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a b s t r a c t 

Uncovering the non-trivial brain structure–function relationship is fundamentally important for reveal- 

ing organizational principles of human brain. However, it is challenging to infer a reliable relationship 

between individual brain structure and function, e.g., the relations between individual brain structural 

connectivity (SC) and functional connectivity (FC). Brain structure–function displays a distributed and 

heterogeneous pattern, that is, many functional relationships arise from non-overlapping sets of anatom- 

ical connections. This complex relation can be interwoven with widely existed individual structural and 

functional variations. Motivated by the advances of generative adversarial network (GAN) and graph con- 

volutional network (GCN) in the deep learning field, in this work, we proposed a multi-GCN based GAN 

(MGCN-GAN) to infer individual SC based on corresponding FC by automatically learning the complex 

associations between individual brain structural and functional networks. The generator of MGCN-GAN 

is composed of multiple multi-layer GCNs which are designed to model complex indirect connections in 

brain network. The discriminator of MGCN-GAN is a single multi-layer GCN which aims to distinguish 

the predicted SC from real SC. To overcome the inherent unstable behavior of GAN, we designed a new 

structure-preserving (SP) loss function to guide the generator to learn the intrinsic SC patterns more ef- 

fectively. Using Human Connectome Project (HCP) dataset and Alzheimer’s Disease Neuroimaging Initia- 

tive (ADNI) dataset as test beds, our MGCN-GAN model can generate reliable individual SC from FC. This 

result implies that there may exist a common regulation between specific brain structural and functional 

architectures across different individuals. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

A fundamental question in neuroscience is how to understand 

tructure-function relationship of human brain. It is widely be- 

ieved that brain structural architecture provides the substrate 

here rich functionality arises from, and therefore, the dynamics 

f brain function are closely related to the relatively fixed structure 

rganization. Numerous studies confirmed that brain structure can 

etermine, at least partially, brain functional patterns. For exam- 

le, the concept of “connectional fingerprint” ( Passingham et al., 

002 ) suggests that each brain’s cytoarchitectonic area has a 

nique set of extrinsic inputs and outputs, which largely deter- 

ine the function that each brain area performs. This close rela- 

ionship between structural connection pattern and brain function 

as been confirmed and replicated in many literatures. For exam- 

le, our previous work ( Zhu et al. 2011 , 2012 , 2013 ) proved that
∗ Corresponding author. 

E-mail address: dajiang.zhu@uta.edu (D. Zhu) . 
1 Data used in preparation of this article were partly obtained from the 

lzheimer’s Disease Neuroimaging Initiative (ADNI) database. (adni.loni.usc.edu). 
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he same functional regions tend to possess consistent structural 

onnectivity patterns across different individuals and populations. 

och et al. (2002) directly compared brain structural connectiv- 

ty (SC) and functional connectivity (FC) and found that regions 

hich directly linked by structural connectivity show high func- 

ional connectivity. Skudlarski et al. (2008) reported a significant 

verall agreement between SC and FC by calculating the partial 

orrelation between the two global matrices. Some other studies 

mplemented computational models to study the brain structure- 

unction relationship at macroscale ( Honey et al., 2009 ; Gong et al., 

009 ), mesoscale ( Wang et al., 2013) , and microscale ( Pernice et al.,

011) . A consistent result achieved by these studies is that strong 

unctional interactions tend to be accompanied with strong struc- 

ural connections. On the other hand, some studies also found 

hat parts of the FC may be not supported by the underlying SC. 

reicius et al. (2009) studied the relations between SC and four 

efault mode network (DMN) related brain regions and found that 

trong FC can still exist without direct SC. This may be due to sev- 

ral factors. Firstly, the complex indirect interactions may widely 

xist among different brain regions. The functional connections 

bserved between regions with little or no direct structural con- 

https://doi.org/10.1016/j.media.2022.102463
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102463&domain=pdf
mailto:dajiang.zhu@uta.edu
https://doi.org/10.1016/j.media.2022.102463
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ections may be mediated by indirect structural connections. Sec- 

ndly, brain’s structure-function behaves under a distributed and 

eterogeneous pattern: at network level, many functional relation- 

hips arise from non-overlapping sets of anatomical connections 

 Misic et al., 2016 ), which means functional networks do not nec- 

ssarily correspond to the underlying structural substrate with a 

imple node-to-node mapping. Therefore, how to represent and 

nalyze the relationship between brain structural and functional 

etwork, especially at individual level, is still challenging. 

The existing approaches that have been used to explore brain 

tructure-function relationship can be broadly divided into two 

ategories: the first approach is to conduct association analy- 

is using correlation coefficient, which mainly focuses on simple 

nd linear relationship between SC and FC ( Koch et al., 2002 ; 

kudlarski et al., 2008 ). The second is to apply graph theory 

o both brain structural and functional network for quantita- 

ive analysis, such as small world property ( Achard et al., 2006 ; 

turriaMedina et al., 2008 ; Sporns and Zwi, 2004 ), modular struc- 

ure property ( Zamora-Lpez et al., 2016 ; Diez et al., 2015 ), and

ich-club organization Van Den Heuvel and Sporns, 2011 ; Van Den 

euvel et al., 2012 ). All these approaches have fundamentally ad- 

anced our understanding of the relationship between brain struc- 

ure and function at population level, but they are limited in char- 

ctering individual variability in subject-specific brain network. 

n addition to the above two widely used strategies, some other 

omputational models have also been developed to bridge the 

ap between structural network topology and the related func- 

ion by examining their relations at multiple scale and resolu- 

ion ( Honey et al., 2009 ), modeling dynamics ( Pernice et al., 2011 )

nd constructing local mm-scale networks using animal model 

 Wang et al., 2013 ). However, because of brain’s distributed and 

eterogeneous structure-function pattern, traditional methods are 

imited to represent the complex relationship between individual 

C and FC. 

Recent advances in deep learning have revolutionized the fields 

f machine learning ( Hinton and Salakhutdinov, 2006 ; LeCun et al., 

015 ) and brought breakthroughs for computational neuroimag- 

ng field including reconstruction ( Sun et al., 2019 ), segmenta- 

ion ( Wang et al., 2015 ), detection ( Sirinukunwattana et al., 2016 ),

nd computer-aided diagnosis ( Roth et al., 2015 ). Among numer- 

us deep learning models, graph convolutional network (GCN) 

 Kipf and Welling, 2016 ; Wu et al., 2020 ; Zhang et al., 2020c )

eneralizes the convolutional operations from grid data to graph 

ata and witnesses great success in brain network domain re- 

ently ( Ktena et al., 2018 ; Kazi et al., 2019 ; Parisot et al., 2018 ;

hang et al., 2019b , 2020b , 2021 ). More importantly, the generative 

dversarial network (GAN) ( Goodfellow et al., 2014 ; Hong et al., 

019 ) provides an efficient way to revisit the complex relationship 

etween brain structure and function: as a generative model, GAN 

an powerfully handle the brain’s distributed and heterogeneous 

tructure-function pattern. Moreover, compared to other genera- 

ive models, GAN effectively converts the regression problem to a 

lassification problem through the adversarial training scheme. In 

his way, an explicit regression loss function is unnecessary, and 

he criterion used to evaluate the performance of the predictions 

s implicitly learned from the data. This can be especially suitable 

or areas with insufficient prior knowledge, such as brain network. 

