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Studying structural and functional connectivities of human cerebral
cortex has drawn significant interest and effort recently. A
fundamental and challenging problem arises when attempting to
measure the structural and/or functional connectivities of specific
cortical networks: how to identify and localize the best possible
regions of interests (ROIs) on the cortex? In our view, the major
challenges come from uncertainties in ROI boundary definition, the
remarkable structural and functional variability across individuals
and high nonlinearities within and around ROIs. In this paper, we
present a novel ROI prediction framework that localizes ROIs in
individual brains based on their learned fiber shape models from
multimodal task-based functional magnetic resonance imaging
(fMRI) and diffusion tensor imaging (DTI) data. In the training
stage, shape models of white matter fibers are learnt from those
emanating from the functional ROIs, which are activated brain
regions detected from task-based fMRI data. In the prediction
stage, functional ROIs are predicted in individual brains based only
on DTI data. Our experiment results show that the average ROI
prediction error is around 3.94 mm, in comparison with benchmark
data provided by working memory and visual task-based fMRI. Our
work demonstrated that fiber bundle shape models derived from
DTI data are good predictors of functional cortical ROIs.

Keywords: brain network, diffusion tensor imaging, fMRI, ROI prediction,
shape analysis

Introduction

Mapping structural and functional connectivities of human

cerebral cortex via neuroimaging offers an exciting and unique

opportunity to understand cortical architecture and thus has

received significant interest (Friston et al. 2003; Goebel et al.

2003; Sporns et al. 2005; Biswal et al. 2010; Hagmann et al. 2010;

Van Dijk et al. 2010). A fundamental question in mapping

structural and functional connectivities is how to define the best

possible regions of interests (ROIs) for the connectivity

measurement. Essentially, when mapping human brain connec-

tivities, ROIs provide the structural substrates for measuring

connectivities within individual brains and for pooling data across

population groups. Thus, identification of reliable, reproducible,

and accurate ROIs is critically important for the success of

connectivity mapping. However, in our view, this task is

challenging for several critical reasons. 1) The boundaries

between cortical regions are unclear. It is practically difficult to

obtain in vivo cytoarchitectural or chemoarchitectural delinea-

tion of ROIs on the cerebral cortex. 2) Individual variability of

cortical anatomy, connection, and function is remarkable.

Quantitative mapping of the regularity, while accounting for

the variability, of cortical structure and function is a challenging

task. 3) The properties of ROIs are highly nonlinear. For instance,

a slight change of the location of a ROI can dramatically alter its

structural connectivity profiles (Li et al. 2010).

Many approaches for identifying cortical ROIs have been

developed in the literature. Manual labeling by experts based on

their domain knowledge, though widely used, is vulnerable to

intersubject and intrasubject variation. Also, it is cumbersome

and hardly reproducible. Data-driven methods (Baumgartner

et al. 1997; McKeown et al. 1998; Filzmoser et al. 1999; Hansen

et al. 1999; Lai and Fang 1999; Ngan and Hu 1999; Calhoun et al.

2001; Duann et al. 2002) via clustering ROIs from brain image

itself are typically sensitive to the clustering parameters, and

importantly, their neuroscience interpretation might not be

clear. Image registration algorithm, for example, FSL FLIRT,

HAMMER (Shen and Davatzikos 2002), diffusion tensor image

(DTI) registration approaches (Yang et al. 2008), and others as

listed in Klein et al. (2009), is another possible approach to

identifying ROIs by warping a set of predefined ROIs in the

template space into individual subjects. These warping-based

ROIs identification methods might be vulnerable to anatomical

variability across subjects and the clear functional meaning

cannot be guaranteed. For 2 decades, ROI identification via task-

based functional magnetic resonance imaging (fMRI) data

has been widely used and regarded as the benchmark approach

(Haynes et al. 2007; Logothetis 2008; Friston 2009). However, in

many applications, there is no task-based fMRI data available. For

example, it is challenging to acquire high-quality task-based fMRI

data for elderly or children participants (Epstein et al. 2007; Jack

et al. 2010). Additionally, the human brain is composed of many

functional networks, such as working memory, vision, auditory,

language, motor, attention, and emotion systems. Extensive

acquisition of task-based fMRI data for all these networks is both

time consuming and expensive, which makes it impractical for

wide use. Instead, a typical DTI images scan needs less than 10

min, is much less demanding, and is widely available. Therefore,

we are strongly motivated to accurately identify and predict

functionally meaningful cortical ROIs based only on DTI data.

