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Regional Radiomics Similarity Networks Reveal Distinct
Subtypes and Abnormality Patterns in Mild Cognitive
Impairment

Kun Zhao, Qiang Zheng, Martin Dyrba, Timothy Rittman, Ang Li, Tongtong Che,
Pindong Chen, Yuqing Sun, Xiaopeng Kang, Qiongling Li, Bing Liu, Yong Liu,* Shuyu Li,*
and for the Alzheimer’s Disease Neuroimaging Initiative

Individuals with mild cognitive impairment (MCI) of different subtypes show
distinct alterations in network patterns. The first aim of this study is to
identify the subtypes of MCI by employing a regional radiomics similarity
network (R2SN). The second aim is to characterize the abnormality patterns
associated with the clinical manifestations of each subtype. An
individual-level R2SN is constructed for N = 605 normal controls (NCs), N =
766 MCI patients, and N = 283 Alzheimer’s disease (AD) patients. MCI
patients’ R2SN profiles are clustered into two subtypes using nonnegative
matrix factorization. The patterns of brain alterations, gene expression, and
the risk of cognitive decline in each subtype are evaluated. MCI patients are
clustered into “similar to the pattern of NCs” (N-CI, N = 252) and “similar to
the pattern of AD” (A-CI, N = 514) subgroups. Significant differences are
observed between the subtypes with respect to the following: 1) clinical
measures; 2) multimodal neuroimaging; 3) the proportion of progression to
dementia (61.54% for A-CI and 21.77% for N-CI) within three years; 4)
enriched genes for potassium-ion transport and synaptic transmission.
Stratification into the two subtypes provides new insight for risk assessment
and precise early intervention for MCI patients.
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1. Introduction

Mild cognitive impairment (MCI) is con-
sidered a high-risk state for developing
Alzheimer’s disease (AD)[1] but has signif-
icant phenotypic heterogeneity, both in the
clinical presentation[2] and in the rate of
clinical progression.[3] For example, not all
subjects with MCI will develop to AD, and
some MCI subjects remain stable or even
return to normal cognition several years
later.[3] Thus, recognizing the high-risk sub-
group of MCI at the first visit and under-
standing how the heterogeneity of MCI in-
fluences the subsequent progression to AD
or other forms of dementia is crucial for de-
laying the progression of AD.[1a,4]

Morphological changes in multiple brain
regions, particularly in the hippocampus
and medial temporal lobe, are potential
hallmarks of AD.[5] As a transitional stage
between a cognitively normal state and
AD, MCI patients exhibit pathological fea-
tures and brain morphological changes
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similar to those of preclinical AD patients.[6] Voxel-based brain
morphometry of MCI patients shows significant heterogeneity,
which is associated with the differences in cognitive decline.[7] In
addition, heterogeneous cortex thickness and a longitudinal pro-
gression pattern of cortex thickness in MCI have been reported
in previous studies.[4d,8] Hence, several studies have suggested
that the high-risk/low-risk subgroups of MCI could be redefined
according to brain morphology.

Most previous studies have focused on alterations in the brains
of AD patients based only on isolated anatomical regions[9] and
did not take into account the potential associations with other
brain regions.[10] It is well accepted that the brain is a complex
network. Therefore, evaluating disease-associated coalterations
among distinct anatomical regions opens a new avenue for un-
derstanding AD pathology.[11] Radiomics features can provide
comprehensive and sensitive information about brain regions.[12]

A regional radiomics similarity network (R2SN) is a novel mor-
phological covariation network with high robustness, stability,
and a biological basis.[14] R2SN can reflect imperceptible changes
in the brain and provide a new perspective for understanding
the human brain based on structural T1-weighted magnetic res-
onance imaging (sMRI) data. Therefore, based on the R2SN, we
hypothesized that clustering analysis could yield distinct MCI
subtypes, which would be associated with unique patterns of clin-
ical manifestation abnormalities and longitudinal progression.
Furthermore, genetic factors play an important role in AD, so it
is crucial to clarify which genetic factors are associated with MCI
subtypes.

We speculated that one subtype of MCI would be similar to
normal control (NC) (N-CI) and that the other subtype of MCI
would be similar to AD (A-CI). We evaluated the differences in
the clinical and neuroimaging measures and longitudinal pro-
gression patterns between subtypes. Finally, we assessed whether
the distinct gene expression profiles were associated with differ-
ences in spatial patterns between MCI subtypes (Figure 1).

2. Results

2.1. Demographic and Neuropsychological Characteristics

The mean age and sex proportion were significantly different
(p < 0.001) among the NC, MCI, and AD groups. The clinical
measures (mini-mental-state examination (MMSE) score, poly-
genic hazard score (PHS), fludeoxyglucose (FDG), Alzheimer’s
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disease assessment scale–cognitive subscale (ADAS-cog11 score
and ADAS-cog13 score), cerebrospinal fluid (CSF) amyloid-beta
(A𝛽) level, CSF Tau level, CSF P-tau level, cognitive domain
composite scores, and auditory-verbal learning test (AVLT) score)
were significantly different among the NC, MCI, and AD groups
(p < 0.001 with Analysis of Variance (ANOVA), Bonferroni cor-
rected) (Table 1).

2.2. Distinguishing among AD, MCI, and NC in the R2SN

Compared with NCs, altered morphological connectivity was
found in AD (detailed results are provided in Section S04 in the
Supporting Information). Support vector machine (SVM) group
separation of AD and NC showed an area under the curve (AUC)
= 0.93 (accuracy (ACC) = 0.88, sensibility (SEN) = 0.77, speci-
ficity (SPE) = 0.93) using tenfold cross-validation. We obtained
an AUC of 0.93 (ACC = 0.89, SEN = 0.78, SPE = 0.92) when the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)1&GO sub-
set was used as the training data and ADNI2&3 was used as the
testing data. When the ADNI2&3 data were used as the train-
ing data, and an AUC = 0.89 (ACC = 0.82, SEN = 0.71, SPE
= 0.92) was achieved for the ADNI1&GO used as testing data
(Figure 2A). The SVM decision values showed a significant cor-
relation with clinical measures (Figure 2B). These correlations
were highly consistent between the ADNI1&GO and ADNI2&3
datasets (Figure 2C) (R = 0.99, p < 0.001) (Section S04, Support-
ing Information).

R2SN connections associated with the bilateral hippocampi
were significantly correlated with cognitive scores, including the
MMSE and AVLT scores. In addition, connections associated
with the hippocampus were significantly correlated with the PHS
score and ADAS-cog scores (ADAS-cog11, ADAS-cog13). These
connections were also significantly correlated with CSF A𝛽, CSF
Tau, CSF P-tau, and FDG values (p < 0.05, Bonferroni corrected)
(Section S04, Supporting Information).