In this work, we proposed a multi-GCN based generative ad- 

ersarial network (MGCN-GAN) ( Fig. 1 ) to learn individual SC from 

he corresponding individual FC. We adopted GAN to handle brain’s 

istributed and heterogeneous pattern. To overcome the inherent 

nstable behavior of GAN ( Goodfellow et al., 2014 ; Hong et al., 

019 ) caused by the adversarial training scheme, we proposed a 

ovel structure-preserving (SP) loss function to guide the genera- 

or to learn the intrinsic SC patterns more effectively. In order to 

apture the complex relationship buried in both direct and indirect 
2 
rain connections, we constructed the generator and discrimina- 

or using GCN. However, traditional GCN has two limitations: First, 

omparing to widely used convolutional neural network (CNN) that 

as multiple filters to capture multiple feature spaces, conventional 

CN only has one filter (weight matrix) in each GCN layer and 

herefore can only learn a single feature map. Second, the per- 

ormance of GCN may gradually decrease with increasing number 

f layers ( Zhao and Akoglu, 2019 ) and which limits the power of 

earning by deepening the network as CNN does. To address these 

imitations, we designed a multi-GCN based generator that used 

ultiple GCNs instead of one deep GCN to simultaneously capture 

nderlying complex interactions in brain network and avoid the 

erformance decay by stacking more layers in a single GCN. We 

ested our methods on two datasets: Human Connectome Project 

HCP) dataset ( Van Essen et al., 2012 ) and Alzheimer’s Disease 

euroimaging Initiative (ADNI) dataset ( Petersen et al., 2010 ). Our 

esults show that the proposed MGCN-GAN can generate reliable 

ndividual SC based on corresponding individual FC. More impor- 

antly, our results imply that there may exist a common regula- 

ion between specific brain structural and functional architectures 

cross individuals. 

Our proposed MGCN-GAN advances the state of the art in 

wo ways: firstly, our model is designed to capture individual- 

pecific structure-function relationship. Previous publication 

 Batista-Garcia-Ramo and Fernandez-Verdecia, 2018 ) found that 

imilar structural damage of patients with the same pathology 

how different dysfunctions, which indicates the variability of 

ndividual structure–function relationship. Unveiling individual 

tructure–function relationship is fundamentally important to 

he comprehensive understanding of individual variation in brain 

tructure and function and is the premise and key step for person- 

lized medicine. Secondly, we introduced multi-GCN architecture 

nto GAN framework and designed a structure preserving (SP) 

oss function to help the model to generate high-quality SC. 

he MGCN-GAN is a flexible architecture with adjustable GCN 

omponents to fit different tasks with varying complexity. 

. Related work 

Graph convolutional network (GCN) ( Kipf and Welling, 2016 ; 

u et al., 2020 ) was developed to manipulate graph topological 

roperties in a deep manner. Recently, it has been used to de- 

ne and represent brain network for deep modeling of brain struc- 

ural and/or functional connectivity under a given task, i.e., clas- 

ification ( Zhang et al., 2019a , 2020a , 2021 ; Huang et al., 2020 ).

n this section, we reviewed the most recent GCN-related stud- 

es on brain network from two views: (1) the definition of the in- 

ut graph – group-level GCN model vs individual-level GCN model 

 Section 2.1 ), and (2) the architecture of the GCN framework –

ingle-GCN architecture vs multi-GCN architecture ( Section 2.2 ). 

.1. Group-level GCN model vs individual-level GCN model 

Based on different definitions of input graph, existing GCN- 

ased studies on brain network can be grouped into two cate- 

ories – group-level GCN model and individual-level GCN model. In 

roup-level GCN model, the input graph represents the whole pop- 

lations. For example, Parisot et al. (2018) used imaging features 

f individuals as nodes and encoded pairwise similarities between 

on-imaging features as edge weights. By this way, the whole pop- 

lations were represented as a sparse graph, upon which a GCN 

as built in a semi-supervised learning task to predict conver- 

ion to Alzheimer’s disease. Kazi et al. (2019) constructed a sim- 

lar graph structure, where each node was a feature vector gener- 

ted from imaging data to represent an individual and the non- 

maging data was used to measure the similarities between the 
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Fig. 1. An illustration of the proposed multi-GCN based generative adversarial network (MGCN-GAN). Firstly, by using brain atlas (Destrieux Atlas ( Destrieux et al., (2010) ) and 

Desikan-Killiany Atlas ( Desikan et al., (2006) ) along with diffusion MRI and rs-fMRI data, we extracted the averaged BOLD signal of each brain region. Then we constructed 

functional connectivity (FC) by different methods (correlation, partial correlation, threshold FC, and binarized FC) and structural connectivity (SC) by diffusion MRI derived 

fiber counts. SC was used as 1) ground truth to guide the generator at the beginning of the training process; 2) real samples of discriminator. FC was used as: (1) features 

associated with the nodes; (2) initialization of the GCN topology. The features and topology were fed into generator to predict SC. The predicted SC were used to (1) 

iteratively update the GCN topology and (2) train discriminator as fake samples. The whole model is trained based on the proposed structure preserving (SP) loss function. 
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onnecting nodes. To break the limitation of applying the same fil- 

er size to all layers, Kazi et al. proposed an InceptionGCN model, 

n which the filter size of different GCN layers can be different, 

nd thus make the model more efficient in capturing useful fea- 

ures. To better measure the similarity between two connecting 

odes, Song et al. (2021) designed a similarity-aware adaptive cal- 

brated GCN (SAC-GCN). In this work, a calibration mechanism was 

roposed to fuse fMRI and DTI information into edges and a pre- 

rained GCN was used to calculate the similarity between each 

air of subjects. However, group-level GCN model can be limited 

n the flexibility when handling the large sample size and in ca- 

ability when representing rich individual information. Individual- 

evel GCN model takes individual graph as input. Each node in the 

ndividual graph represents an anatomical brain region, and the 

dge denotes the relationships between the two connecting brain 

egions, such as the morphological, functional or structural con- 

ectivity. Ktena et al. (2018) used functional connectivity to create 

ndividual graph and leveraged siamese graph convolutional net- 

ork (s-GCN) to learn a graph similarity metric which was incor- 

orated into a classification task at later steps. Zhang et al. (2019a , 

020a ) combined individual-level GCN model with recurrent neu- 

al network (RNN) models to deal with both brain structural and 

unctional connectivity when identifying the mild cognitive impair- 

ent patients. Zhang et al. (2021) also proposed a topology learn- 

ble GCN model: the topology of the GCN was initialized by indi- 

idual structural connectivity and iteratively updated by functional 

nformation to maximize its classification power for MCI patients. 

n general, most GCN studies focused on extracting useful features 

rom brain connectivity data to do classification or to conduct as- 

ociative analysis. Inferring the relationship between structural and 

unctional networks at individual level has not yet been studied. 

.2. Single-GCN architecture vs multi-GCN architecture 

Several GCN studies summarized in Section 2.1 adopt single- 

CN architecture. To further take advantages of complemen- 
3 
ary information provided by different scales and modalities, 

ome studies tried to build multiple GCNs for different brain 

raphs. Zhang et al. (2018) proposed a multi-view GCN to han- 

le different brain connectivity graphs (BCGs) derived from DTI 

maging data using different tractography algorithms. A pair- 

ise matching strategy was adopted to fuse the output of each 

CN to conduct classification of Parkinson’s disease patients. 

uang et al. (2020) designed an attention-diffusion-bilinear neu- 

al network to integrate structural connectivity and functional 

onnectivity for predicting frontal lobe epilepsy, temporal lobe 

pilepsy, and healthy subjects. This framework consists of two 

CNs for two scales – direct connections and indirect connec- 

ions. Zhang et al. (2019b ) trained different GCNs for multiple 

raphs with respect to multi-modal brain networks. The features 

enerated by each GCN were concatenated to conduct classifica- 

ion of patients with Parkinson’s disease. In general, by build- 

ng independent GCNs for each type of brain connectivity, multi- 

CN architecture is able to capture more comprehensive infor- 

ation from multi-modal data and therefore, improve the model 

erformance. 

. Materials and methods 

.1. Participants and data description 

HCP dataset. In this work, we selected all the 1064 subjects 

hich have structure MRI (T1-weighted), resting state fMRI (rs- 

MRI) and diffusion MRI data from HCP S1200 release. For the T1- 

eighted MRI data, the Field of View (FOV) is 224 mm ×224 mm, 

oxel size is 0.7 mm isotropic, TR = 2.4 s, TE = 2.14 ms and flip

ngle = 8 ◦ For the rs-fMRI data, the FOV is 208 mm ×180 mm, 

2 slices, voxel size is 2.0 mm isotropic, TR = 0.72 s, TE = 33.1 ms,

ip angle = 52 ◦ and there are 1200 vol for each subject. For 

he diffusion MRI data, the gradient direction is 288, the FOV 

s 210 mm ×180 mm, 111 slices, voxel size is 1.25 mm isotropic, 

R = 5.52 s, TE = 89.5 ms and flip angle = 78 ◦. 



