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a b s t r a c t 

Cognitive reserve (CR) has been introduced to explain individual differences in susceptibility to cognitive or 

functional impairment in the presence of age or pathology. We developed a deep learning model to quantify the 

CR as residual variance in memory performance using the Structural Magnetic Resonance Imaging (sMRI) data 

from a lifespan healthy cohort. The generalizability of the sMRI-based deep learning model was tested in two 

independent healthy and Alzheimer’s cohorts using transfer learning framework. 

Structural MRIs were collected from three cohorts: 495 healthy adults (age: 20-80) from RANN, 620 healthy 

adults (age: 36-100) from lifespan Human Connectome Project Aging (HCPA), and 941 adults (age: 55-92) from 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). Region of interest (ROI)-specific cortical thickness and vol- 

ume measures were extracted using the Desikan-Killiany Atlas. CR was quantified by residuals which subtract 

the predicted memory from the true memory. Cascade neural network (CNN) models were used to train RANN 

dataset for memory prediction. Transfer learning was applied to transfer the T1 imaging-based model from source 

domain (RANN) to the target domains (HCPA or ADNI). 

The CNN model trained on the RANN dataset exhibited strong linear correlation between true and predicted 

memory based on the T1 cortical thickness and volume predictors. In addition, the model generated from healthy 

lifespan data (RANN) was able to generalize to an independent healthy lifespan data (HCPA) and older demented 

participants (ADNI) across different scanner types. The estimated CR was correlated with CR proxies such edu- 

cation and IQ across all three datasets. 

The current findings suggest that the transfer learning approach is an effective way to generalize the residual- 

based CR estimation. It is applicable to various diseases and may flexibly incorporate different imaging modalities 

such as fMRI and PET, making it a promising tool for scientific and clinical purposes. 
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. Introduction 

Approximately 15–20% of adults aged 65 or older suffer from sig-

ificant cognitive decline resulting in mild cognitive impairment (MCI);

mong these, 11.3% adults later develop dementia due to Alzheimer’s

isease (AD) ( Association, 2021 ). With the lack of an effective treatment

trategy, there is a great need to identify factors that can slow the pro-
Abbreviations: HCPA, Human Connectome Project Aging; ADNI, Alzheimer’s Di

eserve; ROI, Region of Interest; sMRI, Structural Magnetic Resonance Imaging; eT

agnetic Resonance Imaging; PET, Positron Emission Tomography; MCI, Mild Cogn

etwork Study. 
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ression to dementia and maintain quality of life ( Zissimopoulos, Crim-

ins, & St Clair, 2014 ). 

Cognitive reserve (CR) has been introduced to explain individual dif-

erences in susceptibility to cognitive or functional impairment in the

resence of age or disease-related brain changes ( Stern, 2002 ). Indi-

iduals with high CR have greater resilience and maintained normal

ognitive function longer when confronted with late-life neuropathol-

gy. Typical CR proxy measures include years of education ( Meng &
sease Neuroimaging Initiative; CNN, Cascade Neural Network; CR, Cognitive 

IV, estimated intracranial volume; AD, Alzheimer’s Disease; fMRI, Functional 

itive Impairment; CN, Cognitive Normal; RANN, The Reference Ability Neural 

ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 

NI and/or provided data but did not participate in analysis or writing of this 

.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf . 
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’Arcy, 2012 ; Stern et al., 1994 ), premorbid IQ ( Alexander et al., 1997 ),

ccupational achievement, and engagement in cognitively and socially

timulating activities ( Scarmeas & Stern, 2003 ). These are thought to

rotect against functional impairment by promoting the ability to bet-

er compensate for brain changes. However, qualifying as a proxy for

ognitive reserve does not imply sufficiency for the mechanism proper

ince a rigorous test of cognitive-reserve mechanisms requires both

rain and cognitive measures. Proxy measures, while often used in

he past and spoken about interchangeably with cognitive reserve, are

ot enough here since their effect on cognition could be fully medi-

ted through brain structure, a clear case where better brain main-

enance, and not better cognitive reserve, would be at play. An NIH-

unded collaboratory for clarifying research definition for cognitive re-

erve and resilience has brought all this into clear focus over the last 3

ears. ( https://reserveandresilience.com/ ). -Moreover, proxy measures

ail to provide the entirety of the construct; the same value of a proxy

ariable may reflect different experiences across people. In addition,

ost proxy measures only represent static cognitive reserve and can-

ot account for possible change over time. Lastly, these measures rely

n the recollection of prior activities, which are an indirect proxy of

R. ( Borenstein, Copenhaver, & Mortimer, 2006 ; Jones et al., 2011 ;

atz, Cole, Hardy, & Rassovsky, 2011 ). To address these limitations, a

irect measure of CR based on unbiased current information is highly

eeded. One popular approach to quantify CR is to measure the residual

ariance between predicted cognitive performance based on an individ-

al’s level of brain status and neuropathology and the actual individual’s

erformance ( Reed et al., 2010 ). These residual-based measures offer a

ore precise measurement of CR ( Bocancea et al., 2021 ). High-reserve

ndividuals exhibit higher actual measured cognitive performance than

hat predicted. 

Structural magnetic resonance imaging (sMRI) has been used as

 measure of the regional brain atrophy underlying cognitive decline

nd dementia ( Mueller, Schuff, & Weiner, 2006 ). Previous studies us-

ng the sMRI to calculate the residual variance operational measure of

R showed promising results in older participants ( Reed et al., 2010 ;

ahodne et al., 2015 ; Zahodne et al., 2013 ). Currently, most research

n cognitive aging has used life-span data ( Razlighi, Habeck, Barulli, &

tern, 2017 ; Salthouse, 2010 ; Taylor et al., 2017 ; Tucker-Drob, 2019 ).

owever, leveraging life-span brain and cognition data in quantifying

ognitive reserve has not been done. 

In addition, brain imaging data from multi-sites may have high vari-

bility due to different MRI sequences of different scanners, thus, lim-

ting direct application of a previously trained model to new datasets

cquired from different sites. 

Traditional machine learning methods to mitigate the influence of

ariability across sites require a balanced sample from each site and

ssume the same distribution across training and test datasets. The per-

ormance of a predictive model declines when these assumptions are

iolated. Transfer learning is a machine learning technique that utilizes

he knowledge gained from one task and applies it to a different but

elated task. It is a popular optimization approach that allows rapid

rogress or improved performance when modeling the second task. The

MRI obtained from various sites or scanners may represent similar brain

roperties but may exhibit different observational distributions. Thus,

he transfer learning approach may be applied to improve the general-

zability of the sMRI-based residual models. 

In this study, we proposed a CR quantification framework that lever-

ges a single-site, large scale lifespan data and uses transfer learning to

andle scanner and site differences. First, to assess whether using lifes-

an data of healthy individuals, which shows more variability in cog-

ition function, may enable better quantification of the relationship be-

ween sMRI and cognitive performance, we built a deep learning model

o quantify the CR as residual variance in memory performance using

he sMRI data from a local healthy lifespan cohort (CR/RANN). Second,

o test the generalizability of the sMRI-based deep learning model, we

tilized the transfer learning approach to fine-tune the pre-trained deep
2 
earning model to an independent, healthy lifespan cohort: the Human

onnectome Project-Aging cohort (HCPA). Third, to test whether the

odel generated from healthy lifespan data could generalize to older

CI or demented individuals, we used transfer learning again to fine-

une the model to fit data from participants in the Alzheimer’s Dis-

ase Neuroimaging Initiative (ADNI). The ADNI datasets were acquired

rom different scanners and under different imaging conditions, so we

ould test whether the model is affected by different scanners. To vali-

ate our operationalization of CR in all three cohorts, we hypothesized

hat the estimated CR would correlate with education and IQ (i.e., a

ell ‐established CR proxy). 