2.3. The Different Patterns between MCI Subtypes

2.3.1. Differences in Clinical Information between the Two Subtypes

The 766 MCI patients were clustered into two subtypes, A-CI (N
= 514) and N-CI (N = 252). Patients in the N-CI group (68.64
± 7.32) were significantly younger than those in the A-CI group
(75.09 ± 6.95) (p < 0.001) (Section S05, Supporting Information).
Significant differences between the two groups were also found
for MMSE, PHS, AVLT2, AVLT1, ADAS-cog11, and ADAS-cog13
scores; CSF A𝛽, CSF Tau, and CSF P-tau levels; and FDG values.
All these differences were characterized by p < 0.001, except for
PHS (p = 0.02), CSF Tau (p = 0.03), and CSF P-tau (p = 0.01)
(Figure 3A–J). The robustness of the result was further tested by
a permutation test (1000 permutations), yielding p < 0.05 for all
comparisons (Section S06, Supporting Information). The cogni-
tive domain composite scores (executive, memory, language, and
visuospatial ability) of the A-CI group were significantly lower
than those of the N-CI group (Figure 3K). In addition, the pro-
portion of A𝛽+&Tau+ in the A-CI group was higher than that
in the N-CI group, and the proportion of A𝛽−&Tau− in the A-

Adv. Sci. 2022, 2104538 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2104538 (2 of 13)



www.advancedsciencenews.com www.advancedscience.com

Figure 1. Schematic of the data analysis pipeline. A) The data were preprocessed, and the intensity and textural features were then extracted based on
the Brainnetome Atlas. Finally, the network was achieved by computing the Pearson correlation coefficient of each pairwise brain region. B) Difference
and classification analysis among the NC, MCI, and AD groups and correlation analysis between risk score/R2SN connections and clinical measures.
C) Clustering the MCI group into two different subtypes with NMF. D) Analysis of the subtypes, including clinical measures (cognitive ability, genetic
risk, ADAS-cog, CSF A𝛽, and FDG), neuroimaging (R2SN, GM, A𝛽 PET, and FDG PET), and progression (survival curve, conversion time/rate, and
longitudinal change in clinical measures), between the A-CI and N-CI groups. Abbreviations: ADNI: Alzheimer’s Disease Neuroimaging Initiative; NMF:
nonnegative matrix factorization; A𝛽: amyloid-beta; FDG: fluorodeoxyglucose; GMV: gray matter volume; ADAS-cog: Alzheimer’s Disease Assessment
Scale–Cognitive Subscale; CSF: cerebrospinal fluid.

CI group was lower than that in the N-CI group (p < 0.05) (Fig-
ure 3L). More importantly, a high level of consistency was found
for the differences in clinical measures between A-CI and N-CI
in the ADNI1&GO and ADNI2&3 datasets (R = 0.99, p < 0.001)
(Figure 3M). Herein, A-CI and N-CI seem to represent different

stages of MCI. Thus, we chose a subset of patients from the A-
CI group who showed a similar distribution of MMSE as a sub-
set of patients from the N-CI group (p = 0.85). Interestingly, the
progression pattern also showed a significant difference between
the subset of A-CI and N-CI patients (p = 8.22e−7) (Section S07,
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Table 1. Detailed information on the subjects included in this study.

Group Age [years] Sex (M/F) Clinical measure

NC (605) 73.47 ± 6.16 279/326 29.08 ± 1.10

Subjects with an MMSE score MCI (766) 72.96 ± 7.69 450/316 27.57 ± 1.81

(N = 1654) AD (283) 74.91 ± 7.70 152/131 23.18 ± 2.14

p 0.002 <0.001 <0.001

NC (361) 74.77 ± 5.73 188/173 0.05 ± 0.66

Subjects with a PHS MCI (632) 73.13 ± 7.53 373/259 0.48 ± 0.81

(N = 1228) AD (235) 75.01 ± 7.55 127/108 0.81 ± 0.84

p <0.001 0.08 <0.001

NC (293) 73.88 ± 6.12 152/141 1.31 ± 0.11

Subjects with a FDG measurement MCI (570) 72.58 ± 7.62 330/240 1.24 ± 0.13

(N = 1054) AD (191) 74.82 ± 7.75 110/81 1.07 ± 0.14

p <0.001 0.22 <0.001

NC (210) 74.09 ± 6.04 103/107 1036.81 ± 390.17

Subjects with an A𝛽 measurement MCI (421) 72.65 ± 7.48 253/168 843.02 ± 351.84

(N = 794) AD (163) 74.66 ± 7.78 90/73 623.33 ± 245.03

p 0.003 0.03 <0.001

NC (278) 73.93 ± 6.06 138/140 239.69 ± 91.41

Subjects with a Tau score MCI (479) 72.40 ± 7.61 281/198 285.05 ± 125.64

(N = 926) AD (169) 74.68 ± 7.76 94/75 368.29 ± 138.86

p <0.001 0.06 <0.001

NC (277) 73.95 ± 6.06 137/140 22.13 ± 9.49

Subjects with a P-tau score MCI (479) 72.40 ± 7.61 281/198 27.70 ± 14.27

(N = 925) AD (169) 74.68 ± 7.76 94/75 36.88 ± 15.44

p <0.001 0.05 <0.001

NC (603) 73.49 ± 6.15 278/325 7.00 ± 3.04

Subjects with an ADAS-cog11 MCI (765) 72.98 ± 7.68 449/316 10.41 ± 4.42

(N = 1650) AD (282) 74.88 ± 7.70 151/131 19.65 ± 6.66

p 0.002 <0.001 <0.001

NC (602) 73.51 ± 6.15 278/324 10.38 ± 4.37

Subjects with an ADAS-cog13 score MCI (762) 72.97 ± 7.69 448/314 16.64 ± 6.66

(N = 1642) AD (278) 74.93 ± 7.66 148/130 30.03 ± 7.91

p 0.002 <0.001 <0.001

NC (603) 73.46 ± 6.17 278/325 45.34 ± 9.95

Subjects with an AVLT1 score MCI (766) 72.96 ± 7.69 450/316 34.52 ± 10.76

(N = 1649) AD (280) 74.83 ± 7.69 149/131 23.09 ± 7.54

p 0.003 <0.001 <0.001

NC (600) 73.46 ± 6.17 276/324 6.06 ± 2.36

Subjects with an AVLT2 score MCI (731) 72.85 ± 7.69 428/303 4.26 ± 2.50

(N = 1575) AD (244) 74.7 ± 7.65 131/113 2.0 ± 1.74

p 0.006 <0.001 <0.001

Supporting Information). Thus, we considered that A-CI and N-
CI are different subtypes rather than different stages of MCI.

