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Alzheimer’s disease (AD) is a severe neurodegenerative disorder impairing mul-
tiple domains, for example, cognition and behavior. Assessing the risk of AD
progression and initiating timely interventions at early stages are critical to
improve the quality of life for AD patients. Due to the heterogeneous nature
and complex mechanisms of AD, one single longitudinal outcome is insuffi-
cient to assess AD severity and disease progression. Therefore, AD studies collect
multiple longitudinal outcomes, including cognitive and behavioral measure-
ments, as well as structural brain images such as magnetic resonance imaging
(MRI). How to utilize the multivariate longitudinal outcomes and MRI data to
make efficient statistical inference and prediction is an open question. In this
article, we propose a multivariate joint model with functional data (MJM-FD)
framework that relates multiple correlated longitudinal outcomes to a sur-
vival outcome, and use the scalar-on-function regression method to include
voxel-based whole-brain MRI data as functional predictors in both longitudinal
and survival models. We adopt a Bayesian paradigm to make statistical inference
and develop a dynamic prediction framework to predict an individual’s future
longitudinal outcomes and risk of a survival event. We validate the MJM-FD
framework through extensive simulation studies and apply it to the motivating
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a common and severe progressive neurodegenerative disorder. In 2020, the predicted number
of people in the United States with AD increases to about 5.8 million, compared with around 4.7 million in 2010,1 which
poses a challenging public health issue. To slow the progression of AD, a number of recent studies suggested to evaluate
the severity of AD via cognitive and behavioral scores, and to take interventions promptly at early disease stages,2,3 where
a meta-analysis shows that 33.6% mild cognitive impairment (MCI) patients transit to AD after 5 years follow-up.4 Due
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to the complex and heterogeneous nature of AD, a single longitudinal outcome is insufficient to assess AD progression
because of the complex pathological mechanisms of AD.3 Hence, AD studies collect multiple longitudinal neuropsycho-
logical and behavioral measurements to assess AD progression, and novel statistical methods are needed to leverage this
information.

The joint model (JM) framework is traditionally used to model a longitudinal outcome and a survival outcome.5,6 In
recent biomedical research, multiple longitudinal outcomes are collected for better understanding of complex diseases
such as AD, and resulting in more accurate prediction of disease progression.3 To this end, recent studies extend the JM
framework to multivariate settings, where the correlation of multiple longitudinal outcomes are commonly modeled using
the shared random effects, and some functional forms of the longitudinal outcomes are included in the survival model.7-9

A good review of the joint model framework is available in recent literatures.10,11 One important application of joint
model is dynamic prediction,12-15 where the predicted longitudinal trajectories and survival probabilities are updated in a
dynamic fashion for a new individual at different visit times and prediction windows.11 To the best of our knowledge, no
work has been done in incorporating functional data in the multivariate joint model (MJM). In this article, we extend the
MJM framework to include high-dimensional functional data as predictors for both longitudinal and survival outcomes.
We also propose a personalized dynamic prediction method to predict an individual’s future longitudinal outcomes and
risk of an event under this framework.

Magnetic resonance imaging (MRI) technique has been widely adopted to detect the volume atrophy for AD
patients.16 Specifically, the structural MRI (sMRI) tool detects the structure, shape, and size of the whole brain, in addi-
tion to regions of interest (ROI), which are 3D images consisting of thousands of volumetric voxels.17 There are two
common methods to analyze the sMRI data, ROI-based method and voxel-based method.18 The ROI-based method com-
bines the volume information in the voxels within a specific region of interest,19 which may result in losing volumetric
information of each voxel. The voxel-based method overcomes the problem of information loss by normalizing and
analyzing each voxel separately.18 For example, a recent voxel-based analysis shows that atrophy in medial and lateral
temporal lobe is strongly associated with deterioration of memory scores.20 However, the voxel-based analysis has other
issues such as multiple comparison and failure to account for voxelwise correlation.21 Because the volumes of some
voxels in the whole brain are crucial predictors for AD progression, we adopt the voxel-based whole-brain sMRI data as
functional data and consider them as functional predictors for both longitudinal and survival outcomes.

A common approach to model the functional data and handle their high dimensionality is to decompose functions
into infinite-dimensional linear combinations of basis functions using basis expansion.22,23 Then regularization, usu-
ally via truncation or penalization, is applied to convert the infinite-dimensional linear combinations to finite linear
combinations.24,25 The scalar-on-function regression is a widely used functional regression method which quantifies
the association between a scalar outcome and a functional predictor via the coefficient function.26 Functional principal
component analysis (FPCA) is a powerful dimension reduction approach to decompose the functional predictor,22,27-30

and splines decomposition has been widely adopted to estimate the coefficient function.22,23 In addition, the
scalar-on-function regression approach has also been developed in the JM framework as functional joint model (FJM).31

In this article, we propose a multivariate joint model with functional data (MJM-FD) framework to assess AD progres-
sion among MCI patients using baseline characteristics, whole-brain MRI data, and three longitudinal neuropsychological
measurements. Comparing with the existing literatures, there are three major novelties in our method. First, we extend
FJM by jointly modeling multivariate longitudinal outcomes and a survival outcome, and incorporating functional pre-
dictors in the submodels for both types of outcomes. Second, we develop a dynamic prediction framework to predict the
future longitudinal trajectories and probability of dementia diagnosis. Third, we use a voxel-selection method to filter
informative voxels from whole-brain MRI data.

The article is organized as follows. In Section 2, we introduce the motivating ADNI study, longitudinal outcomes,
and MRI data. In Section 3, we propose the multivariate joint model with functional data (MJM-FD), Bayesian inference
method, and dynamic prediction framework. In Section 4, we present the results of model fitting and predictive perfor-
mance in the ADNI study. In Section 5, we conduct an extensive simulation study with eight settings to validate our
methods. In Section 6, we summarize our findings and discuss limitations and future work.

2 A MOTIVATING CLINICAL STUDY

The multivariate joint model with functional data (MJM-FD) framework is motivated by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study, which is a comprehensive longitudinal study to measure the association between
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the progression of AD and biomarkers, neuropsychological scores, medical imaging data, and genetic variants and the
study consists of four stages: ADNI-1; ADNI-GO; ADNI-2; ADNI-3 (ongoing stage). We downloaded all clinical and MRI
data on 02 November 2019. In summary, the total number of subjects is 2253, with 815 cognitive normal (CN), 1018 MCI,
390 dementia participants, and 30 participants with missing diagnosis at baseline. The mean follow-up time is 2.43 years
(a mean of 6.46 visits). More information for the ADNI study can be found on the ADNI website: http://adni.loni.usc.
edu/. We include all patients with MCI diagnosis and valid baseline MRI data, APOE-𝜖4, and age. The final analysis
dataset consists of 742 patients, with a total of 3826 longitudinal observations before dementia diagnosis or censoring, a
mean follow-up length of 3.10 years, and standard deviation of 2.89 years.

