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A B S T R A C T   

Background: Alzheimer’s disease (AD) is the most common symptom of aggressive and irreversible dementia that 
affects people’s ability of daily life. At present, neuroimaging technology plays an important role in the evalu
ation and early diagnosis of AD. With the widespread application of artificial intelligence in the medical field, 
deep learning has shown great potential in computer-aided AD diagnosis based on MRI. 
New method: In this study, we proposed a deep learning framework based on sMRI gray matter slice for AD 
diagnosis. Compared with the previous methods based on deep learning, our method enhanced gray matter 
feature information more effectively by combination of slice region and attention mechanism, which can 
improve the accuracy on the AD diagnosis. 
Results: To ensure the performance of our proposed method, the experiment was evaluated on T1 weighted 
structural MRI (sMRI) images with non-leakage splitting from the ADNI database. Our method can achieve 0.90 
accuracy in classification of AD/NC and 0.825 accuracy in classification of AD/MCI, which has better diagnostic 
performance and advantages than other competitive single-modality methods based on sMRI. Furthermore, we 
indicated the most discriminative brain MRI slice area determined for AD diagnosis. 
Comparison with existing methods: Our proposed method based on the regional attention with GM slice has a 1%−

8% improvement in accuracy compared with several state-of-the-art methods for AD diagnosis. 
Conclusions: The results of experiment indicate that our method can focus more effective features in the gray 
matter of coronal slices and to achieve a more accurate diagnosis of Alzheimer’s disease. This study can provide a 
more remarkably effective approach and more objective evaluation for the diagnosis of AD based on sMRI slice 
images.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive and irreversible brain 
disease, which is the most common cause of dementia. With the gradual 
progress of AD, neurons in a wide area of the brain are irreversibly 
damaged, and the symptoms mainly include memory loss, cognitive 
decline, and so on, which eventually lead to the loss of daily activity 
capacity (Barker et al., 2015). This has taken a heavy toll on the families 
of AD patients and on the whole society. At the same time, AD patients 
often show abnormal behavior and psychological problems, which bring 
additional care difficulties to the caregivers. At present, about 90 million 
people in the world have been diagnosed with AD, and over 65 years old 
will greatly increase the probability of suffering from AD (Alzheimer’s 

Association, 2017). With the aggravation of global aging, the number of 
AD patients worldwide is expected to reach 300 million by 2050 (Zhan 
et al., 2015). Although many institutions have conducted relevant 
clinical studies, so far the existing AD drugs have only alleviated 
symptoms or slowed their progress (Servick, 2019). In the preclinical 
phase of AD, people often experience a measurable status of cognitive 
ability, which does not significantly affect daily life, called mild cogni
tive impairment (MCI) between the stage of normal control (NC) and 
AD, but an average of 32% of MCI patients develop AD related symptoms 
within five years (Roberts and Knopman, 2013). Therefore, early diag
nosis of AD has clinical significance and necessity for preventing and 
interfering with its progress, and it can also provide better opportunities 
for patients to fight. 
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The clinical diagnosis of AD is mainly completed by comprehensive 
assessment such as physiological and neurobiological examination and 
mini mental state examination (MMSE) (Marco et al., 2011). Among 
them, neuroimaging technology has been widely used to discover 
related biomarkers in the human brain for diagnosing AD and MCI. sMRI 
can provide detailed images of the brain’s internal structure, help us 
understand changes in the brain’s anatomical structure and function 
associated with AD, and play an important role in the evaluation and 
diagnosis of AD (Jr et al., 2011). In recent years, with the identification 
of AD biomarkers, structural changes of the gray matter atrophy pro
posed in many studies can be seen obviously in MCI and AD patients 
(Fan et al., 2006; Ahmed et al., 2015). These structural changes are 
reflected in the shrinkage or thinning of the cortical thickness and the 
atrophy of the hippocampus in brain through the sMRI. To this end, 
many studies have focused on analyzing shrinkage patterns and 
extracting features from sMRI images in spatial domains for application 
in the field of AD diagnosis (Liu et al., 2014; Wood et al., 2019). 

