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a b s t r a c t 

Visual attribution (VA) in relation to medical images is an essential aspect of modern automation-assisted 

diagnosis. Since it is generally not straightforward to obtain pixel-level ground-truth labelling of medical 

images, classification-based interpretation approaches have become the de facto standard for automated 

diagnosis, in which the ability of classifiers to make categorical predictions based on class-salient regions 

is harnessed within the learning algorithm. Such regions, however, typically constitute only a small sub- 

set of the full range of features of potential medical interest. They may hence not be useful for VA of 

medical images where capturing all of the disease evidence is a critical requirement. This hence moti- 

vates the proposal of a novel strategy for visual attribution that is not reliant on image classification. 

We instead obtain normal counterparts of abnormal images and find discrepancy maps between the two. 

To perform the abnormal-to-normal mapping in unsupervised way, we employ a Cycle-Consistency Gen- 

erative Adversarial Network, thereby formulating visual attribution in terms of a discrepancy map that, 

when subtracted from the abnormal image, makes it indistinguishable from the counterpart normal im- 

age. Experiments are performed on three datasets including a synthetic, Alzheimer’s disease Neuro imag- 

ing Initiative and, BraTS dataset. We outperform baseline and related methods in both experiments. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Medical image classification is becoming a vital aspect of pa- 

ient stratification, disease progression assessment, treatment re- 

ponse and disease severity grading within a modern medical set- 

ing. Consequently, it is increasingly important for practitioners 

o understand the salient information underlying these automated 

lassifications, which in turn motivates the study of visual attribu- 

ion (VA) [1–5] . The need for VA arises because machine diagno- 

is typically differs from that of human experts in key respects; 

or instance, a radiologist is trained via observation of many ab- 

ormal/normal images such that they are able to transfer their 

nternally-learned representation of the disease to novel image set- 

ings. Their training hence enables them to analyze a image by 

nding abnormalities that differ from a conjectured counterpart 

ormal representation of the equivalent healthy patient. A super- 

ised classification system, by contrast, will typically seek to iden- 
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ify key features indicative of the distinction between normal and 

bnormal tissue [1] . 

Inspired by this conjectured expert modus operandi , we seek a 

ethodology capable of the production of a counterpart normal 

mage in relation to an input image such that we may use this ‘nor- 

al’ image to analyze the input image. By accompanying input im- 

ges with their counterpart normal images it hence becomes pos- 

ible to provide a visual analogy-based counterfactual explanation 

or the automated diagnostic decision. 

Visual attribution is currently addressed by initially training a 

eep neural network (DNN) based image classifier and then us- 

ng one of the following two approaches: 1) application of forward 

ropagation (or activation) to find regions of the input image re- 

ponsible for making predictions (e.g. [1] , or else 2) using back- 

ropagation to analyze the gradient of the prediction with respect 

o the input image [2] . Neural network classification based visual 

ttribution approaches consequently tend to exhibit common limi- 

ations, potentially leading to undesirable outcomes in certain set- 

ings. In particular, since neural network classifiers are trained to 

inimize mutual information between inputs and outputs, they 

https://doi.org/10.1016/j.patrec.2022.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.02.005&domain=pdf
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re implicitly conditioned to utilise the fewest possible input fea- 

ures. Consequently, DNN classifiers typically make predictions 

ased on certain salient regions rather than entire objects of inter- 

st. In other words, a classifier may disregard low-discrimination 

eatures when dominant features with a sufficiency of information 

bout the target are available (an early study [6] demonstrated that 

f evidence of a particular class is present in multiple regions of an 

mage, e.g. multiple indicators of disease within a medical image, 

 DNN classifier will likely disregard a significant fraction of this 

vidence). 

Within the domain of medical image diagnosis, by contrast, it is 

ighly desirable to visually attribute evidence of a disease in such 

 way as to capture all of the disease effects present. This hence 

otivates us to propose a novel strategy for visual attribution that 

s not reliant on image classification, as distinct the majority of ex- 

ant techniques. We instead aim to obtain normal counterparts 1 of 

bnormal images and find discrepancy maps between the two. 