We select three longitudinal outcomes: Mini-Mental State Examination (MMSE; score ranges from 0 to 30 with higher
score indicating better cognitive function), clinical dementia rating—sum of boxes (CDR-SB; score ranges from 0 to
18 with higher score indicating worse cognitive behavior), Wechsler memory scale— logical memory (WMS-LM; score
ranges from 0 to 25 with higher score indicating better memory function) due to two reasons. First, MMSE and CDR-SB
are reported to be significantly associated with AD progression.32 Second, all three measures are commonly collected in
AD studies.33-35 Specifically, MMSE is a widely adopted scale to measure the cognitive function and is closely related to AD
progression.36,37 CDR-SB evaluates the cognitive functioning in six domains (memory, orientation, judgment and problem
solving, community affairs, home and hobbies, and personal care) and it is closely associated with AD progression.36

Moreover, WMS-LM is a measurement of cognitive function in the memory aspect, and the logical memory subset of
WMS is a good measure in distinguishing between subjects who develop AD and who remain stable.37

The ADNI study has different schedule for MMSE, CDR-SB, and WMS-LM. For MCI patients, MMSE and CDR-SB
are measured at baseline, month 6 (ADNI-1, ADNI-GO, ADNI-2 phases only), month 12, month 18 (ADNI-1 phase only),
month 24 and annual visits after, while WMS-LM are measured at baseline, month 12, and annual visits after. Thus, we
obtain the analysis dataset with 3593 visits (89 missing), 3593 visits (82 missing), 2771 visits (92 missing) for MMSE,
CDR-SB, and WMS-LM, respectively, before dementia diagnosis or censoring. Figure 1 displays the longitudinal trajecto-
ries in LOWESS curves of three outcomes using visits at or before dementia diagnosis, which suggests nonlinear trajectory
patterns. The missing longitudinal data are multiply imputed and averaged using bootstrap EM algorithm via Amelia
package. The multiple imputation model includes baseline covariates (age, gender, education years, and APOE-𝜖4 alleles),
other two longitudinal scores, and current diagnosis status (CN, MCI or dementia).

We use the baseline voxel-based whole-brain MRI data as functional predictors, where the MRI data go through cor-
rection steps before preprocessing. More details about correction steps and MRI preprocessing protocols are given in
Section 3.5.

F I G U R E 1 The longitudinal trajectories of MMSE, CDR-SB, and WMS-LM for visits at or before dementia diagnosis. The solid curves
are the LOWESS curves with 95% CI (shaded regions). The dashed vertical lines are visit times at 1.5, 5.0, and 9.0 years. The slopes are
markedly different at those time points [Colour figure can be viewed at wileyonlinelibrary.com]

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://wileyonlinelibrary.com
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3 METHODS

In brief, our multivariate joint model with functional data (MJM-FD) consists of three major steps. First, we select infor-
mative voxels in structural MRI data using linear mixed models and Cox proportional hazards model to reduce the amount
of MRI data, and we transform the volumes of selected voxels into functional predictors. Second, functional principal
component analysis and cubic B-spline approximation are adopted to reduce dimensions of functional predictors and
coefficient functions, respectively. Third, the joint modeling of longitudinal and survival data are incorporated in the
MJM-FD model and Bayesian methods are used for statistical inference.

3.1 Voxel selection

After preprocessing steps detailed in Section 3.5, sMRI data have the same image structure and format as the Eve Tem-
plate, with S = 1 843 303 non-zero-volume voxels. To reduce the computation time and to resolve the large memory
issue associated with the high-dimensional functional data, we adopt the false discovery rate (FDR) adjustment to select
informative voxels to be included in the real data analysis.

The voxel-selection step we adopt is similar, in principle, to voxel-based morphometry (VBM), which is an auto-
mated procedure to detect differences in voxel volumes between groups using voxelwise comparison method.38,39

The VBM method has been widely used to assess the association between voxel volumes and cognitive change,
both cross-sectionally and longitudinally, while adjusting for other covariates, such as age, sex, education, and so
on.20,40-44 In these analyses, the association between cognitive scores and voxel volumes is commonly assessed using
the regression methods, but the interaction term between voxel volume and time is typically not included as a
regression covariate.45 Thus, in the voxel-selection step, we do not include the interaction between the voxel volume
and time.

We have i = 1, 2, … ,n subjects, j = 1, 2, … , J longitudinal measurements, and k = 1, 2, … Kij visits for subject i and
outcome j. We denote the longitudinal measurements {Yij(tijk)} and {Ỹ ij(tijk)} at time tijk for observed and missing longi-
tudinal outcomes, respectively. We assume missing at random (MAR) and denote the missing indicator as Iijk (1 if missing
and 0 otherwise). We denote pj-dimensional covariate vector as xijk, the event time Ti = min(T∗

i ,Ci), with T∗
i being the

failure time and Ci being the censoring time. We observe the censoring indicator 𝛿i = I(T∗
i ≤ Ci), and the pw-dimensional

covariate vector wi. For subject i, the MRI data gi(S) is defined on a dense domain S with S voxels, and the volume of
voxel s is denoted by Voli,s, s = 1, 2, … , S.

For each longitudinal outcome j, we independently fit S linear mixed effects models Yij(tijk) = 𝛽0j + x′
ijk𝜷 j + Voli,s𝛽js +

uij0 + tijkuij1 + 𝜖ijk, where 𝛽0j is the intercept, 𝜷 j is the pj-dimensional regression coefficient, 𝛽js is the regression coefficient
for voxel s. We assume that the random intercepts uij0 ∼ N(0, 𝜎2

uj0), and random slopes uij1 ∼ N(0, 𝜎2
uj1), with correlation

coefficient 𝜌j, and the random errors 𝜖ijk ∼ N(0, 𝜎2
j ). For the survival outcome, we independently fit S Cox proportional

hazards models hi(t) = h0(t) exp(w′
i𝜸 + Voli,s𝛾s), where h0(t) is the baseline hazard function, 𝜸 is the pw-dimensional

regression coefficient vector, and 𝛾s is the regression coefficient for voxel s.
The missing longitudinal outcome data are imputed using bootstrap EM algorithm as in Section 2, generating five

imputed datasets. For each imputed dataset, we use FDR to adjust the S p-values of the regression coefficients of
voxel volumes for longitudinal outcomes, and we take union of the voxels with adjusted p-values of regression coef-
ficients less than the FDR threshold. We use FDR-adjusted p-value threshold of 0.05 for MMSE and CDR-SB, and
a more conservative threshold of 0.01 for WMS-LM and survival outcome. We select more stringent threshold for
WMS-LM and the survival outcome, because we would get more than 10 000 voxels with 0.05 being the threshold, which
requires intensive computation time and memory. After voxel selection, we obtain functional predictor gi,j(s) defined
on domain Sj for each longitudinal outcome j and functional predictor gi,w(s) defined on domain Sw for the survival
outcome.