Convolutional Neural Network (CNN), as a powerful method in deep 
learning, uses image features and spatial context to generate feature 
hierarchies through neighborhood information, which can be applied in 
image-related classification tasks (Lecun et al., 2015; Hou et al., 2016). 
With the widespread application of artificial intelligence in the medical 
field, various 2D and 3D convolutional neural network architectures 
perform well in the diagnosis of cognitive diseases. Especially deep 
learning has shown great potential in computer-aided AD and MCI 
diagnosis based on MRI data (Zhang et al., 2020). Recently, many re
searches use 2D slices extracted from 3D MRI volume as datasets, and 
realize the diagnosis of AD based on CNNs. Another advantage is the 
multiple slices extracted from 3D MRI can increase the number of 
training samples. Hon (Hon and Khan, 2017) trained VGG and Inception 
networks via transfer learning based on MRI slices, and achieved 
considerable classification effect on OASIS dataset. Farooq (Farooq 
et al., 2017) carried out classification experiments on ADNI datasets 
based on CNNs, and obtained outstanding prediction accuracy of mul
tiple categories of Alzheimer’s disease. To distinguish different stages of 
MCI from the NC group, Wu (Wu et al., 2018) employed GoogleNet and 
CaffeNet with pretrained ImageNet via transfer learning to explore and 
evaluate in multiple classifications. Korolev (Korolev et al., 2017) 
demonstrated the classification performance of AD/MCI/NC based on 
residual and plain 3D convolutional neural network architectures using 
sMRI scans. Valliani (Valliani and Soni, 2017) evaluated on the ADNI 
imaging data based on the deep residual network, which shows that the 
pretrained residual network is effective for the diagnosis of Alzheimer’s 
disease. 

In the neural network-based diagnosis of AD, the patients in the 
dataset are usually classified as Alzheimer’s disease, mild cognitive 
impairment and normal control. Although many previous studies have 
high accuracy in AD classification based on sMRI slice images, we found 
that the validity of these results was questioned (Wen et al., 2020). In 
brain MRI datasets, many studies randomly divided brain MRI slices into 
training and test set (Hon and Khan, 2017; Farooq et al., 2017; Wu et al., 
2018; Korolev et al., 2017), but this implied situation must be that the 
MRI scan results of the same patient may exist in both the training set 
and test set. That is to say, at the time of test, the patient’s MRI image has 
appeared in the process of training, which is called data leakage (Wen 
et al., 2020). 

The main contributions of this study are as follows. First, we divide 
the training set and the test set without leakage, so as to effectively 
evaluate the classification performance of our proposed method. The 
result(without data leakage) of AD diagnosis is that no previous or 
subsequent patient information is given. Secondly, from a clinical point 
of view, it is particularly important to understand which parts of the 
brain are pathological and the relationship between different brain re
gions and symptom observation. Based on this mechanism, we recognize 
those parts of the brain affected by pathological diseases as the diag
nostic criteria. Through the gray matter to evaluate and represent 

regional abnormalities to determine the clinical status of the brain 
within the range of AD progression, and propose a diagnosis method 
combined with regional GM features based on CNN structure. Further
more, the diagnosis of AD using 2D MRI slice has the advantage of 
expanding the amount of data. Finally, we carried out classification 
experiments based on our proposed network. Compared with several 
other single-modality methods based on ADNI sMRI data, our proposed 
method has better performance in classification of Alzheimer’s disease. 

2. Materials 

2.1. Datasets 

All the neuroimaging data we used in this work were obtained from 
the Alzheimer’s disease neuroimaging Initiative (ADNI) database 
(Petersen et al., 2010). ADNI is a campaign launched in North America 
in 2003 to provide magnetic resonance imaging, positron emission to
mography, clinical neurometry and other biomarkers. We used T1 
weighted sMRI from ADNI baseline, the sMRI images are obtained using 
MPRAGE sequence (Jack et al., 2010) and a total of 496 subjects are 
included in our experiment. The subjects included men and women, 
aged between 65 and 85. Specifically, there are 139 subjects with AD, 
198 subjects with MCI and 159 subjects with NC. Table 1 summarized 
the demographic information of the sMRI data used in our study. 

