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Abstract

Healthcare predictive analytics using electronic health records (EHR) offers a promising
direction to address the challenging tasks of health assessment. It is highly important to
precisely predict the potential disease progression based on the knowledge in the EHR data
for chronic disease care. In this paper, we utilize a novel longitudinal data fusion approach
to model the disease progression for chronic disease care. Different from the conventional
method using only initial or static clinical data to model the disease progression for current
time prediction, we design a temporal regularization term to maintain the temporal succes-
sivity of data from different time points and simultaneously analyze data from data source
level and feature level based on a sparse regularization regression approach. We examine our
approach through extensive experiments on the medical data provided by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The results show that the proposed approach is
more useful to simulate and predict the disease progression compared with the existing
methods.

Keywords Healthcare predictive analytics - Longitudinal data fusion - Machine learning -
Regression - Group lasso

1 Introduction

Improvements in healthcare in the past century have contributed to people living longer and
healthier lives. However, this has also resulted in an increase in the number of people with
non-communicable diseases, including Alzheimer’s disease. Alzheimer’s disease (AD), the
most common type of dementia, is characterized by the progressive impairment of neurons
and their connections resulting in loss of cognitive function and ultimately death (Khacha-
turian 1985). According to the World Health Organization (2012), most new cases and
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mortalities of Alzheimer’s disease occur in low- and middle- income countries. Current esti-
mates indicate 31.2 million people worldwide are living with AD in 2015, and this number
will almost double every 20 years. AD has caused substantial social and economic burden
to every country, the total estimated worldwide cost of AD in 2015 is $600 billion (Prince
2015). The surging cases and expenses make patients, clinical experts, and health policy-
makers around the world believe that effective interventions are needed to prevent, detect,
and manage Alzheimer’s disease and their sequelae (OECD 2014).

With increased adoption of electronic health record (EHR) systems in clinical practices,
EHR data analytics for advanced clinical decision support is attracting both scientific and
practical interest (Agarwal et al. 2010). Clinical intelligence about a patient’s mental status
has been a critical element for effective decision making in care for Alzheimer’s disease.
Accurate evaluation of patients’ mental status could enable clinicians to take preventive and
personalized interventions, which in turn could reduce healthcare spending and improve
their quality of life. However, the richness of neuroimaging records, such as correlations
among test result, their longitudinal progression, and their highly professional and highly
personalized characteristics (Fichman et al. 2011), makes it a difficult task for healthcare
professionals to provide an accurate evaluation of patient’ mental status after comprehensive
medical check-up is performed.

The value of predictive analytics in healthcare has been repeatedly emphasized in previ-
ous information systems research. Chen et al. (2012) discussed the potential of EHR-based
healthcare analytics for “smart health and wellbeing” from the perspective of business
intelligence. Fichman et al. (2011) summarized the existing healthcare information sys-
tems research and suggested that another emerging avenue for knowledge discovery arose
from using digital technology to enable new kinds of mathematical healthcare modeling
and simulations. Developing and utilizing information technology artifacts, such as models,
techniques, and systems, to address practical needs has been a focus of healthcare informa-
tion systems research. The research motivations are often to obtain valuable insights through
the development of advanced analytics techniques and the use of large and rich data source
that was previously unavailable or underutilized.

Consistently with the machine learning paradigm and the recent information systems
research on big data analytics principle, we developed a novel longitudinal medical data
fusion formulation for predicting the disease progression of Alzheimer’s disease measured
by the clinical scores. Our goal is to improve clinical decision making and facilitate pre-
ventive and personalized care with data analytics. Specifically, we formulate the prediction
of the current clinical score as a regression problem based on previous time points of med-
ical data fusion. The disease progression modeling approach could augment healthcare
provider’s capability in accurately evaluating patients’ health status for timely interventions.

The proposed longitudinal medical data fusion formulation is distinctly different from the
existing diseases predictive model. Existing healthcare predictive analytics research often
either focuses on modeling patients’ health status by making use of one single time point
data (Duchesne et al. 2009; Stonnington et al. 2010), or modeling disease progression of
different time point with one single time point data based on multitask learning (Zhou et al.
2011; Zhou et al. 2012). However, it is believed that, especially in chronic care, data from
different time points can depict the evolution of the disease progression. Modeling disease
progression via longitudinal medical data fusion would provide healthcare professionals
with more significant clinical insights toward a comprehensive and effective care plan. We
will effectively make use of the intermediate information during the disease progression,
which includes the serial medical data. The proposed Disease Progression via Longitudinal
Data Fusion (DPLDF) model will jointly analyze the features from the data source level and
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feature level based on sparse regularization regression approach. The regularization consists
of two components including an /5 j-norm penalty (Yuan and Lin 2006) on the regression
weight vectors, which ensures that a small subset of features will be selected for the regres-
sion models at all time points, and a temporal regularization, which ensures different time
points satisfy the temporal successivity from data source level aspect. In our article, tempo-
ral successivity indicates the weight factors of features from adjacent time points have the
sequential characteristic, and features of recent time point have larger weight factors than
the weight factors of early time points. The challenge for the sparse regularization regression
approach is that the proposed models do not have an analytical solution. We also develop a
numerical optimization method to fit the model.
The main contributions of our work can be summarized as follows:

e Taking into consideration the prediction model at different time points shares a com-
mon set of features, we propose a group feature selection approach, which can remove
redundant and irrelevant feature from the feature space, thus improving the prediction
accuracy and reducing the computational cost in data fusion.