2.3.2. Differences in Neuroimaging Indices between the Two
Subtypes

Significant differences in the hippocampus, temporal lobe,
parahippocampal gyrus, and amygdala of the R2SN were found
between N-CI and A-CI (p < 0.05, Bonferroni corrected)

(Figure 4A). Additionally, the gray matter (GM) volume, cor-
tex thickness (CT), and FDG of the medial temporal lobe and
hippocampus significantly differed between the N-CI and A-CI
groups (p < 0.05, Bonferroni corrected) (Figure 4B,C,E), as was
the A𝛽 of the medial temporal lobe (p < 0.05) (Figure 4D). More
importantly, a high level of consistency was found for the dif-
ferences in R2SN, GM, CT, A𝛽, and FDG between A-CI and N-
CI in ADNI1&GO and ADNI2&3 (all R > 0.42, p < 0.001) (Fig-
ure 4F). Further details can be found in Section S08 (Supporting
Information).
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Figure 2. Classification results. A) The AUC for AD versus NC for the tenfold cross-validation as well as the split sample validation with ADNI1&GO as
the training dataset and ADNI2&3 as the testing data, and vice versa. B) The correlation results between the SVM decision value and clinical measures
(red: AD, blue: MCI) in the ADNI1&GO dataset and the ADNI2&3 dataset. C) Consistency of the R-values obtained for the correlation between clinical
information and decision values in the ADNI1&GO and ADNI2&3 datasets.

Figure 3. Analysis of the clinical profiles of the diagnostic groups and A-CI and N-CI subtypes. A) MMSE score, B) PHS score, C) FDG, D) CSF A𝛽 level,
E) CSF Tau level, F) CSF P-tau level, G) ADAS-cog11 score, H) ADAS-cog13 score, I) AVLT1 score, J) AVLT2 score. K) The cognitive domain composite
scores, L) the proportion of CSF A𝛽+&Tau+, CSF A𝛽−&Tau+/A𝛽+&Tau−, and CSF A𝛽−&Tau− across the NC, N-CI, A-CI, and AD groups. M) The
correlation between the T-value of the difference in clinical information between the A-CI and N-CI groups in the ADNI1&GO and ADNI2&3 datasets. *
p < 0.05, ** p < 0.001.
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Figure 4. The differences in multimodal neuroimaging indices. A) Differences in the R2SN in NC versus A-CI, NC versus N-CI, N-CI versus A-CI, A-CI
versus AD, and N-CI versus AD comparisons; “red” indicates decreased connections, and “blue” indicates increased connections. B) Differences in the
GM volume for the pairwise comparisons. The color bar indicates the T-value. C) Differences in the CT value. D) Differences in the A𝛽 value; the color
bar indicates the −1 × T-value. E) Difference in the FDG value; the color bar indicates the T-value. F) The correlation between the T-value of the difference
in image indices between A-CI and N-CI in the ADNI1&GO and ADNI2&3 datasets.

2.3.3. Differences in Longitudinal Progression between A-CI and
N-CI

The MMSE score (Figure 5A), clinical dementia rating (CDR)
(Figure 5B), and ADAS-cog13 score (Figure 5C) showed differ-

ent patterns in longitudinal progression between the A-CI and
N-CI groups after age and sex effects were controlled. The ra-
tio of convert/nonconvert patients was also significantly different
between the A-CI and N-CI groups (p < 0.001). The subjects in
the A-CI group had an approximately threefold increased risk of
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Figure 5. Progression rates in the A-CI (yellow) and N-CI (green) groups. The change rate of A) the MMSE, B) CDR, and C) ADAS-cog13 scores within a
6-year follow-up period. D) The proportion of patients with MCI who developed AD in the 6-year follow-up period. E) The survival rate of the A-CI group
(N = 514) and N-CI group (N = 252). F) Displacement test of the survival rate with randomly reranked labels and the distribution of p value.

converting to AD than those in the N-CI group (61.54% of the
A-CI group (N = 200/325), and 21.77% of the N-CI (N = 27/124)
group were converted within three years) (Figure 5D).

Survival analysis confirmed that individuals in the A-CI group
had a higher risk of conversion to AD and a lower survival rate
than those in the N-CI group (p = 5.7e−15) (Figure 5E). The pa-
tients in the N-CI group were significantly younger than those in
the A-CI group (p = 2.42e−5). We also recomputed the p-value
of the survival analysis by reranking the labels of A-CI and N-CI
with 1000 random permutations (Figure 5F).

2.3.4. Anatomical Changes in MCI Subtype and Gene Expression
Profiling

The partial least square (PLS) method can estimate the correla-
tion between the T-map of the difference between the A-CI and
N-CI (independent variable) and regional gene expression val-
ues (dependent variables). The first PLS components (PLS1) ex-
plained 35% of the variance in the gene expression variables. The
PLS1 had significant correlations with the T-map of the differ-
ence between the A-CI and N-CI groups (R= 0.71, p< 0.001) (Fig-
ure 6A). Furthermore, the 13 AD-related genes were significantly
correlated with the T-map of the difference between the A-CI and
N-CI groups (p < 0.05, Bonferroni corrected), excluding Amy-

loid Beta (A4) Precursor Protein (APP), Beta-Site APP-Cleaving
Enzyme 2 (BACE2), and Plasminogen activator urinary (PLAU)
(p = 0.04, Figure 6B). Gene set enrichment analysis showed
that the typical Gene Ontology (GO) terms of biological pro-
cesses were significantly enriched (false discovery rate correction
(FDR) q-value < 1e−5) in potassium-ion transport (GO: 0006813,
FDR q-value = 4.74e−6); regulation of transsynaptic signaling
(GO: 0099177, FDR q-value = 5.26e−6); cellular potassium-ion
transport (GO: 0071804, FDR q-value = 5.33e−6); modulation
of chemical synaptic transmission (GO: 0050804, FDR q-value =
5.8e−6); and regulation of transport (GO: 0051049, FDR q-value
= 6.47e−6) (Figure 6C).

2.4. Reproducibility of the Subtypes for Different Brain Atlases or
Parcellation Schemes

The MCI subtype was reproducible among the different brain at-
lases, with all AUCs> 0.8 (Figure 7A). Of these, all AUCs between
the subtypes based on the Brainnetome atlas and other brain at-
lases were >0.9, excluding Schaefer900, which had an AUC =
0.85 (Figure 7A). Meanwhile, the reproducibility of the MCI sub-
type among different brain atlases was also confirmed, with all
R-values > 0.6 (Figure 7B). This result indicates that the MCI
subtype is reproducible with different brain atlases.
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Figure 6. Results of gene set enrichment analysis. A) The weighted regional gene expression of the PLS1 score and the T-map of the difference between
A-CI and N-CI and the correlation between PLS1 and the T-map of the difference between A-CI and N-CI. B) The correlation between the AD-related
genes and the T-map of the difference between A-CI and N-CI. C) GO terms showed significance in gene enrichment analysis (p < 1e−4, FDR corrected),
and the gene pathway diagram summarizing the functional role of the 15 633 genes ranked according to PLS weight. The detailed information about
each GO term can be searched in http://geneontology.org/.
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Figure 7. A) The AUC of the overlap of clustering results between any pair of brain atlases. B) The Pearson correlation coefficient of the probability of
belonging to the A-CI group based on different brain atlases.