The close relationship between structural connectivity

pattern and brain function has been reported in the literature

(Passingham et al. 2002; Honey et al. 2009). An interesting

observation from our recent results in Li et al. (2010) is that

white matter (WM) fiber connection patterns of the same

functional cortical ROI are reasonably consistent across

different subjects, suggesting that fiber connection pattern

might be a good predictor of functional ROI. This finding is in

agreement with the ‘‘connectional fingerprint’’ concept pre-

sented in Passingham et al. (2002). Essentially, each brain’s

cytoarchitectonic area has a unique set of extrinsic inputs and

outputs, called the connectional fingerprint (Passingham et al.

2002), and this is crucial in determining the functions that each

brain area performs. Therefore, fiber connectivity pattern may

be good predictor of functional cortical ROI.
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In this paper, we present a novel computational framework

that learns fiber bundle models of functional cortical ROIs based

on both task-based fMRI and DTI data in the training stage and

applies the predictive models to locate functional ROIs in testing

samples based only on DTI data in the prediction stage.

Specifically, in the training stage, all subjects were linearly

aligned to a standard space first. Then, functionally activated ROIs

were detected from task-based fMRI, and the fiber bundles

emanating from these ROIs were extracted. Finally, the trained

model was learned and it includes 2 major components: the ROI

coordinate principal component analysis (PCA) model and the

fiber bundle templates. In the prediction stage, DTI data of an

individual subject was aligned to the standard space first. Then,

starting from the average location of warped ROIs from the

training data set, an energy function was designed to iteratively

optimize the ROIs’ locations. This energy function consists of

internal and external terms. The internal term was measured by

ROI coordinate reconstruction error, which corresponds to the

ROI coordinate PCA model component; while the external term

was defined by the Hausdorff metric of ROIs’ fiber bundles,

which corresponds to the fiber bundle template component. Our

experimental results demonstrated that average prediction error

is approximately 3.9 mm, compared with benchmark ROIs

derived from task-based fMRI data.

The major advantages of this computational framework and

our contributions lie in the following 2 aspects. 1) In the

training stage, the activated brain regions detected from task-

based fMRI data provide the benchmark ROI data for learning

shape models of WM fibers emanating from these ROIs. Our

experimental results from working memory task-based fMRI

data (Li et al. 2010) demonstrate that the fiber connection

patterns of corresponding functional ROIs are quite consistent,

providing direct evidence that WM fiber connection pattern is

a good predictor of functional landmark (Honey et al. 2009).

This is similar to the connectional fingerprint concept

presented in Passingham et al. (2002). 2) In the prediction

stage, only DTI data is needed to accurately locate the

functional ROIs using our predictive models. Typically, a DTI

scan takes less than 10 min and is widely available. Therefore,

the general methodology of predicting functional cortical ROIs

based on DTI will have wide applications in brain imaging in

the future.

Materials and Methods

The flowchart of our ROI prediction framework is illustrated in

Figure 1. It consists of 2 major stages: model training and ROI

prediction. The model training (purple boxes) is performed on the data

set in which each subject has both fMRI and DTI data. As such, we can

obtain both the benchmark ROI locations and the fiber bundles

emanating from them. In the first step (left purple box), multimodal

data of all subjects were linearly aligned into the standard template

space; then in the second step (right purple box), a PCA model of ROI

locations is learned to characterize statistical relationship among ROI

locations. Meanwhile, fiber bundle templates are obtained from the

extracted fiber bundles for each ROI. The outputs of the training

procedure consist of 4 components and are displayed in the red box. In

the prediction stage (the green box in Fig. 1), a new subject with DTI

and fMRI data was linearly aligned to the standard space and then the

trained model (red box) was applied on the DTI data of the subject by

minimizing an energy function starting from the initial ROIs location,

thus generating the predicted ROIs. The predicted ROIs are then

evaluated by comparing with the benchmark ROIs obtained from task-

based fMRI data (black box).