3.2 Multivariate joint model with functional data

We propose the MJM-FD consisting of two submodels:

Yij(tijk) =mij(tijk) + 𝜖ijk, (1)
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where mij(tijk) =𝛽0j + x′
ijk𝜷 j + ∫S

gi,j(s)Bj(s)ds + vj0ui0 + vj1tijkui1, (2)

hi(t) =h0(t) exp

(
w′

i𝜸 + ∫S
gi,w(s)Bw(s)ds +

J∑
j=1

𝛼jmij(t)

)
. (3)

The latent longitudinal means are denoted as mij(t) for subject i and longitudinal outcome j at visit time t. We denote
the coefficient functions as Bj(s) for the longitudinal outcome j, and Bw(s) for the survival outcome. For simplicity and com-
putational efficiency, we model the correlation among longitudinal outcomes via the shared random effects u′

i = (ui0,ui1)′,
with outcome-specific association parameters vj0 and vj1 for j = 1, 2, … , J, while other forms of multivariate random
effects can be readily adopted.46 We assume that the random intercepts ui0 ∼ N(0, 𝜎2

u0), and random slopes ui1 ∼ N(0, 𝜎2
u1)

with correlation coefficient 𝜌, and are shared across all J longitudinal outcomes. We let the association parameter 𝛼j denote
the association between the survival outcome and longitudinal outcome j. We set v10 = v11 = 1 for model identifiability.
To account for the skewness of longitudinal outcomes, we let the random errors 𝜖ijk ∼ Skew-Normal(0, 𝜔2

j , 𝛿j), where 𝜔j
is the scale parameter and 𝛿j is the shape parameter (reduces to Normal distribution if 𝛿j = 0). We approximate the base-
line hazard function h0(t) using piecewise constant functions.47-49 Specifically, we set h0(t) = h0z if 𝜏z ≤ t < 𝜏z+1 for knot
locations 𝝉 = (𝜏1, … , 𝜏Z), where 𝜏1 = 0.

We adopt functional principal component analysis (FPCA) to decompose the functional predictors gi,j(s) and gi,w(s),
and adopt B-spline to decompose the coefficient functions Bj(s) and Bw(s). For notational convenience, we denote the
functional predictor as gi(s) and its corresponding coefficient function as B(s). The functional predictor is observed
as a noisy form: g′i(s) = gi(s) + 𝜖i(s), where 𝜖i(s) is a stochastic Gaussian process with mean zero, and variance 𝜎2.
We define the mean function 𝜇(s) = E(gi(s)), and the covariance function C(s, s′) = cov(gi(s), gi(s′)), where s and s′
denote two points over domain S. By Mercer’s theorem, C(s, s′) =

∑∞
l=1al𝜙l(s)𝜙l(s′), where a1 ≥ a2 ≥ … 0 are non-

increasing eigenvalues, and 𝜙l(s) is the corresponding eigenfunction, satisfying ∫S 𝜙l(s)2ds = 1 and ∫S 𝜙l(s)𝜙l′ (s)ds =
0 when l ≠ l′. We decompose the functional predictor gi(s) = 𝜇(s) +

∑∞
l=1𝜉il𝜙l(s) using Karhunen-Loeve’s expansion,

where 𝜉il is the corresponding FPC score, satisfying E(𝜉il) = 0,Var(𝜉il) = al, 𝜉il ⫫ 𝜉il′ for l ≠ l′, where ⫫ denotes indepen-
dence. The truncated Karhunen-Loeve’s expansion is adopted, using proportion of variance explained (PVE) criteria:∑L

l=1al∕
∑∞

l=1al ≥ PVE.
We conduct FPCA using the following procedure for the observed g′i (s). First, the estimated mean function 𝜇̂(s) is

obtained from the sample mean: 𝜇̂(s) = (1∕n)
∑n

i=1g′i(s), and is smoothed using the cubic B-spline function. Second, we
demean the data g′i(s) − 𝜇̂(s) from which we calculate the raw covariance matrix. Third, the raw covariance matrix is
smoothed using either the tensor-product smoother (for low-dimensional domains), or a bivariate scattered points from
the multilevel B-splines (for high-dimensional domains). Finally, we perform eigendecomposition for the smoothed
covariance matrix to obtain the estimated eigenfunctions 𝜙̂l(s) and the number of eigenfunctions L, where L is set to be
the minimum number that achieves the PVE criteria.

For the coefficient function B(s), we decompose it using cubic B-spline functions: B(s) =
∑P

p=1bpfp(s), where fp(s) is
the cubic B-spline function p evaluated at location s, and bp is the corresponding B-spline coefficient. For model identi-
fiability, the number of B-spline functions P is smaller than or equal to the number of eigenfunctions L. Hence, we set
P = min(L1, … ,LJ ,Lw).

We approximate the integration term ∫S gi(s)B(s)ds as ∫S gi(s)B(s)ds ≈ I𝜇Bb + 𝚵iI𝜙Bb, where I𝜇B is a 1 by P vec-
tor, with pth element as ∫S 𝜇(s)fp(s)ds, and b is a P by 1 coefficient vector, with pth element as bp. We denote 𝚵i
as a 1 by L vector, with lth element as 𝜉il, and I𝜙B as an L by P matrix, with (l, p)th element being ∫S 𝜙l(s)fp(s)ds
(refer to Web Supplement Section 1 for derivation). The integrals ∫S 𝜇(s)fp(s)ds and ∫S 𝜙l(s)fp(s)ds are approximated
using Riemann sum. The FPC scores satisfy 𝜉il = ∫S(gi(s) − 𝜇(s))𝜙l(s)ds, which are approximated as 𝜉il ≈ ∫S(g

′
i(s) −

𝜇̂(s))𝜙̂l(s)ds.

3.3 Estimation and inference

We denote the parameter space as: 𝜽 = (𝜷0, 𝜷,b,𝝈u, 𝜌, v,𝝎, 𝜹,h0, 𝜸,𝜶)′, where 𝜷0 = (𝛽01, … , 𝛽0J), 𝜷 = (𝜷1, … , 𝜷J), b =
(b1, … ,bJ ,bw), bj = (bj1, … , bjp), bw = (bw1, … , bwp), 𝝈u = (𝜎u0, 𝜎u1), v = (v20, v21, … , vJ0, vJ1), 𝝎 = (𝜔1, … , 𝜔J), 𝜹 =
(𝛿1, … , 𝛿J), h0 = (h01, … , h0Z), and 𝜶 = (𝛼1, … , 𝛼J).
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We express the full data log-likelihood as:

l(𝜽|Y , Ỹ ,T, 𝛿) =
n∑

i=1
log

⎧⎪⎨⎪⎩
⎡⎢⎢⎣

J∏
j=1

Kij∏
k=1

f (yij(tijk)|ui,𝜽)1−Iijk f (ỹij(tijk)|ui,𝜽)Iijk

⎤⎥⎥⎦ ⋅
hi(Ti|ui,𝜽)𝛿i Si(Ti|ui,𝜽)P(ui|𝜽)} , (4)

where ỹij(tijk)|ui,𝜽 ∼ Skew-Normal(mij(tijk), 𝜔2
j , 𝛿j), and Si(Ti) is the survival function. The missing outcomes ỹij(tijk) are

imputed in the MCMC sampling procedure. Specifically, we treat ỹij(tijk) as unknown parameters and impute from the
Skew-Normal distribution with each parameter being the posterior samples.

To sample from the log-likelihood, we utilize the software Stan, which provides a platform to perform full Bayesian
inference using no-u-turn sampler (NUTS).50 The NUTS algorithm performs more efficiently and faster than the Hamil-
tonian Monte Carlo (HMC) sampler. In our real data application, we use two Monte Carlo chains with overdispersed
initial values and each chain has 3000 iterations with 2000 iterations as burn-in iterations. We use Gelman-Rubin diag-
nostic to ensure the scale reduction R̂ of all parameters are smaller than 1.1 as well as a suite of convergence diagnosis
criteria to ensure convergence.50 The results consist of 2000 NUTS samples for each parameter, from which we derive the
posterior mean, estimated standard error, and the 95% credible interval for each parameter. The Stan code is provided
in the Web Supplement Section 8 for easy implementation.

