetics data [59] . The relation of the 

D and the cerebral vasculature were also studied for the auxiliary 

iagnosis and treatment of AD patients [19,25] . 

For the early diagnosis of AD, Pais et al. discussed new defini- 

ions and challenges in early diagnosis of AD and provided updates 

n the status of major clinical trials [39] . Li et al. studied a multi-

ariate time series classification model via a neural attention-based 

eep learning method for AD prediction, which is meaningful for 

atients in early detection of potential AD risk [20] . Alberdi et al. 

ade a survey to review the multi-modality signals for early AD 

uxiliary detection [1] . Zhang et al. proposed a new model called 

trength and similarity guided group sparse representation, which 

orks for recognizing the mild cognitive impairment (i.e. one early 

tage before confirmed AD) subjects and healthy controls [63] . Pan 

t al. changed the histogram of oriented gradient descriptor into 

uantifying the spatial gradients for the detection of AD early stage 

40] . 

Based on the above work, many traditional machine learning 

nd deep learning methods were applied to the AD classification 

nd prediction with the single-mode ultrasound, text information 

nd multi-modality medical data. At the same time, the technolo- 

ies of early diagnosis of AD have gradually attracted attention and 

lso have been studied to predict the disease severity of AD. How- 

ver, learning with multiple views for AD is a minority. Thus, this 

aper constructs multi-view brain MRI data from the original MRI 

ata in experiments and develops a novel clustering method with 

 consistent expression across multiple views. In the next section, 

e will detail the methodology of our proposed CMC model for 

he prediction of multiple stages in AD. 
3 
. Methodology 

As an advanced matrix factorization technology, NMF has been 

sed in various machine learning applications, such as recommen- 

ation system, image classification and clustering [15,22,31] . Given 

ulti-view data, to capture key information among multiple views 

nd learn the neighborhood relationship between samples, we pro- 

ose a NMF-based model called CMC (as shorthand for C onsensus 

 ulti-view C lustering), which can integrate multi-dimension fea- 

ures in multiple views and automatically learn a concensus repre- 

entation matrix to assist in clustering. The framework of CMC is 

hown in Fig. 1 , which can fuse more features of different views, 

specially for multi-view MRI data sets with the characteristics of 

mall quantity and small difference, so as to capture much better 

lustering results than that of single view. The details of the pro- 

osed model will be clear shortly. Before that, let us make a brief 

eview to NMF. 

NMF [17] has shown obvious competitive edge in machine 

earning methods. The conventional matrix factorization methods 

an factorize a matrix and capture two smaller matrices possess- 

ng positive and negative factors. As a matter of fact, more negative 

eatures from matrices are above rubies, for instance, same mes- 

age in text file. Hence, it is of importance to factorize one matrix 

o two nonnegative matrices, that is named as NMF. 

Recently, NMF-based techniques have also been studied with 

evelopment of artificial intelligence. A word embedding was 

erged into semi-NMF to capture semantical relationships among 

ords and to perform document clustering [43] . Aroused with 

anifold learning and Principal Component Analysis (PCA), one 

MF model with robust-graph regularization [13] was developed, 

hich expressly resumed the low-rank clean data with a factoriza- 

ion by utilizing the nonlinear structures of a manifold. Further- 

ore, a new NMF model with structured incoherence and low- 

ank representation was presented in the work [29] . From these 

xisting works, it is worth noting that NMF is of service to process 

omplex data and abstract the latent structure. It is meaningful to 

ombine the NMF to address multi-view clustering problems. It has 

bsolutely been proven that NMF is hard to handle when the num- 

er of basis vectors is larger [50] . In addition, the conditions about 

he solution of NMF matter are shown in Arora et al. [3] . 

Given a nonnegative matrix X = [ x 1 , x 2 , . . . , x n ] ∈ R m ×n 
+ , which

ncludes n samples with m dimensions, NMF aims to learn two 

onnegative matrices, called basis matrix W ∈ R m ×r 
+ and represen- 

ation matrix H ∈ R r×n 
+ to represent the original data matrix X, 

here r denotes the reduced dimension. Such a way can be for- 
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U = AB . (14) 
ulated as X ≈ W H. Formally, the problem of NMF is solved as 

ollows: 

rg min 

 ≥0 ,H≥0 

‖ X − W H ‖ 

2 
F . (1) 

Then a multiplicative optimization algorithm was proposed to 

nd the results of W and H [17] . We first take into account NMF

o extract the latent features from initial data matrix, learn the fre- 

uent representation in multiple data views and then put forward 

 consensus clustering model for screening AD. 

