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a b s t r a c t 

Fusing multi-modality data is crucial for accurate identification of brain disorder as different modalities 

can provide complementary perspectives of complex neurodegenerative disease. However, there are at 

least four common issues associated with the existing fusion methods. First , many existing fusion meth- 

ods simply concatenate features from each modality without considering the correlations among differ- 

ent modalities. Second , most existing methods often make prediction based on a single classifier, which 

might not be able to address the heterogeneity of the Alzheimer’s disease (AD) progression. Third , many 

existing methods often employ feature selection (or reduction) and classifier training in two independent 

steps, without considering the fact that the two pipelined steps are highly related to each other. Forth , 

there are missing neuroimaging data for some of the participants ( e.g. , missing PET data), due to the 

participants’ “no-show” or dropout. In this paper, to address the above issues, we propose an early AD 

diagnosis framework via novel multi-modality latent space inducing ensemble SVM classifier. Specifically, 

we first project the neuroimaging data from different modalities into a latent space, and then map the 

learned latent representations into the label space to learn multiple diversified classifiers. Finally, we ob- 

tain the more reliable classification results by using an ensemble strategy. More importantly, we present 

a Complete Multi-modality Latent Space (CMLS) learning model for complete multi-modality data and 

also an Incomplete Multi-modality Latent Space (IMLS) learning model for incomplete multi-modality 

data. Extensive experiments using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset have 

demonstrated that our proposed models outperform other state-of-the-art methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s Disease (AD) is the most common form of demen-

ia, which is characterized as a genetically complex and irreversible

eurodegenerative disorder and often found in people over 65

ears old ( Alzheimer’s, 2015 ). Recent studies have demonstrated

hat there are about 26.6 million AD patients worldwide, and 1 out

f 85 people will be affected by AD by 2050 ( Palmer, 2011 ). Since

here is no cure for AD, the timely and accurate diagnosis of AD

nd its prodromal stage ( i.e. , Mild Cognitive Impairment (MCI)) is
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linically important ( Zhou et al., 2019a; Lu et al., 2018; Long et al.,

018; Thung et al., 2018; Zhou et al., 2019c; Long , 2016; Wee et al.,

014 ). 

Neuroimaging techniques, such as magnetic resonance imaging

MRI) ( Wolz et al., 2012; Chen et al., 2019; Vemuri et al., 2008;

iu et al., 2018; Fan et al., 2019; Lian et al., 2018 ) and positron

mission tomography (PET) ( Herholz et al., 2002; Fan et al., 2008 ),

re powerful tools that are able to measure different yet com-

lementary information, and thus provide unprecedented oppor-

unities for dementia study. As neuroimaging data are very high-

imensional, existing methods often use region-of-interest (ROI)

ased features, instead of the original voxel based features, for

nalysis ( Chaves and et al., 2009; Magnin et al., 2009; Tong et al.,

014 ). In this context, many machine learning algorithms have

een developed to utilize neuroimaging data for AD diagnosis. A

onventional machine learning framework concatenates these fea-

https://doi.org/10.1016/j.media.2019.101630
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.101630&domain=pdf
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tures from multiple modalities into a long vector, and subsequently

employs feature selection and classification. While this framework

is easy to implement, it ignores many prior knowledge of the data

that could be beneficial to the study. To exploit the correlation

among multi-modalities, some studies have been developed to fuse

the complementary information from multi-modality data for ac-

curate AD diagnosis. For example, Zhu et al. (2016b) use Canonical

Correlation Analysis (CCA) to first transform multi-modality data

into a common CCA space, and then use the transformed features

for classification. Hinrichs et al. (2009) use Multiple Kernel Learn-

ing (MKL) to fuse multi-modality data by learning an optimal lin-

early combined kernels for classification. Zhang et al. (2012) intro-

duce a multi-modality multi-task learning based method by jointly

using clinical scores and label information. A multi-task learning

based feature selection method with inter-modality relationship

preserving constraint is proposed in Liu et al. (2014) . 

Currently, some multi-modality fusion studies first employ fea-

ture selection or multi-modality fusion, and then the selected or

fusion features are fed to train a classifier ( e.g. , Support Vector

Machine (SVM)) ( Zhu et al., 2016b; Zhang et al., 2012; Lei et al.,

2017 ). It is a popular two-step strategy in AD diagnosis framework.

However, the feature selection in the first step may not be the

best to the classifier training in the second step, thus this sepa-

rated pipeline could degrade the final classification performance.

Moreover, some existing methods ( Zhu et al., 2016b; Lei et al.,

2017 ) often focus on learning a single classifier ( e.g. , SVM classi-

fier) for AD diagnosis, which is difficult to address the heterogene-

ity of complex brain disorder. As in many recognition and classifi-

cation tasks, ensemble approaches can obtain more promising per-

formance ( Freund and Schapire, 1997 ), which can reduce the vari-

ance of the base classifiers. More importantly, ensemble classifiers

can obtain more promising performance if they have different de-

cision boundaries, allowing for more flexibility through imposing

diversity among the all models ( Brown et al., 2005 ). Thus, to deal

with this disease heterogeneity issue, it is more reasonable to train

a set of diversified classifiers and ensemble them ( i.e. , instead of

training a single classifier), which has been shown effective in pre-

vious studies ( Freund and Schapire, 1997; Brown et al., 2005; Liu

et al., 2016 ). 

In addition, it is unavoidable to have missing data, i.e. , some

subjects have missing PET in the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) dataset, due to the participants’ no show-up

or dropout. Generally, there are two approaches to deal with miss-

ing data issue ( Thung et al., 2014 ), i.e. , (1) discard the subjects

with missing data, and (2) impute the missing data. Most exist-

ing approaches discard subjects with at least one missing modal-

ity and perform disease identification based on the remainder

of the subjects with complete multi-modalities. In this case, this

approach discards a lot of information that is potentially useful,

which could not learn a reliable diagnostic model. Besides, impu-

tation methods estimate missing values based on available data

using specific imputation techniques, e.g. , expectation maximiza-

tion (EM) ( Schneider, 2001 ), singular value decomposition (SVD)

( Hastie et al., 2015 ), and matrix completion method ( Thung et al.,

2014 ). However, the effectiveness of these approaches can be af-

fected by imputation artifacts. Moreover, several recently devel-

oped multi-view learning methods ( Yuan et al., 2012; Liu et al.,

2017 ) and multi-task learning based methods ( Thung et al., 2014 )

demonstrate greater accuracies in AD diagnosis. 