To evaluate model performance, we adopt leave-one-out cross-validation information criteria (LOOIC) and widely
applicable information criteria (WAIC), which are robust, stable, and computationally efficient in Bayesian settings.51

Smaller LOOIC and WAIC values indicate better model performance.

3.4 Dynamic prediction

Suppose we have a new patient M who is event-free to time T0. We predict future longitudinal outcomes at time T1,
T1 > T0, and the conditional survival probability. We use NUTS to obtain the samples of the random effects uM from its
posterior distribution (refer to the Web Supplement Sections 2 and 3 for the derivation of posterior distributions of random
effects and conditional survival probability).

P
(

uM|TM > T0, yM , 𝜽̂
)
∝

J∏
j=1

KMj∏
k=1

P
(

yMj(tMjk)|uM,TM > T0, 𝜽̂
)

P
(

TM > T0|uM, 𝜽̂
)

P
(

uM|𝜽̂) ,
where we denote yM = (yM1(t11), … , yM1(T0), … , yMJ(tJ1), … , yMJ(T0)) as all longitudinal outcomes up to time T0 for
subject M, where the subscript M denotes subject M, and KMj is the number of time points up to time T for subject M,
outcome j.

After drawing D samples of random effects u(d)
M , d = 1, 2, ...,D, the latent longitudinal mean for the longitudinal

outcome j at time T1 and conditional survival probability are calculated as:

E
(

y(d)Mj(T1)|TM > T0, yM ,u(d)
M , 𝜽̂

)
= 𝛽0j + x′

Mj(T1)𝜷̂ j + B′
Mjb̂j + v̂j0u(d)

M0 + v̂j1T1u(d)
M1,

P
(

TM > T1|TM > T0, yM ,u(d)
M , 𝜽̂

)
= exp

(
−∫

T1

t=T0

hM

(
t|yM ,u(d)

M , 𝜽̂
)

dt
)
,

where hM(t|yM ,u(d)
M , 𝜽̂) = ĥ0(t) exp(w′

M 𝜸̂ + B′
Mwb̂w +

∑J
j=1𝛼̂jE(y(d)Mj(t))). We denote x′

Mj(T1) as the observed longitudinal
covariate vector at time T1 for longitudinal outcome j, w′

M as the observed survival covariate vector, B′
Mj and B′

Mw as the
functional covariate vectors, where B′

Mj = I𝜇j,Bj + 𝚵MjI𝜙j,Bj , and B′
Mw is calculated similarly. The FPC score vector 𝚵Mj is

approximated as in Section 3.2. The means and quantiles of longitudinal means and conditional survival probability are
calculated based on the D samples.

We evaluate the predictive performance in discrimination (how well the models discriminate between subjects who
had the event from those who did not) and calibration (how well the models predict the observed data). We assess
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discrimination using time-dependent area under the receiver operating characteristic curve (AUC). Specifically, we
adopt an efficient and unbiased estimator for time-dependent sensitivity and specificity proposed by Li et al.52 The
time-dependent sensitivity is estimated as P̂(Xi > c|Ti ≤ 𝜏) =

∑n
i=1WiI(Xi > c)∕

∑n
i=1Wi, and the time-dependent speci-

ficity is estimated as P̂(Xi ≤ c|Ti ≥ 𝜏) =
∑n

i=1(1 − Wi)I(Xi ≤ c)∕
∑n

i=1(1 − Wi), where Wi is the probability of subject i not
surviving to time t. The AUC can be approximated using trapezoidal integration from the time-dependent ROC curve,
where the best AUC value is 1, indicating perfect prediction, and an AUC value of 0.5 indicates no better than a random
guess. The calibration is assessed by Brier score (BS), which measures the disparity of prediction at a particular time, using
a weighted sum of squares of the difference between the true survival status and the estimated survival probability.53 The
best BS value is 0, and a BS value 0.25 indicates no better than a random guess.

3.5 MRI preprocess protocols and software implementation

The downloaded sMRI data had been corrected using gradient warping, B1 nonuniformity correction, and N3 correc-
tion. We utilize the MRI preprocess pipelines from Advanced Normalization Tools (ANTs) and FMRIB Software Library
(FSL) to process the corrected 3D sMRI data in the following steps: (1) The sMRI data are stored as Digital Imaging
and Communications in Medicine (DICOM) format, which are transformed into Neuroimaging Informatics Technology
Initiative (NIFTI) format, using oro.dicom package v0.5.3 and oro.nifti package v0.10.1. (2) The neck part in the
image is removed using standard MNI152 T1 1mm brain template and extrantsr package v3.9.8.1, and the skull
part is then stripped using fslr package v2.24.2. (3) The neck-skull-stripped image is registered to the JHU-MNI-ss
(Eve) Template,54 using Symmetric Normalization (SyN) transformation, and Lanczos Windowed Sinc interpolator
via extrantsr package and EveTemplate package v0.99.14. (4) The registered image is standardized to have mean
0 and standard deviation 1, and the image voxels are extracted and merged with the White Matter Parcellation Map
(WMPM Type II) of the Eve Template,55 using neurobase package v1.27.11.2 and EveTemplate package. (5) We
align the non-zero-volume voxels in the order of three-dimensional coordinates, which are then transformed to the
one-dimensional domain.

We utilize the following software packages for other computational steps. We use packages mgcv v1.8-30 and MBA
v0.0-9 for the tensor-product smoother, and bivariate scattered points from the multilevel B-splines, respectively. We use
package Rspectra v0.16-0 for high-dimensional eigendecomposition and we obtain the values of the B-spline func-
tion using spline package v4.0.4. For Bayesian inference, we use rstan package v2.19.3. We use loo package v2.1.0
to compute LOOIC and WAIC. For the estimation of AUC and BS, we use package tdROC v1.0 and ipred v0.0-9,
respectively.

In summary, our rstan code can handle the following scenarios: (1) shared random effects; (2) more than three
longitudinal outcomes by specifying the likelihood for each longitudinal outcome; (3) monotone or nonmonotone missing
outcomes under missing at random (MAR) assumption; (4) our MJM-FD model reduces to multivariate joint models by
removing the functional predictors and coefficient functions.

4 APPLICATION TO THE ADNI STUDY

4.1 Model description and performance

The baseline characteristics we include are age (mean = 72.8, sd = 7.7), gender (41.4% female), education years (mean
= 16.0, sd = 2.8), Apolipoprotein E (APOE)-𝜖4 alleles (51.2%, 38.1%, 10.6% patients with 0, 1, 2 alleles, respectively). We
propose the MJM-FD:

Yij
(

tijk
)
= mij

(
tijk

)
+ 𝜖ijk,

where mij
(

tijk
)
= 𝛽0j +

4∑
𝜅=1

(
tijk − 𝜏𝜅

)
+ 𝛽1j𝜅 + x′

i𝜷 j + ∫S
gi,j(s)Bj(s)ds + vj0ui0 + vj1tijkui1,

hi(t) = h0(t) exp

(
w′

i𝜸 + ∫S
gi,w(s)Bw(s)ds +

J∑
j=1

𝛼jmij(t)