.1. Relational matrix 

In general, data samples/instances in different views may have 

imilar relationship patterns. For example, the diagnosis results of 

he same AD patients from MRI and CT images are usually similar 

ven though they concern different aspects of brain and use differ- 

nt measure standards. Therefore, we consider to utilize neighbor 

elationship as shared knowledge among views and define the re- 

ational matrix to assist in integration of different views. 

We first construct relational matrix for each view. The relational 

atrix S k of the k th view is defined as follows: 

 

k 
i j = 

{
1 

0 

(2) 

here S k ∈ R N×N . This is a binary relationship. That is, if the i th

ample belongs to the neighbor set of the jth sample, then S k 
i j 

= 1;

therwise, S k 
i j 

= 0. 

.2. Consensus multi-view nonnegative matrix factorization clustering 

lgorithm 

In this work, we exploit the property of NMF to obtain the ef- 

ective features of each single view, and combine the similar neigh- 

or patterns to fuse knowledge from multiple views. It is capa- 

le of fusing shared and complementary information among views, 

voiding manually parameter setting for each view and directly 

earning a concensus representation matrix containing sufficient 

nd effective features. 

Suppose there are V views corresponding to different sets of 

eatures, and X = { X (1) , . . . , X (V ) } represents the original multi-

iew data matrices, the proposed objective function L is formally 

efined as bellow: 

 = 

V ∑ 

k =1 

‖ X 

(k ) − P (k ) U 

(k ) ‖ 

2 
F 

+ λ1 ‖ P (k ) ‖ 1 + λ2 ‖ P (k ) − S k P ∗‖ 

2 
F 

s.t. U 

(k ) T U 

(k ) = I 

(3) 

here X (k ) ∈ R N×M k ( N is the number of samples; and M k is the di-

ension of features of the k th view); P (k ) ∈ R N×d is the representa-

ion matrix of the k th view ( d is the dimension after factorization 

or all views); similarly, U 

(k ) ∈ R d×M k denotes the basis matrix; and 

 

∗ is defined as the concensus representation matrix; λ1 and λ2 

re trade-off parameters. As shown in Eq. (3) , there are three terms 

n our objective function. The first item is to factorize the original 

ata into a feature matrix and a basis matrix by using the prop- 

rty of NMF; the second is a L 1 norm for each feature view; the

ast one is to learn a concensus representation matrix P ∗, so that 

ach feature view can be expressed as the multiplication of specific 

imilarity pattern and the consistent feature representation. 

In this work, the motivation that we introduce the L 1 and L 2 
orms is to keep the sparsity of solutions and to avoid the draw- 

ack of overfitting. In addition, we exploit the neighbor pattern 

nd relational matrix to connect multiple views and to capture 

he consistent and complementary information from different data 

iews to obtain a unified multi-view representation. In such a way, 
4 
t can directly fuse the features from multiple views and do not 

eed to manually set the weight of each view. 

. Optimization algorithm 

The difficulties of settling the proposed model mainly lies in 

omputing the P (k ) , U 

(k ) and P ∗. Given the model proposed in the 

revious section, the optimization processes of approaching and 

olving P (k ) , U 

(k ) and P ∗ using the objective function L are pre- 

ented in this section. We utilize an altering scheme to solve each 

roblem respectively. 

.1. Optimization process for solving P (k ) 

To derive the algorithm for solving P (k ) , we rewrite the objec- 

ive function (i.e., Eq. (3) ) as 

 ⇐⇒ tr(X 

(k ) T X 

k ) + tr(P (k ) T P (k ) ) − 2 tr(X 

(k ) T P (k ) U 

(k ) ) 

 λ1 ‖ P (k ) ‖ 1 + λ2 ‖ P (k ) − S k P ∗‖ 

2 
F . 

(4) 

Then removing the terms unrelated to P (k ) , Eq. (4) is simpled 

s below (here we use L 

′ to denote the result): 

 