To do this, we leverage, as a stepping-off point, a recently- 

roposed generative adversarial network architecture (ANT-GAN) 

7] capable of generating normal-looking correlates (if not strict 

ounterparts) of the abnormal images. Since it is generally unreal- 

stic to obtain contemporaneous normal and abnormal pairs practi- 

ally, ANT-GAN learns to perform the abnormal-to-normal mapping 

n unsupervised way via the application of the Cycle-Consistecy 

AN principle, in which an inverse mapping and cycle consistency 

i.e. forwards-backwards) loss is introduced to the GAN in order to 

ackle tasks for which paired training data does not exist. 

By utilizing and extending this capacity of cycle-consistent 

ANs to produce abnormal-to-normal translation medical image 

airs, we shall demonstrate that it is possible to re-formulate vi- 

ual attribution in terms of a discrepancy map that, when sub- 

racted from the abnormal image, will make it indistinguishable 

rom the counterpart normal image. To this end, we propose a 

lass of generative models for learning discrepancy maps as a func- 

ion of abnormal images. In particular, we propose an VA-extended 

NT architecture, dubbed Visually-Attributed Abnormal-to-Normal 

ranslation GAN (VANT-GAN), that learns to generate discrepancy 

aps simultaneously to learning to perform abnormal-to-normal 

ranslation. 

Our approach thus aims to improve on the Visual Attribution 

AN (VA-GAN) method proposed in [8] , in which a map is learned 

hat, when added into an abnormal image, renders it indistinguish- 

ble from images of the normal class. Since the map-generating 

unction in the VA-GAN case does not aim to produce the normal 

ounterpart of an abnormal image but rather any normal-looking 

mage, the learned image translation may depict discrepancies ir- 

elevant to medical diagnosis. We shall, in contrast, set out to 

onstrain the unconstrained abnormal-to-normal image translation 

unction of [8] by generating normal counterparts of abnormal im- 

ges in order to reduce false-positive visual attributions. 

. Current State-of-the-Art in Medical Visual Attribution 

Visual attribution (VA) in relation to medical images is cur- 

ently performed predominantly via the Class Activation Map 

CAM) [1] paradigm of classifier explanation. CAM in its original 

orm used global pooling to highlight the discriminative regions of 

he input image most important to the CNN in reaching a deci- 

ion; however, the method was later improved by replacing global 

verage pooling with gradient-based feature attribution (referred 

o as grad-CAM [2] ). Since grad-CAM tends to produce a coarse- 

rained visualization, the authors in [3] proposes guided grad-CAM 
1 That is, visual counterparts that would be indistinguishable to the abnormal 

mage, were it not to exhibit the effects of disease. 
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113 
hat utilises a guided-backpropagative approach. A similar attempt 

o enhance the resultant maps, smooth-Grad [4] , adds visual noise 

f differing magnitudes to an image, taking the average of the 

roduced sensitivity maps for the final enhanced mapping. CAM- 

ased VA techniques have found wide use across the medical do- 

ain e.g. in digital pathological images for bladder cancer predic- 

ion [5] , prostate cancer detection [9] , benign and malignant cuta- 

eous tumors classification [10] , Covid-19 detection from CT scans 

11] , Alzheimer diagnosis in MRI images [12] , malarial parasite de- 

ection in thin blood-smear images [13] , bone age assessment [14] , 

nterpretable CNN based cervical cancer [15] , brain gender detec- 

ion [16] , tuberculosis visualization in Chest X-rays [17,18] , diabetic 

etinopathy classification and visualization [6,19,20] . 

Despite their widespread adoption, CAM-based methods are 

imited in their resolution by the final layer of the model. Con- 

equently, post-processing is often required to enhance the out- 

ut resolution. Though few methods are recently devised to pro- 

ide concept-level attribution [21] , they rely on humans to pro- 

ide concept-level details. A further issue with CAM-based meth- 

ds is that the DNN classifiers employed in these methods tend to 

referentially select highly discriminative features, while ignoring 

ow-discrimination features leading to imperfect VA [8] . Also, it is 

eported that there is a misalignment in CAM-based VA due to up- 

ampling of VA in CAM [22] . 

To mitigate the disadvantages of CAM-based techniques, a gen- 

rative VA method for medical images was proposed [8] . The 

ethod uses a generative adversarial network (GAN) with Wasser- 

tein loss function to transform abnormal medical images so as 

o make them indistinguishable from normal medical images. Al- 

hough the method outperforms CAM-based techniques on medical 

mages, the generated VA often contains undesirable artifacts as a 

onsequence of the unconstrained abnormal-to-normal translation; 

hat is, since normal and abnormal images are not aligned, the 

enerator also learns to attribute irrelevant discrepancies between 

npaired images. In order to constrain the abnormal-to-normal 

ranslation, a GAN architecture employing a cycle-consistent loss 

unction was proposed in [7] . Here, VA is expressed via the dif- 

erence between an abnormal image with corresponding normal 

mage. The main disadvantage of the method, however, is its re- 

uirement of post-processing in order to deal with the resolution 

ismatch of abnormal and synthesised normal images. 