3. Discussion

In this study, we systematically demonstrated that the R2SN
could serve as a new network marker for clinical applications in
AD/MCI. Two distinct subtypes of the MCI group were identified
with a data-driven method, and the clinical and biological validi-
ties of these subtypes were demonstrated. Specifically, the altered
pattern of the A-CI group was consistent with AD, and the N-CI
group was closer to the NCs with respect to R2SN connections,
GM volume, metabolic capability, and A𝛽. Distinct patterns were
associated with the different clinical outcomes of MCI, and two
subtypes demonstrated distinct associations with patterns of cog-
nitive impairment and regional gene expression. These results
significantly improve our understanding of the heterogeneity in
the presentation and clinical outcomes of individuals with MCI.

It is well accepted that the brain is a complex network that
supports information transmission.[13] The biological basis of
this structural covariation network remains controversial, but
the large-scale anatomical covariation network appears to reflect
the synchronized maturation or atrophy between pairwise brain
regions.[11] In addition, R2SN was strongly associated with gene
expression and cognitive differences.[14] This study also demon-
strated that R2SN connections are associated with cognitive abil-
ity and clinical biomarker levels. In summary, R2SN can be used
to measure the anatomical connectome in vivo and provides a
quantitative score of the cognitive impairment of an individual.

Heterogeneous network patterns can provide supporting in-
formation for understanding complex brain cognitive functions
but have been largely ignored by previous studies;[10,11] however,
they have begun to be investigated in several recent studies.[10,15]

The present study, to some extent, remedies the lack of analy-
sis of individual differences in morphological networks among
patients with AD. The information transmission capacity of the
brain networks will decrease if the stable network structure is
broken, which leads to cognitive decline.[10,16]

Traditional structural covariance networks derived from GM
volume or CT have been used to investigate network alterations

in brain-related diseases, including alterations with low sensitiv-
ity due to the presence of a single structural biomarker. Thus, to
better characterize the coalterations among brain regions, a com-
prehensive biomarker to estimate the properties of the regions is
needed. R2SN is a novel brain covariance network that shows a
high association with genes and individual cognitive ability and
provides a novel, robust, and biologically plausible model for un-
derstanding the human brain. Multivariable classification accu-
racy was similar to or higher than that of previous studies using a
traditional classification model.[9] Thus, R2SN is a powerful tool
for the study of AD based on structural MRI. To quantitatively
estimate the advantage of the R2SN, we also clustered the MCI
into two subgroups based on GM volume. However, weaker dif-
ferences between the two subgroups were obtained when the sub-
groups were derived based on GM volume (Section S09, Support-
ing Information). Thus, the abnormal pattern of R2SN is more
suitable for investigating the MCI subtype than GM volume.

Converging evidence suggests that individuals with MCI may
belong to different subtypes throughout the development of the
disease.[4a] Not all individuals with MCI will develop AD; some
will remain stable or even return to normal cognition several
years later.[3] MCI is commonly subdivided into amnestic MCI
(aMCI) and nonamnestic MCI based on whether memory loss
is the dominant cognitive impairment,[4c,17] with aMCI patients
having the highest risk of progression to AD dementia. MCI pa-
tients are also commonly stratified into progressive MCI (PMCI)
and stable MCI (SMCI) groups. Several studies have suggested
that data-driven cluster analysis based on neuropsychology and
clinical presentation seems plausible for identifying the MCI sub-
type. However, objective subtypes based on neuroimaging stud-
ies of MCI have not yet been well established. Our study fills
this gap in the field. The patients in the present study were di-
vided into subtypes based only on the phenotype or progression,
which offered limited contributions to our understanding of the
heterogeneity of MCI. However, the subtypes derived from ob-
jective MRI did contribute to our understanding of how MCI is
associated with the subsequent progression to AD or other forms
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of dementia. A greater understanding of how MCI is related to
the subsequent progression to AD is beneficial for patient prog-
nosis and the development of precision medicine strategies for
MCI.[1a,4] Thus, two subtypes of MCI (N-CI and A-CI) were de-
fined to clarify the relationship among SMCI, PMCI, and AD.
We assumed that A-CI was a high-risk subtype and that N-CI was
a low-risk subtype with respect to the conversion to AD demen-
tia. As expected, 61.54% of the A-CI group and 21.77% of the
N-CI group were converted to AD within three years. The clini-
cal significance of the present study is the identification of high-
risk subjects based on R2SN. A previous study also demonstrated
the clinical significance of delaying the conversion to AD in MCI
patients.[18] The cognition of MCI patients may improve with spe-
cific training, as demonstrated in the Mental Activity and Resis-
tance Training trial.[19] Our findings suggest that MCI patients
in the N-CI group may receive greater benefits from specific
training approaches than those in the A-CI group, while the A-
CI group may benefit from early clinical intervention/treatment
(e.g., cholinesterase inhibitors), as they have already shown AD
patterns. However, A-CI is not equivalent to PMCI, and N-CI is
not equivalent to SMCI. It is well accepted that the conversion of
individuals to AD is influenced by multiple factors. Thus, we can
only support the conjecture that A-CI patients have a higher risk
of conversion to AD than PMCI patients. More importantly, the
A-CI group showed a faster decline than the N-CI group when
the clinical measures of the two groups were at the same level.
We speculate that the abnormal pattern of R2SN can better indi-
cate more advanced disease than clinical measures (such as cog-
nition). Thus, underlying heterogeneity in clinical presentation
and progression is critical for patient prognosis and precision
medicine strategies for MCI.[1a,4] Of course, this point should be
validated in future studies.