e Taking into consideration the intermediate information during the disease progres-
sion, we propose a temporal regularization in longitudinal data fusion model to
predict patient’s health state. The effectiveness of our proposed method is verified on
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the results demonstrate
that our proposed method can achieve good performances.

The rest of the paper is organized as follows. In the next section, we review related
research on data fusion in the context of healthcare analytics and disease progression mod-
eling approach. We then describe the proposed DPLDF model and an efficient numerical
optimization method to fit the model. Following that, we conduct a set of experiments and
summary their results. Our evaluation results provide evidence that the proposed DPLDF
approach demonstrate superior performance compared with related methods. In the final
section, we discuss the contributions of this study to the information systems knowledge
base and directions for future work.

2 Literature review

In this section, we summarize the previous studies of the healthcare predictive analytics.
Table 1 presents the previous studies of chronic disease intelligent diagnosis, which we
discuss in turn.

2.1 Data fusion in the context of healthcare predictive analytics

Healthcare predictive analytics aims to predict future health-related outcomes or events
based on clinical and nonclinical patterns in the data (Lin et al. 2017). The results of inter-
est in healthcare predictive analytics, such as medical diagnosis (Valmarska et al. 2018; Liu
et al. 2019), hospital readmissions (Li et al. 2016), and patient mortality (Mayaud et al.
2013), treatment responses (Meyer et al. 2014), are often of great practical importance.
Many studies are currently collecting multiple types and multiple time points of medical
data and information from the same participants. Each medical data analytic method reports
on a limited domain and is likely to provide some standard information and some unique
information, which motivates the need for a joint analysis of these data.
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There is an increasing interest in the field of multiple types of data fusion. For instance,
Calhoun and Adali (2008) presented a feature-based fusion approach that first preprocessed
the data to compute features of interest. The features were then analyzed in a multivariate
manner using independent component analysis. Finally, the linkage between the patterns of
information from the individual’s brain images and other biological measures was obtained.
Yuan et al. (2012) proposed a multi-source feature learning framework for the joint analy-
sis of incomplete multiple heterogeneous neuroimaging data. In their work, a feature-based
fusion approach was used, samples were partitioned into multiple blocks based on combi-
nations of data source available. A multi-task learning model was built, every learning task
was trained by different multiple blocks, and tasks relatedness was considered to improve
whole performance.

Very few previous studies of healthcare predictive analytics consider multiple time points
of medical data fusion. Chen et al. (2016) converted data from multiple time points into a
feature-based representation, i.e., by transforming a sequence into a vector of features. A
time smoothing kernel was used to assign time weights to features at different time points
to model the changes of importance over time. Finally, the health evaluation regression
model was obtained from the transformed features, which leveraged data from multiple time
points. Their work is different from ours in model design. We will see later in the model
development section that our DPLDF approach does not have such a data transformation
process, but instead uses a temporal regularization term to coordinate among data from
different time points. As a result, our DPLDF method enables a more flexible and precise
approach to advanced clinical decision support.

2.2 Disease progression modeling approach

Disease progression describes the change of disease status over time as a function of the
disease process and treatment effects (Dubitzky et al. 2013). Different machine learning
methods are used to characterize the linkage between disease status and medical data (Saggi
and Jain 2018; Tai et al. 2019). For instance, Zhou et al. (2012) proposed a multi-task learn-
ing technique to predict disease progression. In the multi-task learning frame, the prediction
of mental status at each time point was considered as a regression task, and each prediction
task was based on baseline data. To improve the performance of the regression model, mul-
tiple prediction tasks of different time points were performed simultaneously to capture the
temporal smoothness of the prediction models across different time points. Their method
simultaneously selected a common set of biomarkers for all time points and picked a specific
set of biomarkers at different time points, to identify the temporal patterns of biomarkers in
disease progression. Only one time point of medical data is used in their disease progression
model, but it is a common belief that by fusing different time points of medical data, one
may use the evolution information of features in progress to provide more accurate informa-
tion on health evaluation. Xie et al. (2016) followed a novel sequential learning framework
to model the disease progression using data from two different time points. They designed a
score-involved approach and made use of the sequential diagnosis information in different
disease time points to jointly simulate the disease progression. Nie et al. (2016) proposed a
novel and unified multitask learning scheme to coregularize the prior knowledge of source
consistency and temporal smoothness.For the predicting task at each time point had features
from multiple sources, and multiple tasks were related to each other in chronological order.