. Method and material 

.1. Participants 

CR/RANN : 495 healthy adults (age: 20-80) were drawn from our

ngoing studies at Columbia University Irving Medical Center: The Cog-

itive Reserve and The Reference Ability Neural Network (CR/RANN)

tudies ( Stern, 2009 ; Stern et al., 2014 ). Demographic characteristics of

hese participants are summarized in Table 1 . 

Subjects were recruited primarily by randomized market mailing. An

nitial telephone screening determined whether participants met basic

nclusion criteria (i.e., right-handed, English speaking, no psychiatric or

eurological disorders, and normal or corrected-to-normal vision). Po-

entially eligible participants were further screened in person with struc-

ured medical and neuropsychological evaluations to ensure that they

ad no neurological or psychiatric conditions, cognitive impairment, or

ontraindication for MRI scanning. Global cognitive functioning was as-

essed with the Mattis Dementia Rating Scale ( Lucas et al., 1998 ), on

hich a minimum score of 130 was required for retention in the study.

n addition, participants who met diagnostic criteria for MCI were ex-

luded. The studies were approved by the Internal Review Board of the

ollege of Physicians and Surgeons of Columbia University. Initially,

61 participants were enrolled to CR/RANN studies, and 532 partici-

ants had memory composite score, and 37 participants (7%) were fur-

her excluded due to missing T1 images, resulting 495 participants. All

95 images passed QC. 

CR/RANN Memory Tasks: all participants performed Selective Re-

inding Task (SRT) ( Buschke & Fuld, 1974 ). Three memory measures

ere based on sub-scores of the SRT: the long-term storage sub-score,

ontinuous long-term retrieval, and the number of words recalled on the

ast trial. The z-scores of each of the three measures were computed by

ubtracting the sample means followed by dividing by the sample stan-

ard deviation. The composite memory scores were computed as the

verage of the three z-scores. 

HCPA: 620 healthy participants with available cognitive data (age:

6-100) from the lifespan Human Connectome Project Aging were in-

luded in this study ( Bookheimer et al., 2019 ). The demographic infor-

ation for the participants was presented in Table 1 . HCPA excludes

articipants who have been diagnosed and treated for major psychiatric

isorders (e.g., schizophrenia, bipolar disorder) or neurological disor-

ers (e.g., stroke, brain tumors, Parkinson’s Disease). To be included

n the current study, the following measurements have to be available:

) T1-weighted MRI scans from 3T scanner, 2) years of education and

ecent occupation, and 3) Composite episodic memory score. 

HCPA Memory Tasks: The cognitive and performance battery in-

ludes episodic memory measured by Picture Sequence Memory Test

nd Rey Auditory Verb al Learning Test (RAVLT). The z-scores of each

f the three measures were computed by subtracting the sample means

ollowed by dividing by the sample standard deviation. The composite

emory scores were computed as the average of the three z-scores. 

ADNI : 941 subjects, including 417 normal control (CN), 378 mild

ognitive impairment (MCI), and 146 Alzheimer’s disease (AD), were

ncluded in this study. The demographic information for the participants

s presented in Tables 1 and 2 . 

https://reserveandresilience.com/
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Table 1 

Demographic Characteristics in CR/RANN, HCPA, and ADNI Study. 

CR/RANN HCPA ADNI p 

Total N 495 620 941 

Age < 0.001 

- Mean(SD) 53.42 (16.90) 59.499 (15.171) 72.40 (7.21) 

- Median(Q1,Q3) 60.00 (38.00,67.00) 58.04 (46.92,70.98) 72.00 (67.00,77.00) 

Sex, n(%) 0.0065 

- Female 282 (57%) 358 (57.6%) 474 (50.4%) 

- Male 213 (43.0%) 263 (42.4%) 467 (49.6%) 

Memory < 0.001 

- Mean(SD) 0.03(0.94) 0.01 (0.72) 0.45 (0.91) 

- Median(Q1,Q3) 0.13(-0.62,0.80) -0.34 (-0.38, 0.37) 0.53 (-0.19,1.12) 

Education < 0.001 

- Mean(SD) 16.20 (2.35) 17.46 (2.19) 16.42 (2.53) 

- Median(Q1,Q3) 16.00 (14.00,18.00) 18.00 (16, 19) 16 (15.00,18.00) 

IQ NART IQ Nih fluidcogcomp NART IQ 0.512 

- N-Miss 5 2 17 

- Mean(SD) 117.02 (8.68) 120.85 (139.17) 116.35 (11.23) 

- Median(Q1,Q3) 119.20 (111.92, 124.00) 100 (91.00, 108.00) 119.44 (110.76,124.40) 

People 

- N-Miss 113 - - 

- Mean(SD) 4.77 (2.28) - - 

- Median(Q1,Q3) 6.00 (3.00, 6.00) - - 

Data 

- N-Miss 113 - - 

- Mean(SD) 1.73 (1.44) - - 

- Median(Q1,Q3) 1.00 (1.00, 3.00) - - 

Things 

- N-Miss 113 - - 

- Mean(SD) 5.40 (2.40) - - 

- Median(Q1,Q3) 7.00 (2.00, 7.00) - - 

Diagnosis, n(%) 

CN 495 (100%) 620 (100%) 417 (44.3%) 

MCI - - 378 (40.2%) 

AD - - 146 (15.5%) 

Table 2 

Demographic Characteristics in ADNI dataset across three scanners. 

GE(N = 232) Philips (N = 172) Siemens (N = 537) Total (N = 941) p-value 

ADNI Memory 0.043 

- Mean (SD) 0.38(0.95) 0.36(0.92) 0.52(0.90) 0.45(0.91) 

Diagnosis, n(%) 0.034 

- CN 99(42.7%) 64(37.2%) 254(47.3%) 417(44.3%) 

- MCI 87(37.5%) 77(44.8%) 214(39.9%) 378(40.2%) 

- AD 46(19.8%) 31(18.0%) 69(12.8%) 146(15.5%) 

Age 0.803 

- Mean (SD) 72.62(7.13) 72.50(6.86) 72.26(7.36) 72.40(7.21) 

Gender, n(%) 0.307 

- Female 109(47.0%) 83(48.3%) 282(52.5%) 474(50.4%) 

- Male 123(53.0%) 89(51.7%) 255(47.5%) 467(49.6%) 

PT Education 0.665 

- Mean (SD) 16.31(2.64) 16.38(2.58) 16.49(2.46) 16.42(2.53) 

NART IQ 0.365 

- N-Miss 10 5 2 17 

- Mean (SD) 115.53 (11.55) 116.05 (11.31) 116.77 (11.07) 116.35 (11.23) 
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Detailed inclusion and exclusion criteria for the ADNI study can be

ound at adni.loni.usc.edu . To be included in the current study, the fol-

owing measurements have to be available: 1) T1-weighted MRI scans

rom 3T scanner, 2) years of education and recent occupation, and 3)

omposite memory score ( Crane et al., 2012 ). Written informed consent

as obtained from all study participants according to the Declaration of

elsinki, and Ethical approval for data collection and sharing was given

y the institutional review boards of the participating institutions in the

DNI. 