2.2. Data preprocessing 

In our data preprocessing, we divide the sMRI dataset according to 
the subject’s number. The first n-1 number of the subjects data is used 
for network training, and the data after n number is used for network 
validation and testing. We divide the number of subjects into a ratio of 
7:1:2. In this way, MRI slices from the same subject are not assigned to 
the training set, validation set and test set at the same time. We used 
conventional procedures for MRI image preprocessing, anterior 
commissure(AC) correction, skull stripping, registration and gray matter 
(GM) extraction. Specifically, the following steps are used to preprocess 
the data. AC correction is performed by the Matlab tool SPM. The brain 
tool FSL bet (Woolrich et al., 2009) is used to separate non-brain tissue 
from the whole head imaging, and the FSL flirt performs affine regis
tration in MNI152 space to align the image with the standardized tem
plate (Jenkinson et al., 2002; Klein et al., 2009). The volume of each 
processed sMRI is 121 × 145 × 121, and then the Matlab tool CAT12 is 
used to extract GM from the preprocessed sMRI volume, and the size of 
GM slice is 121 × 121. The above data preprocessing is performed in 
MNI space. We checked the quality of preprocessed images and excluded 
some failed images. In view of the influence of brain atrophy in the 
process of Alzheimer’s disease, we use GM features for diagnosis. The 
data preprocessing steps are shown in Fig. 1. 

3. Methods 

In this part, we will mainly describe the structure and framework of 
the proposed network. Our method is inspired by the following two 
aspects. Firstly, in order to improve the diagnostic accuracy, especially 
in the stages of Alzheimer’s disease progression, the diagnostic network 
should be sensitive to the slight changes in brain volume. For patients 
with AD, the atrophy area is usually concentrated in the entorhinal 
cortex and hippocampus, which can reflect the degree of atrophy more 

Table 1 
the demographic information of the sMRI data used in our study.   

AD MCI NC 

Number of Subjects 139 198 159 
Gender(Male/Female) 78/61 115/83 77/82 
Age (Mean + SD) 75.4 ± 7.5 75.7 ± 6.5 76.0 ± 5.0  
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visually on the coronal plane of sMRI, as shown in the Fig. 2. For this 
reason, we chose GM slice of coronal section as the source data. Sec
ondly, we know that most of the regional information in sMRI image has 
nothing to do with the disease, especially for the very similar images 
between brain individuals, which makes the diagnosis of AD more 
difficult. Therefore, we use enhanced sMRI GM regional feature infor
mation to realize the diagnosis of AD based on convolutional neural 
network. Finally, we give the training and evaluation process of our 
proposed network. 

3.1. Network structure 

Residual network (Valliani and Soni, 2017; He et al., 2016) has been 
proved to be highly effective in image classification and related recog
nition tasks. For the classification method based on 2D MRI slices, we 
use the improved framework tresnet (Ridnik et al., 2020) of residual 
network. The frame was fine tuned by combining with subtle changes, 
and the MRI image features were associated with the clinical diagnosis 
of cognitive status. In order to improve the effectiveness of the regional 
information of the input image, we use GM regional area as input of the 
neural network. Due to the approximate symmetry of the coronal slice 
image structure, we divide each slice into four identical regions as the 
input of the network, and the resolution of the GM regional information 
is not reduced. In order to generate more sensitive feature responses to 
GM striation and hippocampal changes, then we introduce attention 
mechanism based on these four parts of sMRI regions in our network to 
mine the potential features. 

3.2. Spacetodepth block 

The mechanism of convolution layer in neural network is to rapidly 
reduce the input resolution to obtain feature maps. For example, the 
convolution layer of ResNet is composed of a conv7×7 with a stride of 2 

and a max pooling layer, which reduces the input resolution by 4 times 
(120→30). In contrast, the mechanism of spacetodepth block is more 
elaborate, which can minimize the loss of local information as much as 
possible. The spacetodepth block, as shown in Fig. 3, which rearranges 
blocks of spatial image into depth block and improves the resolution of 
image input. Specifically, we use the spacetodepth block to divide each 
MRI slice image into four pieces before the first convolution layer in our 
network, so as to improve the significance of sMRI regional feature in
formation, and the spacetodepth block is followed by a simple 1 × 1 
convolution to match the number of channels required. 