′ = tr(P (k ) T P (k ) ) − 2 tr(X 

(k ) T P (k ) U 

(k ) ) 

+ λ1 ‖ P (k ) ‖ 1 + λ2 ‖ P (k ) − S k P ∗‖ 

2 
F . 

(5) 

In order to update the P (k ) conveniently, we introduce two vari- 

bles denoted as E (k ) and F (k ) , where E (k ) is defined as: 

 

k = (1 + λ2 ) I. (6) 

F (k ) is defined as: 

 

k = X 

(k ) U 

(k ) T + λ2 S 
k P ∗. (7) 

Then, the L 

′ is reformulated as: 

 

′ = tr(P (k ) T E k P (k ) ) − 2 tr(F (k ) T P (k ) ) + λ1 ‖ P (k ) ‖ 1 

= (1 + λ2 ) tr(P (k ) T P (k ) ) − 2 tr(F (k ) T P (k ) ) + λ1 ‖ P (k ) ‖ 1 . 
(8) 

The derivation of Eq. (8) with respect to P (k ) is shown as below 

∂ L 

′ 
∂ P (k ) 

= 2(1 + λ2 ) P 
(k ) − 2 F (k ) T . (9) 

Let ∂ L ′ 
∂ P (k ) = 0 , we have 

 

(k ) = 

F (k ) T 

1 + λ2 

. (10) 

.2. Optimization process for solving U 

(k ) 

To derive the algorithm for solving U 

(k ) , the terms unrelated to 

 

(k ) are also removed in the objective function L , and the resulting 

ormula is derived as follows: 

 = −2 tr(X 

(k ) T P (k ) U 

(k ) ) . (11) 

Then we have 

in (L ) ⇐⇒ max (tr(X 

(k ) P (k ) T U 

(k ) )) . (12) 

Eq. (12) is an orthogonal procrustes problem according to the 

ork [34] . Suppose that 

V D (X 

(k ) T P (k ) ) = A �B 

T (13) 

here SV D is the singular value decomposition, � denotes the 

ositive semi-definite diagonal matrix, and A and B are the left and 

ight singular arrays of X (k ) T P (k ) , respectively. 

Then, U 

(k ) can be solved with 

(k ) T 
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Table 1 

ADNI2: two-view MRI data with six classes corresponding to the 

multi-stages of AD progression. 

Subjects # Samples # View 1 # View 2 Multi-stages 

CN 287 2449 2480 stage 1 

SMC 110 709 567 stage 2 

EMCI 307 2753 2469 stage 3 

MCI 79 296 406 stage 4 

LMCI 176 1808 1658 stage 5 

AD 159 1150 1016 stage 6 

Table 2 

ADNI3: two-view MRI data with six classes corresponding to the 

multi-stages of AD progression. 

Subjects # Samples # View 1 # View 2 Multi-stages 

CN 408 471 998 stage 1 

SMC 48 64 122 stage 2 

EMCI 74 107 229 stage 3 

MCI 143 173 362 stage 4 

LMCI 35 54 105 stage 5 

AD 44 52 117 stage 6 
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2 http://adni.loni.usc.edu/ 
.3. Optimization process for solving P (∗) 

To solve P (∗) , the terms unrelated to P (∗) are omitted in the 

bjective function L . The resulting formula is shown as below 

 = 

V ∑ 

k =1 

‖ P (k ) − S k P ∗‖ 

2 
F . (15) 

here S k is the self-existent prior knowledge of data objects, 

hich represents the relationship between data samples in the k th 

iew dataset, that is, similarity. This prior relationship is used as 

eight to learn the consensus view in the algorithm of our CMC 

odel. It can better consider the structure of each view itself, so 

s to obtain a more effective consensus view in the learning pro- 

ess. 

Then the derivation of Eq. (15) with respect of ∂ P ∗ is 

∂L 

∂ P ∗
= 2 

V ∑ 

k =1 

S (k ) T (S k P ∗ − P (k ) ) . (16) 

Let 

∂L 

∂ P ∗
= 0 , (17) 

hen we have 

 

V ∑ 

k =1 

S (k ) T S k P ∗ = 2 

V ∑ 

k =1 

S (k ) T P (k ) . (18) 

Hence, the P (∗) is optimized as follows: 

 

∗ = ( 
V ∑ 

k =1 

S (k ) T S k ) −1 ( 
V ∑ 

k =1 

S (k ) T P (k ) ) . (19) 

In summary, the overall optimization algorithm is shown in 

lgorithm 1 . 