In order to addressed these limitations in the current SotA re- 

ating to GAN-based medical image VA, we seek in this paper 

o develop an architecture that, rather than conducting explicit 

bnormal-to-normal translation, instead exhibits the capacity to 

earn a VA map similar to that of the Residual-GAN [7] , that when

dded to an abnormal image, will directly translate it into the cor- 

esponding normal image. However, in common with [7] , we em- 

loy cyclic-consistency loss function to constrain the abnormal-to- 

ormal image translation. The Cycle-Consistency GAN has recently 

hown to be promising to augment Chest x-rays, particularly for 

ovid detection [23] . 

. Proposed VANT-GAN Methodology 

We indicate normal medical images by x n and abnormal im- 

ges by x a . We further assume that the x n and x a observations are

ampled from distributions p n (x ) and p a ( x ) , respectively, and that 

n abnormal image differs from its corresponding normal image 

i.e. from same patient) only by the characteristic disease mark- 

rs. Within this setting, when given an abnormal image as input, 

e seek to produce a disease effect map/visual attribution map that 

ontains all of the features that distinguish an abnormal image x a 
i 

rom its counterpart normal image x n 
i 
. In other words, we wish to 

enerate a map that, when subtracted from the abnormal image 

 

a 
i 
, produces an image indistinguishable from its counterpart nor- 
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al image x n 
i 
. Mathematically, 

 

n 
i = x a i − M(x a i ) (1) 

here x n 
i 
, x a 

i 
and M(x a 

i 
) are of the same dimensions. 

Ideally, to model the function M, a data-set consisting of nor- 

al and abnormal image pairs is required, however, this is some- 

hing that it is generally unrealistic to obtain in real clinical prac- 

ice. A previous study proposed VAGAN (Visual Attribution Genera- 

ive Adversarial Network) for learning the function M in an under- 

onstrained setting; i.e. by aiming to translate an abnormal image 

nto an arbitrary normal image, rather than a strict counterpart 

ormal image. Consequently, the disease effect map M produced 

y this approach may contain many false positives, reflective of ir- 

elevant discrepancies between the unpaired normal and abnormal 

mages. We instead build on recent developments in abnormal-to- 

ormal image translation (ANT) in order to learn an M capable of 

ranslating an abnormal image into its counterpart normal image, 

ather than an arbitrary normal-looking image. The ANT model is 

escribed in Subsection 3.1 and the M model in Subsection 3.2 . 

.1. Abnormal-To-Normal Translation 

Sun et. al proposed in [7] a generative adversarial network 

ased ANT model (a.k.a. ANT-GAN) for generating normal counter- 

arts to abnormal images. The main component of their model is 

 generator G A 2 N that takes, as input, an abnormal image x and 

roduces as output the normal counterpart G A 2 N (x ) . For learning 

o converge, the generator must produce a realistic normal ˆ x 
n = 

 A 2 N (x a ) capable of fooling the normal discriminator D 

N . The cy- 

le consistency regularization principle is leveraged via a generator 

 N2 A and a discriminator D 

A that constrain the model to produce 

 counterpart normal. The ANT-GAN model can thus be defined as 

n objective function L consisting of three distinct parts: a GAN 

odel L GAN , a cycle-consistent loss L CC , and an anomaly mask loss 

 AM 

. Mathematically, 

 = L GAN + λCC L CC + λAM 

L AM 

(2) 

here L GAN is used to simultaneously train generators G A 2 N and 

 N2 A and is defined as follows: 

 GAN = E pa 

[
ln D 

A (x 
a 
) 
]

+ E pn 

[
ln D 

N (x n ) 
]

+ E pn [ ln (1 − D 

A (G N2 A (x n )))] + E pa 

[
ln (1 − D 

N 
(G A 2 N (x 

a 
))) 

]
(3) 

The cyclic-consistent loss L C is used to transform normal and 

bnormal images into one another, and helps in the learning of 

 A 2 M 

and G N2 A : 

 CC = E pa [ | | G N2 A ( G A 2 N ( x a ) ) − x a | | 2 ] 
+ E pn [ | | G A 2 N ( G N2 A ( x 

n ) ) − (G A 2 N (x a )) | | 2 ] (4) 

L CC allows additional information to be transferred between 

bnormal and normal medical images while learning their corre- 

ponding generators. The first term aims to reconstruct a given ab- 

ormal image following its translation into a normal image, and 

he second term aims to reconstruct a given normal image follow- 

ng its translation into an abnormal image. 