ADNI Memory Tasks: ADNI memory was measured using modern

sychometric approaches to analyze Rey Auditory Verbal Learning Test

RAVLT, 2 versions), AD Assessment Schedule – Cognition (ADAS-Cog,

 versions), Mini-Mental State Examination (MMSE), and Logical Mem-
 s

3 
ry data. The composite scores were computed based on bifactor model

 Crane et al., 2012 ). The computed data were downloaded from the

DNI website (UWNPSYCHSUM_03_26_20.csv). 

.2. Image procedures 

.2.1. Neuroimaging data acquisition 

CR/RANN : Structural MRI scans were acquired on a 3.0T Philips

chieva scanner. T1-weighted MPRAGE scan was acquired with a TE/TR

f 3/6.5 ms and Flip Angle of 8°, in-plane resolution of 256 × 256, field

f view of 25.4 × 25.4 cm, and 165–180 slices in axial direction with

lice-thickness/gap of 1/0 mm. 

http://adni.loni.usc.edu/


X. Zhu, Y. Liu, C.G. Habeck et al. NeuroImage 258 (2022) 119353 

 

3  

w  

p  

(  

T  

m  

p  

f

 

P  

d  

b  

p  

q  

i  

i  

s  

t  

(

2

 

F  

r  

(  

l  

t  

T  

q  

c  

s  

(  

f  

A  

R  

w  

H

2

 

d  

F  

a  

t  

n  

f  

m  

r  

l  

t  

p  

i  

a  

a  

c  

u  

r  

a  

r  

c  

t  

p  

m  

t

2

 

C  

d  

s  

r

 

t  

(  

l  

w  

f  

b  

t  

m  

f  

w  

b  

i  

m  

j  

r  

d  

i  

w  

m  

l  

d  

a  

p  

T  

f  

m  

s  

t  

e  

t  

a  

s  

i

S

2

 

m  

w  

2  

t  

p  

m  

t  

q  

t  

f  

o  

w  

t  

t  

a  

(  

t  

s  

i  

t  

c  

a

HCPA: Structural MRI scans were acquired from all sites using

T Siemens Prisma scanner, and 32-channel Prisma head coil. T1-

eighted images were acquired with 3D multi-echo magnetization pre-

ared rapid gradient echo (MEMPRAGE) at 0.8 mm isotropic resolution

 Harms et al., 2018 ). Other parameters include: TR/TI = 2500/1000,

E = 1.8/3.6/5.4/7.2 ms, flip angle of 8 deg, FOV of 256 × 240 × 166

m with a matrix size of 320 × 300 × 208 slices, water excitation em-

loyed for fat suppression (to reduce signal from bone marrow and scalp

at), and up to 30 TRs allowed for motion-induced reacquisition. 

ADNI: Structural MRI scans were acquired from all sites using 3T

hilips, GE, and Siemens scanners. Since the acquisition protocols were

ifferent for each scanner, an image normalization step was performed

y the ADNI. The imagining sequence was a 3-dimensional sagittal

art magnetization prepared of rapid gradient-echo (MPRAGE). This se-

uence was repeated consecutively to increase the likelihood of obtain-

ng at least one decent quality of MPRAGE image. Image corrections

nvolved calibration, geometry distortion, and reduction of the inten-

ity of non-uniformity applied on each image by the ADNI. More de-

ails concerning the sMRI images is available on the ADNI homepage

 http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/ ). 

.2.2. Neuroimaging data processing 

Each subject’s structural T1 scan was reconstructed using

reeSurfer v7.1.1 ( http://surfer.nmr.mgh.harvard.edu/ ). The accu-

acy of FreeSurfer’s subcortical segmentation and cortical parcellation

 Fischl et al., 2002 ) has been reported to be comparable to manual

abeling. All T1 images went through an automated quality control

hrough MRIQC ( Esteban et al., 2017 ). For the multiple available

1 images at the same visit, we selected the images with the best

uality for further analysis. For all images that passed quality check,

ross-sectional image processing was performed using FreeSurfer Ver-

ion 7.1.1 ( https://surfer.nmr.mgh.harvard.edu/ ). Region of interest

ROI)-specific cortical thickness and volume measures were extracted

rom the automated anatomical parcellation using the Desikan-Killiany

tlas ( Desikan et al., 2006 ) for cortical and aseg atlas for subcortical

OIs. To test the robustness of the models (supplementary material),

e also used an alternative Destrieux atlas ( Destrieux, Fischl, Dale, &

algren, 2010 ). 

.2.3. Brain memory prediction model 

The memory prediction model was trained using the CR/RANN

ataset. An overview of the transfer learning method is presented in

ig. 1 . First, the RANN dataset was split into the training set (70%)

nd test set (30%) using a conditionally random method. The distribu-

ions of age and sex in the two sets were statistically identical. Cascade

eural network models with all regional cortical thickness and volume

rom FreeSurfer as inputs were used to train the CR/RANN dataset for

emory prediction. The cascade neural network is a feedforward neu-

al network involving connections from the input and every previous

ayer to the subsequent layer ( Fig. 2 ). The advantage of the model is

hat it accommodates the nonlinear relationship between input and out-

ut. The CNN outperforms the other common classical machine learn-

ng approaches for brain residual-based analysis and is more flexible

nd efficient to implement the transfer learning framework than other

pproaches. ( Chen et al., 2020 ). The hyperparameters of the model, in-

luding numbers of hidden layers, numbers of neurons, penalty of reg-

larization and types of activation function, were optimized through

andom search. The loss function of model optimization was specified

s mean square error function optimized using gradient descent algo-

ithm with an adaptive learning rate and constant momentum. A 10-fold

ross-validation procedure was conducted within the training set to es-

imate the memory prediction model performance. To quantify model

erformance, metrics including Pearson’s correlation coefficient (rho),

ean absolute error (MAE) and cohen’s f 2 between the predicted and

rue memory were calculated. 
4 
.2.4. Transfer learning 

To transfer the T1 imaging-based model from source domain (using

R/RANN) to the target domain (HCPA or ADNI), we first randomly

ivided the whole HCPA or ADNI dataset into the tuning pool and test

ets (tuning set 70%, test set 30%). The subset of the tuning pool was

andomly selected to re-train the pre-trained model. 