Algorithm 1: The optimizing process of our proposed C MC 

model. 

Input: The original multi-view data matrices X = [ X 1 , X 2 , . . . , X V

the dimension of the consistent representation d, the 

maximum iteration number maxiter, and the stop coefficient

stop a . 

Output: P = [ P 1 , P 2 , . . . , P V ] , U = [ U 

1 , U 

2 , . . . , U 

V ] , and P ∗. 

1: Initial representation matrices P = [ P 1 , P 2 , . . . , P V ] ; 

2: Initial basis matrices U = [ U 

1 , U 

2 , . . . , U 

T ] ; 

3: Initial concensus representation matrix P ∗; 

4: Initial objective function L (i.e., Eq.3); 

5: for i = 1 : maxiter do 

6: for k = 1 : V do 

7: Update P k according to Eq.~10; 

8: Update U 

k according to Eq.~14; 

9: Update P ∗ according to Eq.~19; 

10: end for 

11: Normalize the elements of P ∗; 

12: if loss ≤ stop a then 

13: break; 

14: end if 

15: end for 

16: return P , U , and P ∗. 

. Experiments and results 

In this section, we introduce our experiments and results with 

ve parts, i.e., datasets, experiment settings, multi-view data con- 

truction and preprocessing, and experimental results and analysis. 
5 
.1. Datasets 

We use brain MRI datasets from the Alzheimer’s Disease Neu- 

oimaging Initiative (ADNI) database 2 to evaluate the proposed 

ethod. ADNI is an international, large-scale and longitudinal mul- 

icenter study, which unites most researchers with study data as 

hey work to determine the progression of AD [54] . 

We downloaded the MRI datasets of ADNI2 and ADNI3 database 

rom the ADNI platform upon our vising time (6th September 

019). The number of subjects/classes in our MRI data is six in to- 

al, i.e., CN, SMC, EMCI, MCI, LMCI and AD. That is, there are nor- 

al samples, 4 different developmental states of AD patients and 

onfirmed AD samples. Each sample of all the six classes is rep- 

esented with two views (i.e., AXI view as View 1 and SAG view 

s View 2). The statistics of the two datasets are summarized in 

ables 1 and 2 . 

In Tables 1 and 2 , the total number of samples is 1118 and 752,

espectively. The total MRI number in view 1 and view 2 for each 

lass is also presented in Tables 1 and 2 , respectively. However, the 

umber of MRI data from View 1 and View 2 is different. To solve 

he problem of inconsistent data volumes, we select the largest one 

RI data from View 1 and View 2 for each sample, which ensures 

he consistency of the data quantity of the two views. Specifically, 

ach sample has two MRI images from View 1 and View 2. Hence, 

he ADNI2 datasets of View 1 and View 2 have 1118 original im- 

ges. Meanwhile, the ADNI3 datasets have 752 original MRIs for 

iew 1 and View 2, respectively. Some examples of the AXI and 

AG MRI data of the six subjects from ADNI2 and ADNI3 database 

re shown in Fig. 2 . In addition, in order to use samples as many

s possible to train our model, we construct twelve views datasets 

n the experiments. The constructing method will be clear shortly 

ecommended. 

.2. Experiment settings 

All experiments are conducted on a PC Server (Intel(R) Xeon (R) 

PU E5-2620 v4 @2.10 GHZ, 256 GB RAM, GPU NVIDIA TITAN Xp 

ith 16 GB). 

For the data in our experiments, we first randomly sample the 

nitial brain MRI datasets from ADNI platform with two views. Sec- 

nd, we use the feature extraction methods called Scale Invariant 

http://adni.loni.usc.edu/
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Fig. 2. (a) Four images of the six subjects for AXI MRI view. (b) Four images of the six subjects with SAG MRI view. 

Table 3 

The setting value for each parameter of CMC. 

