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Abstract In this paper, we propose a novel feature selec-
tion method by jointly considering (1) ‘task-specific’
relations between response variables (e.g., clinical labels
in this work) and neuroimaging features and (2) ‘self-
representation’ relations among neuroimaging features in a
sparse regression framework. Specifically, the task-specific
relation is devised to learn the relative importance of fea-
tures for representation of response variables by a linear
combination of the input features in a supervised manner,
while the self-representation relation is used to take into
account the inherent information among neuroimaging fea-
tures such that any feature can be represented by a weighted
sum of the other features, regardless of the label informa-
tion, in an unsupervised manner. By integrating these two
different relations along with a group sparsity constraint,
we formulate a new sparse linear regression model for
class-discriminative feature selection. The selected features
are used to train a support vector machine for classifica-
tion. To validate the effectiveness of the proposed method,
we conducted experiments on the Alzheimer’s Disease
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Neuroimaging Initiative (ADNI) dataset; experimental
results showed superiority of the proposed method over the
state-of-the-art methods considered in this work.
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Introduction

Alzheimer’s Disease (AD), the most common form of
dementia around the world, is the sixth leading cause of
death in the United States. According to the report of the
Alzheimer’s Association1 and the Centers for Disease Con-
trol2, in 2015, nearly 44 million people had AD or related
dementia and only 1-in-4 AD patients had been diagnosed
worldwide. In 2015, the population of AD, in the United
States, was around 5.3 million, with the chance of the num-
ber increasing to more than 16 million by 2050. Moreover,
in 2015, the global cost of AD was estimated to be 605
billion, equivalently 1% of the entire world’s Gross Domes-
tic Product (GDP), while the cost in the United States was
around 226 billion. Thus, the treatment of AD is placing a
huge financial burden on society.

Studies have demonstrated that early diagnosis of AD
and its early stage (i.e., Mild Cognitive Impairment (MCI))
are of high importance clinically, as effective treatments on
early-stage patients would have more influence for slowing
down disease progression. However, current clinical assess-
ments, e.g., Mini-Mental State Examination (MMSE) and
Alzheimer’s Disease Assessment Scale-Cognitive subscale

1http://www.alz.org/
2http://www.alzheimers.net/resources/alzheimers-statistics/
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(ADAS-Cog), still present low sensitivity and specificity
in early diagnosis of AD. Recently, a number of studies
(Mwangi et al. 2014; Suk et al. 2015b; Thung et al. 2015;
Zhu et al. 2014d) utilized neuroimaging techniques to show
different soft tissues in the brain with good contrast and thus
present important information about brain atrophy possibly
caused by neurodegeneration.

Neuroimaging tools, such as Magnetic Resonance Imag-
ing (MRI), Positron Emission Tomography (PET), and func-
tional MRI, have become powerful tools for characterizing
neurodegenerative progress of AD by helping overcome
the limitations of the conventional cognitive assessments,
such as imprecise diagnosis and low diagnosis confidence
(Suk et al. 2015a, b; Thung et al. 2014; Zhu et al. 2014c,
2015b). For example, (Greicius et al. 2004) showed that
the disrupted functional connectivity between posterior
cingulate and hippocampus led to the posterior cingu-
late hypometabolism. (Guo et al. 2010) indicated that AD
patients exhibited significant decreases in gray matter vol-
ume in the hippocampus, parahippocampal gyrus, insula,
and superior temporal gyrus.

With a large amount of the neuroimaging dataset publicly
available on the web, e.g., the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database, machine learning
techniques have been playing a core role in investigation and
analysis of high-dimensional neuroimaging data, provid-
ing unprecedented opportunities to investigate AD-related
problems with high confidence and precision. For example,
(Duchesne et al. 2009) employed linear regression models
to estimate one-year MMSE changes from structural MRI;
(Wang et al. 2010) designed high-dimensional kernel-based
regression methods to estimate ADAS-Cog and MMSE.

Among machine learning techniques for the analysis of
neuroimaging data, sparse linear regression has attracted
researchers’ interests by modeling the relation between
representation of neuroimaging data and clinical response
variables, such as clinical scores and clinical status. For
example, (Zhu et al. 2014c) designed a regression model
on multi-modality neuroimaging data for joint prediction
of clinical scores (including ADAS-Cog and MMSE) and
clinical status. Although the linear regression model is
helpful for finding the relationship between neuroimaging
features and response variables, it naturally suffers from a
high-dimensional problem, which is very common in neu-
roimaging data analysis. The straightforward approach to
circumvent the so-called ‘curse-of-dimensionality’ is to col-
lect as many training samples as possible. It is, however, not
feasible in reality due to high cost and time consumption.

Recently, subspace learning (Spedding et al. 2015; Lee
et al. 2014) and feature selection (López-de-Ipiña et al.
2015) were commonly used to reduce the number of fea-
tures from high-dimensional neuroimaging data to deal
with the issue of ‘curse-of-dimensionality’. For example,

(Zhu et al. 2015a) proposed to conduct feature selection
by transferring original features from different modalities
to a common space with Canonical Correlation Analysis
(CCA) for jointly predicting clinical scores (e.g., ADAS-
Cog and MMSE) and identifying multi-class disease status.
Usually, feature selection methods (Wang et al. 2011; Zhang
and Shen 2012; Zhu et al. 2014a) find informative feature
subsets from an original feature set, while subspace learn-
ing methods, such as Fisher’s Linear Discriminant Analysis
(LDA) (Spedding et al. 2015; Zhu et al. 2015b), CCA (Kim
et al. 2014; Lorenzi et al. 2016), and Locality Preserving
Projection (LPP) (Zhu et al. 2015b), transform original fea-
tures into a low-dimensional space (Duda et al. 2012). In
regards to the interpretability of the results, feature selec-
tion methods are more preferable over subspace learning
methods, particularly in neuroimaging studies, as selected
features can directly link anatomical structures for providing
intuitive understanding of disease.