AD is a neurodegenerative disease with multiple genetic risk
factors. It is crucial to expound on the genetic significance of A-
CI and N-CI. Imaging genomics aims to explore the relationship
between disease-related brain regions and genetic risk. Recently,
PLS has been successfully used to understand the biological ba-
sis of brain connectome changes.[20] We found that the anatom-
ical structural changes observed in individuals with A-CI and
N-CI are associated with changes in gene expression of differ-
ent brain regions. Furthermore, AD-related genes were signif-
icantly correlated with the changes in anatomical structure ob-
served in A-CI and N-CI. This result suggests that the difference
in the anatomical structure between A-CI and N-CI was consis-
tent with that between AD and NC. Gene set enrichment analysis
showed that potassium-ion transport and regulation of transsy-
naptic signaling were associated with the T-map of the differ-
ence between A-CI and N-CI. Therefore, our findings are con-
sistent with the hypothesis that synaptic failure plays an impor-
tant role in AD.[21] Additionally, the concentration of potassium
ions is associated with microglial cell activity, which is also con-
sidered to play a role in the pathogenesis of AD.[22] Brain mi-
croglia are crucial for brain health, and they have a dynamic
nature and high complexity.[23] Brain microglia serve not only
as amyloid phagocytes but can also as modulators of neuronal
function and homeostasis of the brain.[24] However, activated mi-
croglia produce several proinflammatory cytokines, which can
heighten abnormal protein aggregation and spread.[25] A recent
study also suggested that microglia release metalloproteases and

tau seeds when phagocytosing live tau aggregates.[26] In addition,
inhibiting microglial proliferation may prevent the progression
of Alzheimer’s-like pathology.[27] In summary, the evidence sug-
gests that microglia are strongly associated with the pathogenesis
of AD, and understanding the relationship between microglia–
neuron interactions and brain health is crucial for developing ef-
fective therapies for dementia. The results of gene enrichment
analysis also confirmed that A-CI exhibited the same gene path-
ways as those in AD.

Precision medicine aims to provide personalized treatment
strategies by considering disease heterogeneity.[28,29] Defining
reproducible subtypes is the basis of precision medicine from
bench to bedside. In this study, the robustness of the MCI sub-
types defined by R2SN was demonstrated by the repetition of the
clustered subtypes in different datasets, brain atlases, and/or par-
cellation schemes. The results also further confirmed the robust-
ness of the radiomics features[12,30] and R2SN[14] in our previous
studies. This study therefore lays a solid foundation for the future
development of individualized therapy based on the stratification
of R2SN.

Despite these contributions, this study has several limita-
tions. First, the positron emission tomography (PET) images
were not included as baseline images due to the limited amount
of available data. The robustness of our results should be fur-
ther explored and validated with additional atlas or independent
datasets. In addition, AD was characterized by significant clini-
cal heterogeneity, a crucial confounder for deepening our under-
standing and enabling more accurate diagnosis, prognosis, and
targeted treatment. Furthermore, some mixed factors should be
considered in future studies, such as vascular comorbidities, hy-
pertension, and diabetes. Additionally, although the ADNI is a
multisite dataset, it has a small number of participants for most
of the sites. Thus, we considered the ADNI dataset as a single-site
rather than a multisite dataset. The progression of MCI can lead
to many other conditions, such as conversion to NC; thus, more
detailed subtypes based on large samples are needed.

4. Experimental Section
Data Acquisition and Clinical Information: A total of 1654 subjects (605

NC, 766 MCI, and 283 AD patients) from the ADNI (http://adni.loni.usc.
edu) were included in this study. Informed written consent was obtained
from all participants across the ADNI1, ADNIGO, ADNI2, and ADNI3
studies.[31] The clinical information included scores from the following
assessments: the MMSE, Rey AVLT (including AVLT1: immediate, AVLT2:
learning), ADAS-cog11, ADAS-cog13, and cognitive domain composite
scores, including executive, memory, language, and visuospatial ability.
Additionally, CSF A𝛽, Tau, and P-tau values and glucose metabolism de-
rived from FDG PET were obtained. In addition, a PHS for the genetic risk
of AD[32] was computed from high-risk genes of AD (Table 1 and Section
S01 (Supporting Information)).

R2SN Construction: For each subject, a T1-weighted MR image was
aligned to Montreal Neurological Institute space using Advanced Normal-
ization Tools (ANTs) and resampled to 1 mm × 1 mm × 1 mm for further
analysis. Then, a series of radiomics features (N = 47) were extracted for
246 regions defined by the Brainnetome Atlas.[33] A common min–max
method was first used to normalize the radiomics features among different
brain regions in an individual, and the redundancy features were defined
as features that had a high correlation with other features (R > 0.9).[14] As
a result, a final feature matrix (246 × 25) for each subject was obtained for
further analysis. Briefly, the node of the R2SN was defined as the region
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based on the Brainnetome Atlas, and the edge was calculated by com-
puting Pearson’s correlation coefficient between interregional radiomics
features (Figure 1A) (Sections S02 and S03, Supporting Information).[14]

The Performance of the R2SN Applied in AD: Whether a R2SN could
serve as a neuroimaging biomarker for AD and MCI was first assessed
by the following methods. 1) A difference analysis of the R2SN among
the NC, MCI, and AD groups was performed. 2) To assess the individual-
prediction performance of the R2SN, a classification model based on a
SVM was created. Importantly, to test the robustness of the results, the
ADNI dataset was divided into the ADNI1&GO dataset and the ADNI2&3
dataset; one served as training data, and the other served as testing data
(and vice versa).[5b,30] 3) The neurobiological basis of the R2SN was eval-
uated by relating these connections to other variables, including clinical
validity and biological validity (Figure 1B).

Identifying the Subtypes of MCI: In this study, “consistent” connections
were defined as the overlap of the connections obtained from the statistical
and classification analyses between the NC and AD groups (Figure 1C).[12]

MCI patients were clustered into different subtypes using nonnegative ma-
trix factorization (NMF) based on the “consistent” connections. It was
speculated that one subtype of MCI would be close to the pattern of NC
(N-CI) and that the other subtype of MCI would be close to the pattern of
AD (A-CI). Hence, the cluster number was set to 2 in the NMF model.

Differences in the Abnormality Patterns among Subtypes: Characterizing
the abnormality pattern of each subtype was one of the crucial steps for
understanding MCI. First, to compare the unique attributes of each sub-
type, the difference in the clinical measures (MMSE, AVLT, PHS, ADAS-
cog11, ADAS-cog13, CSF A𝛽, CSF Tau, CSF P-tau, and FDG) between the
N-CI and A-CI groups was assessed with a two-sample, two-sided t-test
(Figure 1D). To further verify the robustness of the difference between
the N-CI and A-CI groups, the labels of the subtype were randomly per-
muted and the difference between the N-CI and A-CI groups (1000 permu-
tations) was recalculated. The subjects were divided into three subgroups,
A𝛽+&Tau+, A𝛽−&Tau+/A𝛽+&Tau−, and A𝛽−&Tau−, in the NC, N-CI, A-
CI, and AD groups (A𝛽+ was defined as A𝛽 < 980 pg mL−1, and Tau+
was defined as Tau > 245 pg mL−1, as suggested by the ADNI website
https://adni.bitbucket.io/reference/ and https://files.alz.washington.edu/
presentations/2018/spring/biomarkers/SHAW.pdf). The chi-square test
was used to determine the statistical significance of the proportion of three
CSF biomarker levels. The distribution of the cognitive domain composite
score in the NC, N-CI, A-CI, and AD groups was also computed.