Parameters # Descriptions # Values 

V Number of views in the datasets 12 

N Number of objects for per view in ADNI2, ADNI3 1118, 752 

D Matrix Dimensions Constructed by Intermediate Processes 500 

k Data dimension after dimensionality reduction with PCA 800 

lamp1 The trade-off parameter 0.5 

lamp2 The trade-off parameter 0.4 

maxiter Number of matrices produced in the intermediate processes 200 

stop a The stop coefficient 0.1 
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eature Transform (SIFT) [24] and KAZE [2] to construct two views’ 

eatures from each original view data. Then, the newly constructed 

our views are changed and expanded to eight views with Gabor 

lter technology [47] , which will be illustrated in the next subsec- 

ion. Meanwhile, all the twelve views are preprocessed using PCA 

nd normalized processing method. 

For the baselines, we compare our CMC with eight solid multi- 

iew clustering methods, i.e., Multiview Spectral Embedding (MSE) 

57] , Weighted Robust Multi-view K-means (WRMK) [5] , Multi- 

iew clustering via joint Nonnegative Matrix Factorization (Mult- 

NMF) [26] , Robust Multi-View Spectral Clustering (RMSC) [56] , 

arameter-free auto-weighted Multiple Graph Learning (AMGL) 

38] , Multi-View Clustering via Concept factorization (MVCC) [51] , 

ulti-view Learning with Adaptive Neighbors (MLAN) [37] and 

raph-based Multi-view clustering (GMC) [52] . We also com- 

are two classic methods in single view clustering, i.e., K-Means 

44] and Affinity Propagation (AP) [9] . The clustering performance 

o

6 
s measured using four metrics, i.e., the Accuracy (ACC), Normal- 

zed Mutual Information (NMI), Precision Recall F1 (F1) and Ad- 

usted rand index (ARI) values [33] . In addition, the setting values 

or each parameter of our CMC are shown in Table 3 . 

.3. Multi-view data construction and preprocessing 

Since the sampled set of medical data is usually small, we need 

o fully learn the feature information in such limited data sam- 

les. Therefore, to further mine the hidden knowledge and ob- 

ain the sufficient information of samples, the methods of multi- 

iew data construction are performed on the original brain MRI 

atasets. In this subsection, we first introduce the detailed process 

f constructing multi-view datasets with the techniques of SIFT, 

AZE and Gabor filter. Then, all the multi-view datasets are pre- 

rocessed with the PCA and the normalized processing method to 

btain abundant features. 
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Fig. 3. (a) The image feature map for one sample of AXI MRI with SIFT. Left: The original AXI MRI. Right: The extracted feature map from original MRI. (b) The image feature 

map for one sample of SAG MRI with SIFT. Left: The original SAG MRI. Right: The extracted feature map from SAG MRI. 

Fig. 4. (a) The original AXI MRI sample and its feature map with KAZE. (b) The original SAG MRI sample and its feature map with KAZE. 

Fig. 5. The effect map of the Gabor filters with six scales and four directions. 
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SIFT feature extraction As SIFT is a feature descriptor with scale 

nvariance and illumination invariance, which can effectively guar- 

ntee the quality information of the MRI [24] . Hence, the method 

f SIFT feature extraction is chosen to extract local features for the 

riginal datasets. And the image extracted features with SIFT for 

ne sample of AXI MRI i.e. View 1 is shown in the Fig 3 (a). Be-
7 
ides, the image processed with SIFT for one sample of SAG MRI 

.e. View 2 is presented in Fig 3 (b). 

The intuitive analyse of Fig. 3 shows that the SIFT feature 

atching among different brain MRI images provides the knowl- 

dge of feature consistency of different objects. 
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Fig. 6. The examples of filtered images from the original brain AXI MRI datasets by the Gabor filters. Note that the display drawing of SAG MRI examples through the Gabor 

filters is the same with it. 
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F  

s

f

KAZE feature extraction In addition, KAZE is a feature point de- 

ection method based on a non-linear scale space. This non-linear 

cale space shows that the amount of information loss at the edge 

f the image in the scale change is small, thereby greatly main- 

aining image detail information [2] . The KAZE is also exploited for 

xtracting features of the original data. The images extracted KAZE 

eatures for one sample of AXI and SAG data views are shown in 

ig 4 . 

An intuitive analysis of Fig. 4 shows that the left is for the AXI

RI map and the right is for the SAG MRI map precessed by the 

AZE technology. The locations of key points are also displayed in 

he image, which effectively captures the details of the brain MRI. 