L. Zhang, L. Wang and D. Zhu Medical Image Analysis 79 (2022) 102463 

Table 1 

Multiple types of FC measures. 

Methods Formula 

PCC F i, j = 

cov ( f i , f j ) 

σ f i 
σ f j 

Sparse ICOV ma x F log det (F ) −
trace ( CF ) − ρ| F | 1 
C = 

1 
T−1 

T ∑ 

t=1 

( g t − g μ) ( g t − g μ) T 

g μ = 

1 
T 

T ∑ 

t=1 

g t 

Binary FC 1 . F i, j = 

cov ( f i , f j ) 

σ f i 
σ f j 

2 . F i, j = 

{ 1 , if abs ( F i, j ) > T hreshold, 

0 , else 

Threshold FC 1 . F i, j = 

cov ( f i , f j ) 

σ f i 
σ f j 

2 . F i, j = 

{ F i, j , if abs ( F i, j ) > T hreshold, 

0 , else 
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ADNI dataset. We used 132 normal control (CN) subjects (68 

emales, 64 males; 76.45 ± 7.68 years.) from ADNI dataset. Each 

ubject has structure MRI (T1-weighted), rs-fMRI and diffusion MRI 

ata. The FOV of T1-weighted MRI is 240 mm ×256 mm ×208 mm 

nd the voxel size is 1.0 mm isotropic, TR = 2.3 s. The diffu-

ion MRI data has 54 gradient directions, the FOV is 232 mm ×232 

m ×160 mm and the voxel size is 2.0 mm isotropic, TR = 7.2 s

nd TE = 56 ms. The rs-fMRI data has 197 vol, the FOV is 220

m ×220 mm ×163 mm, voxel size is 3.3 mm isotropic, TR = 3 s,

E = 30 ms and flip angle = 90 °. 

.2. Data preprocessing 

We applied the same standard preprocessing procedures as in 

hu et al. (2014a) and Wang et al. (2019) to both HCP and ADNI

atasets. In brief, we applied skull removal for all three modal- 

ties and registered T1 and fMRI to DTI space by FLIRT in FM- 

IB Software Library (FSL) ( Jenkinson et al., 2012) . For rs-fMRI im- 

ges, we applied spatial smoothing, slice time correction, temporal 

re-whitening, global drift removal and band pass filtering (0.01–

.1 Hz) via FEAT command in FSL. For DTI images, we applied 

ddy current correction using FSL and fiber tracking via MedINRIA 

 Toussaint et al., 2007) ). For T1 images, we conducted segmenta- 

ion using FreeSurfer package ( Fischl, 2012 ) and then adopted the 

estrieux Atlas ( Destrieux et al., 2010 ) and Desikan-Killiany Atlas 

 Desikan et al., 2006 ) for ROI labeling. 

.3. Generation of functional connectivity and structural connectivity 

For each subject, the whole brain is divided into 14 8/6 8 (14 8 for

estrieux Atlas and 68 for Desikan-Killiany Atlas) ROIs and repre- 

ented as a network with 14 8/6 8 nodes. Averaged fMRI signal was 

alculated for each brain region and normalized by the standard 

-score normalization ( Jain et al., 2005 ) formulated as: 

f i = 

f i − f μ

f σ
, (1) 

here f i is the averaged fMRI signal of brain region i , f μ and f σ
re the mean and the standard deviation of all 14 8/6 8 averaged 

MRI signals. There exist several measurements to represent pair- 

ise relationship between two fMRI derived BOLD signals, such as 

orrelation ( Zhu et al., 2014b ), partial correlation ( Marrelec et al., 

006 ) and covariance ( Challis et al., 2015 ). Since how to effec-

ively represent the functional relationships among brain regions 

s still an open research area, in this work, we adopted four dif- 

erent measures that have been used in the field ( Table 1 ) to con-
4

truct functional connectivity (FC, denoted as F = [ F i, j ] ∈ R 

N×N ) in- 

luding: (1) Pearson correlation coefficient (PCC), (2) Sparse in- 

erse covariance estimation with the graphical lasso (Sparse ICOV), 

3) binarized FC and (4) threshold FC. Pearson correlation coeffi- 

ient (PCC) between the BOLD time series of two regions of inter- 

st derived from resting state fMRI data is the most used func- 

ional measurement to estimate functional connectivity ( Batista- 

arci á-Ramo ´and Ferna ńdez-Verdecia, 2018 ). Partial correlation 

rovides a convenient graphical representation for functional in- 

eractions. In this work, we used sparse inverse covariance estima- 

ion with the graphical lasso (Sparse ICOV) ( Friedman et al., 2008 ) 

o capture the partial correlations. In Friedman et al. (2008) , the 

parse inverse covariance matrix is estimated by maximizing the 

1 penalized log-likelihood of the observed data with assumption 

f Gaussian distribution. In this paper, for each subject, we ap- 

ly the graphical lasso method for learning individual sparse func- 

ional connectivity F . Let g t,i be the fMRI signal of brain region i 

t time t for one subject. Denote by G = [ g t,i ] ∈ R T ×N the fMRI sig-

als over N regions spanning time T . Assume that the tth sample 

 t = [ g t, 1 , . . . , g t,N ] 
T ∈ R N is drawn i.i.d. from some Gaussian distri- 

ution with the precision matrix F for encoding the conditional 

ndependencies between any two ROIs. The empirical sample co- 

ariance is: 

 = 

1 

T − 1 

T ∑ 

t=1 

(
g t − g μ

)(
g t − g μ

)T 
(2) 

here g μ = 

1 
T 

∑ T 
t=1 g t is the mean of T samples. The optimization 

roblem of the graphical Lasso is 

a x F log det ( F ) − trace ( CF ) − ρ| F | 1 (3) 

here ρ is the regularization parameter of the L1 regularization to 

ontrol the sparsity of F . Binary FC and Threshold FC are another 

wo widely used strategies to control the susceptibility to noise 

 van den Heuvel et al., 2017 ). We applied our proposed method 

n these multiple types of FC measures, and the prediction results 

f structure connectivity are summarized in Section 4.4 ( Fig. 8 ). 

The structural connectivity (SC) was created in terms of fiber 

ounts, denoted as S ∈ R 

N×N . S i, j ∈ R is the number of fibers con- 

ecting brain regions i and j. Then, we conducted normalization of 

using (4) and (5). 

 i, j = log 2 
(
S i, j + 1 

)
, (4) 

 = 

S − S μ

S σ
(5) 

 μ and S σ are the mean and the standard deviation of S. Be- 

ause the fiber count can be a value from zero to a few thousands, 

hich often follows a skewed distribution. Log transformation can 

qualize the standard deviations and make the distribution of the 

ample mean more consistent with a normal distribution ( Curran- 

verett, 2018 ). Therefore, we first used log transformation to shrink 

he range of the fiber counts by (4) and then used (5) for normal- 

zation. 