The existing disease progression modeling based on machine learning methods involve
data from limited time points, which is not the case in chronic care. When the modeling
problem involves data from many time points, how to depict the evolution characteristics of
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data of different time points and maintain the temporal successivity of data from different
time points has hardly ever discussed. Utilizing longitudinal medical data and developing
disease progression modeling approach to predict patient’s health status remains a research
gap in the machine learning field.

3 Disease Progression via Longitudinal Data Fusion method

In this section, we will describe our proposed method. We will introduce the simple longi-
tudinal data fusion model using ridge regression, and then explain the longitudinal clinical
data fusion model with longitudinal regularization. As the proposed problem is numerically
challenging, we will also present an efficient algorithm.

3.1 Preliminaries

In the longitudinal AD study, the target patients will receive regular MRI or PET scan in a
fixed time interval, and their cognitive scores will be measured accordingly. The regression
model simulates the relationship between the collected feature data and the target cognitive
scores, so as to predict the patient’s potential clinical score at the specific time point in
future.

Consider a regression problem with » time points x,, x,—_1, - -+ , X1, where every x; €
R represents a set of clinical measures of time point 7, and d represents the dimension of
the data. There is a corresponding clinical score y; (t = n,n — 1, --- , 1) measured at time

point z. The target clinical score at the next time point n + 1 is denoted as y.

In this paper, we employ linear models for the prediction. The cognitive score of future
time point n + 1 is predicted using the information of the previously recorded cognitive
scores and the clinical measures. The motivation is that the existing clinical score can pro-
vide certain information about the current status of the patient, so it can facilitate to make
more precise prediction for future progression. Specifically, we denote the feature data
matrix by X = [X,; Xu_1; -+, %117 € R"@+D Here each X; = (x;, y;) € Rt is the
extension of clinical feature data x; with one more dimension by embedding the cognitive
score y;. We denote W = [w,; w,—1; -, wi]T e R™@+1) 44 the weight matrix, and the
prediction model for the future time point n + 1 is given by f(X) = > [, EIT w;. Suppose

there are N samples, for sample i the feature matrix is X' = [¥'; X' _ ;.- , %17 and y' is
the corresponding clinical score for the future time point 7 + 1. A straightforward approach

is to estimate W by minimizing the following objective function:

N n
2
. ~7 i 2
n%ni (E xith—y‘> +0|W|% (1

i=1 t=1

where the first term measures the empirical error on the training data, the second penalty
term controls the generalization error, 6 > 0 is a regularization parameter, and ||W|r =
(i X5 win'2.

One major limitation of the regression model above is that the model treats samples from
different time points all the same and the temporal correlation is not involved, which is
crucial for improving accuracy of longitudinal data analysis in chronic disease care.
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3.2 Longitudinal regulation data fusion model building

To capture the temporal successivity of data from different time points, we propose a tem-
poral regularization term in a regression model that penalize large time weights of early
time points, which will ensure data from recent time points will get greater time weights
than data from forwarding time points, resulting in the following formulation:

N n 2 n
min w3 ) 42D IWA L) 2
i 2 (L F w= ) I i @
where A > 0 is a regularization parameter controlling the time weights, and W(1 : ¢, 1 : d)
is the submatrix of W with ¢ x d dimensions.

Because of the limited availability of subjects in the longitudinal AD study and a rela-
tively large number of features from structural neuroimaging data, the prediction model (2)
suffers from the so-called “curse of dimensionality”. One practical approach is to reduce
the dimensionality of the data. However, traditional dimension reduction techniques such as
PCA, SVD, and M-CCA are not desirable since the resulting model is not interpretable, and
regular feature selection algorithms are not suitable for longitudinal feature selection. In the
proposed formulation, we employ group Lasso regularization based on [/ j-norm penalty
for feature selection (Yuan and Lin 2006), which assumes that a small set of features are
predictive of the progression. The group Lasso regularization ensures that the regression
model at different time points shares a common set of features. Together with the temporal
penalty, we obtain the Disease Progression via Longitudinal Data Fusion (DPLDF) model:

N n ) N n d
min 3~ (o F w ) AT IWA L)l D IWE Dl B)

i=1 t=1 =1 j=1
where W(:, j) is the j-column of W , and w is a regularization parameter. The weights of
one feature over all time points are grouped using the /;-norm, and all feature groups are
penalized using the /1-norm. Thus, the /> 1-norm penalty tends to select features based on
the strength of the feature over all time points, as shown in Fig. 1. The inputs of the method
are longitudinal clinical data of a population linked to the geriatric medical examination
database. The output is a real predicted value, reflecting personal health status. A linear pre-
diction model is built, and the coefficients of some indicators corresponding to the clinical
values at different time points are all 0, which makes the method select a common subset of
features in the process of longitudinal clinical data fusion, thus improving the accuracy of
health status prediction. Note that the method is designed for longitudinal clinical data sets
that share the characteristics described in Section 2.2. Although in the following discussions
we will use the ADNI data set as an example, the applicability of our proposed method is
not limited to the data set.