Gabor filter feature extration Besides above, Gabor filter is a win- 

owed Fourier transform, which can extract related features at dif- 

erent scales and directions in the frequency domain, and is par- 

icularly suitable for texture feature extraction of biological images 

47] . In order to further achieve more views and collect more ef- 

ective information of MRI images, we adopt Gabor filters with six 

cales of [7, 9, 11, 13, 15, 17] to extract spatial local frequency fea-

ures of the original two views datasets in the four directions of 

0 ◦, 45 ◦, 90 ◦, 135 ◦]. The effect map of the Gabor filters with these

ix scales and four directions is in Fig. 5 . 

A comparative analysis of Fig. 5 shows that the Gabor filters 

erform superiorly when the scale is set as 15. Hence, we utilize 

he Gabor filters with one scale of 15 and four directions of [0 ◦,
5 ◦, 90 ◦, 135 ◦] to construct 8 texture feature views. And the ex-

mples of filtered images from the original brain AXI MRI datasets 

y the Gabor filters are shown in Fig. 6 . 

An intuitive analysis of Fig. 6 shows the filtered brain MRI ef- 

ects processed by the Gabor filters with one scale of 15 and four 

irections of [0 ◦, 45 ◦, 90 ◦, 135 ◦]. And the display graph of the fil-

ered brain SAG MRI effects is very similar to Fig. 6 , so it is not

resented here. 

Multi-view datasets preprocessing Based on the above experi- 

ents, the original 2 views MRI datasets are expanded into 12 

iews for each dataset, separately. Also, each MRI has 1024 pixel 

eatures. Therefore, there are 1118 objects, 1024 features and 6 sub- 

ects for each view from ADNI2 database. In addition, the 752 ob- 

ects, 1024 features and 6 subjects for each view are obtained from 

DNI3 database. Considering the large amount of data and operat- 

ng efficiency, the useful information of 1024 features need to be 

elected and processed. In practice, we utilize PCA method to make 
8 
he dimensions reduction of image data while persisting most of 

he changes in the dataset [46] . The 800 features of each view from 

DNI2 database and the 500 features of each view from ADNI3 

atabase are selected by the PCA method, which are normalized 

nally. 

.4. Experimental results and analysis 

In this section, we exhibit the results and analyses of the base- 

ines (i.e., K-Means [44] , AP [9] , MSE [57] , WRMK [5] , MultiNMF

26] , RMSC [56] , AMGL [38] , MVCC [51] , MLAN [37] , GMC [52] ) and

ur CMC model using two datasets. Note that for the two single- 

iew clustering methods (i.e. K-Means and AP), we record the per- 

ormance on each view and finally show the average performance 

cross all the 12 views. 

.4.1. Performance evaluation 

The performance results of each method in terms of ACC, NMI, 

1 and ARI on ADNI2 and ADNI3 datasets are shown in Table 4 ,

eparately. 

According to the experimental results from Table 4 , we have the 

ollowing observations. 

• The best clustering performance results on each datasets are 

highlighted with bold font in Table 4 . Also, the clustering re- 

sults of each method on the two data sets with ACC, NMI, 

F1 and ARI are different. Almost most multi-view clustering 

methods achieve superior results than the two single-view ap- 

proaches. 
• For ADNI2 data set, it is noted that our CMC achieves the best 

ACC and NMI values for predicting AD progression with the 12 

brain MRI views. In term of ACC performance, the best ACC 

value of CMC is 34.07%, which is higher than the other better 

method i.e. WRMK by almost 5 percentage points. And in term 

of NMI, our CMC captures 2.13%, which is higher than the other 

better method i.e. RMSC by nearly 1 percent. 
• Based on ADNI2 data set, the performance of CMC is not very 

outstanding in terms of F1 and ARI. The F1 value of CMC is 

32.16%, which is lower than the best F1 value i.e. 40.07% from 

MultiNMF method by almost 8 percent. And for the NMI per- 

formance, there are two methods (RMSC and GMC) capturing 
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Fig. 7. The comparison results of each clustering performance with the 12 views on the ADNI2 dataset. 

Table 4 

The performances of each clustering method on the two of ADNI2 and ADNI3 datasets. 