In the refined optimization procedure of the transfer learning, the op-

imal tuning sample, the regularization ratio (0 to 1), the loss function

i.e. mean square error), and the choice which layers were frozen (if the

ayer of the pre-trained model was frozen, the parameters in that layer

ere not updated in the fine-tuning process) were tested. The trans-

er learning process was optimized using an agile optimization process

ecause it facilitated rapid prototyping and broad searching. After the

uning procedure, the transferred model was applied to the test set for

odel performance evaluation. We compared the performance of trans-

er learning approach with the transfer learning with cotrain (TLCO),

hich is used for re-training the pre-trained memory prediction model

y using a combination of the tuning and training sets with the site

ndicator. We optimized the tunning process by adopting an agile opti-

ization method that exploit a time-saving optimizer called scaled con-

ugate gradient (SCG) algorithm for fast optimization and the hyperpa-

ameter settings emulated as those of the training process in the target

omain. We compared the performance of the optimized transfer learn-

ng with tuning procedure with the model applied pre-trained model

ithout tuning. Since ADNI data was collected from multiple sites and

ultiple scanners, for the secondary analysis, we applied the transfer

earning by the scanner manufacturers: GE, Siemens and Philips. The

ata in the three target domains were divided in to the tuning-pool

nd test sets (Siemens: tuning pool N = 377, test set N = 160; GE: tuning

ool N = 164, test set N = 68; Philips: tuning pool N = 124, test set N = 48).

hen, transfer learning was performed in the same pattern separately

or three datasets. The TLCO method was used to compare the perfor-

ance with transfer learning. TLCO integrated both training set from

ource domain and tunning set from target domain to tune the pre-

rained CNN model. The TLCO approach accounts for intersite differ-

nces through statistical variance analysis. It employs statistical models

o regress out site-specific differences by using statistical covariates. This

pproach requires the source domain data to be accessible and the data

ize from different sites to be balanced. The code of the transfer learn-

ng is available at https://github.com/XiZhu- CU/Transfer- Learning- 

ubmission . 

.2.5.Quantification. of cognitive reserve 

After establishing the memory prediction model, a person’s predicted

emory performance could be obtained. Structural brain features along

ith age and sex were included in the model as predictors ( Reed et al.,

010 ). Race was not included in the model as a predictor because more

han 93% of our targeted sample (ADNI) is non-Hispanic white. The im-

act of race on the model performance is presented in supplementary

aterial. In addition, the estimated intracranial volume (eTIV) was ex-

racted from each subject and used as a predictor. Cognitive reserve was

uantified by residuals which subtract the predicted memory from the

rue memory. To validate our brain-based CR quantification, we per-

ormed correlation analyses between the residuals and several proxies

f CR including education, occupation and IQ. For CR/RANN and ADNI,

e used National Adult Reading Test (NART) IQ, which reflects the crys-

allized intelligence. Occupational attainment variables (data, people,

hings) reflect the specific demands of an occupation. All CR/RANN

nd ADNI findings were corrected for multiple comparison at p < 0.01

5 measures: education, IQ, data, people, things). Similarly, for HCPA,

he NIH Toolbox was administrated provided the Crystallized composite

cores which reflects the intelligence. The Crystallized Composite score

s derived from performance on the Reading Recognition and the Pic-

ure Vocabulary tasks ( Heaton et al., 2014 ). The HCPA findings were

orrected for multiple comparison at p < 0.025 (2 measures: education,

nd IQ). 

http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
http://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://github.com/XiZhu-CU/Transfer-Learning-Submission
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Fig. 1. Overview of transfer learning methods. 
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. Results 

.1. Demographic characteristics 

Demographic and clinical characteristics are presented in Table 1 .

ll three datasets significantly differed in age, sex, and education. Par-

icipants were older in ADNI compared with CR/RANN and HCPA. Edu-

ation was higher in HCPA subjects, compared with CR/RANN or ADNI.

Q was not significantly different between CR/CRNN and ADNI. 

.2. Training memory prediction modeling in the CR/RANN dataset 

The cascade neural network model ( Fig. 2 ) using 10-fold cross-

alidation on the CR/RANN training set demonstrated significant lin-

ar correlation between true and predicted memory based on the cho-

en T1 cortical thickness and volume predictors for both training set

rho = 0.6076, MAE = 0.5856, cohen’s f 2 = 0.58) and independent test set

rho = 0.3886, MAE = 0.6980, cohen’s f 2 = 0.18) ( Fig. 3 ). After random

earch, the model performance improved in training set (rho = 0.5578,

AE = 0.5792, cohen’s f 2 = 0.45) and test set (rho = 0.3963, MAE = 0.6888,

ohen’s f 2 = 0.19). 

There was significant correlation of NART IQ with residuals for

raining set (NART IQ: rho = 0.154, p-value = .004, cohen’s f 2 = 0.01).

here was significant correlation between the residuals and both NART

Q (NART IQ: rho = 0.169, p-value = .003, cohen’s f 2 = 0.03) and educa-

ion (rho = 0.2069, p-value = 0.01, cohen’s f 2 = 0.04) for test set. Residuals

ere not associated with data, people or things. 
5 
.2. Transfer learning to HCPA 

The best model trained using CR/RANN dataset (pre-trained model)

as used in this analysis. First, we tuned the model using tuning

et from target domain (HCPA). We found linear correlation and low

AE between true and predicted memory for tuning set (rho = 0.4909,

AE = 0.4101, cohen’s f 2 = 0.32) and test set (rho = 0.4062, MAE = 0.4107,

ohen’s f 2 = 0.20). When we directly applied pre-trained model without

uning, the performance dropped in test set (rho = 0.3099, MAE = 0.5358,

ohen’s f 2 = 0.11) ( Fig. 4 ). Second, the transfer learning with cotrain

TLCO) approach uses both training set from source domain (CR/RANN)

nd tunning set from target domain (HCPA) to further tune the pre-

rained model. The TLCO performed comparable with the transfer learn-

ng approach (Tuning set: rho = 0.3872, MAE = 0.4318, cohen’s f 2 = 0.18;

est set: rho = 0.4474, MAE = 0.3867, cohen’s f 2 = 0.25). 

There was significant correlation of both IQ and education with

esiduals of the transfer learning model for both tuning set (IQ:

ho = 0.227, p-value < .001, cohen’s f 2 = 0.05; education: rho = 0.255, p-

alue = 0.0015, cohen’s f 2 = 0.07); IQ: rho = 0.3612, p-value < .001, co-

en’s f 2 = 0.15; education: rho = 0.2798, p-value < .001, cohen’s f 2 = 0.09).

.4. Transfer learning to ADNI 

.4.1. Primary analysis 

We found strong linear correlation and low MAE between true

nd predicted memory for tuning set (rho = 0.7385, MAE = 0.4935, co-

en’s f 2 = 1.2) and test set (rho = 0.7117, MAE = 0.5435, cohen’s f 2 = 1.03).

hen we directly applied the pre-trained model without tuning, perfor-

ance dropped in test set (rho = 0.5485, MAE = 0.9259, cohen’s f 2 = 0.43)
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Fig. 2. The initial cascade neural network model used to train CR model (top). The cascade neural network is a feedforward neural network involving connections 

from the input and every previous layer to the subsequent layer. This network trained using CR/RANN dataset has seven layers (L1 to L7). The number under each 

layer represents the number of neurons in that layer. The first layer has a weight coming from the input and each subsequent layer has weight coming from the 

inputs with all previous layers. The last layer is the network output, called as output layer. The output layer is also connected directly with the input layer beside 

with hidden layer. The hyperparameters of the model, including numbers of hidden layers and neurons, penalty of regularization, and types of activation function, 

were determined through random search. The optimized CNN model after random search (bottom) included 5 layers. 