.4. Method overview 

We proposed a Multi-GCN based GAN (MGCN-GAN) model 

o generate individual SC from the corresponding FC. Similar to 

anilla GAN ( Goodfellow et al., 2014 ; Hong et al., 2019 ), MGCN-

AN is built on two components, i.e., generator and discrimina- 

or. To capture the highly complex relationship between SC and 

C at the connectome level, we used multi-layer GCN architecture 

 Section 3.5 ) to design the generator and discriminator, namely 

ulti-GCN based generator and single-GCN based discriminator, 

espectively ( Section 3.6 ). Given an individual SC and the associ- 

ted FC, the generator is trained to create real-like individual SC 
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y competing with the discriminator based on an adversarial train- 

ng scheme. The specific training steps are shown as follows: (i) 

C is used as initial topology of brain network as well as features 

ssociated with the nodes; (ii) based on current topology, differ- 

nt GCN components of generator map the FC to different feature 

paces to explore the latent relationship between SC and FC, and 

ach GCN component outputs one feature matrix; (iii) all the out- 

ut feature matrices are combined by learnable coefficients to gen- 

rate the predicted SC in current iteration; (iv) discriminator acts 

s a classifier to differentiate the input SC as real SC (real samples) 

rom the predicted SC (fake samples) generated by the generator; 

v) the topology of the generator is updated by the predicted SC 

n the next iteration. Given the training data consisting of FC sam- 

les and their corresponding real SC samples, the whole model is 

rained based on the proposed SP loss function ( Section 3.7 ). 

.5. Graph convolutional network (GCN) 

In many applications, data are generated from non-Euclidean 

omains and represented as graphs with complex interdependency 

nd relationships between graph nodes. The complexity of graph 

ata has imposed significant challenges on the existing deep learn- 

ng algorithms, such as CNN model. Graph convolutional network 

GCN) ( Kipf and Welling, 2016 ; Wu et al., 2020 ; Zhang et al.,

020c ) extends traditional CNN by applying convolutional opera- 

ions on graph-based instead of Euclidean-based neighbors and is 

ssential to various applications. In this work, to represent the la- 

ent interactions between brain SC and FC, we adopt a multi-layer 

CN architecture to build the proposed MGCN-GAN model. For the 

ase of better understanding GCN architecture, we first introduce 

he notations of a graph and the graph convolution operation used 

n this work. 

Graph . Let G = ( V, E ) to be an undirected graph, 

here V = { v 1 , v 2 , · · · , v n } is a set of vertices and E = 

 e i, j | i, j = 1 , 2 , · · · , n } is a set of edges. If there exists an 

dge connecting two vertexes v i and v j , then e i, j > 0 , otherwise, 

 i, j = 0 . Each vertex v i can have its own attributes (features) which 

an be represented by a vector x i ∈ R 

1 ×d , d is the dimension of 

he attributes (features). X = [ x 1 ; x 2 ; · · · ; x n ] ∈ R 

n ×d is the feature 

atrix of graph G. The topology of G can be represented by a 

eighted adjacency matrix A = [ a i, j ] ∈ R 

n ×n , for all i, j, a i, j = e i, j .

hus, G also can be represented by G = ( A , X ) . 

Graph Convolution Operation . As shown in Shuman et al. (2013) , 

he traditional convolution operators can be generalized to the 

raph setting by defining filters in the graph spectral domain. For a 

raph G = ( A , X ) with the adjacency matrix A = [ a i, j ] ∈ R 

n ×n and

ode-wise feature matrix = [ x 1 ; x 2 ; · · · ; x n ] ∈ R 

n ×d , its normalized 

raph Laplacian is defined as = I N − D 

− 1 
2 A D 

− 1 
2 , where I N is the 

dentity matrix and D = 

∑ 

a i, j is the diagonal degree matrix. In 

eneral, the graph spectral convolution can be carried out by a 

onvolutional network with convolutional layers of the polyno- 

ial form. For example, a two-layer GCN was formulated as Z = 

f ( A , X ) = f ( ˆ A ReLU( ˆ A X W 

(0) ) W 

(1) ) in Kipf and Welling (2016) , 

here ˆ A = D 

− 1 
2 A D 

− 1 
2 is the Laplacian transformation of A . In 

ur previous work Zhang et al., 2019a ), we compared 

ˆ A = A with 

ther three different Laplacian transformations of A : 1) ˆ A = D − A , 

) ˆ A = D 

− 1 
2 A D 

− 1 
2 , and 3) ˆ A = D 

−1 A and found that ˆ A = A and

ˆ 
 = D 

− 1 
2 A D 

− 1 
2 give similar performance. Therefore, in this work 

e directly used the functional connectivity to initialize the adja- 

ency matrix ( ˆ A = F ) without using Laplacian transformation, the 

easons are as follows: (1) compared to ˆ A = D 

− 1 
2 F D 

− 1 
2 , ˆ A = F 

eeds less computational cost; 2) to infer the reliable relationship 

etween structural and functional connectivity, using the original 

C matrix may be more appropriate than applying extra transfor- 

ation on FC. 
5 
Based on above discussion, the convolutional process of multi- 

ayer graph convolutional network can be formulated as (6) and 

7): 

 ( A , X , W ) = σ
(
A H 

l−1 W 

l 
)
, (6) 

 

l = { σ
(
A H 

l−1 W 

l 
)
, l > 0 

X, l = 0 

, (7) 

here σ is the nonlinear activation function, H 

l is the output of 

he l th convolution layer, W 

l ∈ R 

F i ×F o is the weight matrix, F i is 

he input feature size and F o is the output feature size. As shown 

n Fig. 2 , W 

l acts like a filter which selects related features from 

eighbors and defines how to combine these features. By stacking 

ultiple graph convolutional layers, information from high-order 

eighbors (indirectly connected via other nodes) can be propa- 

ated along graph topology defined by the adjacency matrix A . In 

his work, we represented brain as a graph, and took the individ- 

al FC as the feature matrix i.e., X = F and the initialized topology 

 0 = F . By conducting graph-based convolution via the proposed 

GCN-GAN model, we iteratively updated the graph topology and 

earned the individual SC ( Section 3.6 ). 

.6. Multi-GCN based GAN (MGCN-GAN) 

Multi-GCN based Generator. Inspired by the great success of CNN 

hat uses multiple filters to identify different f eatures, the pro- 

osed generator consists of multiple multi-layer GCNs. Different 

CN components are designed for different feature spaces and 

ach of them will learn a latent mapping from individual FC to 

ts corresponding SC. Through paralleling multiple GCNs, the gen- 

rator has the capacity to model complex relationship between FC 

nd SC, which will be demonstrated by our experimental results 

n Section 4 . Specifically, a generator that is composed by k multi- 

ayer GCNs can be formulated by (8), (9) and (10), 

 i = G ( T , F , W i ) (8) 

 

({ G i } , θ
)

= θ � ( G 1 | | G 2 | | G 3 | | · · · | | G k ) = 

∑ 

k 

θk G k , (9) 

 = { g 
({ G i } , θ

)
, iteration > 0 

F , iteration = 0 

, (10) 

here G i , i = 1 , 2 , 3 , · · · , k represents the i th GCN and || de-

otes parallel operation. Each GCN takes the individual FC ( F ) as 

nput and outputs the predicted individual SC. Then, we used the 

earnable coefficients θ = ( θ1 , θ2 , . . . , θk ) to fuse ( �) these k pre- 

ictions and obtained the final prediction S p = g( { G i } , θ ) . During 

he training process, topology T is initialized by F and iteratively 

pdated by T = g( { G i } , θ ) . After training, each multi-layer GCN 

earns an independent mapping that represents a potential rela- 

ionship between the input FC and SC. In order to enhance the ca- 

ability of generator, we paralleled multiple GCNs to capture the 

omplex relationships between individual SC and FC. 