3.3. Attention mechanism 

Attention mechanism is widely used in various tasks based on neural 
network model. Its essence is a series of attention distribution weight 
parameters, which can be used to enhance the important information of 
processing objects and suppress some irrelevant details. For this reason, 
the attention mechanism is introduced to excavate the potential features 
of the corresponding ROI in gray matter slice. In our network, the 
attention mechanism is inspired by Squeeze-and-Excitation block (Jie 
et al., 2020) and the mechanism of channel attention module is shown in  
Fig. 4. For an input graph X with C channel, the action will be completed 
in the following steps. 

First of all, the features are compressed in the spatial dimension, and 
the two-dimensional features of each channel are converted into real 
numbers with a certain global receptive field, the output dimension is 
consistent with the number of the input channels. This process can be 
realized by global pool, the corresponding operation equation is given as 
follows. 

Zc =
1

H⋆W
∑H

i

∑W

j
XC(i, j)

Where H and W are the height and width of each feature graph, and C is 
the number of feature channels. 

Based on the correlation between feature channels, a set of com
pressed real numbers is used to map each channel, and a new weight is 
generated to represent the importance of each channel. The weight 
distribution of these channels can be achieved via 1 × 1 convolution, 
and the corresponding calculation formula is as follows. 

SC = δ(conv(ZC))

Where δ is the Sigmod activation function. 
In the previous step, the new weight reflects the importance of each 

feature channel. Then the original features are weighted to each channel 
by multiplication to complete the redistribution in channel dimension. 
The transformation mapping XC to X′C of input features can be 
expressed as follows. 

X′

C = Sc ⊗ Xc 

In this way, the feature map XC is transformed into a new feature 
map X′C with reweighted channel information. By learning the feature 
weights according to the loss of the network, the effective feature map 
can be with larger weight and the ineffective feature map with smaller 
weight. In our network structure, we utilized the self attention with 
every 4 regions (r = 4) of the input GM slice image, the input process of 
GM slice based on attention mechanism and the network framework is 
shown in Fig. 5. 

Fig. 1. the preprocessing steps of sMRI data.  

Fig. 2. the axial, coronal, and sagittal view of the brain sMRI slice.  Fig. 3. the architecture of the spacetodepth block.  
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The overall structure of our AD diagnosis network is shown in  
Table 2, which including the channels, output size and the number of 
residual layer in each stage. The residual layer contains multiple 
basicblocks and bottlenecks (He et al., 2016), adding the shortcut 
connection for output summation of convolution layers, and the classi
fication is implemented through a global average pool layer (Min et al., 
2014) and softmax at the end of the network. 

The global average pooling layer reduces the number of parameters 
to achieve feature dimensionality reduction, replacing the traditional 
fully connected layer. As shown in Fig. 6, the global average pooling 
takes the last layer’s feature map into an average value of the whole 
map, formed a feature node for each feature map, and composed these 
feature points into the final feature vector for calculation in softmax. The 
probability of classification output is obtained by softmax, and the 
calculation function of softmax for K categories is as follows: 

softmax
(
zj
)
=

exp⁡
(
zj
)

∑K
j=1

(
exp

(
zj
) )

4. Experimental results and discussion 

In this section, we first describe the implementation details in our 
experiments. Then we explored the classification effect based on sMRI 
GM slice images, and gave the experimental classification results on the 
ADNI database. We considered classification tasks including AD and NC, 

MCI and NC, AD and MCI. To demonstrate the performance of our 
proposed method, we report three different indicators commonly 
considered in subject diagnosis, namely accuracy(ACC), sensitivity 
(SEN) and specificity(SPE). We compared and analyzed with the state- 
of-the-art methods based on sMRI data for AD diagnosis. In addition, 
in order to evaluate the impact of sMRI slices on the diagnosis of AD, we 
also carried out the corresponding slice area contrast experiments. 
Finally, we illustrated the most discriminative brain MRI slice area 
determined for AD diagnosis based our method. 