In this work, we focus on a feature selection method and
propose to consider different kinds of relations inherent in
data with the goal of selecting brain regions related to AD
for clinical diagnosis and improving the performance of rep-
resentative features for identifying AD status. Specifically,
we propose a self-representation feature selection regression
model to select a representative feature subset by simulta-
neously considering a ‘sample-level’ relation between the
features and response variables as well as a ‘feature-level’
relation among the features. The goal of our method is to use
the ‘sample-level’ relation to conduct a task-oriented super-
vised step and use the ‘feature-level’ relation to conduct a
self-representation-oriented unsupervised step. Specifically,
we first define an objective function with an element-wise
similarity loss function (i.e., least square loss function) and
the self-representation property of features, to character-
ize the sample-level relation and the feature-level relation,
respectively. Then, we penalize our objective function with
an �2,1-norm regularizer to output representative features.
Furthermore, we iteratively optimize these two steps such
that each of them may adjust the other in order to achieve
an optimal process of feature selection. Finally, the selected
features are fed into a Support Vector Machine (SVM)
classifier for clinical diagnosis.

Compared to the previous state-of-the-art feature selec-
tion methods for AD diagnosis, the main contributions of
our work are three-fold. First, we propose a novel sparse fea-
ture selection method by exploiting the inherent structures
of the features along with the relations between response
variables and neuroimaging features. The rationale of our
method is that, the features are dependent in real applica-
tions, thus each feature can be (sparsely) represented by
other features. Moreover, if a feature is important for the
classification task, then it is reasonable to assume that the
feature can be also informative to represent other features.
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Meanwhile, the designed model should also achieve the
minimum regression error measured by the residual between
the response matrix and its prediction.

Second, unlike the existing methods in sparse learning
(Elhamifar and Vidal 2009; Yuan and Lin 2006) and low-
rank representation (Liu et al. 2010), which considered
the self-representation property of data from the view of
relations among samples, this work considers such prop-
erties from aspects of relations among features for self-
representation as well as relations among samples for target
tasks, i.e., clinical status identification or clinical scores pre-
diction. Our motivation for this is that, the task-oriented
feature selection strategy pursues the minimum regression
error under a supervised learning concept, while the self-
representation-oriented strategy selects features that are
involved in representing other features under a unsupervised
learning concept. These two strategies are integrated in a
unified framework of sparse linear regression.

Last but not least, this work simultaneously considers
binary classification and multi-class classification, instead
of only conducting binary classification, as most of the
state-of-the-art methods did for AD diagnosis, such as (Suk
et al. 2015a; Wang et al. 2011; Zhang and Shen 2012). In
real clinical applications, given neuroimaging data of an
subject, he or she can be categorized into one of the fol-
lowing status, such as AD, Normal Control (NC), progres-
sive MCI (pMCI) and stable MCI (sMCI). This obviously
belongs to a multi-class classification problem.

Materials and image preprocessing

For performance evaluation, we use the ADNI-1 dataset.3

The ADNI was launched in 2003 by the National Insti-
tute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies,
and non-profit organizations. The main goal of ADNI is to
test if MRI, PET, other biological markers, and clinical and
neuropsychological assessments can be combined to predict
the progression of MCI and early AD. To this end, ADNI
has recruited over 800 adults (age range ∈ [55, 90]) to par-
ticipate in research. Specifically, around 200 cognitively
normal older individuals were followed for 3 years, 400
people with MCI were followed for 3 years, and 200 peo-
ple with early AD were followed for 2 years.4 The research
protocol was approved by each local institutional review
board and written informed consent was obtained from each
participant for the study.

3Available at ‘http://www.loni.usc.edu/ADNI’
4Please refer to ‘www.adni-info.org’ for up-to-date information.

Table 1 Demographic and clinical information of the subjects

NC AD MCI

(N = 226) (N = 186) (N = 393)

Male/Female 118/108 99/87 253/140

Age (Mean ± SD) 75.8±5.0 75.3±7.5 74.8±7.3

[59.9, 89.6] [55.1, 90.9] [54.4, 89.3]

Education (Mean ± SD) 16.0±2.9 14.7±3.1 15.6±3.0

[6, 20] [4, 20] [4, 20]

MMSE (Mean ± SD) 29.1±1.0 23.3±2.2 27.0±1.8

[25, 30] [18, 27] [23, 30]

CDR (Mean ± SD) 0±0 0.75±0.3 0.50±0

[0, 0] [0.5, 1] [0.5, 0.5]

(MMSE: Mini-Mental State Examination, CDR: Clinical Dementia
Rating, N: number of subjects, SD: Standard Deviation, [min, max])

Subjects

General inclusion/exclusion criteria with respect to the gen-
eral eligibility criteria in ADNI are as follows5: The MMSE
score of an NC subject is between 24 and 30. Their Clinical
Dementia Rating (CDR) is of 0. Moreover, the NC subject
is non-depressed, non MCI, and non-demented. The MMSE
score of an MCI subject is between 24 and 30. Their CDR is
of 0.5. Moreover, each MCI subject is an absence of signif-
icant level of impairment in other cognitive domains, essen-
tially preserved activities of daily living, and an absence
of dementia. The MMSE score of a mild AD subject is
between 20 and 26, with the CDR of 0.5 or 1.0, and meets
the National Institute of Neurological and Communica-
tive Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association (NINCDS/ADRDA) criteria
for probable AD.