3.3 Proximal gradient method for longitudinal regulation data fusion model

When the structure to be imposed in the penalty term has a relatively simple form, such as
nonoverlapping groups over variables (e.g., lasso (Tibshirani 1996) or group lasso (Yuan
and Lin 2006)), efficient optimization methods have been developed. For example, under
group lasso, due to the separability among groups, a proximal operator associated with the
penalty can be computed in closed-form; thus, some composite gradient methods (Beck and
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Fig.1 Feature selection diagram of the proposed Disease Progression via Longitudinal Data Fusion method.
We use longitudinal regulation to maintain the temporal successivity of data from different time points and
simultaneously select a common subset of features (the selected features for all time points are highlighted)

Teboulle 2009) that leverage the proximal operator as a critical step can be directly applied.
Unfortunately, these algorithmic advancements have been outpaced by the emergence of
more complex structures one would like to impose in the penalty term.

The penalty terms of DPLDF model (3) are the composition of a temporal penalty and a
group Lasso penalty. Since the group of features in the penalty terms with overlap structure,
our model belongs to the overlapping group Lasso penalized problem. In this paper, we
propose to solve it using the accelerated gradient descent method (Nesterov 2013a) because
of its fast convergence rate.

We develop an efficient algorithm for the DPLDF model (3) via the accelerated gradi-
ent descent (AGD) method. The AGD method has the optimal order of convergence for the
first-order black-box methods, which can achieve a convergence rate of O (1/k?) for k iter-
ations. Note that, when directly applying the black-box first-order method for solving the
non-smooth problem (3), one can only achieve a convergence rate of O(1/ k) (Nesterov
2013b), much slower than 0(1/k2).

Equation (3) can be transformed into the following form:

n+d
m“i]n fW)=1(W)+ ZQiIIWG,IIF “)

i=1

where [(W) = YN | (Y %Tw, — y')” is a smooth convex loss function, ; = A, i =
Lo ,n6=pni=n+1,---,n+d Wg, =W :t,1:d),i=1,--- ,n, Wg, =
W, i—n),i=n+1,---,n+d, thatis G; contains the indices corresponding to the i-th
group of features.
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We construct a model for approximating f'(-) at the point W as:

n+d

fow @) = 1)+ 3 (010 fowe, g~ w,) + 361U, e+ 51U~ Wi )
t=1 i=1

where U = [uy; tty_1; -+ ;u;]7 € R™E@HD 1n the i-step, a search point S; is computed

based on the past solutions of the previous step by S; = W; + B;(W; — W;_1). Then

the new solution W, is obtained via the minimization of the model at the current search

point, that is, W; 1 = argminf; g, (U). This sub-problem is the critical component to
U

the optimization, and we will give a detailed discussion of how to solve this sub-problem
efficiently.

Denote the proximal operator associated with the overlapping group Lasso penalty as
follows:

n+d
T @)= argmin {g(W) = U~ WIE + 3 6IW, I} ©)
WeRnx(d+1) i=1
where @ = [0y, - - -, 9,1+d]T e R"t whichis a special case of (4).

We first reveal the relationship between the optimal solution of formula (5) and proximal
operator (6).

Theorem 1 Denote
V = argminfz w(U) (7)
U

Then we have V = rro/L(U — %W)

1 a1(U)
U———""~
””/L< L 8U>

(1
= argmm{fHU—
WeRnxd

Proof

nx(d+l)

Ol Y Tiwe)

LBU

n

1
:argmln[fHW Ul3 + LZ(BZ(U)/Bu,,w,—u,)

WeRnxd =1
nx(d-H)
1 0l(U)
PWalr+ 73] 5 )
+ Z O We e+ 72

1
= argmln[fHW U||F LZ(BZ(U)/Bu,,w,—u,)
WeRnxd =1

nx(d+1)

> "W, e

n nx(d+1)
= argmin{ Y @IV /our, w, —u) + Y 6IWa, Ik
WeRnxd =1 i=1

L 2
+3IW - Ul
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From here we come to our conclusions. O

As shown in Theorem 1 the optimal solution of formula (5) is the same as g /L(U —

%%) We use the results of Yuan et al. (2013) to solve (6). Algorithm 1 shows the full
procedure for solving the DPLDF model.

Algorithm 1 The optimization algorithm.