L AM 

is used to isolate and modify the disease markers within 

he image while keeping the normal region within the image un- 

hanged. L AM 

is defined as: 

 AM 

= E pa (x ) 
[ | | ( 1 − M x ) � G A 2 N ( x a ) − x a | | 2 

]
(5) 

here � denotes element-wise multiplication, 1 represents an 

nput-sized all-ones matrix and M x is an image-sized marker ma- 

rix. 
114 
.2. VANT-GAN Visual Attribution Map Generation Model 

In contrast to the ANT-GAN model, in which a generator explic- 

tly synthesizes a normal counterpart from an abnormal image as 

 A 2 N : x 
a 
i 

→ x n 
i 
, VANT-GAN seeks to embody a generator G A 2 M 

ca-

able of taking an abnormal image x a as input so as to produce a 

ap, M x a , via G A 2 M 

: x a 
i 

→ M x a , that when subtracted from the ab-

ormal image, x a 
i 
, outputs a normal image x n 

i 
. If the generator G A 2 M 

as converged effectively, then the discriminator D 

N ideally can- 

ot distinguish between the real and fake (or synthesized) x n 
i 
. In 

ontrast to VAGAN’s under-constrained map generator, VANT-GAN 

urther embodies a cycle consistency loss in order to constrain the 

enerator G A 2 M 

so as to be able to translate an abnormal image 

nto its normal counterpart. To achieve cycle consistency, VANT- 

AN hence learns an additional generator G N2 A by using discrimi- 

ator D 

A in a similar manner to ANT-GAN. 

To achieve this, we import ANT-GAN’s loss function in Equa- 

ion 3 into L VANT −GAN as follows: 

 VANT −GAN = E pa 

[
ln D 

A (x 
a 
) 
]

+ E pn 

[
ln D 

N (x 
n 
) 
]

+ E pn 

[
ln (1 − D 

A 
(G N2 A (x 

n 
))) 

]

+ E pa 

[
ln (1 − D 

N 
(x a + G A 2 M 

(x 
a 
))) 

]
(6) 

We redefine the cycle-consistency L VANT −CC by changing L CC as 

ollows: 

 VANT −CC = E pa [ | | G N2 A ( x 
a + G A 2 M 

( x a ) ) − x a | | 1 ] 
+ E pn [ | | x a + G A 2 M 

( G N2 A ( x 
n ) ) − ( x a + G A 2 M 

(x a ) ) | | 1 ] (7) 

The cycle consistency loss L VANT −CC (Equation 7) consists of two 

erms: first, forward cycle consistency which aims to bring back an 

bnormal image x a after translating it to its counterpart normal 

mage x n , i.e. x a → x a − G A 2 M 

(x a ) → G N2 A (x a − G A 2 M 

(x a )) , and sec-

nd, backward cycle consistency which aims to reproduce x n after 

ranslating it to x a , i.e. x n → G N2 A (x n ) → x n = x a − G A 2 M 

(G N2 A (x n )) .

Finally, we define a loss L VANT that optimizes VANT-GAN as fol- 

ows: 

 VANT = L VANT −GAN + λL VANT −CC (8) 

Once VANT-GAN is trained, we retain only the generator G A 2 M 

nd discard the generator G N2 A and discriminators D 

A and D 

N . In 

he application stage, we thus input an instance of the positive 

lass to the network G A 2 M 

in order to obtain the visual attribution 

ap M(x a ) . 

The proposed model is illustrated in Fig. 1 . 