In general, most of the existing approaches suffer from the fol-

lowing challenges. First, some traditional multi-modal fusion meth-

ods simply concatenate features from each modality without con-

sidering the correlations among different modalities. Second, ex-

isting methods often make prediction based on a single classi-

fier, which could not be able to address the heterogeneity of the

Alzheimer’s disease (AD) progression. Third, most existing methods
ften employ feature selection (or reduction) and classifier train-

ng in two independent steps, without considering the fact that

hese two pipelined steps are highly related to each other. Forth,

he missing data issue is commonly existing in multi-modality set-

ing, thus, how to make use of all available subjects to train a more

eliable model is critical for early AD diagnosis. 

To this end, we propose a novel AD diagnosis framework via

ulti-modal latent space inducing ensemble SVM classifier, which

an seamlessly perform latent space learning and ensemble of di-

ersified classifiers learning in a unified framework (as shown in

ig. 1 ). Specifically, we first project neuroimaging features from dif-

erent modalities ( i.e. , MRI and PET in our study) into a common

atent space, to exploit the cross-modality correlations while learn-

ng their latent representations. Besides, to address the heterogene-

ty of AD progression, we learn multiple diversified classifiers by

apping the latent representations into multiple label spaces, and

se an ensemble strategy to obtain a more robust classification

esult. Furthermore, we integrate latent space learning and clas-

ifier training into a unified framework, so that all the components

n the framework can work together to achieve a better AD diag-

ostic model. More importantly, our proposed framework can ad-

ress missing data issue and make use of all samples to train a

eliable prediction model. We conducted experiments on the ADNI

atabase, and the results have demonstrated the superiority of the

roposed method over state-of-the-art methods. 

Compared with previous AD diagnostic models, the main con-

ributions of our work are four-fold, as described below. 

• Our proposed AD diagnosis method seamlessly integrates

the latent representations learning and multiple diversified

classifiers learning into a unified framework, while previous

methods often employ feature selection and classifier train-

ing in two separate steps. Thus, the features selected would

be optimal to the classifier in our proposed method. 
• We learn common latent representation for neuroimaging

data from different modalities to better exploit the intrinsic

correlations among them. In contrast, previous methods of-

ten fuse features from different modalities in their original

forms and ignore the correlations among different modali-

ties. 
• Unlike existing diagnosis methods that often train a single

classifier for model prediction, our proposed method learns

multiple diversified classifiers and obtain the final result via

an ensemble strategy. In this way, our model can better ad-

dress the heterogeneity of neurodegenerative disease. 
• Last but not least, our proposed method is also able to han-

dle the missing data issue. Specifically, when a subject is as-

sociated with one or more missing modalities, instead of ex-

cluding this subject from the analysis, our model will project

only the available modalities into the latent space. In this

way, our proposed method will make use of all available

subjects to train a more reliable prediction model. In addi-

tion, our method does not need to impute the missing data,

which may introduce unnecessary noise into the data that

subsequently reduces the classification performance. 

A preliminary version of complete multi-modal latent space

earning framework was presented in Zhou et al. (2018) . This pa-

er extends it and proposes a novel incomplete multi-modal la-

ent space learning framework for incomplete multi-modal datset.

e implement disease diagnosis on both complete and incomplete

ulti-modal dataset in this study. 

The rest of this paper is organized as follows. Section 2 de-

cribes the materials and neuroimage preprocessing steps.

ection 3 gives the details of the proposed approach. The ex-

erimental results are reported in Section 4 . Finally, Section 5 con-

ludes this paper. 
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Fig. 1. The flow diagram of our proposed AD diagnosis framework. We project multi-modality data ( i.e. , MRI and PET in our case) into a common latent space to exploit 

the correlation among multi-modal neuroimaging data. Then, multiple classifiers with diversity constraint are trained and an ensemble strategy is used to obtain the final 

classification results. 

Table 1 

Demographic information of the used subjects (MMSE: mini-mental state examina- 

tion). 

Female / male Education Age MMSE 

NC 108 / 118 16.0 ± 2.9 75.8 ± 5.0 29.1 ± 1.0 

sMCI 68 / 137 15.7 ± 3.1 75.1 ± 7.6 27.4 ± 1.7 

pMCI 62 / 95 15.6 ± 2.9 74.7 ± 6.9 26.6 ± 1.7 

AD 87 / 99 14.7 ± 3.1 75.3 ± 7.6 23.3 ± 2.0 
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. Materials and neuroimage preprocessing 

In this study, we used data from the public ADNI database

 Jack , 2008 ) for performance evaluation. The ADNI dataset had

een launched in 2003 by the National Institute on Aging, the Na-

ional Institute of Biomedical Imaging and Bioengineering, the Food

nd Drug Administration, private pharmaceutical companies and

onprofit organizations with a five-year public private partnership.

he main goal of ADNI is to investigate if MRI, PET and other bi-

logical markers, together with clinical and neuropsychological as-

essments can be combined to measure the progression of AD -. 

.1. Subjects 

In this study, we used 774 subjects from ADNI-1, including 226

ormal controls (NC), 362 MCI and 186 AD subjects. In addition,

here are only 379 subjects with complete MRI and PET data, in-

luding 101 NC, 185 MCI, and 93 -AD. Moreover, 362 MCI sub-

ects included 205 stable MCI (sMCI) subjects and 157 progres-

ive MCI (pMCI) subjects. In this study, we defined progressive MCI

pMCI) subjects as MCI subjects that will progress to AD within 24

onths, while sMCI subjects as MCI subjects that remain stable

t all available time points ( 0 − 96 months). The demographic and

linical information of all subjects used in this study are summa-

ized in Table 1 . 