In our experiments, we only use the baseline MRI data
acquired from 226 NC, 186 AD, and 393 MCI subjects.
MCI subjects were clinically further subdivided into pMCI,
sMCI, ncMCI, and uMCI. 118 pMCI subjects indicate that
the subjects converted fromMCI to AD in 24 months, while
124 sMCI subjects didn’t not convert to AD in both 24
months and 36 months. Besides, 49 ncMCI subjects did not
convert in 24 months but converted in 36 months, while 102
uMCI subjects were MCI at base line but were never con-
verted to AD at any available time points among 0 – 96
months. We summarize the demographics of the subjects in
Table 1.

Image preprocessing

We downloaded raw Digital Imaging and Communications
in Medicine (DICOM) MRI scans from the public ADNI

5Refer to ‘http://www.adni-info.org’ for more details.

http://www.loni.usc.edu/ADNI
www.adni-info.org
http://www.adni-info.org
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website. These MRI scans were already reviewed for qual-
ity, and automatically corrected for spatial distortion caused
by gradient nonlinearity and B1 field inhomogeneity.

The image processing for all MR images was conducted
following the procedures in (Zhu et al. 2014b). Specifically,
we first performed anterior commissure-posterior commis-
sure correction using MIPAV software6 on all images, and
applied the algorithm in (Sled et al. 1998) to correct inten-
sity inhomogeneity. Second, we extracted a brain on all
structural MR images using a robust skull-stripping method,
followed by manual edition and intensity inhomogeneity
correction. After removal of cerebellum, based on registra-
tion and intensity inhomogeneity correction by repeating
N3 (Sled et al. 1998) for three times, we used FAST algo-
rithm in the FSL package (Zhang et al. 2001) to segment
the structural MR images into three different tissues: Gray
Matter (GM), White Matter (WM), and CerebroSpinal Fluid
(CSF). Next, we used HAMMER (Shen and Davatzikos
2002) for registration and obtained the Region-Of-Interest
(ROI)-labeled image based on the Jacob template (Kabani
1998), which dissects a cerebrum into 93 ROIs. For each of
all 93 ROIs in the labeled image of a subject, we computed
the GM tissue volumes of the ROIs and used them as struc-
tural features. With this, we acquired 93 features from an
MRI image.

Method

In this section, we describe our framework for AD clas-
sification by proposing a novel feature selection method.
Figure 1 presents a schematic diagram of our method for
predicting a class label. We first extract features from MRI
data and then construct a feature matrix X, with the feature
vectors of MRI data, and a corresponding response matrixY
representing a class label at each column. With our new fea-
ture selection method, we select representative features and
then use them to train a Support Vector Machine (SVM) for
clinical label identification.

Notations

In this paper, we denote matrices as boldface uppercase let-
ters, vectors as boldface lowercase letters, and scalars as
normal italic letters, respectively. For a matrix X = [xij ], its
i-th row and j-th column are denoted as xi and xj , respec-
tively. Also, we denote the Frobenius norm and �2,1-norm

of a matrix X as ‖X‖F =
√∑

i ‖xi‖22 =
√∑

j ‖xj‖22
and ‖X‖2,1 = ∑

i ‖xi‖2 = ∑
i

√∑
j x2

ij , respectively.

6Available at ‘http://mipav.cit.nih.gov/clickwrap.php’

We further denote the transpose operator, the trace opera-
tor, and the inverse of a matrix X as XT , tr(X), and X−1,
respectively.

Feature selection with a sparse linear regression model

Let X = [x1; ...; xn] = [x1, ..., xd ] ∈ R
n×d (where xi ∈

R
1×d and xj ∈ R

n×1, i = 1, ..., n; j = 1, ..., d) and
Y = [y1; ...; yn] ∈ {0, 1}n×c, respectively, be the feature
matrix and the clinical status (a.k.a., response matrix) of all
MRI data, where n, d, and c denote the numbers of sam-
ples (or subjects), feature variables, and response variables,
respectively. We use a class indicator vector for response
variables by denoting the class label of the i-th sample xi

as yi = [yi1, ..., yij , ..., yic] ∈ {0, 1}c, where yij denotes
the label information of the j-th class of the i-th sample xi

and yij = 1 if xi belongs to the j-th class, while yij = 0
otherwise.

A linear regression model formulates a linear relation
between feature variables and the response variables as
follows:

Y ≈ XW + eb = Ŷ (1)

where W ∈ R
d×c is a regression coefficient matrix or

weight matrix, Ŷ is the prediction ofX on the space spanned
by XW, b ∈ R

1×c is a bias term, and e ∈ R
n×1 denotes

a column vector with all ones. To find optimal coefficients
of the weight matrix W, with which the response variables
in Y are represented by a linear combination of the features
X, we use the least squares error for a loss function l(W) as
follows:

l(W) = ‖Y − (XW + eb)‖2F
= ‖Y − Ŷ‖2F
=

n∑
i=1

c∑
j=1

(yij − ŷij )
2. (2)

From a matrix similarity point of view, Eq. 2 computes
the similarity between Y and Ŷ with the sum of element-
wise differences between them. The lower the loss, the more
similar they are.

Task-oriented feature selection

As for feature selection, we assume that a small number
of features is useful to represent the response variables.
Furthermore, since the clinical status, i.e., the response vari-
ables in Y, has high neurophysiological relations among
them, it is commonplace to assume that the same neu-
roimaging features are used to represent the response

http://mipav.cit.nih.gov/clickwrap.php
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Fig. 1 The framework of the proposed method

variables. To this end, we add an �2,1-norm regularizer into
the loss function in Eq. 2 as follows:

min
W,b

‖Y − XW − eb‖2F + λ‖W‖2,1, (3)

where λ is a sparsity control parameter. The �2,1-norm reg-
ularizer ‖W‖2,1 penalizes all coefficients in the same row
of W together for jointly selecting or un-selecting features
for predicting the response variables (Suk et al. 2015a; Yuan
and Lin 2006; Zhang and Shen 2012). Specifically, the �2,1-
norm regularizer results in zero-rows in W after optimizing
(1). The features that are multiplied with zero-rows do not
play any role to represent the response variables in Y, and
thus can be removed from the feature set. From a clinical
standpoint, the selected features for representation of the
response variables can be interpreted as potential biomark-
ers7 to identify a clinical status. Since the solution of W
is oriented to response variables of the clinical values, i.e.,
clinical status, the prediction of which is the main task of
this work, we call it a ‘task-oriented’ method.