Input: Lo >0, Wy
Output: W
Initialize i = 1, W; = Wy, a1 =0,0p = land L = Ly
Repeat
Set B = a’;;izjl,si =W +BW; —W;_y)
Find the smallest L =2/L;_y, j =0, 1, - -- such that ‘
FWis1) < fr.5,(Wig1) holds, where Wiy = 79,1 (Si — 1 %552)

SetLi =L,y = 01 W =W,y i=i+1
until | f(Wi1) — f(W)| < TOLERANCE x| f(W;)]

The overall procedure for model development and evaluation is shown in Fig. 2. First,
we extract features from medical data and then conduct feature standardization to assimilate
clinical measurements of diverse scales. Accordingly, all features are rescaled so that they
have the properties of a standard normal distribution with a mean of 0 and a standard devia-
tion of 1. The full dataset is then split into a model development set (90%) and a testing set
(10%) that is used for evaluating and comparing performances of competing models. The
model development set is further split into training and validation sets. The training data
was used to predict the responses for the observations in the validation set. This provided us
with an unbiased evaluation of a model fit on the training dataset while tuning the hyperpa-
rameters of the model. For the validation procedure, we use the 5-fold cross-validation. The
final model evaluation is conducted on a held-out testing set that has not been used prior,
either for training the model or tuning the model’s parameters.

Raw Data

!

Feature Extraction &
Data Standardization
!

Model Building &
Parameters Setting

Trained linear regression
predictor with select features

I

‘ Prediction }-—{ Testing Set

Fig.2 Overview of the model development and validation procedure
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4 Experimental study

In this section, we evaluate the proposed disease progression model on the data sets from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The ADNI project is designed
to collect the serial of MRI, PET and other clinical assessment scores to measure the pro-
gression of selected subjects, including Alzheimer’s Disease patients (AD), Mild Cognitive
Impairment patients (MCI) and Normal Controls (NC), and the subjects will be observed
repeatedly and continuously over a 6-month or 1-year interval. For each observation, the
MRI and PET scans will be collected, as well as other corresponding measurements, e.g.,
clinical scores such as MMSE. The mini-mental state examination (MMSE) provides a
quick assessment of a patient’s cognitive state. This test allows a healthcare provider to
objectively assess a patient who may have cognitive impairments to determine their severity.
Declining scores on the MMSE can be a sign that a patient is having neurological problems.
These questions of MMSE determine the patient’s level of orientation, both physically and
mentally, and also assess memory and math skills. The healthcare provider can assign a
score on the basis of one to 30, which will determine the patient’s level of cognitive impair-
ment. Scores of 25 or higher indicate the patient appears to be functioning well, without
any problems. If the score falls between 20 and 24, it may indicate a mild level of cognitive
impairment, while scores between 10 and 20 are considered moderate. Anything lower than
9 indicates severe impairment.

In our work, we use MRI scans to generate feature data, which are obtained from 126
subjects. Five types of MRI features are used in the work: white matter parcellation volume
(Vol. WM.), cortical parcellation volume (Vol. C.), surface area (Surf. Area), cortical thick-
ness average (CTA) and cortical thickness standard deviation (CTStd). The date when the
patient performs the MRI screening in the hospital for the first time is called baseline (BL),
and the time points of the following observations are denoted by the duration starting from
the baseline. For example, “M06” means the screening taken at the time point 6 months
after the first visit. All the subjects are under the repeated observations for up to 36 months.
For each subject the sequence data is as follows:

(M24, M18, M12, M06, BL).

In our experiments, the sequence data involves five time points of data. We predict MMSE
scores of the time point 36 months after the first visit using various measurements from
MRI scans. The sample size and dimensionality for features from the MRI scans are given
in Table 2.

In our predictive regression test scenarios, 5-fold cross-validation is used to select model
parameters for the sample data. We use 90% of the sample data for training and report
the regression performance on the remaining test data. To measure the regression perfor-
mance, we employ the mean squared error (MSE) calculated for the predicted values at the
“M36” time point, and we also use correlation coefficient (R-value) given by the correlation
between the predicted values and the true values (Duchesne et al. 2009; Zhou et al. 2012;
Xie et al. 2016).

Table2 The sample size and

feature dimensionality of Target score Sample size Dimension of features from
different time points used in the different time points
experiments

MMSE 126 346
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We conduct five sets of evaluation to assess the proposed DPLDF approach. In the first
set of evaluations, we aim to understand the utility of data fusion. We compare the DPLDF
approach with basic data analysis counterparts-linear regression with lasso regularization.
In the second set of evaluations, we aim to understand the performance of our DPLDF
approach against other healthcare predictive analytics approaches in the literature. We hence
compare the proposed method with Convex Fused Spares Group Lasso (cFSGL) based on
multi-task learning (Zhou et al. 2012), regression model with transformed features based
on point-based representation (Chen et al. 2016), incrementally sequential prediction (ISP)
model based on sequential data learning (Xie et al. 2016). In the third set of evaluations, we
compare the prediction errors of different approaches for patients with different conditions,
so as to indicate that our proposed DPLDF has higher forecasting accuracy in predicting the
condition of patients with cognitive scores below 20. In the last two sets of evaluations, we
investigate the effects of parameters in the proposed DPLDF.