)
,
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where (tijk − 𝜏𝜅)+ (equal to tijk − 𝜏𝜅 if tijk > 𝜏𝜅 and 0 otherwise) are spline terms to account for the nonlinearity of longi-
tudinal trajectories in Figure 1, while 𝝉 = {𝜏𝜅}𝜅=1,… ,4 = (0, 1.5, 5.0, 9.0) are knot locations. Let Yi1(tijk), Yi2(tijk), Yi3(tijk) be
the observed longitudinal outcomes MMSE, CDR-SB, WMS-LM, respectively, for subject i at visit time tijk from baseline.
The survival time is the time from baseline to dementia diagnosis or censoring. Note that death is not reported in the
ADNI study and we have no information after each individual’s last visit. If dementia diagnosis is not made during the
study, we set the dementia diagnosis status as censoring at the last visit. The baseline hazard function is modeled using
a piecewise constant function, using same knot locations as the longitudinal time spline. We set baseline characteristics
x′

i = (Agei,Genderi,Educationi)′, and w′
i = (Agei,Genderi,Educationi,APOEi)′, where APOEi is the number of APOE-𝜖4

alleles for subject i. We follow the preprocess protocols and voxel-selection methods to process the baseline MRI data.
The domains S1, S2, S3, and Sw consist of 324, 69, 1387, and 972 voxels, respectively.

We compare model performance of six models: MJM-FD (defined above), Hippocampal Model (HM; MJM-FD
using only hippocampal voxels as functional predictors gi(s) for both longitudinal and survival outcomes, with gi(s)
on domain S with 9846 voxels), Functional Cox model (FCM, 𝛼1 = 𝛼2 = 𝛼3 = 0 in MJM-FD), baseline functional
Cox model (BFCM, FCM with longitudinal outcome data at baseline), Multivariate joint model (MJM; MJM-FD
without functional predictors), and MJM-FCM (MJM-FD without functional predictors in longitudinal models). For
FCM and BFCM, the parameters for longitudinal models are also estimated and the log-likelihood calculation also
includes the longitudinal model, in order to have a fair comparison of LOOIC and WAIC. The reason why we com-
pare MJM-FD and HM is that atrophy of hippocampus volume is strongly associated with faster progression from
MCI to AD,56 and we desire to compare the performance of models using voxels from whole-brain vs hippocampus
only.

For model MJM-FD, we perform FPCA on the observed functional predictors and retain certain numbers of eigen-
functions (8 for MMSE, 6 for CDR-SB, 7 for WMS-LM, and 7 for the survival outcome), with PVEs all above 99%. Given
the small numbers of informative voxels in each outcome, we use tensor-product surface spline to smooth the raw
covariance matrices. For model HM, we retain the first 10 eigenfunctions, with PVE above 95%, and we use bivariate scat-
tered points from the multilevel B-splines to smooth the covariance matrices. Next, we perform eigendecomposition for
the smoothed covariance matrices to obtain estimated eigenfunctions and eigenvalues, and construct the approximated
covariate matrices.

Table 1 displays leave-one-out cross-validation information criteria (LOOIC) and widely applicable information crite-
ria (WAIC) from six candidate models. Model MJM-FD has smaller LOOIC and WAIC compared with HM, indicating that
the inclusion of whole-brain voxels improves model fit performances compared with hippocampus voxels only. Compar-
ing with FCM and BFCM, MJM-FD shows large improvement of LOOIC and WAIC, suggesting the advantage of including
longitudinal trajectories in the survival model. Moreover, MJM-FD outperforms MJM and MJM-FCM, suggesting that
functional predictors are predictive to both longitudinal and survival modeling. The proposed model MJM-FD performed
markedly better than all other candidate models with smallest LOOIC and WAIC. Hence, we select model MJM-FD as
the final model.

4.2 Results for model fitting

The parameter estimates from model MJM-FD are presented in Table 2. For the outcome Mini-Mental State Examina-
tion (MMSE), the average decrease is 0.164 (95% CI: [−0.298, −0.035]) for females compared with males, and the average
increase is 0.070 (95% CI: [0.046, 0.095]) for 1 year increase in education, conditioning on other covariates, and the ran-
dom effects. For the outcome Wechsler Memory Scale—logical memory (WMS-LM), the average decrease is 0.037 (95%
CI: [−0.076, −0.001]) for 1 year increase in baseline age, and the average increase is 0.374 (95% CI: [0.283, 0.463]) for

T A B L E 1 Leave-one-out cross-validation information criteria (LOOIC) and widely applicable
information criteria (WAIC) from MJM-FD, hippocampal model (HM), functional Cox model (FCM),
baseline functional Cox model (BFCM), multivariate joint model (MJM), and MJM-FCM

MJM-FD HM FCM BFCM MJM MJM-FCM

LOOIC 37 875.4 38 007.3 38 252.2 38 166.7 37 943.3 37 948.8

WAIC 37 395.3 37 528.4 37 791.7 37 706.6 37 445.0 37 470.0
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T A B L E 2 Estimated mean, standard error, and 95% credible intervals from model MJM-FD

Parameters Mean SE 2.5% 97.5%

Longitudinal outcomes

MMSE Intercept 29.055 0.433 28.226 29.873

Age (years) −0.006 0.005 −0.016 0.004

Female sex −0.164 0.068 −0.298 −0.035

Education (years) 0.070 0.012 0.046 0.095

CDR-SB Intercept 0.768 0.174 0.427 1.119

Age (years) −0.003 0.002 −0.007 0.001

Female sex 0.009 0.027 −0.042 0.061

Education (years) −0.007 0.005 −0.016 0.002

WMS-LM Intercept 4.794 2.225 0.436 9.158

Age (years) −0.037 0.018 −0.076 −0.001

Female sex −0.145 0.261 −0.667 0.388

Education (years) 0.374 0.046 0.283 0.463

𝜎u1 0.557 0.067 0.440 0.695

𝜎u2 0.452 0.042 0.370 0.531

𝜌 0.473 0.046 0.375 0.563

v20 −0.009 0.036 −0.078 0.064

v21 −1.331 0.109 −1.573 −1.154

v30 5.573 0.656 4.398 6.936

v31 2.696 0.231 2.284 3.185

𝛿1 −5.329 0.511 −6.416 −4.401

𝛿2 7.816 0.931 6.288 9.933

𝛿3 0.049 0.565 −0.937 0.962

Survival outcome
Age (years) −0.016 0.010 −0.034 0.003

Female sex −0.083 0.144 −0.376 0.214

Education (years) 0.006 0.025 −0.044 0.055

APOE-𝜖4 Alleles 0.285 0.096 0.104 0.469

𝛼 (MMSE) −0.073 0.173 −0.431 0.253

𝛼 (CDR-SB) 0.300 0.124 0.050 0.540

𝛼 (WMS-LM) −0.162 0.044 −0.248 −0.075

Note: The estimated coefficients for coefficient functions are available in Web Supplement Section 5.