Then, to investigate the abnormal regions of the brain in each subtype,
two-sample, two-sided t-tests were performed to evaluate altered regions
between groups (NC vs N-CI, NC vs A-CI, N-CI vs A-CI, AD vs N-CI, and
AD vs A-CI) based on multimodal neuroimaging indices (R2SN, GM vol-
ume, CT, A𝛽 PET, and FDG PET; all were at the regional level based on the
Brainnetome Atlas) (Figure 1D). The GM volume and CT were computed
by the CAT12 Toolkit (http://www.neuro.uni-jena.de/cat/).

Cross-validation between ADNI1&GO (217 NCs, 453 MCI, and 180 AD)
and ADNI2&3 (388 NCs, 313 MCI, and 103 AD) was performed to assess
the robustness of the difference between A-CI and N-CI. The Pearson cor-
relation coefficients between the results obtained from both datasets were
used to estimate the consistency of the findings.[12,16,34]

Longitudinal Progression in the A-CI and N-CI Groups: The mean val-
ues of the abovementioned clinical information were first computed at
each annual follow-up visit to estimate the severity of the decline for each
subtype. In addition, survival curves for each subtype were computed
with Kaplan–Meier analysis.[35] The conversion trajectories were also com-
pared between the N-CI and A-CI groups regarding the proportion and
timepoints of MCI patients who developed AD within six years (Figure 1D).

Relationship between the Atrophy Pattern in A-CI versus N-CI and Gene
Expression Profiling: The potential relationship between gene expression
and brain alterations in MCI subtypes was unclear. This relationship was
investigated using regional gene expression and maps of altered brain re-
gions in A-CI compared with N-CI. Gene expression was initially reported
for the Allen atlas (based on 6 NCs) (http://human.brain-map.org/) and
projected to the Brainnetome Atlas using the “abagen” toolkit (https:
//github.com/rmarkello/abagen). Finally, 15 633 genes from 236 brain re-
gions were obtained. PLS analysis could provide an estimate of the cor-

relation between the metrics[36] and was used successfully in previous
studies.[20,30] Here, the T-map of the GM was used as the independent
variable, and the gene expression was used as the dependent variable. The
PLS1 was the linear combination of the weighted 15 633 gene expression
scores, which were most strongly correlated with the anatomical differ-
ence map of MCI subtypes. The enriched GO terms were computed using
the “Gorilla” toolkit (http://cbl-gorilla.cs.technion.ac.il/) after ranking the
15 633 genes with the weighting coefficient obtained from the PLS analy-
sis.

To further determine the relationships between AD-related gene expres-
sion and regional changes in the MCI subtype, 13 AD-related genes (Alpha-
2-Macroglobulin (A2M), Angiotensin Converting Enzyme (ACE), Amy-
loid Beta (A4) Precursor Protein Binding, Family A Member 1 (APBA1),
Amyloid Beta Precursor Protein Binding Family B Member 2 (APBB2),
Apolipoprotein E (APOE), Amyloid Beta (A4) Precursor Protein (APP),
Beta-Site APP-Cleaving Enzyme 2 (BACE2), Bleomycin Hydrolase (BLMH),
Drebrin 1 (DBN1), Kallikrein-6 (KLK6), Plasminogen Activator Urinary
(PLAU), Presenilin 1 (PSEN1), and Presenilin 2 (PSEN2)) were first iden-
tified by searching the disease term “Alzheimer disease” on the AHBA
website (https://human.brain-map.org/microarray/search).[37] Then, the
Pearson correlation between AD-related gene expression and the map of
altered brain regions was computed for both MCI subtypes.

The Robustness of the Clustering Results Based on the Different Brain
Atlases or Parcellation Schemes: To determine whether the MCI sub-
types could be repeated under different brain atlases or parcellation
schemes, the Anatomical Automatic Labeling (AAL) Atlas,[38] Gordon par-
cel Atlas,[39] and brain parcellation with multiple resolutions from 100 to
1000 parcels[40] were studied. The MCI subtype was first defined based on
the R2SN in each brain atlas. Then, the AUC of the clustering results and
the Pearson correlation coefficient of the probability of belonging to the A-
CI between each pair of brain atlases were used to quantitatively measure
the consistency of the subtypes obtained based on different brain atlases
or parcellation schemes.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This work was partially supported by the Fundamental Research Funds
for the Central Universities (Grant No. 2021XD-A03-1), the Startup Funds
for Leading Talents at Beijing Normal University, the National Natural Sci-
ence Foundation of China (Grant Nos. 81972160, 81871438, 82172018,
61802330), the Beijing Natural Science Funds for Distinguished Young
Scholar (Grant No. JQ20036).

Data collection and sharing for this project were funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes
of Health Grant No. U01 AG024904) and DOD ADNI (Department of
Defense Award Number W81XWH-12-2-0012).The ADNI was funded by
the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, and generous contributions from AbbVie,
Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir,
Inc.; Cogstate; Eisai, Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Com-
pany; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC; Johnson & Johnson Phar-
maceutical Research & Development LLC; Lumosity; Lundbeck; Merck
& Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neuro-
track Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Pi-
ramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research provided funds
to support ADNI clinical sites in Canada. Private sector contributions

Adv. Sci. 2022, 2104538 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2104538 (11 of 13)



www.advancedsciencenews.com www.advancedscience.com

were facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization was the Northern California In-
stitute for Research and Education, and the study was coordinated by
the Alzheimer’s Therapeutic Research Institute at the University of South-
ern California. ADNI data were disseminated by the Laboratory for Neuro
Imaging at the University of Southern California.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are openly available in
Alzheimer’s Disease Neuroimaging Initiative at http://adni.loni.usc.edu/,
ref. [31].

Keywords
mild cognitive impairment, progression, regional radiomics similarity net-
work, subtypes

Received: October 13, 2021
Revised: December 30, 2021

Published online:

[1] a) R. C. Petersen, Continuum 2016, 22, 404; b) R. C. Petersen, R. O.
Roberts, D. S. Knopman, B. F. Boeve, Y. E. Geda, R. J. Ivnik, G. E.
Smith, C. R. Jack, Jr., Arch. Neurol. 2009, 66, 1447.