Data Acquisition and Preprocessing

Data set 1

Fifteen university students voluntarily participated in this study under

IRB approval, and none of them was reported to have mental or

physical disease. Each volunteer performed a modified version of the

OSPAN task (3 blocks: OSPAN, Arithmetic, and Baseline) while fMRI

data was acquired (Faraco et al. 2011). DTI scans were also obtained for

each volunteer. Briefly, both fMRI and DTI scans were acquired on a 3-T

GE Signa scanner with acquisition parameters as follows. fMRI: 64 3 64

Figure 1. The flowchart of the model training and ROI prediction framework.
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matrix, 4-mm slice thickness, 220-mm field of view (FOV), 30 slices,

time repetition (TR) = 1.5 s, time echo (TE) = 25 ms, ASSET = 2; DTI:

128 3 128 matrix, 2-mm slice thickness, 256-mm FOV, 60 slices, TR =
15 100 ms, TE = variable, ASSET = 2, 3 B0 images, 30 optimized gradient

directions, b-value = 1000.

Data set 2

Ten healthy children performed a block-based visual task. Each block

has a 30-s rest period and a 20-s task period when pictures were shown

as stimuli. For each subject, DTI data were also obtained. Acquisition

parameters for the scans were as follows. fMRI: 64 3 64 matrix, 4-mm

slice thickness, 220-mm FOV, 30 slices, TR = 2 s, TE = 30 ms; DTI: 256 3

256 matrix, 3-mm slice thickness, 240-mm FOV, 50 slices, TR = 12 000

ms, TE = variable, 1 B0 volume, 15 DTI volumes, b-value = 1000.

The preprocessing of the DTI data is composed of brain skull removal,

motion correction, and eddy current correction. Afterward, the diffusion

tensor was computed and the fiber was tracked via the MEDINRIA

(http://www-sop.inria.fr/asclepios/software/MedINRIA/) toolkit. The

fMRI data of the OSPAN task was analyzed using the FSL FEAT (http://

fsl.fmrib.ox.ac.uk/fsl/feat5/). Individual activation map reflecting the

OSPAN (complex span) contrast was identified. For each subject, the

DTI space is used as the standard space, in which the gray matter (GM)/

WM surface is generated via an approach similar to that in Liu et al.

(2007). The cortical surface was reconstructed from the GM/WM tissue

map via the marching cubes algorithm and used as the ROI definition and

prediction space. This will significantly reduce the ROI prediction search

space from 3D to 2D. Coregistration between DTI and fMRI data is

performed using the FSL FLIRT and the resulting global transform matrix

is subsequently applied to the activated ROIs in order to map them into

the DTI space and the cortical surface. In data set 1, 8 consistently

activated working memory ROIs from OSPAN (OSPAN > BASELINE)

contrast were used in this paper for ROI modeling and prediction

(Table 1). In data set 2, 10 consistently activated cortical ROIs were used

(Table 2). Among these subjects in each data set, a randomly selected

subject is used as the template, onto which all the others are linearly

registered. In this paper, hereafter, standard space denoted as sstdhas 2-

fold meanings: DTI space for multimodal data of individual subject and

the template subject, onto which all subjects are registered.

Model Training
Before developing models from the training subjects, we applied the

approaches in Li et al. (2010) as a preprocessing step. In Li et al. (2010),

16 most stable and functionally activated working memory ROI

locations were extracted individually, and a joint ROI optimization

model that considers group-wise anatomical, structural, and functional

information was applied to obtain the optimized ROI locations. After

this initial optimization, both structural and functional connectivities

derived from the ROI locations are more consistent across subjects (Li

et al. 2010), which will facilitate the ROI prediction in this paper.