1 year increase in education, conditioning on other covariates, and the random effects. The random intercepts and the
random slopes of time are positively correlated, with a correlation coefficient of 0.473 (95% CI: [0.375, 0.563]), suggest-
ing that MCI patients with worse cognition scores at baseline (negative random intercept ui0) tend to have faster rate of
deterioration (negative random slope ui1). The estimated shape parameters are −5.329 (95% CI: [−6.416, −4.401]), 7.816
(95% CI: [6.288, 9.933]), and 0.049 (95% CI: [−0.937, 0.962]) for MMSE, CDR-SB, and WMS-LM, respectively, indicating
left-skewed distribution for MMSE, right-skewed distribution for CDR-SB, and no significant skewness for WMS-LM. The
estimated association parameters v20 and v21 are negative, while the estimated association parameters v30 and v31 are pos-
itive, suggesting that higher (better) MMSE scores are associated with lower (better) CDR-SB scores and higher (better)
WMS-LM scores. Specifically, one unit increase of random intercepts is associated with 5.573 (95% CI: [6.288, 9.933]) unit



10 ZOU et al.

F I G U R E 2 The brain (in sagittal view) heat map of estimated coefficient functions. For clarity, we only display voxels in the right
hippocampus (label 92), right fornix column and body (label 116), and left fornix column and body (label 51). The top left, top right, bottom
left, and bottom right panels are estimated coefficient functions for MMSE, CDR-SB, WMS-LM, and survival outcome, respectively. The colors
indicate values of the estimated mean of coefficient functions. The node sizes are proportional to the number of significant voxels in the ROIs
for each outcome. The numbers are ROI labels (refer to Supplementary Tables 6 and 7) [Colour figure can be viewed at wileyonlinelibrary.com]

increase of WMS-LM score, while keeping all other covariates as constants. Moreover, the subject-specific progression
rates of MMSE and CDR-SB are negatively associated (v̂21 = −1.331, 95% CI: [−1.573, −1.154]), while the subject-specific
progression rates of MMSE and WMS-LM are positively associated (v̂31 = 2.696, 95% CI: [2.284, 3.185]).

For the survival outcome, APOE-𝜖4 is the only significant predictor for the survival outcome. One additional APOE-𝜖4
allele is associated with an increase of logarithm hazard rate by 28.5% (95% CI: [0.104, 0.469]), conditioning on other
covariates. One unit increase of CDR-SB score and WMS-LM score is associated with increase of logarithm hazard rate of
30.0% (95% CI: [0.050, 0.540]) and the decrease of logarithm hazard rate of 16.2% (95% CI: [−0.248, −0.075]), respectively.

Using BrainNet Viewer,57 we plot in Figure 2 (in sagittal view of the Eve template) the heat map of the estimated
coefficient functions. For clearer visualization, we provide the 3D movies of the estimated functional predictors in the
Web Supplement Section 7. We select some voxels for illustration purpose. For MMSE, the atrophy of voxels on right and
left fornix columns and body (label 116 and label 51), right hippocampus (label 92) is associated with lower MMSE scores
(worse cognitive functions). For CDR-SB, the atrophy of voxels on right and left fornix columns and body is associated
with higher CDR-SB scores (worse behavioral functions). For WMS-LM, the atrophy of voxels on right and left fornix
columns and body, and right hippocampus is associated with lower WMS-LM scores (worse memory functions). For
the survival outcome, the atrophy of voxels on right hippocampus is associated with faster conversion from MCI to AD.
Previous studies find out that the atrophy of the hippocampus region is associated with worse cognitive functions and
faster transition to AD.31 Our results confirm this finding, and discover some voxels on other ROIs that are associated
with cognitive functions and AD progression.

http://wileyonlinelibrary.com
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F I G U R E 3 The predicted longitudinal outcome trajectories and survival probabilities for a new patient over visit time. The top, middle
and bottom panels are the prediction time at 1.5, 2, 2.5 years, respectively. The circled dots are observed longitudinal outcomes. The black
dotted vertical lines are the prediction time. The blue solid lines are predicted means of longitudinal outcomes and survival probabilities. The
dashed curves are the corresponding 95% credible intervals. The person’s censoring time is 4.10 years, which is plotted as the red-dashed
vertical lines [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 Results for dynamic prediction

We conduct fourfold cross-validation and repeat 100 times to calculate the mean of estimated AUC and BS to compare the
prediction accuracy for six candidate models (MJM-FD, HM, FCM, BFCM, MJM, and MJM-FCM). We set the prediction
time t = (1, 1.5, 2) and the prediction window Δt = (0.25, 1) (Figure 3).

Table 3 displays the estimated AUC and BS for models MJM-FD, HM, FCM, BFCM, MJM, and MJM-FCM. Model
MJM-FD outperforms model HM for all prediction time and prediction windows with larger AUC and smaller BS, indicat-
ing using informative voxels from the whole-brain improves the predictive performance compared with the model using
only hippocampus voxels. Comparing MJM-FD with FCM and BFCM, MJM-FD shows good improvement of AUC and
BS in most prediction settings, suggesting the advantage of using longitudinal trajectories in the joint-model framework
in AD prediction. In comparison with MJM and MJM-FCM, MJM-FD had better predictive performance at later predic-
tion time when more longitudinal data are available, for example, larger AUC at 2 years and smaller BS at 1.5 and 2 years.
Thus, the inclusion of functional predictors in both longitudinal and survival model generally improves the predictive
performance of dementia diagnosis.

http://wileyonlinelibrary.com
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T A B L E 3 Mean of estimated AUC and BS for MJM-FD, HM, FCM, BFCM, MJM, and MJM-FCM

MJM-FD HM FCM BFCM MJM MJM-FCM

Prediction time 𝚫t AUC BS AUC BS AUC BS AUC BS AUC BS AUC BS

1.0 0.25 0.797 0.055 0.763 0.054 0.745 0.054 0.808 0.052 0.801 0.053 0.795 0.050

1.00 0.849 0.099 0.817 0.107 0.751 0.113 0.845 0.102 0.851 0.104 0.851 0.098

1.5 0.25 0.854 0.034 0.824 0.038 0.709 0.040 0.840 0.041 0.861 0.038 0.848 0.035

1.00 0.877 0.092 0.873 0.097 0.755 0.112 0.852 0.095 0.875 0.099 0.876 0.095

2.0 0.25 0.883 0.063 0.882 0.065 0.764 0.063 0.844 0.061 0.876 0.065 0.881 0.064

1.00 0.884 0.076 0.841 0.082 0.770 0.084 0.837 0.082 0.870 0.079 0.881 0.080

5 SIMULATION STUDY

5.1 Simulation setting

To evaluate the proposed MJM-FD model, we conduct a simulation study with the true parameters close to the parameter
estimates in Table 2, using eight simulation settings: Setting 1 (N = 800, event rate ER = 37% with around 4.5 assessments
per longitudinal outcome, missing at random (MAR) with missing rate at around 5%); Setting 2 (N = 800, ER = 37%, No
Missing); Setting 3 (N = 800, ER = 63% with around 4.0 assessments per longitudinal outcome, MAR with missing rate at
around 5%); Setting 4 (N = 800, ER = 63%, no missing); Setting 5-8: N = 1200, otherwise same as Setting 1-4. We generate
100 simulated datasets with a sample size of N + N/3 and set N subjects as the training set and retain the remaining
subjects as the testing set. Each subject has three longitudinal outcomes (J = 3). The longitudinal outcomes are simulated
at time grid [0, … , 3] with a 0.5 year increment. The MJM-FD model is:

Yij
(

tijk
)
= mij

(
tijk

)
+ 𝜖ijk,

where mij
(

tijk
)
= 𝛽0j +

2∑
𝜅=1

(
tijk − 𝜏𝜅

)
+ 𝛽1j𝜅 + xi𝛽j + ∫S

gi,j(s)Bj(s)ds + vj0ui0 + vj1tijkui1,

hi(t) = h0(t) exp

(
wi𝛾 + ∫S

gi,w(s)Bw(s)ds +
J∑

j=1
𝛼jmij(t)