4.1 Comparison with linear regression with lasso regularization

In the first set of experiments, we compare DPLDF approach and linear regression with
lasso regularization models to examine the utility of longitudinal data fusion over learning
by linear regression.

We apply our proposed DPLDF method to the longitudinal data set including all five time
points ranging from “M24” to “BL” for solving the problem of predicting the MMSE scores
of time point “M36”. For comparison purposes, we build linear regression with lasso regu-
larization models to predict the MMSE scores of time point “M36” via the analysis of the
same data sets. The third approach in comparison is the linear regression with lasso regular-
ization models via the analysis of the data of time point “M24”. For our proposed DPLDF
method, six values (2] 2223 24 05 26) are used for the regularization parameter A, and
six values (27°,274,273,272 21 20) are used for the regularization parameter p. For
each linear regression with lasso regularization models, six values (21,22,23 24 25 26)
are used for the regularization parameter A. 5-fold cross-validation is used to select model
parameters, and the predictive performance is quantified by mean squared error (MSE). We
first randomly select 90% portion of samples as the training set to learn the model, and
then apply the model to predict the MMSE scores of time point “M36” on the remain-
ing data, used as a non-overlapping test set. We repeat this process 30 times, the average
performances are summarized in Table 3.

The average mean squared errors of DPLDF, linear regression with lasso regularization
models via analysis of all five time points and linear regression with lasso regularization
models via analysis of “M24” time point are 3.212, 5.569, 4.316. The performance differ-
ence between two linear regression with lasso regularization models is likely due to more

Table3 Comparison of our proposed DPLDF method with linear regression with lasso regularization models
on MMSE scores prediction, in terms of average correlation coefficient (R) and mean squared error (MSE)
for time point “M36”. 90% portion of data is used as training data

Comparison item DPLDF Linear regression-Lasso via Linear regression-Lasso via
analysis of all five time points analysis of “M24” time point

Target: MMSE

R 0.786+0.041 0.69440.037 0.71840.031

M36 MSE 3.212+0.941 5.569+1.365 4.316%1.091
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features are involved in the model to make it overfitting (the empirical error measured by
the mean squared errors of linear regression with lasso regularization models via analysis
of all five time points and linear regression with lasso regularization models via analysis of
“M24” time point are 3.694 and 4.130). We notice a greater performance difference between
DPLDF and linear regression with lasso regularization models. This greater performance
improvement from DPLDF is because in our proposed model temporal successivity of data
from different time points is considered, which can better capture the evolution information
of the disease. Overall, the result from evaluation 1 confirms our speculations that the util-
ity of longitudinal data fusion can effectively exploit the progressive nature of the disease
to improve predictive performance.

4.2 Comparison of DPLDF approach and other healthcare predictive analytics
approaches

One of the strengths of the proposed formulation is that it facilitates the temporal regu-
larization, which ensures data from different time points satisfy the temporal successivity
from data source level aspect when using longitudinal data to model disease progression. To
determine the standing of our DPLDF approach among other healthcare predictive analyt-
ics approaches, we conduct a head-to-head comparison of predictive performance with the
convex fused sparse group Lasso (cFSGL) approach (Zhou et al. 2012), the incrementally
sequential prediction (ISP) approach (Xie et al. 2016), and the feature-based approach (Chen
et al. 2016). We apply these four methods to predict the MMSE scores of time point “M36”
via analysis of data from all five time points ranging from “M24” to “BL”. All other
three of these alternative healthcare predictive analytics approaches require user-specified
parameters. For cFSGL, we need to specify the weights for Lasso penalty, group Lasso
penalty and fused Lasso penalty. For ISP, we need to specify the weights for Lasso penalty,
group Lasso penalty and fused Lasso penalty. For feature-based approach, sequences were
converted into a point-based representation based on time smoothing kernels; we estab-
lish linear regression-Lasso model by using point-based representation data to predict the
MMSE scores of time point “M36”. The weight for Lasso penalty of feature-based approach
also needs to be determined. We identify the best parameter settings for these approaches
through cross-validation before we conduct evaluation 2. We repeat this evaluation 30 times,
the average performances are summarized in Table 4.