4.1. Implementation details 

For the sMRI GM 2D-slice experiments, we utilized the pretrained 
model of tresnet on ImageNet to implement classification task of our 
network. In order to evaluate the performance of our proposed method, 
we trained our classification network model from scratch and the 
training setting of network is as follows. We use the stochastic gradient 
descent (Bottou, 2010) with learning rate is optimally set to 0.01. The 
cross entropy loss (Vincent et al., 2010) is used as the loss function and 
the hyperparameters are set with a weight decay of 0.0001 and a mo
mentum of 0.9. In our deep neural network, the input image size is set to 
120 × 120. The results are obtained after each model has been trained 
for 40 epochs with a batch size of 16, and the valid loss no longer 
improved. Our network implemented using Pytorch (Kossaifi et al., 
2016) and performed on a Linux X86-64 computer machine with Intel 
(R) Xeon(R) CPU E5-2686 v4 @ 2.30 GHz, 32 GB of RAM and GeForce 
GTX 1080Ti. 

4.2. Experimental results 

According to the severity of hippocampus atrophy in the coronal 
plane, we selected the range of the 72–76th in the 145-dimension cor
onal slices of sMRI volume. The method based on slice images has the 
advantage of data augmentation. For this reason, we conducted classi
fication experiments based on two groups of three consecutive MRI 
slices of each subject, and we also carried out based on all 5 slices. All 
test experiments use the 74th sMRI slice of the subject that is commonly 
included as the test data. Like most AD diagnosis studies without data 
leakage, we compared the accuracy, sensitivity and specificity of our 
proposed network on the classification tasks of AD/CN, AD/MCI and 
MCI/CN. First of all, Table 3 summarizes the experimental results of our 
method based on regional attention with GM slice. 

Judging from the results of our experiments, the classification of AD/ 
NC has an optimistic accuracy, of which 3 groups of experiments are all 
above 0.85. The accuracy based on 5-slice is slightly higher than that of 
3-slice, achieved 0.90. We give the corresponding loss and valid accu
racy curves in training step based on the 72–76th slices, as shown in  
Fig. 7. While the corresponding SEN and SPE is 0.928 and 0.875, which 
indicates that the diagnosis of both AD and NC has high accuracy. The 
accuracy of binary classification of MCI categories is decreased, and the 
accuracy of AD/MCI classification is better than that of MCI/NC. The 
results indicate that for MRI GM images, the feature information of MCI 
is more obvious than AD and more similar to NC. Our network is more 

Fig. 4. the mechanism of channel attention module in our network.  

Fig. 5. the framework of our proposed AD diagnosis network.  

Table 2 
The structure of our AD diagnosis network.  

Layer Output Stride Repeats Channels 

SpaceToDepth 60 × 60 –  1  48 
Conv1×1 1  1  64 
BasicBlock 60 × 60 1  3  64 
BasicBlock 30 × 30 2  4  128 
BasicBlock 15 × 15 2  11  1024 
Bottleneck 7 × 7 2  3  2048 
GlobalAvgPool 1 × 1 1  1  2048  

Fig. 6. the mechanism of global average pool layer.  
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sensitive to AD/MCI classification than MCI/NC. 
In the AD/MCI classification task, the accuracy of 5-slice is higher 

than that of 3- slice. The accuracy of 5-slice group is 0.825, the sensi
tivity and specificity are 0.785 and 0.857 respectively, indicating that 
more AD symptoms are diagnosed as MCI. In classification of MCI/NC, 
the accuracy of the two 3-slice groups is relatively higher. The sensitivity 
and specificity of MCI based on the 72–74th slices are 0.80 and 0.531 
respectively, indicating that more NC symptoms are misdiagnosed as 
MCI symptoms. In the AD categories classification with more obvious 
features, the data volume of 5-slice is more conducive to the training of 
classification network, while in the MCI/NC classification with similar 
features, the increase of slices is not conducive to the improvement of 
network classification performance. We conclude that in the diagnosis of 
similar symptoms, the higher the dimension of the slice will bring more 
information noise, which is not conducive to the improvement of clas
sification accuracy. Among the classification tasks of two 3-slice groups, 
the accuracy of the 72–74th slices is better. And the classification ac
curacy of AD/NC, AD/MCI and MCI/NC are 0.883, 0.793 and 0.671 
respectively, which is relative higher to the accuracy of the 74–76th 
slices. It also indicates that the 72–74th slices provide the main contri
bution in the 5-slice area. 