Self-representation-oriented feature selection

The main assumption in Eq. 1 is that the features that are
important to represent a response variable are also informa-
tive of other response variables, while features uninforma-
tive to represent a response variable are also uninformative
of other response variables. Thus, such features should be
jointly selected or un-selected in representing the response
variables, i.e., clinical status.

In this section, we propose to further include an impor-
tant characteristic among features by maximally utilizing
the information inherent in observationsX into the objective
function as a regularizer. Note that AD may affect multi-
ple brain regions simultaneously, rather than just a single

7Note that we use a set of ROI volumes as features.

region (Zhang et al. 2011; Zhang and Shen 2012). Justified
by neurophysiological characteristics observed in the pre-
vious AD studies, we assume that there are dependencies
among ROIs (i.e., features). We devise a new regularizer to
utilize this relational characteristic among ROIs in feature
selection. Specifically, we define a linear regression model
such that each feature xi in X can be represented as a linear
combination of other features (including itself):

xi ≈
d∑

j=1

(xj sji + epi), i, j = 1, ..., d. (4)

where the element sji of matrix S is a weight coefficient
between the i-th feature vector xi and the j-th feature vector
xj and p = [p1, ..., pj , ..., pd ] ∈ R

1×d is a bias term.
By regarding the prediction of each feature as a task

and constraining the sparsity across tasks with an �2,1-norm
regularizer, we define a new objective function as follows:

min
S,p

‖X − XS − ep‖2F + α‖S‖2,1, (5)

where α is a sparsity control parameter. The �2,1-norm regu-
larizer ‖S‖2,1 penalizes all coefficients in the same row of S
together for joint selection or un-selection in predicting the
feature matrix X. Note that since a vector xi in the observa-
tion X can be used to represent itself8, there always exists a
feasible (trivial) solution. That is, its corresponding coeffi-
cient in S equals to one and all the other coefficients equal
to zero. However, due to our assumption of dependencies
among ROIs, i.e., rank(X) < min(n, d), there also exist

8The term ‘self-similarity’, widely used in machine learning and com-
puter vision, such as the literature (Liu et al. 2010; Zhu et al. 2015),
indicates that each sample/feature can be represented by both other
samples/features and itself. In this work, we assume that features are
dependent, so it is reasonable to indicate that each ROI (or feature) can
be sparsely represented by all ROIs (or features).
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non-trial solutions in the space of I − null(X) (Liu et al.
2010). To differentiate from the ‘task-oriented’ method, we
call Eq. 5 a ‘self-representation-oriented’ method.

The first term in Eq. 5 measures the distance of all col-
umn vectors in X to the subspace spanned by XS, thus
the optimal matrix S∗ clearly makes the regression error
between X and its predictions XS∗ as small as possible.
On the other hand, the optimal matrix S∗ also reflects the
importance of different features. If a feature is important for
the model, then it should participate in the representation
of other features and help lead to a significant representa-
tion coefficient in the row, and vice versa. Specifically, we
approximately extend Eq. 4 (by ignoring the bias term) to
have:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ≈ s11x1 + · · · + si1xi + · · · + sd1xd

...

xi ≈ s1ix1 + · · · + siixi + · · · + sdixd

...

xd ≈ s1dx1 + · · · + sidxi + · · · + sddxd .

(6)

Equation 6 indicates that each feature vector e.g., xi in
left-hand side of Eq. 6 is represented by a linear combina-
tion of the feature vectors (including itself) in right-hand
side of Eq. 6 and the corresponding weight vector is the
i-th column si of S. Obviously, the larger the values in
the si , the more the corresponding feature vectors involved
in the representation of the feature vector xi . If there is
a zero-row in the optimal matrix S∗, e.g., a zero-vector
sj = [sj1, ..., sj,j , ..., sjd ], then the corresponding feature
i.e., xj in right-hand side of Eq. 6 will not participate in
the representation of features. The features participating in
the representation of all features should be important, while
those not participating in the representation process should
be discarded by means of feature selection.

Proposed objective function

By simultaneously considering aforementioned constraints,
we combine Eq. 3 with Eq. 5 as follows:

min
W,b,S,p

‖Y − XW − eb‖2F + λ‖W‖2,1
+β‖X − XS − ep‖2F + α‖S‖2,1

where β > 0 is a tuning parameter. Equation 7 conducts
two feature selection models (i.e., W and S), the one under
supervised learning (i.e., the first two terms) and the others
under unsupervised learning (i.e., the last two terms). How-
ever, in this work, we simultaneously consider two models

(the task-oriented relations (i.e., the difference between Y
and XW) and the self-representation-oriented relations (i.e.,
the difference between X and XS)) for feature selection.
Ultimately, the optimal solutions ofW∗ and S∗ are aimed to
select informative features for clinical response representa-
tion. To this end, we integrate the matrices of W and S into
a single matrix by letting λ = α as follows:

min
W,b,S,p

‖Y−XW−eb‖2F +β‖X−XS−ep‖2F +λ‖[W, S]‖2,1
(7)

where [W, S] =
⎛
⎝

w11 ... w1c

... ... ...

wd1 ... wdc

s11 ... s1d
... ... ...

sd1 ... sdd

⎞
⎠ ∈ R

d×(c+d)

is defined as a joint analyzer (Wang et al. 2011), i.e., a hori-
zontal concatenation ofW and S. Specifically, W̃ = [W, S]
reflects the importance of features for joint representation
of the response variables and the features.