)
,

where i = 1, … ,N + N∕3, j = 1, 2, 3, k = 1, … ,Kij.
For the longitudinal models, we set (𝛽01, 𝛽111, 𝛽112, 𝛽1) = (28,−1,−0.8,−0.4), (𝛽02, 𝛽121, 𝛽122, 𝛽2) = (2, 1, 0.8, 0.2),

(𝛽03, 𝛽131, 𝛽132, 𝛽3) = (8,−1,−0.8,−0.2). The spline knot locations 𝜏 = (0, 2) and covariate xi ∼ N(0, 1). The associa-

tion parameters v2 = (−0.5,−0.4), v3 = (1, 0.5). We simulate ui ∼ N(0,𝚺), where 𝚺 =
(

0.25 0.1
0.1 0.25

)
. The error 𝜖ijk ∼

Skew-Normal(0, 𝜔2
j , 𝛿j), where 𝝎 = (1.2, 1, 1) and 𝜹 = (−2, 2, 0). We observe the noisy forms of functional predictors

at domain S = [0, … , 1] with 0.005 increment for both longitudinal and survival outcomes. The functional predic-
tors are simulated as: gi,j(s) = 𝜇j(s) +

∑10
l=1𝜙jl(s)𝜉ijl, where 𝜇1(s) = 1 + s, 𝜇2(s) =

√
s + 1, 𝜇3(s) = 1 + exp(s). The eigen-

functions 𝜙1l(s) =
√

2 sin((2l − 1)𝜋s∕2), 𝜙2l(s) =
√

2 cos((2l − 1)𝜋s∕2), 𝜙3l(s) = 𝜙1l(s), for l = 1, 2, … , 10. The FPC scores
𝜉ijl ∼ N(0, 0.9l−1) for j = 1, 2, 3. We observe a noisy form gi,j(s)′ = gi,j(s) + 𝜖ij(s), where 𝜖ij(s) ∼ N(0, 0.01). The coefficient
functions B1(s) = 1 + sin(2𝜋s) + cos(2𝜋s), B2(s) = 1 + sin(2𝜋s) − cos(2𝜋s), B3(s) = 1 − sin(2𝜋s) + cos(2𝜋s). The missing
pattern of longitudinal responses is missing at random, where missing indicator Iijk is sampled from Bernoulli distribu-
tion with event probability pijk, where logit(pijk) = 2(xi − 2) + t0j(tijk − t0j), where t0j = (2, 2.5, 1.5) for j = 1, 2, 3, generating
missing proportions at around 5% for all simulation settings.

For the survival model, the baseline hazard function h0(t) is a piecewise constant function, when 0 ≤ t < 2, h01 =
exp(5), and when t ≥ 2, h02 = exp(6) (when ER = 37%) or exp(10) (when ER = 63%). The covariate wi ∼ Binomial(2, 0.4),
which mimics the APOE-𝜖4 genotype frequency, and 𝛾 = 0.4. The association parameters 𝛼1 = −0.4, 𝛼2 = 0.8, and 𝛼3 =
−0.3. We simulate the survival probability Si(t) from standard uniform distribution U(0, 1). The failure time T∗

i is com-
puted using equations derived in the Web Supplement Section 4. The censoring time is generated from Ci ∼ U(0, 6).
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The functional predictors are simulated as gi,w(s) = 𝜇w(s) +
∑10

l=1𝜙wl(s)𝜉iwl, where 𝜇w(s) = 1 + Φ(2s), and Φ(s) denotes
the CDF of standard normal distribution. The eigenfunctions 𝜙wl(s) = 𝜙2l(s). The FPC scores 𝜉iwl are simulated from
N(0, 0.9l−1). We also observe a noisy form gi,w(s)′ = gi,w(s) + 𝜖iw(s), where 𝜖iw(s) ∼ N(0, 0.01). The coefficient function
Bw(s) = 1 − sin(2𝜋s) − cos(2𝜋s).

We perform FPCA on the observed functional predictors with the PVE criteria being 99%. We smooth the mean func-
tion using cubic B-spline function with a degree of freedom being 8. We use the tensor-product surface spline to smooth
the raw covariance matrix. We perform NUTS sampling in Stan using two chains, each of which has a total of 2000 iter-
ations with 1000 iterations being burn-in. The ability to estimate the true coefficient functions is assessed by the average
mean squared error (AMSE), where AMSE = 1∕(100 ⋅ S)

∑100
r=1

∑
S {B(s) − B̂(r)(s)}2, and S is the number of grid points over

domain S, and B̂(r)(s) is the estimated coefficient function at rth simulation replication. We then perform dynamic pre-
diction with prediction time t = (1, 1.5, 2) and prediction window Δt = (0.25, 0.5, 0.75, 1) and we calculate the true AUC,
estimated AUC, true BS, and estimated BS.

5.2 Results for simulation study

Since simulation Setting 1 is closest to the real data, we present the results from it, while the results from Setting 2-8 are pre-
sented in the Supplementary Tables 2-5. Table 4 presents bias (the average of the posterior means minus the true values),
standard deviation (SD, the standard deviation of the posterior mean), standard error (SE, the square root of the aver-
age of the variance), and coverage probabilities (CP) of 95% credible intervals, in addition to AMSE for Setting 1. Table 4
suggests that the MJM-FD model performs well with small bias, SE being close to SD, the coverage probabilities being
reasonably close to the nominal level of 0.95, and AMSE being close to zero. For simulation Setting 2-8, Supplementary
Tables 2 and 4 also suggest parameters are estimated with small bias, and the coverage probabilities being close to 0.95.
The estimated coefficient functions are close to the true coefficient functions with very little bias. Thus, the simulation
studies confirm the correctness of the MJM-FD estimation method and the method in handling the missing data.

Figure 4 displays the true coefficient functions, mean of estimated coefficient functions from 100 replications, and 95%
pointwise credible interval bands over domain S. The results indicate that the mean of estimated coefficient functions are
very close to the true coefficient functions, with 95% credible interval bands always covering the true functions.

Table 5 displays the true and estimated time-dependent AUC and BS for prediction time at (1.5, 2, 2.5) years and pre-
diction window of (0.25, 0.5, 0.75, 1) years. The estimated AUC values are slightly smaller than the true AUC values, and
the estimated BS are slightly larger than the true BS, indicating satisfying model performance in both discrimination and
calibration. For simulation Setting 2-8, Supplementary Tables 3 and 5 suggest that the estimated AUC values are close to
true AUC values, and the estimated BS are close to true BS, confirming the correctness of the dynamic prediction method
under various simulation settings with different sample sizes, event rates, and with or without missing outcome data.