[2] a) E. Feczko, D. A. Fair, Biol. Psychiatry 2020, 88, 9; b) M. Habes,
M. J. Grothe, B. Tunc, C. McMillan, D. A. Wolk, C. Davatzikos, Biol.
Psychiatry 2020, 88, 70; c) J. Nettiksimmons, C. DeCarli, S. Landau,
L. Beckett, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s
Dementia 2014, 10, 511; d) E. C. Edmonds, L. Delano-Wood, L. R.
Clark, A. J. Jak, D. A. Nation, C. R. McDonald, D. J. Libon, R. Au,
D. Galasko, D. P. Salmon, M. W. Bondi, Alzheimer’s Disease Neu-
roimaging Initiative, Alzheimer’s Dementia 2015, 11, 415.

[3] R. O. Roberts, D. S. Knopman, M. M. Mielke, R. H. Cha, V. S. Pankratz,
T. J. Christianson, Y. E. Geda, B. F. Boeve, R. J. Ivnik, E. G. Tangalos,
W. A. Rocca, R. C. Petersen, Neurology 2014, 82, 317.

[4] a) A. L. Young, R. V. Marinescu, N. P. Oxtoby, M. Bocchetta, K. Yong,
N. C. Firth, D. M. Cash, D. L. Thomas, K. M. Dick, J. Cardoso, J. van
Swieten, B. Borroni, D. Galimberti, M. Masellis, M. C. Tartaglia, J. B.
Rowe, C. Graff, F. Tagliavini, G. B. Frisoni, R. Laforce, Jr., E. Finger, A.
de Mendonca, S. Sorbi, J. D. Warren, S. Crutch, N. C. Fox, S. Ourselin,
J. M. Schott, J. D. Rohrer, D. C. Alexander, The Genetic FTD Initia-
tive, The Alzheimer’s Disease Neuroimaging Initiative, Nat. Com-
mun. 2018, 9, 4273; b) A. Dong, J. B. Toledo, N. Honnorat, J. Doshi,
E. Varol, A. Sotiras, D. Wolk, J. Q. Trojanowski, C. Davatzikos, for the
Alzheimer’s Disease Neuroimaging Initiative, Brain 2017, 140, 735; c)
T. L. Michaud, D. Su, M. Siahpush, D. L. Murman, Dementia Geriatr.
Cognit. Disord. Extra 2017, 7, 15; d) E. C. Edmonds, A. J. Weigand, S.
N. Hatton, A. J. Marshall, K. R. Thomas, D. A. Ayala, M. W. Bondi, C.
R. McDonald, for the Alzheimer’s Disease Neuroimaging Initiative,
Neurology 2020, 94, e2532.

[5] a) A. Ezzati, M. J. Katz, A. R. Zammit, M. L. Lipton, M. E. Zimmerman,
M. J. Sliwinski, R. B. Lipton, Neuropsychologia 2016, 93, 380; b) H. Li,
M. Habes, D. A. Wolk, Y. Fan, Alzheimer’s Disease Neuroimaging
Initiative and the Australian Imaging Biomarkers and Lifestyle Study
of Aging, Alzheimer’s Dementia 2019, 15, 1059.

[6] a) O. L. Lopez, J. T. Becker, Y. Chang, W. E. Klunk, C. Mathis, J. Price,
H. J. Aizenstein, B. Snitz, A. D. Cohen, S. T. DeKosky, M. Ikonomovic,
M. I. Kamboh, L. H. Kuller, Neurology 2018, 90, e1920; b) I. S.van
Maurik, M. D. Zwan, B. M. Tijms, F. H. Bouwman, C. E. Teunissen, P.
Scheltens, M. P. Wattjes, F. Barkhof, J. Berkhof, W. M. van der Flier, I.
Alzheimer’s Disease Neuroimaging, JAMA Neurol. 2017, 74, 1481.

[7] A. Dong, J. B. Toledo, N. Honnorat, J. Doshi, E. Varol, A. Sotiras,
D. Wolk, J. Q. Trojanowski, C. Davatzikos, Alzheimer’s Disease Neu-
roimaging Initiative, Brain 2017, 140, 735.

[8] E. C. Edmonds, J. Eppig, M. W. Bondi, K. M. Leyden, B. Goodwin,
L. Delano-Wood, C. R. McDonald, for the Alzheimer’s Disease Neu-
roimaging Initiative, Neurology 2016, 87, 2108.

[9] S. Rathore, M. Habes, M. A. Iftikhar, A. Shacklett, C. Davatzikos, Neu-
roimage 2017, 155, 530.

[10] A. Pichet Binette, J. Gonneaud, J. W. Vogel, R. La Joie, P. Rosa-Neto,
D. L. Collins, J. Poirier, J. C. S. Breitner, S. Villeneuve, E. Vachon-
Presseau, for the Alzheimer’s Disease Neuroimaging Initiative, the
PREVENT-AD Research Group, Brain 2020, 143, 635.

[11] A. Alexander-Bloch, J. N. Giedd, E. Bullmore, Nat. Rev. Neurosci. 2013,
14, 322.

[12] K. Zhao, Y. Ding, Y. Han, Y. Fan, A. F. Alexander-Bloch, T. Han, D. Jin,
B. Liu, J. Lu, C. Song, P. Wang, D. Wang, Q. Wang, K. Xu, H. Yang, H.
Yao, Y. Zheng, C. Yu, B. Zhou, X. Zhang, Y. Zhou, T. Jiang, X. Zhang,
Y. Liu, Sci. Bull. 2020, 65, 1103.

[13] E. Bullmore, Neuroimage 2012, 62, 1267.
[14] K. Zhao, Q. Zheng, T. Che, M. Dyrba, Q. Li, Y. Ding, Y. Zheng, Y. Liu,

S. Li, Network Neurosci. 2021, 5, 783.
[15] a) B. M. Tijms, P. Series, D. J. Willshaw, S. M. Lawrie, Cereb. Cortex

2012, 22, 1530; b) K. Li, X. Luo, Q. Zeng, P. Huang, Z. Shen, X. Xu,
J. Xu, C. Wang, J. Zhou, M. Zhang, for the Alzheimer’s Disease Neu-
roimaging Initiative, NeuroImage: Clin. 2019, 23, 101828.

[16] J. Seidlitz, F. Vasa, M. Shinn, R. Romero-Garcia, K. J. Whitaker, P.
E. Vertes, K. Wagstyl, P. Kirkpatrick Reardon, L. Clasen, S. Liu, A.
Messinger, D. A. Leopold, P. Fonagy, R. J. Dolan, P. B. Jones, I. M.
Goodyer, N. Consortium, A. Raznahan, E. T. Bullmore, Neuron 2018,
97, 231.

[17] S. A. Eshkoor, T. A. Hamid, C. Y. Mun, C. K. Ng, Clin. Interventions
Aging 2015, 10, 687.