Fig. 3. Scatter plot for true memory (x axis) 

against predicted memory (y axis) in CR/RANN 

dataset after random search. A) Training set; B) 

Test set. 

Fig. 4. Scatter plot for true memory (x axis) against predicted memory (y axis) in HCPA dataset, while applied pretrained model from CR/RANN. 

A) Tuning set using HCPA data; B) Test set after tuning using HCPA data; C) Test set if applying the pretrained model directly 

6 
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Fig. 5. Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI dataset, while applied pretrained model from CR/RANN. 

A) Tuning set; B) Test set after tuning; C) Test set if applying the pretrained model directly 

Table 3 

Model performance for ADNI datasets by scanning manufacturers using random searching model. 

Manufacturers Tuning set(TL) Test set before tuning (TL) Test set after tuning (TL) Tuning set(TLCO) Test set (TLCO) 

Siemens Rho 0.6488 0.4589 0.5909 0.7836 0.5904 

MAE 0.5349 0.8938 0.5163 0.5750 0.6244 

GE Rho 0.7813 0.5181 0.6558 0.5655 0.4636 

MAE 0.4700 0.8461 0.5932 0.6816 0.6731 

Philips Rho 0.8264 0.3138 0.5785 0.5039 0.5238 

MAE 0.3850 0.9285 0.7179 0.6406 0.6563 

∗ Transfer learning (TL), and the hybrid (TLCO) approaches. 

(  

p  

r

 

a  

v  

c  

f

 

a  

t  

S  

g  

a

3

 

a  

f  

M  

h  

h  

r  

i  

b  

d  

T

 

a  

4

 

a  

a  

s  

p  

t  

i  

H  

Table 4 

Pearson’s correlation coefficient between IQ, education and residuals by 

group diagnosis in ADNI dataset. 

Group IQ p-value Education p-value 

CN Tuning set residuals 0.109 0.063 0.122 ∗ 0.036 

Test set residuals 0.302 ∗∗ 0.001 0.304 ∗∗ 0.001 

MCI Tuning set residuals 0.189 ∗∗ 0.002 0.148 ∗ 0.015 

Test set residuals 0.245 ∗ 0.011 0.112 0.244 

AD Tuning set residuals 0.355 ∗∗ 0.001 0.093 0.366 

Test set residuals 0.215 0.138 0.003 0.986 
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 Fig. 5 ). The TLCO performed comparable with the transfer learning ap-

roach (Tuning set: rho = 0.7187, MAE = 0.5158, cohen’s f 2 = 1.1; Test set:

ho = 0.6684, MAE = 0.5967, cohen’s f 2 = 0.81). 

There was significant correlation between IQ, education, and residu-

ls of the transfer learning model for both tuning set (IQ: rho = 0.2025, p-

alue < .001, cohen’s f 2 = 0.04; education: rho = 0.1698, p-value = 0.0032,

ohen’s f 2 = 0.03) and test set (IQ: rho = 0.366, p-value < .001, cohen’s

 

2 = 0.15; education: rho = 0.255, p-value < .001, cohen’s f 2 = 0.07). 

We further assessed the correlation of IQ and education with residu-

ls separately within each diagnosis group (CN, MCI and AD). Correla-

ions of NART IQ and education with residuals are presented in Table 4 .

ignificant correlation between IQ and residuals was found in all three

roups, while the significant correlation between education and residu-

ls was found in CN and MCI. 

.4.2. Secondary analysis 

We found strong linear correlation and low MAE between true

nd predicted memory in the Siemens, GE and Philips respectively

or tuning set (Siemens: rho = 0.6488, MAE = 0.0.5349; GE: rho = 0.7813,

AE = 0.4700, cohen’s f 2 = 1.57; Philips: rho = 0.8264, MAE = 0.3850, co-

en’s f 2 = 2.15) and test set (Siemens: rho = 0.5909, MAE = 0.5163, co-

en’s f 2 = 0.54; GE: rho = 0.6558, MAE = 0.5932, cohen’s f 2 = 0.75; Philips:

ho = 0.5785, MAE = 0.7179, cohen’s f 2 = 0.50). Using the transfer learn-

ng approach, the performance of the CR/RANN pre-trained model could

e reproduced in each target domain with a smaller amount of tuning

ata ( Fig. 6 ). The transfer learning approach always outperformed the

LCO. The results are shown in Table 3 . 

Significant and positive correlations between NART IQ, education

nd residuals were demonstrated in both tuning and test sets ( Table 5 ).

. Discussion 

In this study, we built a deep learning model to quantify the CR

s residual variance in memory performance using the sMRI data from

 healthy lifespan cohort (age 20-80). Importantly, our study demon-

trates that the pre-trained model constructed using the healthy lifes-

an data (CR/RANN) from a single-site and a single sequence was able

o generalize to two target datasets acquired with different age ranges,

maging protocols, and clinical status. These included healthy lifespan

uman Connectome Project-Aging cohort (HCPA) and older MCI and
7 
emented participants from Alzheimer’s Disease Neuroimaging Initia-

ive (ADNI) across different scanner types. By tuning the models with

elatively small sample sizes and the same T1 brain features, optimal

ransferred models were obtained with satisfactory prediction perfor-

ance in both target cohorts. The estimated CR was also validated by

howing significant correlation with CR proxies such as education and

Q across all three datasets. 

We found that the cascade neural network (CNN) model trained on

he CR/RANN data demonstrated a linear correlation between true and

redicted memory based on the T1 cortical thickness and volume predic-

ors. The sMRI-based measure of CR was associated with CR the proxy

easures of education and IQ. Previous studies have used sMRI from

lder healthy subjects ( Sole-Padulles et al., 2009 ), older MCI, or patients

ith AD to quantify CR ( van Loenhoud et al., 2017 ). However, patients

ith neurological diseases with aberrant cognition may lead to bias for

he quantification of CR. We first demonstrated that using lifespan data

f healthy individuals, enabled good quantification of cognitive perfor-

ance. It is worth noting that the performance achieved by our model is

lso comparable to that of previous studies applying residual approaches

n quantifying CR ( Vieira, Pinaya, & Mechelli, 2017 ). 

Second, to test the generalizability of the sMRI-based deep learning

odel, this study utilized the transfer learning approach to fine-tune

he pre-trained deep learning model to an independent, healthy lifes-

an HCPA data. The transfer learning approach is an efficient and stabi-

ized way to generalize the T1 imaging-based memory prediction model.

ompared with the TLCO, the tuning methods with the transfer learn-
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Fig. 6. Scatter plot for true memory (x axis) against predicted memory (y axis) in ADNI dataset by scanner types using random searching models. 

Table 5 

Pearson’s correlation coefficient between IQ, education and residuals by scanner 

types in ADNI dataset. 

Manufacturer IQ p-value Education p-value 

Siemens Tuning set residuals 0.2364 ∗∗ < .001 0.2171 ∗∗ 0.0020 

Test set residuals 0.1933 ∗ 0.0143 0.1858 ∗ 0.0186 

GE Tuning set residuals 0.2700 ∗∗ 0.0085 0.1999 ∗ 0.0461 

Test set residuals 0.0886 0.4791 0.3130 ∗ 0.0094 

Philips Tuning set residuals 0.1996 ∗ 0.0488 0.2808 ∗∗ 0.0047 

Test set residuals 0.5001 ∗∗ < .001 0.3424 ∗∗ 0.0172 
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ng approach always provided lower MAE and a stronger correlation

etween the actual and predicted memory in all results. 