Single-GCN based Discriminator. In order to distinguish the two 

ets of graph data – real SCs and the predicted ones generated 

y the generator, the discriminator is composed by a multi-layer 

CN, G d = G ( SC, I, W d ) , and followed by two fully-connected lay- 

rs. The input SC can be the real SC matrix – S, derived from diffu- 

ion MRI and predicted SC matrix – S p , created by generator. They 

re treated as real and fake samples during the training process. 

ifferent from generator, we used identity matrix as input fea- 

ure matrix for discriminator. This is because discriminator aims 

o learn the rules that can be used to decide whether the input 

onnectivity matrix is a valid SC matrix, any external knowledge 

hould be excluded. 
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Fig. 2. Illustration of the graph convolution process. A graph G can be represented by an adjacency matrix A and a feature matrix X . The GCN takes the two matrices as 

input to conduct graph convolution. We used the red node as an example to show the convolution process. The neighbors with the same order have the same color in graph 

G. The colors of features are the same as the corresponding nodes. For the l th layer, the red edges of the input adjacency matrix A indicate the neighbors that participate in 

the convolution process and the features of these activate neighbors are non-transparent. 
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.7. Structure-preserving (SP) loss function 

In the adversarial training scheme, the generator is optimized 

ccording to the feedback of discriminator. However, in this SC 

rediction task, the generator is trained to generate real-like in- 

ividual SCs while the discriminator is trained to identify the real 

Cs from the predicted ones. The classification task of discrimina- 

or is much easier than the regression task of generator. Thus, the 

iscriminator may easily differentiate real SCs from predicted SCs 

fter a few training iterations and the generative adversarial loss 

ould be close to 0, resulting in zero back-propagated gradients 

n generator. In such case, the generator cannot be optimized and 

ill keep generating invalid SCs. To break this dilemma, maintain- 

ng the balance between generator and discriminator regarding the 

ptimization capability during the entire training process is impor- 

ant. We designed a new structure-preserving (SP) loss function 

o train our discriminator and generator. The SP loss function is 

ombined by three parts: mean squared error (MSE) loss, Pearson’s 

orrelation coefficient (PCC) loss and GAN loss. It is formulated by 

11), (12) and (13). 

 sp = L GAN + αL MSE + βL PCC , α > 0 , β > 0 (11) 

 GAN = −
(
log ( D ( S ) ) + log 

(
1 − D 

(
S p 

)))
− log D 

(
S p 

)
(12) 

 PCC = L PC C −b + L PC C −r 

 

∑ n 
i =1 

∑ n 
j=1 ( s i, j −s̄ ) ( s p i, j −s p ) √ ∑ n 

i =1 

∑ n 
j=1 ( s i, j −s̄ ) 

2 
√ ∑ n 

i =1 

∑ n 
j=1 ( s p i, j −s p ) 

2 
+ 

n ∑ 

i =1 

∑ n 
j=1 ( s i, j −s̄ ) ( s p i, j −s p ) √ ∑ n 

j=1 ( s i, j −s̄ ) 
2 
√ ∑ n 

j=1 ( s p i, j −s p ) 
2 

 i, j ∈ S, s p i, j ∈ S p 

(13) 

here the regularization parameters α and β are initialized by 1 

nd will gradually reduce to 0 later in the training process to let 

he model learn completely from the data. The three components 

f SP loss aim to guide the learning process from different per- 

pectives. MSE loss ( L MSE ) forces the predicted SC to be the same 

cale as real SC at element-wise level. It is designed to control the 

agnitude of the predicted SC. PCC loss ( L PCC ) maximizes the sim- 

larity of overall pattern between predicted SC and real SC. It at- 

empts to constrain the structure of the predicted SC. PCC loss is 

ormulated by (13), which consists of two components: 1) brain- 

evel PCC loss ( L PC C −b ) and 2) region-level PCC loss ( L PC C −r ). Brain- 

evel PCC loss calculates the PCC between predicted SC matrix and 

eal SC matrix, which measures the overall correlation between the 

redicted and real SCs. Region-level PCC loss calculates the corre- 

ation for each brain region (each row/column of the connectivity 
6

atrix), which measures the correlation of each brain region pairs 

f the predicted and real SCs. GAN loss ( L GAN ) effectively converts 

he regression problem to a classification problem and endows our 

odel the power to implicitly learn the criterion, which is used 

o evaluate the quality of the predictions, from the data. It is for- 

ulated by (12), where D(S) and D( S p ) are the classification re- 

ults predicted by discriminator. The adversarial GAN loss guides 

he generator to create real-like SC to fool the discriminator by as- 

igning a “true” label to the predicted SC as well as guides the 

iscriminator to differentiate the two kinds of inputs correctly. 

. Results 

We applied our proposed MGCN-GAN to infer individual SC 

rom the associated FC. For each sample (subject) in training 

ataset, the real SC is used as the real sample for discriminator 

(11) and (12)) and as the ground truth for the generator at the 

eginning of the training process ((11) and (13)). The individual 

C is used to initialize the adjacency matrix as well as to be the 

eature matrix ((8), (9) and (10)). During the adversarial training 

rocess, the topology of the graph is iteratively updated. The re- 

ults of this work will be organized as follows: 4.1) introducing 

he experimental settings; 4.2) measuring the predicted SCs from 

hree perspectives using two independent datasets; 4.3) evaluating 

he prediction performance with different atlases; 4.4) comparing 

he prediction performance of different types of FC measures; 4.5) 

valuating different model settings including different GCN archi- 

ectures, the learnable combination coefficients – θ, different loss 

unctions; and 4.6) comparison with other widely used methods. 

.1. Experimental setting 

Data Setting. We conducted our experiments using two datasets: 

CP and ADNI. For HCP dataset, we used 600 subjects for training 

nd 464 subjects for testing. For ADNI dataset, we used 80 CN sub- 

ects for training and 52 CN subjects for testing. The details of the 

wo datasets and the data preprocessing pipeline are introduced 

n Sections 3.1 and 3.2 . For each subject, following the process in 

ection 3.3 , we created the individual SC and FC. 

Model Setting. In this work, three two-layer GCNs are paral- 

eled in generator. The model size of GCN components in gen- 

rator is: G 1 = ( 74 , 148 ) , G 2 = ( 148 , 148 ) and G 3 = ( 296 , 148 ) . 

 i = ( F 1 , F 2 , · · · , F l ) represents an l-layer GCN and output feature 

imension of the l th layer is F l . The three GCNs are combined by 

he learnable coefficient θ which is initialized by θi = ( 0 , 0 , 0 ) . We 

lso tested different model architectures and different initializa- 
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ions of θ in Section 4.5 . The discriminator is composed of one 

hree-layer GCN followed by two fully connected layers. The model 

ize of the GCN component is: G d = ( 148 , 296 , 148 ) , and the out- 

ut feature dimensions of the two fully connected layers are 1024 

nd 2, respectively. For both generator and discriminator, activa- 

ion function Relu and layernorm are used at each layer. The entire 

odel was trained in an end-to-end manner. During the training 

rocess, the Adam optimizer was used to train the whole model 

ith standard learning rate 0.001, weight decay 0.01, and momen- 

um rates (0.9, 0.999). 

.2. Predicted structural connectivity 

In this section, we used three strategies to evaluate the qual- 

ty of the predicted SCs. Firstly, we plotted the predicted SC and 

eal SC pairs to illustrate the overall similarity patterns via visual 

nspection. Secondly, we quantitatively measured the similarity be- 

ween the predicted SCs with real ones using six measures (MSE, 

osine similarity, PCC, mean degree, mean strength and mean clus- 

ering coefficient) that can comprehensively depict the similarity 

etween our predicted SC and the real SC from three perspectives: 

agnitude, overall pattern and graph property. Thirdly, we exam- 

ned the prediction performance of predicted SC by focusing on the 

verlaps of top connectivity between predicted SCs and the real 

Cs. The individual SCs and FCs used in this section were gener- 

ted via Destrieux atlas. 

.2.1. Visualization of predicted SCs and real SCs 

To visually evaluate the similarity between the predicted SCs 

nd the real SCs, we randomly selected 20 subjects from HCP and 

DNI datasets and showed the prediction results in Fig. 3 . We 

sed two ways to visualize the results: first, we directly displayed 

he predicted SC and the real SC of each subject in Fig. 3 (a1, a2).

o demonstrate the details of the prediction, we extracted two 

atches at the same location of the predicted SCs and real SCs and 

howed them in the middle. From the enlarged patches, we can 

ee that our proposed model can predict not only the overall pat- 

erns, but also the subtle differences across individuals. Secondly, 

o better visualize the prediction result at individual level, we re- 

ove the consistent pattern across individuals by subtracting the 

opulation-averaged SC based on the matrices in Fig. 3 (a1, a2) and 

howed the residual matrices in Fig. 3 (b1, b2). We can see that our

ethod effectively characterized and preserved the corresponding 

ndividual SC patterns during the prediction. Of note, all these pre- 

ictions are based on individual FC, which suggests the existence 

f a common regulation between individual brain structural and 

unctional architectures. 