An intuitive interpretation of the propose method is as
follows: It alternately optimizes a supervised step i.e., W
and b in Eq. 7 and a unsupervised step i.e., S and p in Eq. 7,
where the supervised step i.e., the first term in Eq. 7 learns
a task-specific feature selection model and the unsupervised
step i.e., the second term in Eq. 7 learns a self-representation
feature selection model. Concretely, the proposed method
uses the element-wise similarity measure under the supervi-
sion of label information to learn a feature selection model
W and b, and also uses the self-representation property of
features to learn another feature selection model S and p.
As these two models jointly conduct feature selection on the
same feature matrixX, they should be designed to output the
same sparsity. In this way, after optimizing W̃, the �2,1-norm
regularizer pushes Eq. 7 to output zero values through the
whole rows of W̃, i.e., the same sparse rows on bothW and
S. This process that simultaneously satisfies two constraints
(i.e., the sample-level relation constraint and the feature-
level relation constraint) makes the selection of informative
features more confident.

Finally, after optimizing Eq. 7, we can discard the shared
irrelevant or noisy components (i.e., the features whose
regression coefficient vectors are zero in the rows on both
W and S). Given the selected representative features, we use
them to train an SVM as a classifier.

The following remarks show two aspects of the impor-
tance of the self-representation characteristics inherent in
observed features and the rationale of the combination
on the ‘task-oriented’ feature selection and the ‘self-
representation-oriented’ feature selection.

Remark 1 In this section, we reveal the feature-level rela-
tion among self-representation, which characterizes the
property that each feature can be linearly approximated
by a subset of other features (called as representative
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features in this work) in feature selection. Self-similarity
has been widely used in computer vision and machine
learning (Zhu et al. 2015). In computer vision, non-local
self-similarity means that patches at different locations in
an image may be similar to each other. In machine learn-
ing, self-representation can also be modeled as a sparse
representation model or a low-rank representation model
depending on tasks. However, previous models belong to
sample-level representation, while our self-representation
regularizer is feature-level representation. In other words,
the goal of previous literature is to sparsely represent each
sample by other samples (e.g., ‖XT − XT M‖2F ⇒ xi ≈∑n

j=1 x
jmij , where mij is the similarity between the i-th

sample xi and the j-th sample xj , i, j = 1, ..., n.), while our
goal is designed to sparsely represent each feature by other
features, i.e., xi ≈ ∑d

j=1 xj sji , i, j = 1, ..., d .

Remark 2 Self-representation is designed on the assump-
tion that there is redundancy in features as features are
linearly correlated Such assumption has been used in a lot
of literature on either feature selection or subspace learn-
ing for the analysis of high-dimensional neuroimaging data
(Suk et al. 2015a; Wang et al. 2011; Zhang and Shen
2012; Zhu et al. 2014a). On the other hand, The proposed
self-representation regularizer is designed for unsupervised
learning, as label information can be used to enhance the
performance of feature selection models. Hence, it is rea-
sonable to add the element-wise similarity loss function
to conduct supervised learning by making use of the label
information. Mathematically, it is very similar to conduct
unsupervised feature selection in supervised learning, with
another assumption that the original feature gets best recon-
struction by the self-representation property of features in
unsupervised learning. Moreover, both the element-wise
similarity loss function and the self-representation regular-
izer enable the proposed framework (with an intuitive and
easy way) to select representative features.

Optimization

The objective function in Eq. 7 is convex but non-smooth. In
this work, we utilize the framework of iteratively reweighted
least square (Wipf and Nagarajan 2010) to optimize Eq. 7.

With simple algebraic operations, Eq. 7 becomes

min
W,b,S,p

tr((Y − XW − eb)T (Y − XW − eb))

+βtr((X − XS − ep)T (X − XS − ep)) + λtr(W̃T DW̃)
(8)

where W̃ = [W, S] ∈ R
d×(c+d) and D ∈ R

d×d is a diago-
nal matrix with Dii = 1

2‖W̃i‖22
, i = 1, ..., d . By setting the

derivative of Eq. 8 w.r.t. b to zero, we have:

2eT XW + 2eT eb − 2eT Y = 0 (9)

After a simple mathematical transformation, we have:

b = 1

n
eT Y − 1

n
eT XW. (10)

Similarly, by setting the derivative of Eq. 8 w.r.t. p to zero,
we obtain optimal p as:

p = 1

n
eT X − 1

n
eT XS. (11)

By substituting Eqs. 10 and 11 into Eq. 8, we have:

min
W,S

tr((Y−XW−e( 1
n
eT Y− 1

n
eT XW))T(Y−XW

−e( 1
n
eT Y− 1

n
eT XW))

+βtr((X − XS−e( 1
n
eT X − 1

n
eT XS))T (X−XS

−e( 1
n
eT X− 1

n
eT XS)))

+λtr(W̃T DW̃).

(12)

LetH = I− 1
n
eeT ∈ R

n×n, where I ∈ R
n×n is an identity

matrix, Eq. 12 can be rewritten as

min
W,S

tr((HY − HXW)T (HY − HXW)

+βtr((HX − HXS)T (HX − HXS))

+λtr(W̃T DW̃).