.2. Neuroimage preprocessing 

In this study, we downloaded ADNI preprocessed 1.5T T1-

eighted MR images from the ADNI website. 1 All structural MR

mages were acquired from 1.5T scanners. These MR images were

eviewed for quality and automatically corrected for spatial dis-

ortion, which were caused by gradient nonlinearity and B1 field

nhomogeneity. Further, all PET images ( i.e. , FDG-PET scans) were

ollected from a variety of scanners with protocols individual-

zed for each scanner. Following previous works ( Zhang et al.,

012; Xue et al., 2006 ), we further processed the MR images us-

ng a standard pipeline including the following steps: (1) anterior
1 http://www.loni.usc.edu/ADNI 
ommissure-posterior commissure (AC-PC) correction by using MI-

AV software, 2 (2) intensity inhomogeneity correction by using N3 

lgorithm ( Sled et al., 1998 ), (3) brain extraction on all structural

R images by using a robust skull-stripping method ( Wang et al.,

014 ), (4) cerebellum removal based on based on registration and

ntensity inhomogeneity correction, (5) tissues segmentation by

sing FAST method in FSL package ( Zhang et al., 2001 ), obtaining

hree different tissues ( i.e. , white matter (WM), gray matter (GM),

nd cerebrospinal fluid), and (6) registration to a template ( Kabani,

998; Wu et al., 2006 ) by using HAMMER algorithm ( Shen and

avatzikos, 2002 ), and then dissecting images into 93 regions-

f-interest (ROIs) by labeling them based on the Jacob template

 Kabani, 1998 ). In detail, we computed the GM tissue volume of

ach ROI in the labeled image, and then normalized them with the

ntracranial volume, thus the ROI-based feature was used to repre-

ent each subject. Besides, for each subject, we first aligned PET

mages to their corresponding T1-weighted MR images by using

ffine registration, and then computed the average PET intensity

alue of each ROI as PET feature. Thus, in our study, we have 93-

imensional ROI-based features from both the MRI and PET data,

espectively. 

. Proposed method 

.1. Preliminary 

An SVM ( Vapnik, 2013 ) is a discriminative classifier formally

efined by a separating hyperplane, which has been widely used

n many fields such as pattern recognition and machine learning.

enerally, the primal SVM can be formulated as 

in 

w ,b 

N ∑ 

i =1 

f 
(
y i , x 

� 
i w + b 

)
+ λ�( w ) , (1) 

here f ( · ) is a penalty function, w and b are the weight vec-

or and bias, respectively, ( x i , y i ) is the i -th sample of input-output

air, ( x � 
i 

w + b) is the predicted output for the i -th sample, N is

he number of samples, and �( w ) is a regularizer term imposed

n w . Besides, λ is a non-negative parameter used to balance be-

ween the data fitting loss term and the regularizer term. 

.2. Common latent space learning for multi-modality data 

For a multi-modality data set X = { X 1 , . . . , X M 

} , where X m 

∈
 

d m ×N denotes the feature matrix for the m th modality with d m 

eatures and N subjects, and M denotes the number of modalities,

e exploit the correlations among different modalities by project-

ng different modalities into a common latent space, as given be-
2 http://mipav.cit.nih.gov/clickwrap.php 

http://www.loni.usc.edu/ADNI
http://mipav.cit.nih.gov/clickwrap.php
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low: 

min 

V m , H 

M ∑ 

m =1 

(‖ V 

� 
m 

X m 

− H ‖ 

2 
F + γ ‖ V m 

‖ 2 , 1 

)
, (2)

where H ∈ R 

h ×N denotes the common latent representation, V m 

∈
R 

d m ×h denotes the projection matrix that project X m 

to H , γ
denotes the regularization parameter, and h denotes the dimen-

sion of the latent space. The � 2,1 -norm regularizer ( i.e. , ‖ V m 

‖ 2 , 1 =∑ d m 
i =1 

√ ∑ h 
j=1 v 2 m,i j 

) has been widely applied to multi-task feature

learning ( Wang et al., 2017; Zhou et al., 2019b; Zhang et al., 2018;

Thung and Wee, 2018 ), and we use it to collectively penalize the

coefficients in each row of V m 

, and enforce row-wise sparsity in

V m 

. Consequently, the � 2,1 -norm on V m 

encourages the selection of

useful (ROI-based) features from X m 

during the latent space learn-

ing in Eq. (2) . In the next section, we will give the details of our

proposed AD diagnosis model by integrating the latent space learn-

ing and classifier training into a unified framework. 

3.3. Proposed dementia diagnosis framework 

Combining Eqs. (1) and (2) , and using the latent features in-

stead of the original features for classifier training, we have a uni-

fied framework of latent space learning and classifier training, as

given by 

min 

V m , w , H ,b 

N ∑ 

i =1 

f 
(
y i , h 

� 
i w + b 

)
+ λ�( w ) 

+ β
M ∑ 

m =1 

‖ V 

� 
m 

X m 

− H ‖ 

2 
F + γ

M ∑ 

m =1 

‖ V m 

‖ 2 , 1 , (3)

where H = [ h 1 , h 2 , . . . , h N ] ∈ R 

h ×N with h i ∈ R 

h ×1 denoting the la-

tent representation of the i th sample ( i.e. , the i th column of H ), and

y i ∈ {−1 , 1 } is the corresponding label for the i th sample. Besides,

λ, β and γ are the regularization parameters that control the con-

tribution of each term in Eq. (3) . If we use hinge loss function for

f ( ·), the first term in Eq. (3) is given as 

N ∑ 

i =1 

f 
(
y i , h 

� 
i w + b 

)
= 

N ∑ 

i =1 

(
1 − ( h 

� 
i w + b) y i 

)p 

+ , (4)

where operation (·) + is defined as (x ) + := max (x, 0) , which re-

turns x if it is non-negative, and returns zero otherwise. Besides,

p is a constant, which is normally set to value 1 or 2 ( Guo et al.,

2017 ). 