. Implementation 

.1. Network Architecture 

The generator network is adapted from [24] , which demon- 

trates excellent results in unpaired image-to-image translation. 

his network has three components: an encoder, a set of resid- 

al blocks, and a decoder. The encoder shrinks the representation 

f input image while increasing the number of channels. This en- 

oder is comprised of three Convolution-InstanceNorm-Relu lay- 

rs. The first convolution layer in the encoder is of kernel_size = 7, 

tride = 1, with k = 64 filters. The remaining two convolutions are of 

ernel_size = 3, stride = 2, with k = 128 filters. We utilize the concept

f reflection padding to reduce the artefacts produced by these 

onvolution layers. The encoder block is then passed to a set of 

ither 6 or 9 residual blocks with k = 256 filters (9 residual blocks 

re used where the input image size is greater than 128 by 128 

ixels). The output of this residual block is then re-expanded in 

he decoder section via two transpose-convolutions with k filters, 

ach followed by an InstanceNormalization and a Relu layer. An 
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Fig. 1. VANT-GAN model diagram with an example image from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Four networks are employed: a generator 

trained to output discrepancy maps, a discriminator trained to discriminate normal images, a generator trained to synthesise abnormal images given a generated normal 

image, and a discriminator to discriminate abnormal images. 
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Fig. 2. Synthetic data examples. Left of the dotted line are samples of Class 1 (i.e. 

the disease class) and right of the dotted line are samples of Class 0 (i.e. the normal 

class). The upper row shows the input and the bottom row shows the ground truth. 

5

5

u

g

i

t

s

d

a

w

a

a

c

a  

c

b

a

t

v

dditional convolutional layer is applied to produce the final out- 

ut in RGB format. For our Discriminator network, we utilize the 

oncept of PatchGAN as adopted in [25] . PatchGAN was introduced 

o identify whether overlapping image patches are real or fake. We 

se four convolution layers with kernel_size = 4, stride = 2 and k in-

reasing filters followed by InstanceNormalization and LeakyRelu 

ctivation with a slope of 0.2. Finally, the last convolution layer is 

pplied with kernel_size = 1 to produce a 1-dimensional output. 

.2. Training Details 

To stabilize the training we use least-square loss instead of neg- 

tive log likelihood as adopted in [26] . Following the strategy of 

27] we update the discriminator using a buffer of 50 previously 

enerated outputs. The training procedure is carried out on a batch 

f size 1 via the Adam optimizer set to a 0.0 0 02 initial learning

ate, linearly decaying to zero over half of the total epochs. Ini- 

ial weights are initialized randomly from a Gaussian distribution 

f N (0, 0.02). The loss weights ( w cycle = 10 and w ident it y = 0.5 w cycle )

re copied from our baseline architecture [24] . 

. Experiments 

We perform experiments on a synthetic dataset and two pub- 

icly available medical imaging datasets, the ADNI and BratS 

ataset. We evaluate the proposed VANT-GAN VA approach against 

he immediately comparable visual explanation methods indicated 

n the Introduction, namely; CAM [1] , gradCAM [2] , and VA-GAN 

8] . Note that, whereas CAM and gradCAM utilize classification net- 

orks, VA-GAN, ANT-GAN and the proposed VANT-GAN employ 

mage-translation networks. To further assist comparison, all tested 

etworks are built using a similar discriminator architecture to 

hat of the proposed method. However, for CAM methods, we re- 

lace the last two layers with a global average pooling layer fol- 

owed by a dense prediction in order to create class-specific acti- 

ation maps for visual explanation, as described in [1] . We quan- 

itatively compare the respective methodologies using the Dice- 

oefficient, Intersection over Union (IoU) and normalized cross cor- 

elation (NCC) evaluation metrics for synthetic and BraTs since 

round truths are available for these datasets. We follow [8] to as- 

ess performance of the compared models on the ADNI dataset. As 

round truths are not available for the ADNI dataset, NCC score is 

sed to evaluate the models. 
115 
.1. Experiments on Synthetic Data 

.1.1. Synthetic dataset 

Alongside the indicated real medical imaging datasets, we eval- 

ate the proposed and related VA approaches on a synthetically 

enerated dataset consisting of 10 0 0 0 128x128 images separated 

nto two label classes such that one half of the dataset represents 

he healthy control group (label 0) and the remaining half repre- 

ents the patient group (label 1). The images are generated via the 

ata generation process set out in [8] . Healthy control group im- 

ges are constructed by convolution of random iid Gaussian noise 

ith a Gaussian blurring filter. Images of the patient control group 

re produced via the same noise generation process; however, they 

lso contain effects attributable to one of two distinct disease pro- 

esses. These effects are visually-manifested through insertion of 

 circle in the top left side of the image (disease process A ), or a

ircle at the bottom right-hand side (disease process B ) (note that 

oth diseases processes share the same Class 1 label). The circles 

re placed randomly with a maximum 5-pixel offset in each direc- 

ion via uniform random sampling in order to add further visual 

ariety. Samples images are shown in Fig. 2 . 
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Fig. 3. Examples of visualization maps of the compared methods on synthetic data. 