The average mean squared errors of DPLDF, cFSGL, ISP, Feature-based approach are
3.212, 4.383, 4.029 and 4.613 respectively. The prediction error of Feature-based approach
is higher than the other three healthcare predictive analytics approaches because the weights
of data sets form different time points are assigned by a given function which may not
capture time correlation of different data sets. Due to the shared representation in parallel

Table 4 Comparison of our proposed DPLDF method and other healthcare predictive analytics approaches
(cFSGL, ISP, Feature-based approach) on MMSE scores prediction, in terms of average correlation coef-
ficient (R) and mean squared error (MSE) for time point “M36”. 90% portion of data is used as training
data

Comparison item DPLDF cFSGL ISP Feature-based approach

Target: MMSE
R 0.786+0.041 0.7134+0.036 0.69140.039 0.702+0.032
M36 MSE 3.21240.941 4.383%1.143 4.02940.993 4.613+1.016
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learning of the cFSGL approach, which utilizes the baseline clinical measures data and the
cognitive scores of different time point, this can improve individual task prediction accu-
racy. The ISP approach can further improve the performance due to the feedback from the
intermediate information. The result from evaluation 2 suggests that the proposed DPLDF
method achieve the lowest prediction error because temporal successivity of data from def-
erent time points is modeled by the temporal penalty. More specifically, the DPLDF method
can better depict the evolution characteristics of data from different time points in longitu-
dinal data fusion, which in turn improve the prediction accuracy. We will provide further
error analysis among different predictive analytics approaches in the following part.

4.3 Effect of patients’ status on prediction performance

Based on the overall prediction comparison, we further provide a detailed error analysis
to discover the effect of patients’ status on prediction performance. For the prediction of
MMSE scores of time point “M36”, we divide the patients into different ranges (AD, MCI
and NC) based on their actual clinical scores, and compare the prediction errors of different
approaches for patients with different conditions, so as to examine the effect of the patients’
actual scores on prediction performance.

Figure 3 shows the error analysis for MMSE prediction, and the mean squared error of
cognitive scores prediction of patients with different conditions at time point “M36” are
summarized. From the figure, we can conclude that the major prediction error is produced
when predicting those patients with low cognitive measurement (For MMSE score, [0, 20]
means AD patients). For patients with cognitive scores below 20, the cognitive scores of
time point “M36” may vary greatly from time point “M24” and the prediction error of
different healthcare predictive analytics approaches differs greatly. DPLDF, ISP and Lin-
ear regression-Lasso via analysis of the last time point are the three best methods with
the lowest prediction error. Due to imprecise depiction of the evolution characteristics of
data of different time points, the prediction accuracy of Feature-based approach and Linear

12 T

I oPLDF [ Feature-based approach

I cFsGL [ Linear regression-Lasso via analysis of all five time points
10 - I:| ISP I:| Linear regression-Lasso via analysis of "M24" time point 7

Mean squared error
[}
T
|

O L
[0,20] [21,24] [25,30]
MMSE

Fig. 3 Comparison of our proposed DPLDF method and other healthcare predictive analytics approaches
(cFSGL, ISP, Feature-based approach, linear regression with lasso regularization) on MMSE scores predic-
tion, in terms of mean squared error (MSE) for time point “M36” summarized according to patients’ status.
90% portion of data is used as training data
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regression-Lasso via analysis of all previous time points is lower than Linear regression-
Lasso via analysis of the last time point. However, our proposed DPLDF method has the
advantage of synthesizing information of data from different time points and characterizing
the trend of features’ dynamic change, which in turn makes our method has the highest accu-
racy for prediction of patient’s potential clinical score at the specific time point in future.
For those with higher cognitive scores (MCI or Normal Control), since their status is rela-
tively stable, the prediction error is significantly decreased and the prediction accuracy of
different healthcare predictive analytics approaches is close to each other.

Taken together, among the existing healthcare predictive analytics approaches, our pro-
posed DPLDF can achieve better performance for predicting cognitive scores of patients
with different conditions.

4.4 Effects of different A in the proposed DPLDF

The purpose of this experiment is to discuss how the proportion of selected features
and predictive performance vary when different A values are chosen in our proposed
DPLDF method. In the MMSE score predictions for time point “M36” via analysis of
data from all five time points ranging from “M24” to “BL”, we report the proportions of
selected features and predictive performances when we use different choices of A values
(21, 22,23, 24, 2>, 2% fixing the value of temporal regularization parameter 1. We first ran-
domly select 90% portion of samples as the training set to learn the model and then apply
the model to predict the MMSE scores of time point “M36” on the remaining data, used as
a non-overlapping test set. We repeat this process 30 times, for different choices of A val-
ues the average proportions of selected features and predictive performances of DPLDF are
shown in Fig. 4.

We can observe from the figure, as we increase A fixing the value of temporal regular-
ization parameter u, the number of features selected gradually decrease, from about 94% of
the features to 18%, meanwhile the predictive performance increase first and then decrease.
Parameter X is considered as a tradeoff factor between sparsity and predictive performance,
and we can also observe that the best choice of X lies in the middle of the region (in this
example 2*), which achieve a good balance between sparsity and predictive performance.