.2.2. Quantitatively measuring the similarity between predicted SCs 

nd real SCs 

We quantitatively measured the similarity between the pre- 

icted SCs and real SCs from three perspectives: magnitude, over- 

ll pattern and graph property. Specifically, we adopted six mea- 

ures in total, including MSE for magnitude, cosine similarity and 

CC for overall pattern, and mean degree, mean strength and mean 

lustering coefficient for graph property. In graph theory, the mean 

egree is the average of the degrees (the number of edges con- 

ected to a node) of all the nodes, which is a widely used mea-

ure for network density ( Rubinov and Sporns, 2010 ). The strength 

f a node in a graph is defined as the increase in the number of

onnected components in the graph upon removal of the node, 

hich measures the vulnerability of the graph ( Gusfield, 1991) . 

he mean clustering coefficient for the graph reflects, on average, 

he prevalence of clustered connectivity around individual nodes 

 Rubinov and Sporns, 2010 ). All the three graph measures are used 
7 
o describe the overall characteristics of a network, such as seg- 

egation and integration ( Rubinov and Sporns, 2010 ). In this work, 

e calculated two differences for each measure at individual level: 

ne is the difference between our predicted SC and real SC, and the 

ther is the difference between the population-averaged SC and 

he real SC. If our predicted SC is more similar to real SC than 

he averaged one, this represents our model is effective in char- 

cterizing individual-specific relationship between brain structural 

nd functional connectivity. We showed the two differences by line 

hart and displayed the distributions by violin plot. We also per- 

ormed significance analysis with p-value calculated via one tail 

wo sample T-test. The results are shown in Fig. 4 for both HCP 

 Fig. 4 (a)) and ADNI datasets ( Fig. 4 (b)). We can see that the pre-

icted SCs have significantly lower MSE, higher cosine similarity 

nd PCC and smaller deviation of all the three global metrics com- 

ared to the averaged SC. We used red arrows to highlight some 

eaks in the line chart and these peaks represent some subjects 

hat have large deviation from other subjects in terms of the re- 

ated measures. Since all the samples are normal brains, the high- 

ighted subjects are likely the outliers when constructing real SC. 

e have discussed these samples and the resulting correlation pat- 

erns between the two curves in the section of discussion. 

.2.3. Connectivity level similarity between predicted SCs and real SCs 

To further examine the prediction performance at connectivity 

evel, we showed the top 5, top 10 and top 15 strongest connectiv- 

ty in both real SCs and predicted SCs for the same 20 subjects in 

ig. 5 . We can see that due to the widely existing individual varia- 

ions, the top connectivity of different subjects are different. How- 

ver, for both datasets, the predicted SCs can capture most top 5 

onnectivity (missed 3 connections in two ADNI subjects). For top 

0 connectivity, the predicted SCs in both datasets can also cap- 

ure most of them. For top 15 connectivity, both datasets can cap- 

ure at least 12 of them. Among these miss-predictions, there are 

wo types of mistakes: the first type is the missing top connec- 

ivity. However, most of the missed connectivity can be found in 

he following top connectivity in the predicted SCs. For instance, 

e highlighted one example in Fig. 5 by green circle. The second 

ype of mistakes is the redundant top connectivity. It means the 

redicted SCs contain some connectivity that are not among the 

eal SCs. Similar to the missing cases, the redundant connectivity 

an also be found in the following top connectivity in real SCs. We 

lso highlighted some examples in Fig. 5 by red circles. In addition, 

e found that all the missing or redundant SCs in our prediction 

esults can be found in the top 25 connectivity in predicted SCs 

nd the real SCs. In general, our model can robustly recover the 

trongest individual connectivity from the individual FC. 

.3. Evaluation of the predicted SC using different atlases 

The generation of brain connectivity relies on the adopted brain 

tlas. To test the performance of the proposed model on different 

rain atlases, we used another widely used brain atlas – Desikan- 

illiany atlas, to generate individual SCs and FCs and conducted 

xperiments. The predicted SC and the real SC based on Desikan- 

illiany atlas of the same 20 subjects used in Fig. 3 were shown in

ig. 6 . We can see that the results using different brain atlases are 

onsistent: our method can reliably characterize both the overall 

attern and the subtle differences of individual SCs for both atlases 

ith different number of brain regions. 

To quantitatively measure the similarity between predicted SCs 

ith real SCs based on Desikan-Killiany atlas, we calculated the 

SE, cosine similarity, PCC, mean degree, mean strength and mean 

lustering coefficient for each subject in the testing dataset and 

howed the results in Fig. 7 . Similar to the result using the other 

rain atlas in Fig. 4 , the predicted SCs have significantly lower MSE, 
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Fig. 3. (a1, a2): Comparison of the predicted SCs and real SCs of 20 randomly selected subjects in HCP (a1) and ADNI (a2) datasets. For both datasets, we showed 10 real 

SC matrices (the first row) and the corresponding 10 predicted SC matrices (the second row). Each column belongs to the same subject. Two patches of the matrices are 

extracted from the same location and their enlarged patches are showed in the middle. (b1, b2): Comparison of the predicted SCs and real individual SCs after subtracting 

the population-averaged SC. To better visualize the individual variability, the population-averaged SC was subtracted from each of the forty matrices in (a1) and (a2). The 

brain connectivity was generated via Destrieux atlas. 
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igher cosine similarity and PCC and smaller deviation of all the 

hree global metrics compared to the averaged SC. 

.4. Evaluation of the predicted SC using different types of FC 

easures 

In this work, we adopted the most widely used Pearson cor- 

elation coefficient (PCC) to generate FC. Yet, how to effectively 
8 
epresent FC is still an open research area and there exist differ- 

nt ways to define FC in the field. To examine the potential influ- 

nce of different types of FC measures to our SC prediction, we 

pplied our proposed model to four types of FC measurements 

defined in Section 3.3 ): (1) Pearson correlation coefficient (PCC), 

2) Sparse inverse covariance estimation with the graphical lasso 

Sparse ICOV), (3) binarized FC and (4) threshold FC. For bina- 

ized FC and threshold FC, we set different thresholds – 0.2 and 
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Fig. 4. We quantitatively measured the similarity between predicted SCs and real SCs from three perspectives (magnitude, overall pattern and network property) by using 

six measures (MSE, cosine similarity, PCC, mean degree, mean strength and mean clustering coefficient). We calculated two differences for each measure at individual level: 

one is the difference between our predicted SC and real SC, and the other is the difference between the population-averaged SC and the real SC. We showed the two sets of 

differences by line chart and displayed the distributions by violin plot. The significance analysis was also conducted with p-value calculated by one tail two sample T-test. 
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.5. Thus, there are 6 different FCs that need to be compared in 

his section. For each subject, we used Destrieux atlas along with 

he 6 different measures to generate SC and FCs. We randomly se- 

ected one subject to display its 6 FCs in the first block of Fig. 8

nd showed the predicted SCs of the same 10 subjects used in 

ig. 3 (a2) in the second block. For each subject in the testing 

ataset, we calculated MSE of all the 6 predicted SCs and showed 

he results by line chart in the third block of Fig. 8 . We found that

ifferent FC measures have slight influence on the prediction per- 

ormance: as the sparsity of FC increases, the prediction accuracy 

ill decrease. One possible explanation, as suggested by previous 

tudies ( Santarnecchi et al., 2014 ; Goulas et al., 2015 ), is that the

erformance degradation may be due to the overlook of potentially 

seful information when enforcing sparsity or thresholding. 