Third, the model not only could generalize from healthy lifespan data

o an independent healthy lifespan HCPA dataset, but also to an older

emented participants from ADNI using transfer learning. Although the

hree datasets administrated different tests to assess memory, by tun-

ing the models with relatively small sample size, prediction perfor-

ance of the models were relatively comparable. Moreover, the models

ere robust across different scanners. When conducting retrospective

ulti-center imaging studies, such as ADNI, or applying models trained

n one site to another, heterogeneous MRI data from different scanner

ardware, and acquisition protocols will pose challenges in the evalu-

tion and generalization of these trained models. Structured programs

imed at standardizing and harmonizing MRI acquisition in research

ettings ( Weiner et al., 2017 ). However, data obtained in these selected

rameworks might not be representative of real-world populations. In
8 
ur work, CNN was trained, tested using the CR/RANN dataset, then

sing transfer learning to fine-tune and test in another two datasets ob-

ained by different MR protocols and scanners to capture the full spec-

rum of heterogeneity among data and provide a less dataset-specific

pproach. Through further training iterations, the pre-trained CNN net-

ork adjusted for data bias stemming from the differences in acqui-

ition and reconstruction between different scanners. In fact, our ap-

roach overcomes the caveats of previous work, which obtained data

rom single-center datasets leading to a limited reproducibility of find-

ngs ( Wen et al., 2020 ). 

Interestingly, In the residual-based cognitive reserve (CR) or brain

ge gap (BAG) literature, a correlation between residuals and the

utcome (e.g., age or cognition) has been observed (for example,

 Anaturk et al., 2021 ; Le et al., 2018 )). It is still an ongoing investiga-

ion in the cause of remaining correlation with age or cognition in the

esidual-based measures. It is potentially due to the choice of the imag-
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ng modality, mis-specified models, and many other unknown causes.

ome studies suggested re-residualizing the outcome (e.g., age, cogni-

ion) to remove the correlation ( Le et al., 2018 ), but it is also criticized

y others ( Butler et al., 2021 ), because it can inflate residual-based mea-

ure’s relative quantity. At present, there are no established and vali-

ated remedies, and it is out of the scope of the current manuscript. 

In the current study, we used a standard pipeline to process the raw

RI image and extracted the cortical thickness and volume measures

rom T1-weighed MRIs. Our ROI-based approach shown promising and

obust results for the given sample sizes. Further deep learning stud-

es with larger sample size may also consider using voxel-wise whole

rain based approach as input. Moreover, despite progress on the in-

erpretability of deep learning, deep neural networks are still consid-

red, to a large extent, as black boxes, due to the difficulty of inter-

reting their inner networks. For example, even when an model allows

etection of patients from controls with high levels of accuracy, it can

e difficult to establish the specific features that informed the classi-

cation decision ( Cruz-Roa, Arevalo Ovalle, Madabhushi, & Gonzalez

sorio, 2013 ). However, our focus of this study was to better predict

he memory measures, further studies may develop more interpretable

eep learning models to better understand the underlying neural mech-

nism. Lastly, we only used sMRI to assess the feasibility for CR estima-

ion across three studies. Future studies should consider adding other

RI modalities, such as, diffusion tensor imaging (DTI), PET, and CSF

iomarkers together with sMRI to improve the power of prediction as

ell as the accuracy of the residual in estimating CR. 

. Conclusions 

In conclusion, we have shown the general feasibility of using deep

earning to quantify cognitive reserve by leveraging lifespan healthy

ata. Our findings showed that brain/cognitive function across lifes-

an provided good brain-based quantification of CR. Moreover, transfer

earning shows promises for building robust models that can be fine-

uned and generalized to independent healthy lifespan cohort and in

atients with Alzheimer’s disease, also robust across different scanners

ith different acquisition parameters. The residuals (CR) were signifi-

antly associated with NART IQ and education across different cohorts.

he transfer learning method is applicable to various brain diseases or

R proxies and may flexibly incorporate different imaging modalities

aking it a promising tool for scientific and clinical purposes. 

ata and code availability statement 

MATLAB scripts for cascade neural networks, transfer learning,

tatistical evaluations, and visualizations can be found here: https://

ithub.com/XiZhu- CU/Transfer- Learning- Submission . All raw imaging,

ognitive and demographic data are subject to a formal data sharing

greement by Alzheimer’s Disease NeuroImage Initiative, Lifetime Hu-

an Connectome Projects, and Reference Ability Neural Networks. De-

ived variables for this manuscript are available upon reasonable request

nd approval of the data-sharing agreement of each study. 

ata Availability 

All data examined in the manuscript are available upon request in

eidentified format. 

unding statement 

This work was supported by the R01AG026158 , R01AG038465 , and

01AG062578 . Dr. Zhu was supported by K01MH122774 and Brain and

ehavior Research Foundation Grant 07040 . Data collection and shar-

ng for this project was funded by the Alzheimer’s Disease Neuroimaging

nitiative (ADNI) (National Institutes of Health Grant U01 AG024904)
9 
nd DOD ADNI (Department of Defense award number W81XWH-12-2-

012). ADNI is funded by the National Institute on Aging, the National

nstitute of Biomedical Imaging and Bioengineering, and through gener-

us contributions from the following: AbbVie, Alzheimer’s Association;

lzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica,

nc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Ei-

ai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun;

. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.;

ujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunother-

py Research & Development, LLC.; Johnson & Johnson Pharmaceutical

esearch & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;

eso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technolo-

ies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imag-

ng; Servier; Takeda Pharmaceutical Company; and Transition Thera-

eutics. The Canadian Institutes of Health Research is providing funds

o support ADNI clinical sites in Canada. Private sector contributions

re facilitated by the Foundation for the National Institutes of Health

 www.fnih.org ). The grantee organization is the Northern California In-

titute for Research and Education, and the study is coordinated by the

lzheimer’s Therapeutic Research Institute at the University of South-

rn California. ADNI data are disseminated by the Laboratory for Neuro

maging at the University of Southern California. 

ompeting Interest Statement 

The authors have declared no competing interest. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2022.119353 . 

eference 

lexander, G.E., Furey, M.L., Grady, C.L., Pietrini, P., Brady, D.R., Mentis, M.J.,

Schapiro, M.B., 1997. Association of premorbid intellectual function with cerebral

metabolism in Alzheimer’s disease: implications for the cognitive reserve hypothesis.

Am. J. Psychiatry 154 (2), 165–172. doi: 10.1176/ajp.154.2.165 . 

naturk, M., Kaufmann, T., Cole, J.H., Suri, S., Griffanti, L., Zsoldos, E., de

Lange, A.G., 2021. Prediction of brain age and cognitive age: Quantifying brain

and cognitive maintenance in aging. Hum. Brain Mapp. 42 (6), 1626–1640.

doi: 10.1002/hbm.25316 . 

ssociation, A.s., 2021. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement.