Eq. (3) consists of only a single SVM classifier with hinge

loss function, which may not be able to address the hetero-

geneity of AD progression. Previous works such as Freund and

Schapire (1997) , Brown et al. (2005) have indicated that the en-

semble of multiple classifiers could be a better and more reli-

able prediction model. Thus, in this study, following the work

in Guo et al. (2017) , we extend the single classifier training in

Eq. (3) into the following framework of multiple classifiers train-

ing, given as 

min 

V m , W , H , b 

C ∑ 

c=1 

N ∑ 

i =1 

(
1 − ( h 

� 
i w c + b c ) y i 

)p 

+ + λ�( W ) 

+ β
M ∑ 

m =1 

‖ V 

� 
m 

X m 

− H ‖ 

2 
F + γ

M ∑ 

m =1 

‖ V m 

‖ 2 , 1 , (5)

where W = [ w 1 , w 2 , . . . , w C ] ∈ R 

h ×C is the weight matrix with each

column ( i.e. , w i ) denoting the weight vector for one classifier, b =
[ b 1 , b 2 , . . . , b C ] ∈ R 

C×1 is the corresponding bias vector, and C is the

number of classifiers. By using the model in Eq. (5) , we can learn

i  
ultiple classifiers, and obtain the final result by devising an en-

emble strategy. 

However, if there is no constraint on the weight matrix W

hat encourages diversity of classifiers, the performance of ensem-

le strategy will be limited. For example, if we choose �(W ) =
1 
2 ‖ W ‖ 2 

F 
, the weight vectors of the classifiers ( i.e. , columns in W )

ay end up similar to each other, thus defeating the purpose

f ensembling the results of multiple classifiers. To have a more

eaningful ensemble classifier that can better address the hetero-

eneity of the AD progression, we would like to learn a set of

iversified classifiers that have weight vectors ( e.g. , w i , w j ) very

ifferent from each other. There are many ways to enforce diver-

ity for a set of classifiers ( Brown et al., 2005 ), but we choose

ethod described in Guo et al. (2017) for its good performance.

hat is, we enforce the diversity of classifiers by minimizing the

ollowing function between each pair of classifier weight vectors,

.e. , { min ‖ w i � w j ‖ 0 = min 

∑ 

k ( w i (k ) · w j (k ) � = 0) , i � = j} , where �

enotes Hadamard product, ‖ · ‖ 0 denotes � 0 -norm, and w i (k ) de-

otes the k th element in w i . This minimization will enforce the

olumn weight vectors ( e.g. , w i and w j , i � = j ) in W to be as orthog-

nal as possible, so that the classifiers learnt would be diversified.

owever, as it is difficult to directly optimize the � 0 -norm problem,

e choose to minimize the relaxed exclusivity function instead,

.e. , { min ‖ w i � w j ‖ 1 = min 

∑ 

k | w i (k ) | · | w j (k ) | , i � = j} , where | · |

enotes the absolute operator. To guarantee the convexity of the

egularizer �( W ), we combine the relaxed exclusivity function

nd the Frobenius norm of W to obtain the following regularizer

 Guo et al., 2017 ): 

( W ) = 

1 

2 

‖ W ‖ 

2 
F + 

∑ 

i, j � = i 
‖ w i � w j ‖ 1 

= 

1 

2 

h ∑ 

k =1 

( 

C ∑ 

c=1 

| w c (k ) | 
) 2 

= 

1 

2 

‖ W 

� ‖ 

2 
1 , 2 . (6)

The derivation of Eq. (6) is discussed in details in

uo et al. (2017) . In summary, we use the min 

1 
2 ‖ W 

� ‖ 2 1 , 2 as

 regularizer for W to encourage diversity of classifiers in our

ramework. 

Finally, by substituting Eq. (6) into Eq. (5) , we obtain a unified

ramework of latent space learning and multiple diversified classi-

ers training, where the final objective function is given as 

min 

V m , W , H , b 

C ∑ 

c=1 

N ∑ 

i =1 

(
1 − ( h 

� 
i w c + b c ) y i 

)p 

+ + 

λ

2 

‖ W 

� ‖ 

2 
1 , 2 

+ β
M ∑ 

m =1 

‖ V 

� 
m 

X m 

− H ‖ 

2 
F + γ

M ∑ 

m =1 

‖ V m 

‖ 2 , 1 . (7)

ote that this framework assumes that all samples consist of com-

lete multi modality data, thus we call our proposed method in

q. (7) as Complete Multi-modal Latent Space (CMLS) learning

odel. 

Remarks . In CMLS model, 1) each modality in multi-modality

ata is projected into a common latent space to exploit the cor-

elations among different modalities; 2) the common latent repre-

entations are used to train multiple diversified classifiers to ad-

ress heterogeneity issue of AD progression, so that an ensemble

trategy can be used to improve the classification performance. 

However, the applicability of the CMLS model is limited if it can

nly use samples with complete multi-modality data, as missing

ata is ubiquitous in multi-modality dataset. To address the miss-

ng data issue, we extend our framework in Eq. (7) into an Incom-
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Fig. 2. Comparison of CMLS and IMLS models. Both CMLS and IMLS models project different modalities of multi-modality data into a common latent space, but CMLS model 

is only applicable if the multi-modality data is complete, while IMLS model is applicable even when the multi-modality data is incomplete. As shown in the figure, IMLS 

model only projects the existing modality into the common latent space. 

Table 2 

The main notations used in Eqs. (7) and (8) . 

Notation Size Description 

X m d m × N Feature matrix for the m th modality. 

V m d m × h Projection matrix for the m th modality. 

H h × N Latent representation matrix. 

W h × C Weight matrix for SVM classifiers, each column 

representing a classifier. 

b C × 1 Bias vector for SVM classifiers, each element representing 

the bias of a classifier. 

O m N × N Filter matrix for the m th modality. The value of its i th 

diagonal element indicates the availability of the m th 

modality data for the i -th subject. 

d m – Number of features for the m th modality data. 

C – Number of classifiers. 

N – Number of subjects (or samples). 

h – Feature dimension in the latent feature representation. 

M – Number of modalities in multi-modality data. 

λ, β , γ – Regularization parameters 
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lete Multi-modal Latent Space (IMLS) learning model as 

min 

V m , W , H , b 

C ∑ 

c=1 

N ∑ 

i =1 

(
1 − ( h 

� 
i w c + b c ) y i 

)p 

+ + 

λ

2 

‖ W 

� ‖ 

2 
1 , 2 

+ β
M ∑ 

m =1 

‖ P O m 

(
H − V 

� 
m 

X m 

)‖ 

2 
F + γ

M ∑ 

m =1 

‖ V m 

‖ 2 , 1 , (8) 

here P O m (X ) = X · O m 

is a mask operation that filters out miss-

ng data component (indicated by O m 

) in X , and O m 

is a diago-

al matrix with its i th diagonal element indicating the existence

f the m th modality data for the i th subject, i.e. , value of 1 when

e have the data available, and 0 otherwise. For the convenience

f our readers to comprehend the proposed models in Eqs. (7) and

8) , we have listed the main notations used in Table 2 . 