Secondly, we still divide the GM slice into 4 equal regions as the 
network input, eliminating the role of attention mechanism for classi
fication experiments, and the results is shown in Table 4. Judging from 
the comparison of the classification results in Fig. 8, the accuracy 
without attention mechanism (AM) is reduced to a certain extent, but 
the overall trend has not changed much. This shows that our proposed 
regional attention method is effective in improving the diagnosis of AD. 

In order to compare the effect of the attention mechanism with 
different slice numbers on the diagnosis of AD, we also used every 8 and 
every 16 regions of GM slices based on the 72–76th as the network input, 

and the classification accuracy is shown in Fig. 9. It is not difficult to see 
from the figure that the overall classification effect trend has not 
changed much, the accuracy of AD/NC classification is still the best. In 
various classification tasks, the attention mechanism based on every 4 
slice regions (r = 4) works best, and as parameter r multiples, its clas
sification accuracy decreases slightly. 

4.3. Discussion 

This research includes several major contributions. First of all, we 
conducted a brief overview and clarified the data leakage problems in 

Table 3 
the classification results based on regional attention mechanism.  

Slice AD/NC AD/MCI MCI/NC  

ACC SEN SPE ACC SEN SPE ACC SEN SPE 

72–74  0.883  0.892  0.875  0.793  0.750  0.828  0.671  0.800  0.531 
74–76  0.866  0.821  0.906  0.777  0.607  0.914  0.656  0.742  0.562 
72–76  0.900  0.928  0.875  0.825  0.785  0.857  0.626  0.828  0.406  

Fig. 7. the loss and valid accuracy curves in training step of the AD/NC classification.  

Table 4 
the classification results without regional attention mechanism.  

Slice AD/NC AD/MCI MCI/NC  

ACC SEN SPE ACC SEN SPE ACC SEN SPE 

72–74  0.850  0.857  0.843  0.777  0.678  0.857  0.656  0.714  0.593 
74–76  0.833  0.857  0.812  0.746  0.642  0.828  0.641  0.685  0.593 
72–76  0.883  0.892  0.875  0.761  0.714  0.800  0.611  0.714  0.500  

Fig. 8. comparison of the classification accuracy (A including attention 
mechanism; B without attention mechanism). 
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some studies. Secondly, we propose a neural network framework for 
repeatable evaluation of AD classification based on CNN using sMRI GM 
slice. Then we discussed the classification of AD based on several groups 
of GM slices, and indicated the diagnostic effect of GM slice on Alz
heimer’s disease. Finally, we compared the classification performance of 
several state-of-the-art methods for AD diagnosis based on sMRI data, 
which shows the effectiveness of our proposed method. 

In the introduction of this paper, we point out the problem of data 
leakage in the existing research of AD diagnosis based on CNN methods. 
In some investigations (Wen et al., 2020), it is found that more than half 
of the studies may have data leakage. We list five cases of AD diagnosis 
studies based on sMRI data via deep learning, as shown in Table 5. Data 
leakage makes some test samples from the same subject appear in the 
training set, resulting in the classification accuracy is seriously high 
compared with most of the current cutting-edge methods. AD diagnosis 
based on these methods is not valid. 

In order to verify the performance of our proposed method, we list 
several state-of-the-art methods of AD diagnosis based on sMRI data, as 
shown in Table 6. We selected studies that do not involve data leakage 
problem as much as possible, most of which mainly analyze AD/NC 
diagnosis. In the sMRI data based diagnosis of Alzheimer’s disease, our 
proposed method based on the regional attention with GM slices has a 
1%− 8% improvement in accuracy compared with other single- 
modality methods. The 0.90 accuracy in classification of AD/NC is an 
outstanding performance on the non-leakage dataset, and it also has 
high sensitivity and specificity of AD/NC. As the training set of network, 
the number of subjects we used is relatively small. In our method, the 
results indicate that the combination of regional features and attention 
mechanism can reduce the interference of redundant information to a 
certain extent, retain more effective features, and achieve more effective 
diagnosis. In addition, GM features and slice selection also contribute to 
the classification effect. Therefore, the diagnostic accuracy of AD can be 
improved to some extent by attending GM feature information of sMRI. 