Table 1 

IoU, Dice Scores and NCC Scores of evaluated methods on synthetic data. 

Method IoU Dice 

CAM 10.4 18.8 

gradCAM 30.7 47 

VA-GAN 872 92.8 

ICAM 89.3 93.1 

VANT-GAN 91.4 95.5 
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Table 2 

Scores of evaluated methods on ADNI dataset 

NCC Score on ADNI dataset 

Method Mean Std 

CAM 0.09 0.07 

gradCAM 0.11 0.09 

VAGAN 0.27 0.15 

ICAM 0.30 0.28 

VANT-GAN 0.36 0.35 
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.1.2. Evaluation Protocol 

We divide the data on the basis of a 80-20 train/test set split, 

ollowing the protocol of [8] . For quantitative evaluation, we calcu- 

ate IoU and Dice score between the disease maps and the visual 

xplanation. We use the maximum pixel value as a threshold to 

onvert the visual explanation map into a binary mask. Following 

8] , we also employ the normalized cross correlation (NCC) mea- 

ure between ground-truth maps and the predicted visual expla- 

ation maps. 

.1.3. Results 

Quantitative results with respect to the synthetic data are re- 

orted in Table 1 for all of the tested methods. Results clearly in- 

icate the relative supremacy of the proposed method; examples 

f visual explanation maps for all of the methods are shown in 

ig. 3 . It is apparent that the CAM-based methods tend to focus on 

reas where the circles are distributed uniformly, and are unable 

o provide fine-grained visualization maps (the effect can clearly 

e observed from the visualization map of the CAM-based meth- 

ds in Fig. 3 ). It is further apparent that VA-GAN produces noisy 

isualization maps due to its under-constrained mapping from un- 

ligned noisy images; the noisy maps contain many false positives 

hich degrade VA-GAN performance (this effect can be seen in 

he visual explanation map of VA-GAN from Fig. 3 ). Contrarily, the 

roposed method produces far more plausible visual explanation 

aps primarily due to the constrained CycleGAN-based mapping, 

ANT-GAN can thus better describe the input image w.r.t. the gen- 

rated CI. 

.2. Experiments on Medical Imaging Data 

.2.1. Datasets 

Alzheimer’s Disease Neuroimaging Initiative dataset: From 

he ADNI cohort, we selected 5778 3D T-1 weighted MR images 

f 1288 subjects with two of the labels: MCI (label 0) or AD (la-

el 1). A 1.5T magnet is used to obtain 2839 of the total images

ith the rest of the images obtained using a 3T magnet. A number 

f subjects are converted from MCI to AD over the years, scanned 
116 
t regular intervals. Although these correspondences are not used 

or the training here, however, we exploit their advantages. Exam- 

les of normal and abnormal images from the ADNI dataset are 

hown in Fig. 5 . 

Standard operations in the FSL toolbox are used to pre-process 

ach of the images in data; this pre-processing includes reorienta- 

ion, registering images to MNI space, cropping and correcting in- 

omogeneous fields. The ROBEX algorithm is then applied to skull- 

trip the images. Finally, the images are resampled to 1.3 mm3, fol- 

owed by normalization to a range between -1 to 1. The final voxel 

ize is 128x256x256. 

BraTs dataset: The dataset contains brain MRIs classified into 

ormal and tumorous classes. We preprocess the data to filter out 

RI slices that contain the full brain. The dataset contains 3174 

mages where 2711 are tumorous and 463 are non-tumorous. We 

plit each set into 80-20 train/test sets, resulting in 2538 training 

mages and 636 testing images. The filtered slices are resized to 

56 - 256 and the data normalized to the 0-to-1 range. We fur- 

her increase the data size by performing run-time augmentation 

n training sets through random jittering and mirroring. For aug- 

enting, the images are scaled to 286 - 286 and then randomly 

ropped to 256 - 256. 

.2.2. Evaluation 

We use the visual explanation maps generated by the networks 

or semantic segmentation of disease affected regions. We split 

ach dataset into 80-20 train/test sets. To gauge the efficacy of the 

espective networks, we employ mean IoU and Dice coefficient (i.e. 

he standard metrics to evaluate semantic segmentation methods). 

o calculate these metrics, we convert the visual explanation maps 

nto binary masks. The highest value of the explanation map is 

sed as a threshold to convert the visual explanation map into a 

inary mask. 