Remarks . As shown in Fig. 2 , it is worth noting that our IMLS

odel addresses the missing data issue by making use of all the

vailable samples to train the prediction model. When a sample

as the complete multi-modality data, our IMLS model will project

ll the modality data into a latent space; when one or more modal-

ties are missing, our IMLS model will project only the available

odality (or modalities) into the latent space. 

.4. Optimization 

The problems in Eqs. (7) and (8) can be solved via the Aug-

ented Lagrange Multiplier (ALM) ( Lin et al., 2011 ) algorithm,

hich alternatively optimizes the variables, i.e. , optimizing one

ariable at a time with the other variables being fixed. We
rst provide the details for solving our CMLS model in Eq. (7) .

ith consideration of 1 − ( h 

� 
i w c + b c ) y i = y i y i − ( h 

� 
i w c + b c ) y i =

 i (y i − ( h 

� 
i w c + b c )) , we introduce an auxiliary variable z c 

i 
:= y i −

( h 

� 
i w c + b c ) . Besides, we also introduce an auxiliary matrix Q = W

o make the problem separable. Subsequently, we have the follow-

ng equivalent problem 

min 

V m , W , H , Q , Z , b 
( Y � Z ) 

p 
+ + 

λ

2 

‖ W 

� ‖ 

2 
1 , 2 

+ β
M ∑ 

m =1 

‖ V 

� 
m 

X m 

− H ‖ 

2 
F + γ

M ∑ 

m =1 

‖ V m 

‖ 2 , 1 , 

s.t Q = W , Z = Y −
(
H 

� Q + 1 N b 

� )
, (9) 

here Y ∈ R 

N×C is the matrix of ground-truth labels with each

f its column equivalent to the vector of ground-truth labels for

 samples, 1 N is an all-one column vector of dimension N , and

 ∈ R 

N×C is the corresponding matrix of prediction differences be-

ween the ground-truth labels and the label predictions from di-

ersified classifiers. 

The above objective function can be solved by minimizing the

ollowing ALM problem 

L ( V m 

, W , H , Q , Z , b , P 1 , P 2 ) 

= ( Y � Z ) 
p 
+ + 

λ

2 

‖ W 

� ‖ 

2 
1 , 2 

+ β
M ∑ 

m =1 

‖ V 

� 
m 

X m 

− H ‖ 

2 
F + γ

M ∑ 

m =1 

‖ V m 

‖ 2 , 1 

+ �( P 1 , Q − W ) + �
(
P 2 , Z − Y + 

(
H 

� Q + 1 N b 

� ))
, (10) 

here �( P , �) = 

μ
2 ‖ �‖ 2 

F 
+ 〈 P , �〉 , with 〈 · , · 〉 denoting the ma-

rix inner product, μ is a positive penalty scalar, and P 1 and P 2 

re Lagrangian multipliers. To find a minimal point for L , we up-

ate one variable while keeping the other variables fixed. Thus, we

plit the above optimization problem into the following multiple

ubproblems. 

V m 

-subproblem : The associated optimization problem with re-

pect to V m 

can be written as 

in 

V m 
β‖ V 

� 
m 

X m 

− H ‖ 

2 
F + γ ‖ V m 

‖ 2 , 1 . (11)

We can solve problem (11) by taking the derivative of the ob-

ective function with respect to V m 

, and set it to zero ( Nie et al.,

010; 2016 ). We first compute the derivative of the term ‖ V m 

‖ 2 , 1 
.r.t. V m 

, i.e. , 
∂‖ V m ‖ 2 , 1 

∂ V m 
= �V m 

, where � ∈ R 

d m ×d m is a diagonal ma-

rix with its i th diagonal element given as �ii = 

1 

2 ‖ V m,i : ‖ 2 , and V m,i : 

2 
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Fig. 3. Comparison of classification results using two evaluation metrics ( i.e. , ACC and AUC) for three classification tasks: (a) MCI/NC, (b) MCI/AD, and (c) sMCI/pMCI, using 

complete multi-modality dataset. 
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denotes the i th row of V m 

. Then, taking the derivative of the objec-

tive function in Eq. (11) and set it to zero, we have the following

close-form solution 

V m 

= 

(
X m 

X 

� 
m 

+ 

γ

β
�

)−1 

X m 

H 

� 
. (12)

Note that, � is dependent on V m 

, thus we can use an iterative

optimization step to update V m 

and � until convergence. 

W -subproblem : When other variables are fixed except W , the

minization of objective function in Eq. (10) is equivalent to 

min 

W 

λ

2 

‖ W 

� ‖ 

2 
1 , 2 + �( P 1 , Q − W ) . (13)

The optimization problem in Eq. (13) can be split into a set of sub-

problems. We optimize each row of W , i.e. , W i : , by solving 

min 

W i : 

λ

2 

W i : G W 

� 
i : + �( P 1 ,i : , Q i : − W i : ) , (14)

where G := diag ([ 
‖ W i: ‖ 1 | W i: (1) | + ξ , . . . , 

‖ W i: ‖ 1 | w i: (C) | + ξ ]) , and ξ is a small con-

stant to avoid zero denominator. Then, an iterative strategy can be

adopted to update W i : and G . When G is fixed, we update W i : by

using 

W i : = ( μQ i : + P 1 ,i : ) ( λG + μI ) 
−1 

. (15)

H -subproblem : Dropping all unrelated terms with respect to H

yields 

min 

H 
β

M ∑ 

m =1 

∥∥V 

� 
m 

X m 

− H 

∥∥2 

F 

+ �
(
P 2 , Z − Y + 

(
H 

� Q + 1 N b 

� ))
. (16)
Taking the derivative of the above objective with respect to H

nd setting it to zero, we get the following close-form solution 

 = 

(
2 β

μ
M I + Q Q 

� 
)−1 

×
( 

2 β

μ

M ∑ 

m =1 

V 

� 
m 

X m 

− Q 

(
Z − Y + 1 N b 

� + P 2 /μ
)� 

) 

, (17)

here I is an identity matrix. 