[18] J. Zissimopoulos, E. Crimmins, P. St Clair, Forum Health Econ. Policy
2014, 18, 25.

[19] K. M. Broadhouse, M. F. Singh, C. Suo, N. Gates, W. Wen, H. Bro-
daty, N. Jain, G. C. Wilson, J. Meiklejohn, N. Singh, B. T. Baune, M.
Baker, N. Foroughi, Y. Wang, N. Kochan, K. Ashton, M. Brown, Z. Li,
Y. Mavros, P. S. Sachdev, M. J. Valenzuela, NeuroImage: Clin. 2020,
25, 102182.

[20] J. Li, J. Seidlitz, J. Suckling, F. Fan, G. J. Ji, Y. Meng, S. Yang, K. Wang,
J. Qiu, H. Chen, W. Liao, Nat. Commun. 2021, 12, 1647.

[21] D. J. Selkoe, Science 2002, 298, 789.
[22] C. Sala Frigerio, L. Wolfs, N. Fattorelli, N. Thrupp, I. Voytyuk, I.

Schmidt, R. Mancuso, W. T. Chen, M. E. Woodbury, G. Srivastava, T.
Moller, E. Hudry, S. Das, T. Saido, E. Karran, B. Hyman, V. H. Perry,
M. Fiers, B. De Strooper, Cell Rep. 2019, 27, 1293.

[23] A. Grubman, X. Y. Choo, G. Chew, J. F. Ouyang, G. Sun, N. P. Croft,
F. J. Rossello, R. Simmons, S. Buckberry, D. V. Landin, J. Pflueger, T.
H. Vandekolk, Z. Abay, Y. Zhou, X. Liu, J. Chen, M. Larcombe, J. M.
Haynes, C. McLean, S. Williams, S. Y. Chai, T. Wilson, R. Lister, C. W.
Pouton, A. W. Purcell, O. J. L. Rackham, E. Petretto, J. M. Polo, Nat.
Commun. 2021, 12, 3015.

[24] T. Bartels, S. De Schepper, S. Hong, Science 2020, 370, 66.
[25] M. Guo, J. Wang, Y. Zhao, Y. Feng, S. Han, Q. Dong, M. Cui, K. Tieu,

Brain 2020, 143, 1476.
[26] J. H. Brelstaff, M. Mason, T. Katsinelos, W. A. McEwan, B. Ghetti, A.

M. Tolkovsky, M. G. Spillantini, Sci. Adv. 2021, 7, eabg4980.
[27] E. E. Spangenberg, R. J. Lee, A. R. Najafi, R. A. Rice, M. R. Elmore, M.

Blurton-Jones, B. L. West, K. N. Green, Brain 2016, 139, 1265.

Adv. Sci. 2022, 2104538 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2104538 (12 of 13)



www.advancedsciencenews.com www.advancedscience.com

[28] S. Lewandowsky, K. Oberauer, Nat. Commun. 2020, 11, 358.
[29] a) T. Bardakjian, P. Gonzalez-Alegre, Handb. Clin. Neurol. 2018, 147,

93; b) F. S. Collins, H. Varmus, N. Engl. J. Med. 2015, 372, 793.
[30] Y. Ding, K. Zhao, T. Che, K. Du, H. Sun, S. Liu, Y. Zheng, S. Li, B. Liu, Y.

Liu, Alzheimer’s Disease Neuroimaging Initiative, Cereb. Cortex 2021,
31, 3950.

[31] C. R. Jack, Jr., M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander,
D. Harvey, B. Borowski, P. J. Britson, J. L. Whitwell, C. Ward, A. M.
Dale, J. P. Felmlee, J. L. Gunter, D. L. Hill, R. Killiany, N. Schuff, S.
Fox-Bosetti, C. Lin, C. Studholme, C. S. DeCarli, G. Krueger, H. A.
Ward, G. J. Metzger, K. T. Scott, R. Mallozzi, D. Blezek, J. Levy, J. P.
Debbins, A. S. Fleisher, M. Albert, et al., J. Magn. Reson. Imaging 2008,
27, 685.

[32] R. S. Desikan, C. C. Fan, Y. Wang, A. J. Schork, H. J. Cabral, L. A. Cup-
ples, W. K. Thompson, L. Besser, W. A. Kukull, D. Holland, C. H. Chen,
J. B. Brewer, D. S. Karow, K. Kauppi, A. Witoelar, C. M. Karch, L. W.
Bonham, J. S. Yokoyama, H. J. Rosen, B. L. Miller, W. P. Dillon, D.
M. Wilson, C. P. Hess, M. Pericak-Vance, J. L. Haines, L. A. Farrer, R.
Mayeux, J. Hardy, A. M. Goate, B. T. Hyman, et al., PLoS Med. 2017,
14, e1002258.

[33] L. Fan, H. Li, J. Zhuo, Y. Zhang, J. Wang, L. Chen, Z. Yang, C. Chu, S.
Xie, A. R. Laird, P. T. Fox, S. B. Eickhoff, C. Yu, T. Jiang, Cereb. Cortex
2016, 26, 3508.

[34] D. Jin, B. Zhou, Y. Han, J. Ren, T. Han, B. Liu, J. Lu, C. Song, P. Wang,
D. Wang, J. Xu, Z. Yang, H. Yao, C. Yu, K. Zhao, M. Wintermark, N.
Zuo, X. Zhang, Y. Zhou, X. Zhang, T. Jiang, Q. Wang, Y. Liu, Adv. Sci.
2020, 7, 2000675.

[35] E. L. Kaplan, P. Meier, J. Am. Stat. Assoc. 1958, 53, 457.
[36] S. Datta, Gene Expression 2001, 9, 249.
[37] H. Zeng, E. H. Shen, J. G. Hohmann, S. W. Oh, A. Bernard, J. J. Royall,

K. J. Glattfelder, S. M. Sunkin, J. A. Morris, A. L. Guillozet-Bongaarts,
K. A. Smith, A. J. Ebbert, B. Swanson, L. Kuan, D. T. Page, C. C. Overly,
E. S. Lein, M. J. Hawrylycz, P. R. Hof, T. M. Hyde, J. E. Kleinman, A. R.
Jones, Cell 2012, 149, 483.

[38] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O.
Etard, N. Delcroix, B. Mazoyer, M. Joliot, Neuroimage 2002, 15, 273.

[39] E. M. Gordon, T. O. Laumann, B. Adeyemo, J. F. Huckins, W. M. Kelley,
S. E. Petersen, Cereb. Cortex 2016, 26, 288.

[40] A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X. N. Zuo, A. J.
Holmes, S. B. Eickhoff, B. T. T. Yeo, Cereb. Cortex 2018, 28, 3095.

Adv. Sci. 2022, 2104538 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2104538 (13 of 13)