Then, we constructed 2 models for each functional ROI, which are

the statistical distribution PCA model for the ROIs locations within the

template space and the fiber bundle models of the ROIs. These learned

models will be used as the prior information for ROI prediction in the

prediction stage. It is noteworthy that a ROI location is defined to be

a single vertex on the surface onto which the functional activation

peaks from fMRI data are mapped.

PCA Model for ROIs Locations

Despite considerable variation, the spatial distribution patterns of the ROIs

have certain degree of consistency (Fig. 2a,b). In this paper, the spatial

distribution patterns of ROIs in the training set were captured and

modeled by their coordinates PCA model, which is widely used in the

biomedical image analysis community. Figure 2a,b illustrates the distribu-

tion of the ROIs in the standard space sstd in each data set. We can observe

the considerable regularity of the ROI distribution across subjects.

Figure 2. (a) Visual evaluation of the effectiveness of ROI coordinate PCA model for
data set 1. (b) Visual evaluation of the effectiveness of ROI coordinate PCA model for
data set 2. (c) Examples of fiber bundles from ROI #8 of different subjects in data set
1. In (a) and (b), the same ROIs are coded with the same color.

Figure 3. The ratio of the first eigen value to eigen value sum, against the subject
number. (a) Brain network in working memory task and (b) brain network in visual
task.

Table 2
Ten activated visual cortex ROIs used in this paper

ROI 1 Left occipital pole
ROI 2 Left lateral occipital cortex
ROI 3 Left inferior frontal gyrus
ROI 4 Left dorsolateral prefrontal cortex
ROI 5 Left frontal pole
ROI 6 Right postcentral gyrus
ROI 7 Right occipital pole
ROI 8 Right superior temporal gyrus
ROI 9 Right inferior frontal gyrus
ROI 10 Right frontal pole

Table 1
Eight activated working memory ROIs used in this paper

ROI 1 Left occipital pole
ROI 2 Left paracingulate gyrus
ROI 3 Left precuneus
ROI 4 Right dorsolateral prefrontal cortex
ROI 5 Right lateral occipital gyrus
ROI 6 Right paracingulate gyrus
ROI 7 Right precuneus
ROI 8 Right superior frontal gyrus
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Specifically, to train the ROI coordinate PCA model, we first put the

coordinates of all ROIs of one subject into a vector as:

v=½x1; y1; z1; x2; y2; z2; . . . ;xn ; yn ; zn �T where n is the number of ROIs.

This vector can also be explained as the feature vector of ROI

distribution pattern of one subject. Then, the standard PCA method was

conducted on feature matrix M=½v1; v2; . . . ; vm �T; where m is the

number of training subjects. As a result, the 2 components of the ROI

coordinate PCA model V =fVmean; Evg were obtained: the mean feature

vmean and the PCA transformation matrix Ev=½eigv1; . . . ; eigv2�which

consists of p eigen vectors of M corresponding to the largest p eigen

values that altogether cover 90% of variance.

Fiber Bundle Models of ROIs

Fiber bundle model is constructed for each ROI separately across the

training subjects to embed group-wise fiber shape information. Taking

ROI i for example, we define Ri
j as the local region centered at location

of ROI i on subject j’s surface, and fiber bundle penetrating Ri
j was

extracted and denoted as F i
j . Then, we construct a fiber bundle

template set for ROI i by simply gathering all the fiber bundles from

different subjects in it, denoted as Ti=
n
F i
j jj=1; . . . ;m

o
;where m is the

number of training subjects. As an example, Figure 2c shows fiber

bundle template set T8 of data set 1, from which it is noted that fiber

bundles of the same corresponding ROI across subjects are reasonably

consistent in terms of overall shapes and connectivity patterns.