Q -subproblem : The associated optimization problem with re-

pect to Q can be written as 

in 

Q 
�( P 1 , Q − W ) + �

(
P 2 , Z − Y + 

(
H 

� Q + 1 N b 

� ))
. (18)

Taking the derivative of the above objective with respect to Q

nd setting it to zero, we obtain the following close-form solution

 = 

(
I + H H 

� )−1 (
W − P 1 /μ − H 

(
Z − Y + 1 N b 

� + P 2 /μ
))

, (19)

here I is an identity matrix. 

Z -subproblem : When other variables are fixed except Z , the

inimization of objective function in Eq. (10) is equivalent to 

min 

Z 
( Y � Z ) 

p 
+ + �

(
P 2 , Z − Y + 

(
H 

� Q + 1 N b 

� ))
⇔ min 

Z 
( Y � Z ) 

p 
+ + 

μ

2 

‖ Z − S ‖ 

2 
F , (20)

here S = Y − H 

� Q − 1 N b 

� − P 2 /μ. In our study, we set p = 2 . Fol-

owing Guo et al. (2017) , we have the following close-form solution

 = � � S / 

(
1 + 

2 

μ

)
+ � � S , (21)

here � := ( Y � S > 0) is an indicator matrix, and � is the com-

lementary support of �. 
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Fig. 4. Comparison of results for three classification tasks, i.e. , (a) MCI/NC, (b) MCI/AD, and (c) sMCI/pMCI, using single modality data: MRI (left) and PET (right). 
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b -subproblem : The optimization problem associated with b can

e written as 

min 

b 
�

(
P 2 , Z − Y + 

(
H 

� Q + 1 N b 

� ))
⇔ min 

b 

∥∥(
Z − Y + H 

� Q + P 2 /μ
)

+ 1 N b 

� ∥∥2 

F 
. (22) 

The close-form solution for the above problem is given as 

 = 

1 

N 

(
Y − Z − H 

� Q − P 2 /μ
)� 

1 N . (23) 

Multipliers : The multipliers P 1 and P 2 can be updated by 

P 1 := P 1 + μ( Q − W ) 

P 2 := P 2 + μ
(
Z − Y + 

(
H 

� Q + 1 N b 

� ))
. 

(24) 

We repeat the above updating steps iteratively until conver-

ence. Similar with solving CMLS model, we can also use ALM al-

orithm to solve our IMLS model efficiently. Note that, the multi-

odality data set X only consists of these subjects with com-

lete multi-modalities in CMLS, while the multi-modality data set

 consists of the all subjects with complete an incomplete multi-

odalities in IMLS. 

.5. Prediction 

After training our model, we can obtain the ensemble classi-

er weight w and bias b , which are the average of weight vec-

ors and biases of all the diversified classifiers, respectively, i.e. ,

 = 

1 
C 

∑ C 
c=1 w c , and b = 

1 
C 

∑ C 
c=1 b c . Then, for a testing sample x te 

ith � available modalities, its latent representation is computed

y averaging the feature projections from each available modality,

.e. , h te = 

1 
| �| 

∑ 

m ∈ � V 

� 
m 

x te 
m 

, where | �| ( ≤ M ) denotes the number

f modalities in �. Finally, the classification label for this test sam-

le is given as y te = sign ( h 

� 
te w + b) . 
. Experiments 

.1. Experimental setup 

We evaluate the effectiveness of the proposed model by con-

ucting the following three binary classification tasks: i.e. , MCI vs.

C, MCI vs. AD, sMCI vs. pMCI classifications. We use classification

ccuracy (ACC) and Area Under Curve (AUC) as performance met-

ics to compare our proposed method with the other comparison

ethods. 

We perform 10-fold cross validation for all the methods un-

er comparison, and report the means and standard deviations of

he experimental results with ten repetitions. For parameter set-

ing of our method, we determine the regularization parameter

alues ( i.e. , { λ, β, γ } ∈ { 10 −6 , . . . , 10 3 } ) and the dimension of the

atent space ( i.e. , h ∈ { 10 , 20 , . . . , 80 } ) via an inner cross-validation

earch on the training data, and searched the number of classifiers

 in the range { 10 , 20 , . . . , 80 } . We also use inner cross-validation

o select hyper-parameter values for all the comparison methods.

esides, the soft margin parameter of SVM is determined via grid

earch in the range of { 10 −5 , 10 −4 , . . . , 10 2 } . 

.2. Comparison results on complete multi-modality data 

Comparison methods . In this subsection, we compare our pro-

osed method ( i.e. , CMLS) with other classification methods that

se complete multi-modality data, as listed below. 

• Baseline method. We include the result for the experiment

by using the original features to train a SVM classifier, with-

out performing any feature selection or reduction operation

(denoted as “ORI”). 
• Feature reduction (or selection) methods. Two methods are

compared in this category, namely 1) Principal Component

Analysis (PCA) ( Jolliffe, 2002 ), and 2) � 1 -norm based fea-

ture selection method, which is denoted as “Lasso”. For PCA,
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Fig. 5. Comparison of classification results using two evaluation metrics ( i.e. , ACC and AUC) for three classification tasks: (a) MCI/NC, (b) MCI/AD, and (c) sMCI/pMCI) on the 

incomplete multi-modal dataset. 
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we determine the optimal dimensionality of the data based

on their respective eigenvalues computed by the generalized

eigen-decomposition method according to Zhu et al. (2016a) .