.5. Model evaluation 

An effective model should have the capability to capture indi- 

idual characteristics and avoid to being “trapped” in common SC 

atterns. To measure the effectiveness of a model, we proposed 

hree measures: 

1) MSE (Real, Prediction of same subject) , which is the MSE be- 

tween the real SC and predicted SC of the same subject. This 

measure directly evaluates the similarity between the real SC 
9

and the corresponding prediction. A smaller value indicates 

higher similarity. Thus, to generate reliable SC, this measure 

should keep decreasing before converged. 

2) MSE (Real, Prediction of different subjects) , which is the MSE 

between the prediction and the real SC of different subjects. A 

reliable prediction should avoid being “trapped” in common SC 

patterns at population level. Therefore, this measure is expected 

to keep increasing during the training process. 

3) MSE (Real, Prediction of different subjects) – MSE (Real, Pre- 

diction of same subject) , which is the difference of the above 

two measures and an increasing value is expected. 

In this section, using the three measures we evaluated different 

odel settings including different GCN architectures, the learnable 

ombination coefficients – θ, and different loss functions. 

.5.1. Evaluation of different GCN architectures 

The generator was built on multiple GCNs, in order to verify the 

ecessity of multi-GCN architecture, we conducted experiments to 

ompare the performance of different generator architectures and 

howed the results in Fig. 9 . We can see that, for predicted SCs 

enerated from multi-GCN generator in both datasets (a1and b1), 

he MSE (Real, Prediction of same subject) keeps decreasing and the 

SE (Real, Prediction of different subjects) keeps increasing. For pre- 

icted SCs generated from single-GCN generator in both datasets 
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Fig. 5. Comparison of the top connectivity in the predicted SC and real SC for the same 20 subjects showed in Fig. 3 . For both datasets, we showed the top 5 (the first 

block), top 10 (the second block) and top 15 (the third block) strongest connectivity in real SC and predicted SC. The colorful bubbles and links represent different brain 

regions and structural connections. The colors used in this figure are the same with Destrieux atlas in FreeSurfer. 

10 
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Fig. 6. (a1, a2): Comparison of the predicted SCs and real SCs of the same 20 subjects as used in Fig. 3 . The brain connectivity was generated via Desikan-Killiany atlas. Each 

column belongs to the same subject. For each subject, we showed the real SC matrix in the first row and the predicted SC matrix in the second row. Two patches of the 

matrices are extracted from the same location and their enlarged patches are showed in the middle. (b1, b2): Comparison of the predicted SCs and real individual SCs after 

subtracting the population-averaged SC. To better visualize the individual variability, the population-averaged SC was subtracted from each of the forty matrices in (a1) and 

(a2). 
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a2-a4, b2-b4), the difference between trajectories of MSE (Real, 

rediction of same subject) and MSE (Real, Prediction of different sub- 

ects) is much smaller and the MSE (Real, Prediction of different sub- 

ects) – MSE (Real, Prediction of same subject) only has slight in- 

rease. This result indicates that the predicted SCs generated from 

ulti-GCN generator can efficiently learn the individual differences 

n SCs, while single-GCN generator only captures a common pat- 

ern at population level. 
11
.5.2. Evaluation of the learnable combination coefficients 

In our model, the multiple GCNs in generator are combined by 

earnable coefficients – θ. In order to test the influence of the coef- 

cients to the proposed MGCN-GAN model, we initialized the co- 

fficients with different values and compared the prediction per- 

ormance. The results are shown in Fig. 10 . In general, the initial- 

zation of the learnable coefficients has very slight influence on 

he prediction results. Moreover, the coefficient with different ini- 
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Fig. 7. We quantitatively measured the similarity between the predicted SCs with real SCs (based on Desikan-Killiany atlas) from three perspectives (magnitude, overall pat- 

tern and network property) by using six measures (MSE, cosine similarity, PCC, mean degree, mean strength and mean clustering coefficient). We calculated two differences 

for each measure at individual level: one is the difference between our predicted SC and real SC, and the other is the difference between the population-averaged SC and 

the real SC. We showed the two sets of differences by line chart and displayed the distributions by violin plot. The significance analysis was also conducted with p-value 

calculated by one tail two sample T-test. 
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ialization θi always converge to stable coefficient θc which is ap- 

roximately equal for different GCNs in generator. It suggests all 

he GCNs have similar contributions to the results. Like the filters 

n CNN, multiple GCNs with different size of output features can 

e flexible and efficient for characterizing the complex FC-SC map- 

ing. 

.5.3. Evaluation of SP loss function 

To demonstrate the superiority of the proposed SP loss func- 

ion, we compared our SP loss with GAN loss, combination of GAN 

oss and MSE loss, and combination of GAN loss and PCC loss and 

howed the results in Fig. 11 . From the results we can see that the

ap between trajectories of MSE (Real, Prediction of same subject) 

nd MSE (Real, Prediction of different subjects) using SP loss function 

a4 and b4) is increasing as the training progresses, which means 

ndividual characteristics are gradually learned. While the trajec- 

ories of MSE (Real, Prediction of same subject) and MSE (Real, Pre- 

iction of different subjects) using other three loss functions (a1-a3, 

1-b3) almost coincide during the training process and this implies 

hat the other three loss functions may be limited in capturing po- 

ential subtle differences across individuals in the proposed model. 

he reason is that MSE only focuses on the element-wise similar- 
12 
ty within the connectivity and overlooks the overall patterns. PCC 

as better performance in describing the overall connectivity pat- 

erns, but it may also overlook the connection magnitude across 

ifferent connectivity and different individuals. However, both of 

SE and PCC are important components in our designed SP loss to 

apture the subtle differences between real and predicted SCs 

.6. Comparison with other widely used methods 

To further demonstrate the effectiveness of the proposed 

GCN-GAN, we compared the proposed model with three state- 

f-the-art models – CNN, multi-GCN, and CNN based GAN. In 

ddition, for the comparison purpose we also included the lin- 

ar regression as a baseline. For fair comparison, we used the 

ame dataset to train and evaluate the four methods (HCP dataset, 

00 training/464 testing). Since Section 4.5 showed that both 

SE and PCC have contributions in capturing the subtle differ- 

nces between real and predicted SCs, here we combined these 

wo measures (MSE + PCC) as loss function in linear regres- 

ion, CNN, and Multi-GCN, and used the proposed SP loss in CNN 

ased GAN and the proposed MGCN-GAN. We adopted six types 

f measures ( Section 4.2 ) to evaluate the performance of differ- 
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Fig. 8. We adopted multiple types of FC measures for SC prediction. These measures are: (1) Pearson correlation coefficient (PCC), (2) Sparse inverse covariance estimation 

with the graphical lasso (Sparse ICOV), (3) binarized FC, and (4) threshold FC to generate FC ( Section 3.3 ). For binarized FC and threshold FC, we set two different thresholds 

– 0.2 and 0.5. The first block shows the 6 FCs of one randomly selected subject. The second block shows the predicted SCs of the same 10 subjects used in Fig. 3 (a2). For 

each subject in the testing dataset, we calculated MSE of all the 6 predicted SCs and showed the results by line chart in the third block. 

e
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s

a

p
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nt models and summarized the results in Table 2 . As shown in 

able 2 , we found: (1) compared to deep models, linear regres- 

ion has worse performance for all the evaluation measures; (2) 

mong different deep neural network architectures, GCN based ap- 

roaches outperform CNN based methods when modeling brain 

etworks in this application and (3) our proposed MGCN-GAN has 
13 
he best prediction performance comparing to Multi-GCN (with- 

ut GAN) and CNN based GAN. In general, this result demon- 

trates the superiority of graph-topology-based over the Euclidean- 

ased convolution in brain connectivity analysis and the poten- 

ial of using multiple GCNs to characterize complex feature space 

n GAN. 
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Fig. 9. Results of different generator architectures for HCP dataset (a) and ADNI dataset (b). GCN(G 1 ||G 2 ||…||G k ) represents the architecture of generator. The generator is 

composed of k two-layer GCNs, and the output feature dimension of the first layer of i th GCN is G i . 

Table 2 

Comparison with other widely used methods. 