(13)

By taking the derivative of Eq. 13 w.r.t. W and setting it
equal to zero, we obtain:

W = (XT HX + λD)−1XT HY. (14)

Similarly, by setting the derivative of Eq. 13 w.r.t. S and
setting it equal to zero, we have:

S =
(
XT HX + λ

β
D

)−1

XT HX. (15)

Next, we applied Algorithm 1 to solve the objective func-
tion in Eq. 7. Based on the theory of iteratively reweighted
method in (Wipf and Nagarajan 2010), it can be proved
that the value of our objective function of Eq. 7 monoton-
ically decreases in each iteration until convergence using
Algorithm 1. According to the iterative characteristics of
Algorithm 1, the currentW can be enhanced by the last opti-
mal S, whose next optimization can be further improved by
the updated optimal W. In this way, the proposed optimiza-
tion method in Algorithm 1 helps obtain the optimalW and
S, which finally ensure the output of class-discriminative
features.
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Experimental results

Experimental settings

In this work, we considered three binary classification tasks
(e.g., AD vs. NC, MCI vs. NC, and pMCI vs. sMCI) and two
multi-class classification tasks (e.g., AD vs. NC vs. MCI
and AD vs. NC vs. pMCI vs. sMCI). To evaluate the perfor-
mance of all competing methods, we referred to the metrics
of classification accuracy, sensitivity, specificity, and Area
Under the receiver operating characteristic Curve (AUC)
for binary classification and referred only to accuracy for
multi-class classification.

We used a 10-fold cross-validation technique for all
methods. Specifically, we first randomly partitioned the
whole dataset into 10 subsets. We then selected one subset
for testing and used the remaining 9 subsets for training. We
repeated the whole process 10 times to avoid possible bias
during dataset partitioning for cross-validation. The final
result was computed by averaging results from all experi-
ments. For the model selection of our method, we applied
a 5-fold inner cross-validation on the parameter spaces of
λ ∈ {10−3, 10−2, . . . , 103} and β ∈ {10−5, 10−4, . . . , 101}
in Eq. 7 and C ∈ {2−5, 2−4, . . . , 25} in SVM. As for SVM,
we used a LIBSVM.9 The parameters that resulted in the
best performance in the inner cross-validation were used in
testing.

9Available at ‘http://www.csie.ntu.edu.tw/cjlin/libsvm/’.

Competing methods

We selected the following methods for comparison.

– Original: This method doesn’t involve a feature selec-
tion step, but uses all the features for classification.

– Fisher Score (FS) (Duda et al. 2012): A Fisher’s criterion
is used for feature selection. Specifically, we compute
a Fisher’s score for each feature individually, based on
the way we sort the features in an ascending order.

– Laplacian Score (LS) (He et al. 2005): This conducts
supervised feature selection with an assumption that
data of the same class tends to distribute to each other
in the feature space, while those of different classes are
apart from each other. The importance of a feature is
evaluated by its power of a Laplacian score.

– SELF-representation (SELF) (Zhu et al. 2015): as an
unsupervised approach, this method finds weighting
coefficients with which each feature can be represented
by a linear combination of the features. It is worth not-
ing that SELF is a special case of our method, with the
objective function in Eq. 5.

– Multi-Modal Multi-Task (M3T) (Zhang and Shen
2012): This method includes two key steps: (1) using
multi-task feature selection to determine a common
subset of relevant features for multiple response vari-
ables (or multiple tasks) from each modality, and (2)
a multi-kernel decision fusion to integrate the selected
features from all modalities for prediction. It is worth
noting that M3T is a special case of our method with the
objective function, i.e., Eq. 1 on single-modality data.

– Sparse Joint Classification and Regression (SJCR)
(Wang et al. 2011): This method uses a logistic loss
function for label identification and a least square loss
function for clinical scores estimation. It simultane-
ously learns these two functions with an �2,1-norm
regularizer for multi-task feature selection.

In our experiments, we used all feature selection meth-
ods separately (except Original) in order to conduct feature
selection, and then used an SVM for three binary classi-
fication tasks and two multi-class classification tasks on
the data with the selected features. Moreover, for fair com-
parison, we also conducted 5-fold inner cross-validation
to conduct model selection for each competing method.
Specifically, for eigen-value based methods, such as FS
and LS, we determined their optimal features based on
their respective eigne-values computed by the generalized
eigen-decomposition method, according to (Duda et al.
2012; He et al. 2005). For achieving the best performance
for SELF, SJCR and M3T, we optimized their sparsity
parameter by cross-validating the values in the ranges of
{10−3, 10−2..., 103}, {10−5, 10−3..., 105} (as in (Wang et al.
2011)), and {10−5, ..., 102}, respectively.

http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 2 Classification
accuracy for AD vs. NC Accuracy Sensitivity Specificity AUC

Original 0.781±0.52∗ 0.856±0.05∗ 0.725±0.14∗ 0.799±0.07∗

FS 0.854±0.88∗ 0.862±0.16∗ 0.775±0.13∗ 0.852±0.06∗

LS 0.852±0.22∗ 0.873±0.44∗ 0.758±0.19∗ 0.860±0.07∗

SELF 0.844±0.22∗ 0.872±0.07∗ 0.782±0.19� 0.818±0.05∗

M3T 0.875±0.92∗ 0.871±0.08∗ 0.788±0.37∗ 0.897±0.01�

SJCR 0.861±0.34∗ 0.853±0.09∗ 0.762±0.28� 0.883±0.05�

Proposed 0.903±0.05 0.915±0.06 0.819±0.09 0.912±0.06

Bold number in each column represents the best result

Binary classification results

We summarized the performances of the competing meth-
ods with three binary classification tasks in Table 2 (AD vs.
NC), Table 3 (MCI vs. NC), and Table 4 (pMCI vs. sMCI).10

The proposed method outperformed all competing meth-
ods by improving the classification accuracies on average
over three binary classification tasks by 8.70% (vs. Orig-
inal), 4.10% (vs. FS), 4.87% (vs. LS), 4.40% (vs. SELF),
3.80% (vs. SJCR), and 3.73% (vs. M3T). Specifically, com-
pared to the worst performed method of Original and the
best performed method of M3T among the competing meth-
ods, our method enhanced the classification accuracy by
12.2% (AD vs. NC) and 4.6% (MCI vs. NC). Based on
these results, we conclude that the proposed feature selec-
tion method helped enhance classification performances
by selecting more class-discriminative features. It is note-
worthy that all methods achieved the highest classification
performance on AD vs. NC and the lowest classification
performance on pMCI vs. sMCI.