.2.3. Results 

Table 2 sets out quantitative results for each of these experi- 

ents. The proposed method significantly outperforms the other 
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Table 3 

IoU and Dice Scores of evaluated methods on BraTS datasets 

BraTS dataset 

Method IoU Score Dice Score 

CAM 30.8 45.1 

gradCAM 54.7 60.3 

ANT-GAN 76.3 80.1 

VA-GAN 89.5 93.2 

VANT-GAN 91.4 94 

Fig. 4. Example visualization maps of the compared methods with respect to the 

ADNI dataset 

Fig. 5. Example of Normal and Abnormal Images from the ADNI dataset 
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Fig. 6. Comparison of ANT-GAN with VANT-GAN 

Fig. 7. Example visualization maps of the compared methods with the BraTS 

dataset 
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ethods. Examples of the visual explanation maps for the ADNI 

ata are as depicted in Fig. 4 . 

The results and findings are consistent with the synthetic data. 

e believe that CAM-based methods show limited performance as 

 result of focusing only on a minimal set of the most discrimina- 

ive features while disregarding the rest. The visual explanations of 

he CAM method are hence noisy, low resolution and often falsely- 

riented. gradCAM improves on the explanations of the CAM ap- 

roach in terms of noise and resolution. However, the gradCAM 

xplanation region is much smaller than that of the ground truth. 

A-GAN can detect edges around the infected area; however, the 

xplanation is appreciably noisy (especially so on zooming-in the 

isualization map). ICAM reduces the noise in the visual attribu- 

ion map; however, the explanation is not exclusive in terms of its 

overage of the affected region. The proposed VANT-GAN method, 

y contrast, outperforms other methods in its exclusive coverage of 

he affected region. 

We also compare our method with the baseline ANT-GAN 

ethod, as shown in the visual results in Fig. 6 . For this compari-

on, we use ANT-GAN to translate an abnormal image into normal 

ounterpart and then subtract the abnormal image from the nor- 

al image to obtain the visual attribution map. Finally, we apply 
117 
 threshold on the residual image to obtain the reported results. It 

ay be seen that, as ANT-GAN does not explicitly learn a visual 

ttribution map, it is unable to cope with minor changes (such 

s translation) that typically occur during the translation phase. 

urther, ANT-GAN cannot explicitly regularize the characteristics 

f the visual attribution map (since visual attribution is implicitly 

roduced as by-product of ANT-GAN’s abnormal-to-normal transla- 

ion, we cannot explicitly regularize the shape of the visual attri- 

ution map). 
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The quantitative and visual results on BraTs dataset are shown 

espectively in Table 3 and Fig. 7 . We notice that these results 

re consistent with our previous results on synthetic and ADNI 

atasets. 

. Conclusion 

In this paper, a novel visual attribution (VA) technique is devel- 

ped with respect to medical images (although intrinsically appli- 

able to general images), one that leverages the capacity of cycle- 

onsistent GANs in conjunction with the concept of the Residual 

AN to generate counterpart normal images in relation to abnor- 

al (i.e. diseased) input images. The resulting VANT-GAN model is 

hus capable of providing a conjectured ‘healthy’ image to medical 

ractitioners in order to highlight the process by which automated 

isease classification is arrived at. The model thus deploys a cycle- 

onsistent GAN architecture for joint learning of both a normal and 

 visual attribution map. 

Experimental results demonstrate that, by contrast with back- 

ropagation-based and pre-existing counterfactual VA techniques, 

he proposed method produces significantly more refined visual at- 

ribution maps for highlighting disease markers in the input image 

han the current state-of-the-art. 

Because the proposed approach relies on translation across two 

omains, it intrinsically only caters for VA of a single disease. VA 

or multiple diseases potentially thus requires computationally ex- 

ensive training of multiple individual models per disease. Future 

ork will thus investigate the possibility of explicitly multiclass VA 

echniques. It will also be of interest to investigate whether spatial 

egularization of the generated map would further improve results 

nd potentially also enable direct generation of the binary mask. 

inally, it will be of interested to apply the proposed approach to 

ovid-19 datasets, in particular in relation to issue of ‘long Covid’ 

iagnosis. 
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