Datasets ADNI2 ADNI3 

Evaluations ACC NMI F1 ARI ACC NMI F1 ARI 

K-Means 0.2415 0.0047 0.2141 0.0017 0.3105 0.0052 0.3344 0.0009 

AP 0.2114 0.0163 0.1920 0.0043 0.3487 0.0050 0.3644 0.0057 

MSE 0.2865 0.0069 0.2933 0.0022 0.3513 0.0096 0.3464 0.0151 

WRMK 0.2971 0.0119 0.2647 0.0070 0.3096 0.0103 0.3086 0.0058 

MultiNMF 0.2746 0.0018 0.4007 0.0082 0.5426 0.0071 0.5169 0.0105 

RMSC 0.2526 0.0121 0.2565 0.0085 0.3065 0.0119 0.2996 0.0028 

AMGL 0.2823 0.0045 0.2749 0.0004 0.3793 0.0049 0.3953 0.0017 

MVCC 0.2745 0.0029 0.2565 0.0018 0.2980 0.0046 0.3093 0.0067 

MLAN 0.2951 0.0085 0.2921 0.0047 0.5452 0.0119 0.5367 0.0050 

GMC 0.2835 0.0021 0.3629 0.0085 0.5226 0.0064 0.5008 0.0201 

CMC 0.3407 0.0213 0.3216 0.0084 0.5726 0.0260 0.5968 0.0126 

 

 

the best same value i.e. 0.85%, while the NMI of our CMC gets 

0.84%, of which exist 0.01 percent gap. 
• For ADNI3 data set, it can be seen that our CMC obtains the 

best ACC, NMI and F1 values with 12 brain MRI views. The best 

ACC of CMC is 57.26%, which is higher than the other better 

method i.e. MultiNMF by 3 percent. And the NMI of CMC is 

2.60%, which is higher than the other better NMI from RMSC 

method by almost 1.5 percent. At the same time, the F1 of CMC 

achieves 59.28%, that is higher than the other better F1 value 

of MultiNMF about 8 percent. Besides, in term of ARI, our CMC 

result is 1.26%, which is lower than MSE and GMC methods. 
• For ADNI2 and ADNI3 data sets, the performances of our CMC 

model are not very optimistic in terms of ARI metric. The rea- 

son may be that there are six states of AD, and the distance and

c

9 
discrepancy among them are usually small. So, it may need to 

improve our method by depicting and defining more specific 

features for each state of AD. 
• In addition, it’s real that NMI and ARI scores on the two data 

sets are so small in Table 4 . The main reason is that the features

of medical MRI image data are very sparse and the difference 

between different classes of original sample MRI data is little, 

which makes some difficulties to machine learning methods. 
• In general, the clustering performances of our CMC model are 

much better than other baselines, which shows that our CMC is 

capable of capturing effective f eatures and detailed information 

from MRI data. 

More intuitively, in case of the 12 views are from ADNI2, the 

omparison results of experiments for each clustering method are 
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Fig. 8. The comparison results of each clustering performance with the 12 views on the ADNI3 dataset. 
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hown in Fig. 7 , while the comparison results are presented in 

ig. 8 when the datasets come from ADNI3. 

A comparative analysis of Figs. 7 and 8 respectively shows that 

ur CMC method achieves the highest values in terms of ACC, NMI 

nd F1 metrics. Figs. 7 and 8 also show that the performance of 

ulti-view clustering methods is superior to the performance of 

ingle-view clustering methods. This due to that multi-view clus- 

ering is able to capture more effective results for screening AD 

han single-view clustering. 

In addition, to verify the usefulness and difference of other data 

iews by above feature extraction tools, we also implement our 

MC model on ADNI2 and ADNI3 datasets with initial 2 views (i.e. 

XI and SAG views) separately. And the comparable experiment re- 

ults with 2 intial views and 12 views by feature extraction tools 

i.e. SIFT [24] , KAZE [2] and Gabor filter methods [47] ) are shown

n Fig. 9 . 

From Fig. 9 , we can observe that the ACC, NMI, F1 and ARI val-

es of CMC model based on 12 views of ADNI2 and ADNI3 data 

ets are obviously higher than that of 2 views, separately. It is 

emonstrated that the 12 views data by those feature extraction 

ools are more useful and effective than the initial 2 views data for 

lustering. 