5.5 100%
S 80% I
s 5
kK 2 60%
@ o 40%
C
S 4af
= 20% |
350 : : . . 0 : : : .
2! 22 23 24 2% 28 2! 22 2% 24 25 28
Lambda Lambda

Fig.4 Illustration of the results obtained using different A in our proposed DPLDF method. The MMSE score
prediction for time point “M36” via analysis of data from all five time points ranging from “M24” to “BL”
problems are used, and the average performances (mean squared error) are reported. We vary the A values
from 2! to 2° (x-axis) and report the performances obtained (y-axis) in the left figure. In the right figure, we
report the proportions of selected features (sparsity, y-axis) when we increase A from 2! to 26 (x-axis)
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Fig.5 Illustration of the />-norms change of the weight vectors corresponding to data vectors from different
time points using different  in our proposed DPLDF method. We vary the 4 values from 27 to 1 (different
polyline) and report the /;-norms change (y-axis) of the weight vectors corresponding to data vectors from
different time points (x-axis) using different

4.5 Effects of different temporal regularization parameter x in the proposed DPLDF

The purpose of this experiment is to discuss how the weight values change when differ-
ent temporal regularization parameters u are chosen in our proposed DPLDF method. In
the MMSE score predictions for time point “M36” via analysis of data from all five time
points ranging from “M24” to “BL”, we report the /;-norm changes of weight vectors of
the proposed DPLDF corresponding to data vectors from different time points when we use
different choices of p values (277,274,273, 272,271 20) fixing the value of parameter A.
We first randomly select 90% portion of samples as the training set to learn the model and
then apply the model to predict the MMSE scores of time point “M36” on the remaining
data, used as a non-overlapping test set. For different choices of w values, the l,-norms of
the weight vectors corresponding to data vectors from different time points are illustrated
in Fig. 5. The predictive performances of different choices of n values are also listed in
Table 5.

It can be observed from the figure, for the MMSE score prediction for time point “M36”
problems, that the polylines possess a downward trend and the />-norm of the weight vec-
tor (W(:, 1)) corresponding to data vector of current time point (“M?24”) has the maximum
value. We can observe from Table 5 that the best choice of w is 2-3 which achieve a good
predictive performance. When 1 equals 273, the corresponding polyline has the temporal
successively characteristics, which in our article indicates the feature vectors of recent time

Table 5 The predictive performances corresponding to different choices of u values

m 2-5 24 273 272 21 20

MSE 3.992 4.104 3.212 3.687 3.923 4.615
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points have larger weight vector norms than that of early time points. This makes our pro-
posed DPLDF method could use longitudinal medical data and guarantees that data from
recent time points have greater weights, thus ensureing the high predictive performance.

5 Conclusions

Our study makes several research contributions. First, we propose a Disease Progression via
Longitudinal Data Fusion (DPLDF) formulation for modeling disease progression. DPLDF
allows the simultaneous analysis of features form data source level and feature level based
on a sparse regularization regression approach. Based on the linear regression model, we
introduce the temporal regularization term to maintain the temporal successivity of data
from different time points. Due to the proposed model belongs to a class of overlap group
Lasso model, we employ accelerated gradient descent method to solve the formulation.
Second, we evaluate the proposed approach with real-world EHR data. We obtain empiri-
cal evidence that introducing the evolution characteristics of medical data of different time
points in modeling disease progression improves predictive performance. That is, a longi-
tudinal data fusion framework can indeed offer better clinical insights than other disease
progression modeling methods. Finally, we recognize that sequence data length has an
impact on effeteness of disease progression modeling. Our evaluation result further sug-
gests that DPLDF outperforms the alternative healthcare predictive analytics approaches in
disease progression modeling.

This work has some limitations. First, the “no free lunch” theorem (Wolpert et al. 1997)
implies that there will never be a learning method that can guarantee to outperform another
method on every possible data set. Our evaluations are based on an EHR data set from
ADNI. While we have employed cross-validation to train and test models, the better perfor-
mance of DPLDF methods may still be limited to the data set under consideration. Future
research may experiment the DPLDF approach on different data sets and explore the condi-
tion in which it is effective. Second, we assume a linear relationship between input features
and output values in the proposed DPLDF approach. We note that this is a limitation to all
existing disease progression modeling approaches in the literature. This is due to the rela-
tionship between input features and output values are not clear, and the non-linear model
may make the learning optimization model non-convex, so a global optimal solution can-
not be obtained through existing optimization methods. Despite these limitations, this study
provides a new way to conduct longitudinal data fusion and healthcare predictive analytics
for modeling disease progression.

Our future work includes the implementation of the method on an actual intelligent clin-
ical decision support system, and evaluation of the approach under realistic conditions.
Furthermore, we are planning to improve the performance of the present method by analyz-
ing more patient information data, such as gender, age, family history, to reach the smaller
examination cost and deal with more complex dynamic disease diagnosis and early warning
situations.
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