All feature selection methods outperformed the method
using full features for classification, i.e., Original, which
implies the effectiveness of feature selection with respect
to the high-dimension problem in the classification of neu-
roimaging data. For example, the classification accuracy of
Original is lower than FS (as it achieved the lowest perfor-
mance among the other competing methods) and M3T (as
it achieved the best performance among the other compet-
ing methods) on average of as much as 3.83% and 4.97%,
respectively, over three binary classification tasks.

In comparison between LS and SELF, which adopt, respec-
tively, a task-oriented and a self-representation-oriented
strategies for feature selection, there was no significant

10In Tables 2, 3, and 4, the boldface denotes the maximum perfor-
mance in each column. (�: Statistically significant from the proposed
method with p < 0.05 and ∗: Statistically significant different from
the proposed method with p < 0.001 on the paired-sample t-tests at
95% significance level between results of our method and all other
competing methods).

difference in classification accuracy. Meanwhile, the super-
vised feature selection methods (i.e., FS, M3T and SJCR)
obtained slightly higher performances than LS and SELF,
yet there are still no significant differences in accuracy.
However, the proposed method, which adopts both the task-
oriented and self-representation-oriented by integrating the
supervised and unsupervised learning concepts in a unified
framework, clearly outperformed all these methods with
significance, less than 0.05 of p-value in a statistical test. In
this regard, we argue the effectiveness of joint task-oriented
and self-representation-oriented regularization.

Multi-class classification results

In clinical applications, there exist multiple stages in the
spectrum of AD and NC, such as pMCI and sMCI, but previ-
ous literature mostly focused on binary classification tasks.
In this work, we consider the practical applications to con-
duct two multi-class classification tasks (i.e., AD vs. NC vs.
MCI and AD vs. NC vs. pMCI vs. sMCI). We summarized
the performance of all methods in Table 5.

Similar to the binary classification results, we observed
that the proposed method outperformed the competing
methods for both 3-class and 4-class classification tasks.
More specifically, in the 3-class classification, our method
achieved a classification accuracy of 63.9% by improving
14.5% (vs. Original), 6.6% (vs. FS), 6.0% (vs. LS), 4.6%
(vs. SELF), 3.2% (vs. M3T), and 3.6% (vs. SJCR), respec-
tively. In the 4-class classification, our method produced the
highest classification accuracy of 59.3% by improving by
11.1% (vs. Original), 8.0% (vs. FS), 6.6% (vs. LS), 5.7%
(vs. SELF), 4.0% (vs. M3T), and 5.3% (vs. SJCR).

Compared to binary classification tasks, the classification
accuracy in multi-class classification tasks is decreased by
around 14.0% and 18.6% on average, respectively, for the
3-class classification and the 4-class classification. One pos-
sible reason is that the subtle structure difference between
pMCI subjects and sMCI subjects (or between AD sub-
jects and MCI subjects) makes the multi-class classification
much more difficult. Another possible reason may be the
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Table 3 Classification
accuracy of MCI vs. NC Accuracy Sensitivity Specificity AUC

Original 0.651±0.28∗ 0.623±0.51∗ 0.694±0.04∗ 0.652±0.09∗

FS 0.675±0.26∗ 0.634±0.02∗ 0.782±0.23∗ 0.720±0.01∗

LS 0.667±0.38∗ 0.650±0.52∗ 0.785±0.12∗ 0.741±0.05∗

SELF 0.689±0.05∗ 0.648±0.14∗ 0.821±0.12∗ 0.752±0.04∗

M3T 0.676±0.23∗ 0.659±0.17� 0.822±0.25� 0.777±0.02�

SJCR 0.683±0.06∗ 0.651±0.02� 0.854±0.23 0.775±0.04�

Proposed 0.722±0.08 0.688±0.06 0.850±0.09 0.790±0.02

Bold number in each column represents the best result

Table 4 Classification
accuracy of pMCI vs. sMCI Accuracy Sensitivity Specificity AUC

Original 0.645±0.15∗ 0.623±0.52∗ 0.601±0.24∗ 0.700±0.10∗

FS 0.686±0.29� 0.651±0.35∗ 0.647±0.34∗ 0.732±0.10∗

LS 0.673±0.80∗ 0.648±0.75∗ 0.638±0.57∗ 0.738±0.10∗

SELF 0.673±0.07∗ 0.670±0.25� 0.655±0.08∗ 0.734±0.09∗

M3T 0.675±0.27∗ 0.678±0.14� 0.697±0.45� 0.775±0.02�

SJCR 0.680±0.12∗ 0.664±0.34� 0.668±0.62∗ 0.766±0.07�

Proposed 0.713±0.11 0.681±0.04 0.755±0.15 0.781±0.10

Bold number in each column represents the best result

Table 5 Classification
accuracy of multi-class
classification tasks

Method AD vs. NC vs. MCI AD vs. NC vs. pMCI vs. sMCI

Original 0.494±4.26∗ 0.482±4.81∗

FS 0.573±3.19∗ 0.513±1.54∗

LS 0.579±3.07∗ 0.527±2.61∗

SELF 0.593±2.35∗ 0.536±1.29∗

M3T 0.607±1.08� 0.553±2.47∗

SJCR 0.603±2.32∗ 0.540±2.43∗

Proposed 0.639±1.38 0.593±1.54

Bold number in each column represents the best result

Table 6 Top 10 selected ROIs
and the Average Number (AN)
of selected features by our
method on five classification
tasks