6 DISCUSSION

In this article, we propose a multivariate joint model with functional data (MJM-FD) framework to jointly model
multivariate longitudinal outcomes and a survival outcome in Alzheimer’s disease, with the baseline magnetic res-
onance imaging (MRI) data being included as functional predictors. We use shared random intercepts and random
slopes of time to account for subject heterogeneity at baseline and rates of progression among longitudinal outcomes.
Functional principal component analysis and cubic B-spline functions are used to decompose functional predictors
and coefficient functions, respectively. We adopt Bayesian methods for statistical inference and dynamic prediction
and apply the MJM-FD framework to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, where missing
longitudinal responses are imputed in the Markov-Chain Monte Carlo (MCMC) sampling procedure. For longitudi-
nal outcomes, we conclude that older ages are significantly associated with worse memory functions (lower Wechsler
Memory Scale—logical memory scores, WMS-LM), and lower education is significantly associated with worse cogni-
tion and memory functions (lower Mini-Mental State Examination and WMS-LM scores). Higher Clinical Dementia
Rating—sum of boxes scores and lower WMS-LM scores are significantly associated with higher Alzheimer’s disease
(AD) risk among participants with mild cognitive impairment (MCI). The atrophy of voxels inside hippocampus and
fornix column and body region is associated with worse cognition scores and memory function. The atrophy of vox-
els inside hippocampus region and other ROIs may expedite the progression from MCI to AD. We also construct a
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T A B L E 4 Parameter estimation from 100 simulation replications for simulation
Setting 1

Parameters Bias SD SE CP

Longitudinal outcomes

Y1 𝛽01 = 28 −0.013 0.056 0.059 0.950

𝛽111 = −1 −0.003 0.029 0.030 0.960

𝛽112 = −0.8 0.003 0.080 0.086 0.950

𝛽1 = −0.4 −0.001 0.024 0.026 0.980

Y2 𝛽02 = 2 −0.001 0.037 0.038 0.980

𝛽121 = 1 0.002 0.018 0.019 0.940

𝛽122 = 0.8 −0.001 0.061 0.065 0.970

𝛽2 = 0.2 −0.001 0.015 0.016 0.940

Y3 𝛽03 = 8 −0.060 0.217 0.318 0.980

𝛽131 = −1 0.001 0.032 0.029 0.910

𝛽132 = −0.8 −0.011 0.113 0.099 0.910

𝛽3 = −0.2 0.000 0.021 0.026 0.980

𝜎u0 = 0.5 −0.000 0.028 0.028 0.960

𝜎u1 = 0.5 −0.002 0.025 0.024 0.950

𝜌 = 0.4 −0.000 0.075 0.072 0.940

v20 = −0.5 −0.008 0.040 0.039 0.930

v21 = −0.4 0.003 0.023 0.025 0.960

v30 = 1 0.009 0.067 0.067 0.950

v31 = 0.5 −0.003 0.039 0.039 0.970

𝛿1 = −2 0.026 0.167 0.177 0.960

𝛿2 = 2 0.024 0.144 0.149 0.930

𝛿3 = 0 0.035 0.289 0.419 0.980

Survival outcomes

𝛾 = 0.4 −0.002 0.096 0.095 0.960

𝛼1 = −0.4 −0.014 0.046 0.044 0.940

𝛼2 = 0.8 0.023 0.063 0.058 0.910

𝛼3 = −0.3 −0.000 0.051 0.046 0.910

AMSE.B1 0.019

AMSE.B2 0.008

AMSE.B3 0.016

AMSE.BW 0.184

dynamic prediction framework to predict future longitudinal outcomes and risk of AD onset for new subjects. The
inclusion of selected voxels from the whole voxel-based baseline MRI data and the inclusion of longitudinal trajecto-
ries in the survival model improve the overall model fitting and predictive performance, comparing with other candidate
models.

There are few limitations we may address as future directions. First, we only use the baseline MRI data as functional
predictors in the MJM-FD, while the longitudinal MRI data are available for some individuals. The longitudinal MRI
data can be treated as two-dimensional functional predictors with time and volumes of voxels being two-dimensional
domains and the coefficient functions can be constructed in the two-dimensional domains. Second, although we utilize
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F I G U R E 4 The true coefficient functions (solid curves), mean of estimated coefficient functions (dashed curves), and 95% pointwise
credible interval bands over domain S. The top left, top right, bottom left, and bottom right panels are the coefficient functions B1(s), B2(s),
B3(s), Bw(s), respectively [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 5 True area under the ROC curve (AUC), estimated AUC, true Brier score (BS), and
estimated BS from 100 simulation replications

t 𝚫t True AUC Estimated AUC True BS Estimated BS

1.0 0.25 0.895 0.885 0.022 0.022

0.50 0.893 0.880 0.041 0.044

0.75 0.893 0.879 0.059 0.063

1.00 0.894 0.879 0.074 0.080

1.5 0.25 0.872 0.864 0.032 0.033

0.50 0.877 0.868 0.056 0.059

0.75 0.890 0.877 0.087 0.093

1.00 0.900 0.884 0.106 0.117

2.0 0.25 0.878 0.867 0.064 0.067

0.50 0.886 0.875 0.100 0.107

0.75 0.902 0.887 0.114 0.124

1.00 0.919 0.901 0.064 0.071

the whole-brain MRI data, we only select voxels with FDR-adjusted p-values less than 0.05 for MMSE and CDR-SB, and
0.01 for WMS-LM and survival outcomes, which is an ad hoc method for voxel selection. A recent article discusses a
soft-thresholded Gaussian process for scalar-on-image regression and variable selection and it is an alternative way for
voxel selection.58 In addition, the informative voxels in WMS-LM are 1387, about 20 fold more than the informative voxels
in CDR-SB (69 voxels), indicating that WMS-LM has larger voxel volume variation than CDR-SB. Finally, we only use one
of the representative genetic variants of AD progression, APOE-𝜖4. The MJM-FD framework can be extended to account
for multiple genetic variants by adopting the polygenic risk scores (PRS) approach.59,60 Furthermore, age is found to be
insignificantly associated with AD progression. The possible reason is that age is a shared covariate in the longitudinal and

http://wileyonlinelibrary.com
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survival model, and there exists a direct effect and an indirect effect for age. Thus, the age effect is possibly ameliorated
in the survival model.

As pointed out by one reviewer, our MJM-FD assumes that the effects of baseline brain structure on the longitudi-
nal trajectories and survival outcome are time-independent. To relax this assumption, we may incorporate coefficient
functions with two dimensions in voxel space and time, for example, replacing Bj(s) in Model (2) by Bj(s, tijk). This modi-
fication allows the baseline brain structure to be associated with the intensity of the cognitive change. On the other hand,
this change greatly increases the model complexity and computational burden, and we would like to investigate it in our
future research. Furthermore, in the longitudinal submodel of the MJM-FD, we model the correlation across multivariate
longitudinal outcomes using the shared random effects ui0 and ui1. A more general form is to include outcome-specific
random effects which follow a multivariate normal distribution. The large number of required random effects may impose
challenging numerical difficulty and computational burden.61 A practical solution to reduce computational burden is to
adopt a two-stage approach and use a correction factor based on the importance sampling theory. The correction fac-
tor allows us to reweight each realization of the MCMC sample such that the estimates more closely approximate those
obtained via the full multivariate joint model.7

In this article, we use the scalar-on-function regression method to include functional predictors in the multivariate
joint model framework. It would be more general if the longitudinal outcome data are treated as functional outcomes
on a sparse time domain. To this end, we may treat longitudinal observations as functional outcomes and MRI data as
functional predictors, and adopt the function-on-function regression methods. Specifically, the functional mixed effects
models can be readily applied to model the longitudinal outcomes and the latent mean function can be incorporated in
the survival model as described in several articles.62-64 The dynamic prediction framework can be also developed.
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