Similarity Measurement
In this section, we will focus on measuring how close a subject to be

predicted is to the training ones in terms of the 2 models introduced in

Model training. Regarding ROI spatial distribution patterns, the ROI

coordinates of the subject to be predicted were projected and

reconstructed by the trained PCA model in PCA Model for ROIs

Locations, and the reconstruction error was defined as the distance

measurement, denoted as Distpca. Specifically, the ROI coordinates of

the subject to be predicted was extended to be vt , in the same way as

that in PCA Model for ROIs Locations. Then, it was projected and

reconstructed from the trained PCA model as follows:

vt
rec=vmean +EvE

T
v

�
vt – vmean

�
: ð1Þ

Then, the obtained vt
rec and vt were converted into the conventional

spatial coordinate format, and the Euclidian distance, represented by

Distpca
�
vt
rec; v

t
�
, was computed between them, which is the re-

construction error defined as the measurement of how close its

distributive pattern is to the training ones.

To measure the similarity between fiber bundles, we adopted the

Hausdorff metric, a simple but effective measurement (Zöllei et al.

2010). In our problem, although the overall shape patterns of fiber

bundles of the same corresponding ROI are reasonably consistent

across subjects, there is still considerable variation in local fiber shapes

(Fig. 2c). Therefore, by considering a fiber bundle as a set of individual

fiber curves, we measure the supremum of the infimum of the distances

between 2 fiber curve sets (2 bundles). Denote 2 fiber bundles as F1 and

F2, and let f1 2 F1 and f2 2 F2 be the fiber curve. The Hausdorff metric

is defined as follows (Henrikson 1999):

DistH

�
F1; F2

�
=max

n
supf12F1

�
inf f22F2dðf1; f2Þ

�
; supf22F2

�
inf f12F1dðf1; f2Þ

�o

ð2Þ

where sup represents the supremum of a set, inf is the infimum of a set,

and dð�; �Þ denotes the distance between 2 fiber curves. In this paper,

dð�; �Þ was defined as the minimum distance between 2 fiber curves.

It should be noted that although we had already applied global

alignment between subjects, the distance caused by the ROI location

variation across subjects should be eliminated before computing the

Hausdorff metric. Currently, we adopted a linear registration method to

globally align fiber bundles of corresponding ROIs.

ROI Prediction Framework
As already illustrated in Figure 1, ROI prediction for a subject starts

with linearly registering it into the standard space sstd. Then, the entire-

brain fibers of the subject are extracted, and the triangulated cortical

surface is reconstructed using the same method in Data Acquisition and

Preprocessing. The core procedure of the ROI prediction framework is

formularized and solved as an energy minimization problem. We

defined the energy function as:

E=kEint +
�
1 –k

�
Eext; ð3Þ

where the internal term Eint is expressed by the PCA constraint of ROI

coordinates and the external term Eext is formulated by the Hausdorff

Figure 4. Trend lines of Distpca against sampling range. The unit is mm for vertical axis.

Figure 5. Hausdorff metric measured between fiber bundles extracted from ROI foci
and their neighboring vertices. White arrows: original ROI locations. The unit for
Hausdorff metric is mm.
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measurement of fiber bundle similarity of all ROIs, and k trades off the 2

terms.

Specifically, the external energy term is formulated as:

Eext=
1

n
+
n

i=1

1

m
+
m

j=1

DistH

�
Fi ; F

i
j

�
; ð4Þ

where n is the number of ROIs, the m is the number of training

subjects, Fi is the fiber bundle extracted from the subject to be

predicted and F i
j 2 Ti is the template fiber bundles introduced in Fiber

Bundle Models of ROIs. It is noted that the template fiber bundles F i
j in

Tiequally contribute to the Hausdorff metric. As to the internal energy

term, it is directly formulated as the reconstruction error of the

coordinates of all ROIs from the PCA model:

Eint=Distpca: ð5Þ

A whole-space search was conducted to minimize the energy

function. The search starts from the mean ROIs location vmean of the

trained model and ends when the location becomes stable. In order to

reduce the computation load, we conducted an iterative global search.

In each iteration, the search space for each ROI is adaptable.

Considering that potential ROI locations cannot vary too much because

of consistent location distribution pattern (Fig. 2a,b), in the initial

global search iteration, the search scope is uniformly set as 8-ring

neighborhood on the surface. In the following kth iteration, we

automatically set the search scope for each individual ROI as follows.