Method Top 10 Regions AN

AD vs. NC 30, 46, 48, 61, 69, 76, 80, 83, 84, 22 58.0

MCI vs. NC 30, 46, 48, 69, 76, 83, 22, 78, 64, 70 43.2

pMCI vs. sMCI 30, 46, 48, 67, 69, 80, 83, 84, 90, 58 53.0

AD vs. NC vs. MCI 22, 30, 46, 48, 61, 69, 76, 80, 83, 84 50.6

AD vs. NC vs. pMCI vs. sMCI 30, 46, 48, 69, 76, 80, 83, 84, 62, 61 35.3
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(a)

(b)

(c)

(d)

(e)

Fig. 2 Top 10 selected regions of the proposed method in five classification tasks: (a) AD vs. NC; (b) MCI vs. NC; (c) pMCI vs. sMCI; (d) AD
vs. NC vs. MCI; (e) AD vs. NC vs. pMCI vs. sMCI

imbalance of training data among classes, i.e., 186 ADs vs.
226 NCs vs. 393 MCIs in 3-class classification and 186
ADs vs. 226 NCs vs. 118 pMCIs vs. 124 sMCIs in 4-class
classification.

Most discriminative brain regions

We investigated the selected features to identify the potential
biomarkers in AD diagnosis. We listed the most frequently
selected ROIs in Table 6 and also visualized them in Fig. 2.
As presented in Table 6, on average, our method selected

58.0 (AD vs. NC), 43.2 (MCI vs. NC), 53.0 (pMCI vs.
sMCI), 50.6 (AD vs. MCI vs. NC), and 35.3 (AD vs. pMCI
vs. sMCI vs. NC) numbers of features, out of 93 features
(a.k.a., ROIs), respectively.

From Table 6, we can see that the commonly selected
regions in all five different classification tasks were uncus
right (22),11 hippocampal formation right (30), uncus left
(46), middle temporal gyrus left (48), hippocampal formation

11The number in the parentheses represents an index of an ROI. Please
refer to Table 7 for the full name of the respective ROIs.
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Table 7 The names of the selected ROIs in this work

ID ROI Name ID ROI Name

22 uncus right 30 hippocampal

formation right

43 temporal lobe 45 superior temporal

WM right gyrus left

46 uncus left 48 middle temporal

gyrus left

58 perirhinal 61 perirhinal

cortex right cortex left

62 inferior temporal 64 entorhinal

gyrus left cortex left

67 lateral occipitotemporal 69 hippocampal

gyrus right formation left

70 thalamus left 76 amygdala left

78 parahippocampal 80 middle temporal

gyrus right gyrus right

82 corpus callosum 83 amygdala right

84 inferior temporal 85 superior temporal

gyrus right gyrus right

90 lateral occipitotemporal

gyrus left

left (69), amygdala left (76), middle temporal gyrus right
(80), and amygdala right (83). Moreover, these discrim-
inative brain regions have been pointed out in previous
literature on binary classification (Zhang and Shen 2012)
and have been also shown to be highly related to AD or
related dementia (e.g., MCI) in clinical diagnosis (Chételat
et al. 2005; Convit et al. 2000; Fox and Schott 2004;
Misra et al. 2009). In this regard, we can say that these
regions could be potential biomarkers for AD or MCI
diagnosis.

It is worth noting that: (1) most of the competing methods
in our experiments selected the ROIs listed in Table 6 as
class-discriminative features. (2) Even though most of the
methods selected similar ROIs as the top brain regions, our
method selected them with the highest frequency.
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(b)  Top 10 selected SNPs

Fig. 4 Classification accuracy of the proposed objective function with
varied values of β and γ in two multi-class classification tasks

Sensitivity with Different Parameter Values

Figures 3 and 4 present the sensitivity in performance
according to the changes in the values of β and γ in Eq. 7.
The results show that our proposed method is sensitive to
the parameters within only a small range. Specifically, the
best parameter combination was always found since 1) the
magnitude of ‖X−XS−ep‖2F was almost approached to the
magnitude of the data fitting term (i.e., ‖Y − XW − eb‖2F )
(by tuning the values of β); and 2) the large values of γ

caused the matrices of W and S to be sparse. This indicates
the importance of the penalty term ‖X − XS − ep‖2F ; and
also the sparse constraint on the proposed objective function
plays an important role for selecting informative features.

Discussion and conclusion

In this paper, we focused on the high feature-dimension
problem for both binary classification and multi-class classi-
fication in AD diagnosis. Specifically, we proposed a novel
feature selection method by integrating a task-oriented reg-
ularization in supervised learning and a self-representation-
oriented regularization in unsupervised learning in a linear
regression framework. Our experimental results on the
ADNI dataset with MRI imaging data validated the effec-
tiveness of the proposed method by enhancing classification

Fig. 3 Classification accuracy
of the proposed objective
function with varied values of β

and γ in three binary
classification tasks
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accuracies in both binary classification and multi-class clas-
sification problems.

In the study of high-dimensional neuroimaging data,
multi-modality data have been demonstrated to improve
performance of AD diagnosis due to the beneficiary of com-
plementary information from different modalities (Zhang
et al. 2011; Zhang and Shen 2012; Zhu et al. 2014c). How-
ever, the proposed model in Eq. 7 cannot be directly applied
for multi-modality data, as literature showed that multi-
modality neuroimaging data may not share the same sparsity
across modalities (Zhu et al. 2014c), since the last term
in Eq. 7 could push all modalities to select the same fea-
tures. In our future work, we will focus on extending the
proposed model to its multi-modality version for further
improving the performance of AD diagnosis via mapping
multiple subspaces spanned by multi-modality data into a
common space.
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