For Lasso method, we optimize its sparsity parameter ( λ) by

cross-validating its value in the range of { 10 −4 , . . . , 10 2 } . 
• Multi-modality fusion methods. Four multi-modality/view

learning methods are compared in this category, i.e. , (1) CCA

( Hardoon et al., 2004 ); (2) Multi-view Learning with Adap-

tive Neighbours (MLAN) method ( Nie et al., 2018 ), which

performs clustering/semi-supervised classification and local

structure learning simultaneously; (3) Deep Matrix Factor-

ization (DMF) method ( Zhao et al., 2017 ), which conducts

deep semi-nonnegative matrix factorization (NMF) to seek

a common representation for multi-view clustering task;

and 4) Multi-view Dimensionality Co-Reduction (MDCR)

method ( Zhang et al., 2017 ), which adopts kernel match-

ing to regularize the dependencies across multiple views

and projects each view into a low-dimensional space. For

CCA method, we optimize its regularization parameter by

cross-validating its value in the range of { 10 −4 , . . . , 10 2 } . For

MLAN method, the parameter λ is determined in the range

of { 0 , 0 . 02 , . . . , 1 } . For DMF method, the parameters β and

γ are searched in the range of { 10 −5 , 10 −4 , . . . , 10 2 } . For

MDCR method, the parameter λ is determined in the range

of { 0 , 0 . 5 , . . . , 4 } . Note that we use MLAN method to directly

perform disease prediction, while resorting to SVM classifier

to perform disease prediction for the other methods. 
• Deep learning based feature representation method. In this

category, we compare our CMLS model with Stacked Auto-

Encoder (SAE) ( Suk et al., 2015 ) method. In SAE, the

main parameter is the number of hidden units. Following

Suk et al. (2015) , we use a three-layer network for multi-

modality data by using a grid search from [10 0 , 30 0 , 50 0] −
[50 , 100] − [10 , 20 , 30] (bottom-top). 

Results . Fig. 3 shows the comparison results between our pro-

osed method and all the comparison methods. From Fig. 3 , it can

e observed that our proposed method obtains better classifica-

ion performance in terms of ACC and AUC than all the comparison

ethods. Specifically, comparing with the Lasso based feature se-

ection method, which fuses multi-modality data without the con-

ideration of correlations between MRI and PET data, our method

erforms significantly better. For CCA method, we can see that it

btains relatively better AUC performance. This is possibly because

he multimodal fusion can better exploit the complementary in-

ormation and correlation between different modalities, which led

o the improved classification performance. Besides, though the

AE method uses high-level features learned from auto-encoder for

lassification, it has low performance, probably because it is an un-

upervised feature learning method that does not consider label

nformation. In addition, when compared with the three state-of-

he-art multi-view learning methods, our method still obtains bet-

er performance. It is worth noting that the DMF and MDCR meth-

ds use two independent steps for dementia diagnosis, while our
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Fig. 6. Comparison of results for three classification tasks ( i.e. , (a) MCI/NC, (b) MCI/AD, and (c) sMCI/pMCI) using MRI data on the incomplete dataset. 

Fig. 7. Comparison between our CMLS model and its degraded counterpart 

âǣFeatConcate+ensembleâǥ without using common latent space learning. 
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ethod fuses them into a unified framework. Thus, the results also

erify the effectiveness of our unified framework. 

To investigate the benefit of multi-modality fusion, we also

hows classification results that used only single modality.

ig. 4 shows the performance comparison of different methods us-

ng single modality ( i.e. , MRI or PET). Note that, multi-modality fu-

ion methods ( i.e. , CCA, MLAN and MDCR) are excluded in this ex-

eriment. From Fig. 4 , it can be observed that the degraded ver-

ion of our method that uses only single modality ( i.e. , MRI data

r PET data) still outperforms other comparison methods. Besides,

omparing Figs. 3 and 4 , we can see that all the methods perform

etter when using multi-modality data, if compared with the case

f using only single modality data. 
.3. Comparison results using incomplete multi-modality data 

Comparison methods . In this subsection, we compare our pro-

osed method ( i.e. , IMLS) with some state-of-the-art methods that

re applicable to incomplete multi-modality data, as listed below. 

• Data imputation methods, including (1) Zero value imputa-

tion, and (2) k -Nearest Neighbor (KNN) ( Hastie et al., 1999;

Keller et al., 1985 ). Specifically, for Zero imputation method,

the missing values in all samples are filled with zeros. Since

all the features are z-normalized ( i.e. , minus mean and di-

vide by standard deviation) before the imputation process,

thus this imputation method is equivalent to filling the

missing feature values with the average observed feature

values. For KNN imputation method, the missing values in

all samples are filled with the weighted mean of the k

nearest-neighbor samples. In addition, we search the param-

eter k in the range of {5, 10, 15, 20, 25}. 
• iMSF method ( Yuan et al., 2012 ). This method is a multi-

view based method, which first partitions subjects into sev-

eral views, and a specific classifier is constructed for each

view. Then, a structural sparse learning model is employed

to select a common set of features among these tasks. There

are two versions of iMSF that use different loss functions,

i.e. , the least square loss (denoted as “iMSF-R”) and the lo-

gistic loss (denoted as “iMSF-L”). 
• Matrix Shrinkage and Completion method (MSC) 

( Thung et al., 2014 ). This method can handle classifi-

cation problem with incomplete multi-modality data. 
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Fig. 8. Comparison between our proposed models (left: CMLS; right: IMLS) and their counterparts using only a single classifier (left: CMLS_s; right: IMLS_s). 

Fig. 9. Effect of the parameter changes for our proposed method ( i.e. , CMLS) in response to three classification tasks (from top to bottom: MCI/NC, MCI/AD, and sMCI/pMCI) 

in terms of accuracy (ACC). 
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Specifically, MSC method first partitions the combined ma-

trix ( e.g. , features and targets) into sub-matrices, and each

sub-matrix consists of samples with complete features from

multi-modality data ( i.e. , corresponding to a certain com-

bination of modalities) and target outputs. Following that,

a multi-task sparse learning framework is used to select

informative features and samples. Subsequently, the shrunk

combined matrix with missing features and unknown target

outputs is imputed, which is realized via low-rank matrix

completion algorithm by using a fixed-point continuation

method ( Ma et al., 2011 ). 
• State-of-the-art incomplete multi-view learning meth-

ods, including (1) Doubly Aligned Incomplete Multi-view

Clustering (DAIMC) method ( Hu and Chen, 2018 ), and

(2) Incomplete Multi-View Weak-label Learning (iMVWL)

m  
method ( Tan et al., 2018 ). DAIMC is a clustering method

that is designed for incomplete multi-modality data using

weighted semi-nonnegative matrix factorization. To apply

this method for classification task, we train a SVM classifier

using the learned common latent features in DAIMC. On

the other hand, iMVWL learns a shared subspace from

incomplete views, local label correlations, and a predictor in

this subspace, simultaneously. 

esults . Fig. 5 shows the comparison results between our pro-

osed method and all the comparison methods by using incom-

lete multi-modality data. From Fig. 5 , we have the following ob-

ervations: (1) Our proposed method performs better than all the

omparison methods. (2) The MSC method obtains relatively better

UC performance in the three classification tasks. (3) The DAMIC

ethod also obtains relatively better performance in terms of ACC
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Fig. 10. Top selected regions from MRI data for three classification tasks: (a) MCI/NC, (b) MCI/AD, and (c) sMCI/pMCI. 