Let eki be the distance that ROI i moves in the kth iteration, and Nk
i be

the search scope of ROI i in the kth iteration on the cortical surface. If

ek–1
j is small, Nk

i will be shrunk. In other word,
��N k

i

�� ffi ek�1
i . Then,�

N k
1 3Nk

2 3 . . .3Nk
n g forms the search space Rn , on which the kth

global search is conducted for all possible combinations of n ROIs.

Denote r 2 Rn as one combination of ROIs. To further prune the search

space Rn , we added a constraint to the energy function in equation (3)

by eliminating candidates of ROI i in N k
j if the fiber bundle emanating

from it satisfies +m

j=1DistH

�
�; F i

j

�
>e1. The constrained search space is

denoted as Cn5Rn , which induces the final form of equation (3) as:

arg min r2cn
�
kEr

int
+
�
1 –k

�
Er
ext

�
; Cn4Rn : ð6Þ

Finally, the iterative global search stops if all ROI locations are stable

and we have
�
+n

i=1e
k
i

�
<e2. It is worth noting that the 2 measurements

DistH and Distpca are computed and normalized into [0, 1] before the

iterative global search begins.

Experimental Results

Evaluation of ROI Coordinate PCA Model and Hausdorff
Metric

As the internal energy term, the ROI coordinate PCA model was

used to constrain the ROI locations based on the assumption

that ROI coordinates are roughly following Gaussian distribu-

tion. This assumption can be partly verified by checking

whether the first principal component of matrix

M=½v1; v2; . . . ; vm �T is relatively large, that is, the ratio of the

first eigen value to the eigen value sum is expected to be large.

Also, we explored if the subject number m will be an

influencing factor of the consistency of ROI coordinate

distribution. Therefore, we randomly select p subjects from

one data set for 50 times and computed the 50 ratios of the first

eigen value to the eigen value sum, as well as their means and

standard deviations. The results shown in Figure 3 demonstrate

Table 3
Distances between the predicted ROIs and the benchmark ROIs (mm) in the working memory task-based fMRI data set

Subject ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8 Subject mean

1 9.13 2.21 1.87 4.7 3.71 1.45 2.37 2.81 3.53
2 5.87 2.31 2.54 5.32 2.44 3.09 8.85 2.65 4.13
3 9.25 2.96 2 5.1 2.99 2.36 1.59 2.78 3.63
4 6.17 2.1 3.11 3.93 1.95 4.85 3.78 2.15 3.51
5 6.03 1.11 2.81 3.35 5.04 2.19 8.06 2.2 3.85
6 7.5 3.07 2.67 5.89 2.61 2.93 8.18 3.19 4.51
7 6.44 4.05 3.19 1.64 1.53 2.67 7.54 3.71 3.85
8 5.07 1.45 2.87 2.79 5.33 1.25 7.72 2.07 3.57
9 6.08 2.93 3.35 4.71 2.11 4.78 3.77 2.48 3.78
10 6.92 2.89 3.84 4.75 2.31 6.3 3.3 2.39 4.09
11 9.6 3.65 2.93 1.53 1.73 2.89 8.12 2.96 4.18
12 7.98 3.5 3.47 2.18 2.07 2.59 7.59 3.03 4.05
13 7.98 3.14 2.79 5.87 2.84 3.57 7.99 3.52 4.71
14 9.59 1.98 2.02 5.14 3.5 1.09 1.54 2.37 3.4
15 5.72 2.17 2.7 2.52 5.52 1.92 8.21 1.62 3.8
ROI ± mean 7.29 6 1.55 2.64 6 0.82 2.81 6 0.55 3.96 6 1.51 3.05 6 1.31 2.93 6 1.45 5.91 6 2.78 2.66 6 0.57

Note: Means across ROIs and subjects are in bold fonts.