17 (3), 327–406. doi: 10.1002/alz.12328 . 

ocancea, D.I., van Loenhoud, A.C., Groot, C., Barkhof, F., van der Flier, W.M., Ossenkop-

pele, R., 2021. Measuring Resilience and Resistance in Aging and Alzheimer Disease

Using Residual Methods: A Systematic Review and Meta-analysis. Neurology 97 (10),

474–488. doi: 10.1212/WNL.0000000000012499 . 

ookheimer, S.Y., Salat, D.H., Terpstra, M., Ances, B.M., Barch, D.M., Buckner, R.L., Ya-

coub, E., 2019. The Lifespan Human Connectome Project in Aging: An overview. Neu-

roimage 185, 335–348. doi: 10.1016/j.neuroimage.2018.10.009 . 

orenstein, A.R., Copenhaver, C.I., Mortimer, J.A., 2006. Early-life risk fac-

tors for Alzheimer disease. Alzheimer Dis. Assoc. Disord. 20 (1), 63–72.

doi: 10.1097/01.wad.0000201854.62116.d7 . 

uschke, H., Fuld, P.A., 1974. Evaluating storage, retention, and retrieval in disordered

memory and learning. Neurology 24 (11), 1019–1025. doi: 10.1212/wnl.24.11.1019 .

utler, E.R., Chen, A., Ramadan, R., Le, T.T., Ruparel, K., Moore, T.M., Shinohara, R.T.,

2021. Pitfalls in brain age analyses. Hum. Brain Mapp. 42 (13), 4092–4101.

doi: 10.1002/hbm.25533 . 

hen, C.L., Hsu, Y.C., Yang, L.Y., Tung, Y.H., Luo, W.B., Liu, C.M., Isaac

Tseng, W.Y., 2020. Generalization of diffusion magnetic resonance imaging-based

brain age prediction model through transfer learning. Neuroimage 217, 116831.

doi: 10.1016/j.neuroimage.2020.116831 . 

rane, P.K., Carle, A., Gibbons, L.E., Insel, P., Mackin, R.S., Gross, A.Alzheimer’s Disease

Neuroimaging, I, 2012. Development and assessment of a composite score for memory

in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav 6

(4), 502–516. doi: 10.1007/s11682-012-9186-z . 

ruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., Gonzalez Osorio, F.A., 2013. A deep

learning architecture for image representation, visual interpretability and automated

basal-cell carcinoma cancer detection. Med. Image Comput. Comput. Assist. Interv.

16 (Pt 2), 403–410. doi: 10.1007/978-3-642-40763-5_50 . 

esikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Kil-

liany, R.J., 2006. An automated labeling system for subdividing the human cerebral

cortex on MRI scans into gyral based regions of interest. Neuroimage 31 (3), 968–980.

doi: 10.1016/j.neuroimage.2006.01.021 . 

https://github.com/XiZhu-CU/Transfer-Learning-Submission
http://www.fnih.org
https://doi.org/10.1016/j.neuroimage.2022.119353
https://doi.org/10.1176/ajp.154.2.165
https://doi.org/10.1002/hbm.25316
https://doi.org/10.1002/alz.12328
https://doi.org/10.1212/WNL.0000000000012499
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1097/01.wad.0000201854.62116.d7
https://doi.org/10.1212/wnl.24.11.1019
https://doi.org/10.1002/hbm.25533
https://doi.org/10.1016/j.neuroimage.2020.116831
https://doi.org/10.1007/s11682-012-9186-z
https://doi.org/10.1007/978-3-642-40763-5_50
https://doi.org/10.1016/j.neuroimage.2006.01.021


X. Zhu, Y. Liu, C.G. Habeck et al. NeuroImage 258 (2022) 119353 

D  

 

E  

 

 

F  

 

 

H  

 

 

H  

 

 

J  

 

L  

 

 

L  

 

M  

 

M  

 

R  

 

R  

 

S  

S  

 

S  

S  

 

 

S  

 

S  

S  

 

S  

 

T  

 

 

 

T  

v  

 

 

V  

 

 

W  

 

 

W  

 

 

Z  

 

 

Z  

 

 

Z  

 

estrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human

cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53 (1),

1–15. doi: 10.1016/j.neuroimage.2010.06.010 . 

steban, O., Birman, D., Schaer, M., Koyejo, O.O., Poldrack, R.A., Gorgolewski, K.J.,

2017. MRIQC: Advancing the automatic prediction of image quality in MRI

from unseen sites. PLoS One 12 (9), e0184661. doi: 10.1371/journal.pone.

0184661 . 

ischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Dale, A.M.,

2002. Whole brain segmentation: automated labeling of neuroanatomical struc-

tures in the human brain. Neuron 33 (3), 341–355. doi: 10.1016/s0896-6273(02)

00569-x . 

arms, M.P., Somerville, L.H., Ances, B.M., Andersson, J., Barch, D.M., Bastiani, M., Ya-

coub, E., 2018. Extending the Human Connectome Project across ages: Imaging pro-

tocols for the Lifespan Development and Aging projects. Neuroimage 183, 972–984.

doi: 10.1016/j.neuroimage.2018.09.060 . 

eaton, R.K., Akshoomoff, N., Tulsky, D., Mungas, D., Weintraub, S., Dikmen, S.,

Gershon, R., 2014. Reliability and validity of composite scores from the NIH

Toolbox Cognition Battery in adults. J. Int. Neuropsychol. Soc. 20 (6), 588–598.

doi: 10.1017/S1355617714000241 . 

ones, R.N., Manly, J., Glymour, M.M., Rentz, D.M., Jefferson, A.L., Stern, Y., 2011. Con-

ceptual and measurement challenges in research on cognitive reserve. J. Int. Neu-

ropsychol. Soc. 17 (4), 593–601. doi: 10.1017/S1355617710001748 . 

e, T.T., Kuplicki, R.T., McKinney, B.A., Yeh, H.W., Thompson, W.K., Paulus, M.P.,

Tulsa, I., 2018. A nonlinear simulation framework supports adjusting for age

when analyzing BrainAGE. Front. Aging Neurosci. 10, 317. doi: 10.3389/fnagi.2018.

00317 . 

ucas, J.A., Ivnik, R.J., Smith, G.E., Bohac, D.L., Tangalos, E.G., Kokmen, E., Petersen, R.C.,

1998. Normative data for the Mattis Dementia Rating Scale. J. Clin. Exp. Neuropsy-

chol. 20 (4), 536–547. doi: 10.1076/jcen.20.4.536.1469 . 

eng, X., D’Arcy, C, 2012. Education and dementia in the context of the cognitive reserve

hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS

One 7 (6), e38268. doi: 10.1371/journal.pone.0038268 . 

ueller, S.G., Schuff, N., Weiner, M.W., 2006. Evaluation of treatment effects in

Alzheimer’s and other neurodegenerative diseases by MRI and MRS. NMR Biomed.