Fig. 11. Top selected regions from PET data for three classification tasks: (a) MCI/NC, (b) MCI/AD, and (c) sMCI/pMCI. 
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nd AUC than other comparison methods. Overall, our method ob-

ains some improvements over other existing methods and several

tate-of-the-art methods. 

Further, to verify the benefit of multi-modality data fusion,

ig. 6 shows the classification results of different methods. Note

hat, in this comparison experiment, the subjects have complete

RI data but with incomplete PET data, thus, we compare the

ethods ( i.e. , ORI, PCA, Lasso, SAE) using complete MRI data with

he methods ( i.e. , MSC and Ours) using complete MRI data and par-

ial PET data. From Fig. 6 , it can be observed that our proposed

ethod performs better than other methods in term of ACC on

hree classification tasks, and also in term of AUC on MCI/NC and

MCI/pMCI task. Besides, it is also worth noting that the MSC ob-

ains relative classification performance than the remaining meth-

ds. More importantly, from Figs. 5 to 6 , we can see that all meth-

ds perform better by combing MRI and PET data than the case

f only using MRI data. Thus, these results have verified the ef-

ectiveness of our proposed method by fusing incomplete multi-

odalities. 

.4. Ablation study 

To validate the effectiveness of the common latent space learn-

ng, we conduct an experiment by comparing our method with our

egraded method that does not use latent space learning. Specifi-

ally, we denote our degraded method as FeatConcate+ensemble,

hich directly concatenates the original features from the two
odalities (MRI and PET), and feed them into the learning frame-

ork of multiple diversified classifiers. The comparison results are

hown in Fig. 7 . From the results, it can be observed that our

ethod with using latent space learning performs better than our

odel without using it. 

To verify the effectiveness of ensemble of diversified classi-

ers, we compare the performance of our proposed methods for

he cases of using single classifier ( i.e. , C = 1 ) and multi-classifiers,

here “CMLS_s” denotes our complete multi-modality latent space

earning model using a single classifier and “IMLS_s” denotes our

ncomplete multi-modality latent space learning model using a sin-

le classifier. The comparison results are shown in Fig. 8 . From the

esults, it can be seen that our proposed two models using the en-

emble of diversified classifiers perform better than the case of us-

ng only a single classifier. Thus, these results validate the superi-

rity of ensembling multiple diversified models for classification. 

.5. Parameter analysis 

It is critical to select a set of robust parameters for our pro-

osed models, so that our proposed methods can work well in

ost situations. Thus, in this section, we study the effects of dif-

erent hyper-parameter ( i.e., λ, β , γ , C , and h ) values to the perfor-

ance metrics. First, for the three regularization parameters ( i.e.,

, β , and γ ), we fix the value for one parameter and tune the

ther two parameters in the range of { 10 −6 , 10 −5 , . . . , 10 3 } . Then,

e tune the parameters C and h in the range of { 10 , 20 , . . . , 80 } .
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Fig. 9 shows the effect of the parameter changes by using our

proposed CMLS for three classification tasks (from top to bottom:

MCI/NC, MCI/AD, and sMCI/pMCI) in terms of classification accu-

racy ( i.e. , ACC). Specifically, for MCI/NC classification task, when λ
and β are within [10 −3 , 10 −1 ] and γ ≥ 1, our proposed method has

better classification performance. For MCI/AD classification task,

when λ is within [10 −2 , 1] , and β ≥ 0.1 and γ ≥ 1, our proposed

method achieves better classification results. For sMCI/pMCI classi-

fication task, when λ is within [10 −2 , 1] and γ ≥ 1, our proposed

method achieves reasonably good performance. Besides, for the pa-

rameters C and h , our method obtains reasonably betetr classifica-

tion results when C ∈ [30, 60] and h ∈ [40, 50]. 

4.6. Most related brain regions 

Furthermore, we also identified the potential brain regions that

can be used as biomarkers in AD and its early stage diagnosis. We

computed the frequency of the ROIs and reported the ten most re-

lated ROIs in Figs. 10 and 11 for three classification tasks. Generally,

these identified ROIs are in agreement with many previous stud-

ies about AD and its early stage diagnosis ( Thung et al., 2014; Zhu

et al., 2016a; Misra et al., 2009 ). Specifically, in MRI data, the top

selected ROIs common to three classification tasks are the frontal

lobe WM right, hippocampal formation right, uncus left, tempo-

ral lobe WM left, hippocampal formation left, and amygdala left.

In PET data, the top selected ROIs common to three classification

tasks are the globus palladus left, frontal lobe WM right, precuneus

right, parietal lobe WM left, temporal lobe WM left, and precuneus

left, which are the altered regions in AD reported in some previ-

ous studies ( Jie et al., 2013; Zhu et al., 2016a; Hua et al., 2008;

Chételat , 2005 ). Thus, in future work, these brain regions can be

used as potential biomarkers for AD diagnosis. 

5. Conclusion 

In this paper, we propose a multi-modality latent space in-

ducing ensemble SVM classifier for early AD diagnosis framework.

Specifically, we first project the original ROIs-based features into a

latent space to effectively exploit the correlations among modali-

ties in multi-modality data. Then, by using the learnt latent rep-

resentations, we learn multiple diversified classifiers and use an

ensemble strategy to obtain the final result, so that our proposed

model is more robust to disease heterogeneity. Furthermore, we

extend our AD diagnosis framework to address the missing data

issue which is common in multi-modality dataset. Experimental

results using the ADNI dataset demonstrate that our proposed

method outperforms other state-of-the-art methods in early AD di-

agnosis. In future work, we could extend the proposed model us-

ing a deep learning framework to improve the classification per-

formance, since features learned from deep networks are typi-

cally more discriminative than the hand-crafted features ( Fan et al.,

2018; Bernard et al., 2018; Shen et al., 2017 ). 
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