In addition, we compared the results of some studies with MCI 
diagnosis, as shown in Table 7. In the classification of AD/MCI, our 
accuracy achieved 0.825, which is greatly improved compared with 

other classification methods. In the classification of MCI/NC, it is not 
difficult to find that the classification performances of many methods are 
not optimistic. MCI is the manifestation of mild cognitive impairment, 
most of the patients are still in a status of cognitive lucidity, many MCI 
and normal cognitive patients have little difference. There are still some 
difficulties in the MCI diagnosis of single-modality methods based on 
MRI images, which need to be further combined and explored. 

In this paper, for better diagnosis results of Alzheimer’s disease, we 
indicated the specific area of the slice image for reference. Among the 
processed 145-dimension coronal slices, the slices of the 72–74th area 
are more important for the diagnosis of Alzheimer’s disease, and the 
doctor can select the slices of this area for disease screening. We visu
alized a comparison of the original sMRI 72–74th slices of three symp
toms shown in Fig. 10, and marked the main parts with obvious changes, 

Fig. 9. comparison of the classification accuracy with different numbers of 
slice regions. 

Table 5 
the accuracy of related studies based on sMRI data with leakage problem.  

STUDY AD/ 
NC 

AD/ 
MCI 

MCI/ 
NC 

APPROACH 

Hon (Hon and Khan, 2017)  0.962     2D slice 
Wang (Wang et al., 2017)      0.906 2D slice 
Tien (Tien-Duong et al., 2018)  0.988  0.930  0.950 2D slice 
Taqi (Taqi et al., 2018)  0.995     2D slice 
Backstrom (Backstrom et al., 

2018)  
0.987     3D subject  

Table 6 
the AD/NC classification of studies based on sMRI data without leakage 
problem.  

STUDY ACC SEN SPE SUBJECTS 

ADERGHAL(2017) (Aderghal et al., 
2017)  

0.837 0.791 0.872 188AD, 
228NC 

FAN(2017) (Fan et al., 2017)  0.883 0.914 0.844 199AD, 
229NC 

KOROLEV(2017) (Korolev et al., 
2017)  

0.80 — — 50AD, 61NC 

VALLIANI(2018) (Valliani and Soni, 
2017)  

0.813 — — 188AD, 
299NC 

BRÜNINGK(2020) (Brüningk et al., 
2020)  

0.880 0.890 0.90 — 

WEN(2020) (Wen et al., 2020)  0.880 — — 336AD, 
330NC 

OURS  0.90 0.928 0.875 139AD, 
159NC  

Table 7 
the MCI classification of studies based on sMRI data without leakage problem.  

STUDY AD/MCI 
(ACC) 

MCI/NC 
(ACC) 

SUBJECTS 

ADERGHAL (Aderghal et al., 
2017)  

0.665  0.649 188AD, 399MCI, 
228NC 

KOROLEV (Korolev et al., 
2017)  

0.64  0.56 50AD, 77MCI, 
61NC 

OURS  0.825  0.671 139AD, 198MCI, 
159NC  

Fig. 10. images from left to right are the original sMRI 72–74th slices of 
three symptoms. 
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such as the hippopotamus. In our experiments, it demonstrates that our 
method has high sensitivity and specificity for AD. Sensitivity index 
corresponds to the initial screening in the process of diagnosis, and it is a 
measure of missed diagnosis. Relatively, specificity is an important in
dicator for the diagnosis of disease. In addition, we can conclude sMRI 
GM slices are significant marker for preliminary screening in the diag
nosis of Alzheimer’s disease. 

5. Conclusion 

Based on the texture of sMRI gray matter images and the features of 
hippocampus structure, we proposed a deep learning method for AD 
diagnosis based on regional attention with gray matter slice. Our 
method can focus more effective features in the gray matter coronal 
image and to achieve a more accurate diagnosis of Alzheimer’s disease. 
Furthermore, we explored the correlation between some slices of sMRI 
regions and AD diagnosis. To avoid the invalid AD diagnosis, in this 
study all the datasets are based on non-leakage splitting. Compared with 
some state-of-the-art methods for AD diagnosis based on sMRI data, our 
proposed method has better diagnostic performance and advantages. 
Many studies may cause misdiagnosis results due to splitting at the slice- 
level of sMRI data, thus we hope that this study can provide more 
objective assessment and further reference of AD diagnosis based on 
sMRI slice images. 
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