19 (6), 655–668. doi: 10.1002/nbm.1062 . 

azlighi, Q.R., Habeck, C., Barulli, D., Stern, Y., 2017. Cognitive neuroscience neu-

roimaging repository for the adult lifespan. Neuroimage 144 (Pt B), 294–298.

doi: 10.1016/j.neuroimage.2015.08.037 . 

eed, B.R., Mungas, D., Farias, S.T., Harvey, D., Beckett, L., Widaman, K., DeCarli, C.,

2010. Measuring cognitive reserve based on the decomposition of episodic memory

variance. Brain 133 (Pt 8), 2196–2209. doi: 10.1093/brain/awq154 . 

althouse, T.A., 2010. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 16

(5), 754–760. doi: 10.1017/S1355617710000706 . 

atz, P., Cole, M.A., Hardy, D.J., Rassovsky, Y., 2011. Brain and cognitive reserve: media-

tor(s) and construct validity, a critique. J. Clin. Exp. Neuropsychol. 33 (1), 121–130.

doi: 10.1080/13803395.2010.493151 . 

carmeas, N., Stern, Y., 2003. Cognitive reserve and lifestyle. J. Clin. Exp. Neuropsychol.

25 (5), 625–633. doi: 10.1076/jcen.25.5.625.14576 . 
10 
ole-Padulles, C., Bartres-Faz, D., Junque, C., Vendrell, P., Rami, L., Clemente, I.C., Molin-

uevo, J.L., 2009. Brain structure and function related to cognitive reserve variables in

normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging

30 (7), 1114–1124. doi: 10.1016/j.neurobiolaging.2007.10.008 . 

tern, Y., 2002. What is cognitive reserve? Theory and research application of

the reserve concept. J. Int. Neuropsychol. Soc. 8 (3), 448–460. Retrieved from

https://www.ncbi.nlm.nih.gov/pubmed/11939702 . 

tern, Y., 2009. Cognitive reserve. Neuropsychologia 47 (10), 2015–2028.

doi: 10.1016/j.neuropsychologia.2009.03.004 . 

tern, Y., Gurland, B., Tatemichi, T.K., Tang, M.X., Wilder, D., Mayeux, R., 1994. Influence

of education and occupation on the incidence of Alzheimer’s disease. JAMA 271 (13),

1004–1010. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8139057 . 

tern, Y., Habeck, C., Steffener, J., Barulli, D., Gazes, Y., Razlighi, Q., Salthouse, T., 2014.

The Reference Ability Neural Network Study: motivation, design, and initial feasibility

analyses. Neuroimage 103, 139–151. doi: 10.1016/j.neuroimage.2014.09.029 . 

aylor, J.R., Williams, N., Cusack, R., Auer, T., Shafto, M.A., Dixon, M., Hen-

son, R.N., 2017. The Cambridge Centre for Ageing and Neuroscience (Cam-

CAN) data repository: Structural and functional MRI, MEG, and cognitive data

from a cross-sectional adult lifespan sample. Neuroimage 144 (Pt B), 262–269.

doi: 10.1016/j.neuroimage.2015.09.018 . 

ucker-Drob, E.M., 2019. Cognitive aging and dementia: a life span perspective. Annu.

Rev. Dev. Psychol. 1, 177–196. doi: 10.1146/annurev-devpsych-121318-085204 . 

an Loenhoud, A.C., Wink, A.M., Groot, C., Verfaillie, S.C.J., Twisk, J., Barkhof, F.,

Ossenkoppele, R., 2017. A neuroimaging approach to capture cognitive re-

serve: application to Alzheimer’s disease. Hum. Brain Mapp. 38 (9), 4703–4715.

doi: 10.1002/hbm.23695 . 

ieira, S., Pinaya, W.H., Mechelli, A., 2017. Using deep learning to inves-

tigate the neuroimaging correlates of psychiatric and neurological disor-

ders: Methods and applications. Neurosci. Biobehav. Rev. 74 (Pt A), 58–75.

doi: 10.1016/j.neubiorev.2017.01.002 . 

einer, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C.Alzheimer’s

Disease Neuroimaging, I, 2017. Recent publications from the Alzheimer’s Disease

Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.

Alzheimers Dement. 13 (4), e1–e85. doi: 10.1016/j.jalz.2016.11.007 . 

en, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-Gonzalez, J., Routier, A., Bot-

tani, S.Lifestyle flagship study of, a, 2020. Convolutional neural networks for clas-

sification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image

Anal. 63, 101694. doi: 10.1016/j.media.2020.101694 . 

ahodne, L.B., Manly, J.J., Brickman, A.M., Narkhede, A., Griffith, E.Y., Guzman, V.A.,

Stern, Y., 2015. Is residual memory variance a valid method for quantifying

cognitive reserve? A longitudinal application. Neuropsychologia 77, 260–266.

doi: 10.1016/j.neuropsychologia.2015.09.009 . 

ahodne, L.B., Manly, J.J., Brickman, A.M., Siedlecki, K.L., Decarli, C., Stern, Y., 2013.

Quantifying cognitive reserve in older adults by decomposing episodic memory

variance: replication and extension. J. Int. Neuropsychol. Soc. 19 (8), 854–862.

doi: 10.1017/S1355617713000738 . 

issimopoulos, J., Crimmins, E., St Clair, P., 2014. The value of delaying alzheimer’s Dis-

ease onset. Forum Health Econ. Policy 18 (1), 25–39. doi: 10.1515/fhep-2014-0013 .

https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1371/journal.pone.\penalty -\@M 0184661
https://doi.org/10.1016/s0896-6273(02)\penalty -\@M 00569-x
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1017/S1355617714000241
https://doi.org/10.1017/S1355617710001748
https://doi.org/10.3389/fnagi.2018.\penalty -\@M 00317
https://doi.org/10.1076/jcen.20.4.536.1469
https://doi.org/10.1371/journal.pone.0038268
https://doi.org/10.1002/nbm.1062
https://doi.org/10.1016/j.neuroimage.2015.08.037
https://doi.org/10.1093/brain/awq154
https://doi.org/10.1017/S1355617710000706
https://doi.org/10.1080/13803395.2010.493151
https://doi.org/10.1076/jcen.25.5.625.14576
https://doi.org/10.1016/j.neurobiolaging.2007.10.008
https://www.ncbi.nlm.nih.gov/pubmed/11939702
https://doi.org/10.1016/j.neuropsychologia.2009.03.004
https://www.ncbi.nlm.nih.gov/pubmed/8139057
https://doi.org/10.1016/j.neuroimage.2014.09.029
https://doi.org/10.1016/j.neuroimage.2015.09.018
https://doi.org/10.1146/annurev-devpsych-121318-085204
https://doi.org/10.1002/hbm.23695
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.1016/j.jalz.2016.11.007
https://doi.org/10.1016/j.media.2020.101694
https://doi.org/10.1016/j.neuropsychologia.2015.09.009
https://doi.org/10.1017/S1355617713000738
https://doi.org/10.1515/fhep-2014-0013

	Transfer learning for cognitive reserve quantification
	1 Introduction
	2 Method and material
	2.1 Participants
	2.2 Image procedures
	2.2.1 Neuroimaging data acquisition
	2.2.2 Neuroimaging data processing
	2.2.3 Brain memory prediction model
	2.2.4 Transfer learning
	2.2.5.Quantification of cognitive reserve


	3 Results
	3.1 Demographic characteristics
	3.2 Training memory prediction modeling in the CR/RANN dataset
	3.2 Transfer learning to HCPA
	3.4 Transfer learning to ADNI
	3.4.1 Primary analysis
	3.4.2 Secondary analysis


	4 Discussion
	5 Conclusions
	Data and code availability statement
	Data Availability
	Funding statement
	Competing Interest Statement
	Supplementary materials
	Reference