.4.2. Visualization results 

To be more intuitive, we make the learned latent representation 

isualization using t-Distributed Stochasitc Neighbor Embedding 

t-SNE) [16] on each dataset. The visualization results are shown 

n Fig. 10 . It is obviously to see the performances in Fig. 10 are

ell consistent with the outcomes in Table 4 . The results from 
10 
ig. 10 also shows that our model (i.e. CMC) can mine the underly- 

ng cluster structure and achieve a compact latent representation. 

.4.3. Parameters selection 

In the experiments, the trade-off parameters λ1 and λ2 of CMC 

re chosen by searching a wide range of grids { 0 . 1 , 0 . 2 , 0 . 3 , . . . , 1 } . 
igs. 11 and 12 show how the average clustering performance of 

ur CMC model changes by different parameters λ1 and λ2 , where 

he horizontal axis indicates the variation of λ1 and the vertical 

xis expresses the variation of λ2 . Considering the instable results 

n Figs. 11 and 12 , λ1 and λ2 are set to moderate values, such as 

1 = 0.5 and λ2 = 0.4. Also, each grid with different shades of colors 

eflects the clustering effects of CMC method. 

.4.4. Convergence analysis 

Next, we experiment the convergence anaslysis on the two dif- 

erent datasets. The convergence curves of the loss function on the 

atasets ADNI2 and ADNI3 are shown in Fig. 13 . From the results, 

e can see that our algorithm CMC converges quickly. Specifically 

peaking, it converges within 90 iterations on the dataset ADNI2 

nd within 75 iterations on the dataset ADNI3. 

In summary, a comparative analysis from the results in 

ig. 13 shows that our CMC method is able to converge around 100 

terations. Besides, our CMC model performs the best in predicting 

he six classes (i.e., CN, SMC, EMCI, MCI, LMCI and AD). Although 

he highest accuracy of screening AD is only 34.07% for ADNI2 and 

7.26% for ADNI3, our CMC model only uses the original data of 

RI without any other annotation information such as gender, age, 

ene and others. Also, the datasets with these four Labels (i.e., CN, 

MC, MCI and AD) can be achieved better clustering performance 
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Fig. 9. The comparison results of CMC performance with the initial 2 views (i.e. AXI and SAG views) and 12 views on two datasets. 

Fig. 10. (a) The visualization of the latent representation on the dataset ADNI2. (b) The visualization of the latent representation on the dataset ADNI3. Note that the 

numbers (1, ..., 6) in the legend denote the six class labels. 

Fig. 11. Visualization results of the CMC clustering effect with the two trade-off parameters λ1 and λ2 on ADNI2 datasets. 

11 
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Fig. 12. Visualization results of the CMC clustering effect with the two trade-off parameters λ1 and λ2 on ADNI3 datasets. 

Fig. 13. (a) The visualization of the latent representation on the dataset ADNI2. (b) The visualization of the latent representation on the dataset ADNI3. Note that the 

numbers (1, ..., 6) in the legend denote the six class labels. 
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ith CMC when the subjects of EMCI, MCI and LMCI are integrated 

nto one subject as MCI in practical study. That is, our model is still

 promising unsupervised learning method for predicting more de- 

ailed AD progression. It provides a theoretical technique for the 

uxiliary diagnosis of early AD, and has extremely important clini- 

al application value. 

. Conclusions and future work 

In this paper, we proposed a novel Consensus Multi-View Clus- 

ering model based on Nonnegative Matrix Factorization to group 

ifferent developmental stages of AD. The CMC integrated the key 

haracteristics of consensus representation, NMF, multi-view clus- 

ering techniques. The two real-world datasets were restructured 

s twelve views data sets for experiments through the SIFT, KAZE 

nd Gabor filter methods. The experimental results demonstrated 

hat our proposed CMC model outperforms the state-of-the-art 

ulti-view clustering and single-view clustering methods. 

In this work, we experimented using MRI data. In the future, 

e will work on collecting more views of other types such as text 

nd voice views, explore the relationship between different modal- 

ties and further validate our model on these datasets. In addition, 

e will improve CMC method with deep learning to achieve better 

esults in terms of predicting the multiple stages in AD progres- 

ion. 
12 
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