Model Setting Magnitude Overall Pattern Graph Property 

Methods Loss Function MSE PCC Cosine Similarity Degree error Strength error Clustering Coefficient error 

Linear regression MSE + PCC 0.230 ±0.05 0.86 ±0.020 0.86 ±0.020 2.3 ±0.6 1.39 ±0.85 0.012 ±0.007 

CNN MSE + PCC 0.132 ±0.02 0.91 ±0.010 0.91 ±0.010 1.6 ±0.7 0.92 ±0.64 0.006 ±0.004 

Multi-GCN MSE + PCC 0.094 ±0.03 0.94 ±0.004 0.94 ±0.004 1.5 ±0.5 0.35 ±0.26 0.004 ±0.002 

CNN based GAN SP Loss 0.106 ±0.02 0.94 ±0.010 0.94 ±0.010 1.5 ±0.7 0.82 ±0.62 0.004 ±0.003 

MGCN-GAN SP Loss 0.084 ±0.01 0.96 ±0.005 0.96 ±0.005 1.3 ±0.6 0.29 ±0.25 0.002 ±0.001 
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. Discussion 

.1. Outliers in normal brains 

In this work, we used six measures to quantitatively evaluate 

he similarity between predicted SCs and real SCs, including MSE 

or magnitude, cosine similarity and PCC for overall pattern, and 

lobal metrics including mean degree, mean strength and mean 

lustering coefficient for graph property. The results are shown in 

ig. 4 . We can see that there is a correlated pattern between the 

wo groups of MSE values. That is, for some samples that have 

arge MSE between the population averaged SC and the real in- 

ividual SC, the MSE between the predicted SC and real individual 

C is also slightly larger. Because all the samples we used in this 

ork are normal brains, if a subject has significantly large MSE be- 

ween individual SC and averaged SC comparing to other subjects, 

t is likely that this sample is an outlier. In such case, the MSE be-

ween the predicted SC and the real individual SC will be large, 

oo. Therefore, the plot of the two groups of MSE values shows a 

orrelated pattern. Even so, the difference between predicted SC 

nd individual SC is much smaller than the difference between av- 
t

14 
raged SC and individual SC. This result implies our method is ef- 

ective in characterizing the true relationship between SC and FC 

t individual level. 

.2. Extending the learned mapping to MCI patients 

In this work, our model is designed to infer the relationship 

etween SC and FC on normal brains. To examine the potential 

nfluence when applying our method to disease populations, we 

sed another 118 mild cognitive impairment (MCI) subjects (63 fe- 

ales, 55 males; 74.05 ± 8.29 years.) from ADNI dataset and con- 

ucted three experiments that used different clinical groups for 

odel training: (A) 60 CN, (B) 60 MCI, and (C) the mix of 60 CN

nd 60 MCI. For each experiment the same testing dataset includ- 

ng 72 CN and 58MCI was applied. To compare the connectivity- 

evel patterns of different groups, we calculated group-level MSE 

n Fig. 12 . The mean value of each MSE matrix was reported in

ig. 12 (D). From the results we can see that 1) if the training and

esting process used the samples from the same clinical group, the 

rediction result tend to achieve better performance. For example, 

he experiment (A) used CN group for training, the MSE of CN 
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Fig. 10. Results of different initializations of the learnable combination coefficients of HCP dataset (a) and ADNI dataset (b). θi is the initialization of the learnable coefficients 

and θc is the corresponding converged value. 

15 
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Fig. 11. Results of MGCN-GAN with different loss functions on HCP dataset (a) and ADNI dataset (b). 

Fig. 12. We trained the model using (A) 60 CN, (B) 60 MCI, and (C) the mix of 60 CN and 60 MCI. For each model the same testing dataset (72 CN and 58MCI) was used. 

Each matrix in (A–C) represents the group-level MSE. The mean value of each MSE matrix was listed in (D). 

16 



L. Zhang, L. Wang and D. Zhu Medical Image Analysis 79 (2022) 102463 

g

(

t

a

m

t

e

e

5

s

p

m

fl

a

t

t

b

a

t

s

w

(  

2

p

p

c

s

l

i

i

u

f

p

f

t

t

t

d

6

G

d

o

d

l

a

g

f

c

o

p

m

e

o

A

K

s

m

i

r

t

r

S

D

c

i

C

d

i

A

(

e

p

R

A

B

C

C

D

D

D  

F

F

G  

G  

G

G

G

G  

V  

H

H

H

H

I

J

roup (0.073 ±0.0079) in testing is much smaller than MCI group 

0.096 ±0.0068). Similarly, in the experiment (B) the MCI group ob- 

ained better testing performance than CN group. (2) when using 

 mixture of CN and MCI to train the model, the testing perfor- 

ance of both groups decrease compared to using single group for 

raining. This result suggests that the FC-SC relationship of differ- 

nt groups might be different, and the proposed model is more 

ffective in capturing the relationship of homogeneous samples. 

.3. Limitations and future work 

In this work, we adopted PCC as the FC measurement to repre- 

ent pair-wise relations between two brain regions. Therefore, the 

roposed MGCN-GAN model does not consider directional infor- 

ation in brain network mapping. However, our method can be 

exibly extended to directed graphs by adopting an asymmetry 

djacency matrix to define the convolution operations. In our fu- 

ure work, we plan to examine if introducing directional informa- 

ion can improve the SC prediction compared to using undirected 

rain connectivity. Another limitation of this work, which is also 

 general challenge suffered by deep neural networks, is the in- 

erpretability ( Ghorbani et al., 2019) of the deep model. Indeed, 

everal strategies have been proposed to interpret neural net- 

ork predictions. For example, feature importance interpretation 

 Simonyan et al., 2013 ; Shrikumar et al., 2017 ; Sundararajan et al.,

017 ) tries to assign importance scores to each feature, and sam- 

le importance interpretation ( Koh and Liang, 2017 ) will assign im- 

ortance scores to each training example. However, these methods 

annot be directly applied to this work due to the following rea- 

ons: (1) this work aims to infer the brain structure-function re- 

ationship at individual level. Each input sample provides unique 

ndividual information, and all the samples are therefore equally 

mportant. (2) for feature importance interpretation, a commonly 

sed approach is to generate saliency maps to highlight unique 

eatures which can depict the visually alluring locations in the in- 

ut image. However, for non-Euclidean graph data, the important 

eatures can be isolated nodes or a sub-network that are not con- 

inuous in spatial domain, which makes it difficult to distinguish 

hem from noise. In general, further effort s are highly needed 

o explore appropriate strategies for interpretation of graph-based 

eep models, especially in brain network studies. 

. Conclusions 

In this paper, we proposed a Multi-GCN based GAN (MGCN- 

AN) model to generate individual SC from the corresponding in- 

ividual FC. By adopting generative adversarial network (GAN), 

ur proposed MGCN-GAN model can: (1) effectively handle brain’s 

istributed and heterogeneous pattern; (2) learn the complex re- 

ationship between brain structure and function by leveraging 

dversarial training scheme to avoid designing an explicit re- 

ression loss function. By embedding multiple GCNs into GAN 

ramework, our MGCN-GAN model can be used to represent the 

omplex direct and/or indirect interactions in brain network. To 

vercome the inherent unstable behavior of vanilla GAN, we 

roposed a novel structure-preserving (SP) loss function to si- 

ultaneously capture the overall SC patterns and subtle differ- 

nces across individuals during the training process. We tested 

ur model and SP loss on two independent datasets (HCP and 

DNI), two different brain atlas (Destrieux Atlas and Desikan- 

illiany Atlas, Section 4.3 ), and six different FC generation mea- 

ures ( Section 4.4 ). The results demonstrate that our proposed 

odel can effectively predict individual SC from the correspond- 

ng individual FC, and thus imply that there may exist a common 

egulation between specific brain structural and functional archi- 

ectures across individuals. All the codes of this paper have been 
17 
eleased via GitHub (https://github.com/qidianzl/Recovering-Brain- 

tructure-Network-Using-Functional-Connectivity). 
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