Table 4
Distances between the predicted ROIs and the benchmark ROIs (mm) in the vision task-based fMRI data set

Subject ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8 ROI 9 ROI 10 Subject mean

1 4.27 3.14 3.82 2.89 2.09 3.14 3.53 8.3 2.95 5.16 3.93
2 9.61 1.04 5.7 1.86 5.67 1.95 4.64 2.85 0.93 2.32 3.66
3 9.94 4.33 6.87 1.05 3.92 2.19 3.73 5.06 0 4.39 4.15
4 9.1 3.96 2.27 2.6 5.95 2.85 1.35 7.87 1.24 6.15 4.33
5 7.38 1.54 4.04 4.45 5.4 2.47 5.13 3.8 1.91 5.1 4.12
6 6.9 2.36 1.7 4.69 2.33 3.02 3.7 6.69 2.88 5.91 4.02
7 7.89 2.63 2.78 1.54 2.19 3.5 4.75 5.26 3.49 5.14 3.92
8 8.77 2.84 4.8 1.36 5.03 2.01 3.38 6.65 2.07 5.85 4.28
9 8.35 3.52 2.03 3.15 4.85 3.52 1.79 6.35 1.76 6.82 4.21
10 7.63 1.46 1.28 1.38 2.11 2.44 3.87 5.97 1.01 5.7 3.29
ROI ± mean 7.98 6 1.63 2.68 6 1.1 3.53 6 1.84 2.5 6 1.3 3.95 6 1.62 2.71 6 0.58 3.59 6 1.21 5.88 6 1.7 1.82 6 1.07 5.25 6 1.23

Note: Means across ROIs and subjects are in bold fonts.
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2 points: the ratio is as high as above 0.5; the number of

subjects does not significantly affect the consistency of ROI

coordinate distribution pattern. This result indicates that the

PCA model of ROI locations is valid.

In order to further demonstrate that the PCA model of ROI

location coordinates really captures the intrinsic relationship of

the common human brain architecture, we designed and

performed the following experiment on the working memory

data set. This experiment also aims to demonstrate that the

reconstruction error Distpca defined in PCA Model for ROIs

Locations can be used as a meaningful constraint in ROI

prediction. Taking one subject from data set 1, for example, we

uniformly sampled 100 groups of the 8 ROIs in the neighborhood

of each one. The 100 groups of 8 ROIs were then projected and

reconstructed by the trained PCA model and thus generated the

reconstructed errors. Five subjects from data set 1 were

randomly chosen for this experiment. Additionally, the sampling

range, that is, sizes of neighborhood, was considered as another

parameter. The results in Figure 4 show the mean reconstruction

error Distpcaof each 100-group test. The mean trend line for each

subject shows that the minima Distpca are always at the original

ROI locations for each subject, suggesting that the ROIs

identified by task-based fMRI have much less variation in terms

of their spatial locations, in comparison to random samplings

around their neighborhoods. As the random sampling range was

enlarged, Distpca grows accordingly. This result demonstrates the

validity of Distpca for use as the meaningful constraint and

similarity measurement in ROI prediction.

Figure 6. Visualization of fiber bundles of the subjects in data set 1. Yellow frames: fiber bundles emanating from benchmark ROIs (yellow bubbles); Gray frames: the template
fiber bundles emanating from corresponding ROIs of 3 training subjects (yellow bubbles); Green frames: fiber bundles emanating from predicted ROIs (green bubbles), and
benchmark ROIs in the yellow frame are also displayed for comparison.
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In order to evaluate the effectiveness of Hausdorff metric for

fiber bundles, we performed an experiment on the working

memory data set to examine the similarity measurements

between fiber bundles, as shown in Figure 5. For each benchmark

ROI, we extracted fiber bundles for every vertex within its

neighborhood. Then, Hausdorff metric DistHwere computed

between those fiber bundles and the one extracted from the

benchmark ROI itself. The local region Ri
j used to extract fiber

Figure 7. Visualization of fiber bundles of the subject in data set 2. Yellow frames: fiber bundles emanating from benchmark ROIs (yellow bubbles); Gray frames: the template
fiber bundles emanating from corresponding ROIs of 3 training subjects (yellow bubbles); Green frames: fiber bundles emanating from predicted ROIs (green bubbles), and
benchmark ROIs in the yellow frame are also displayed for comparison.
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bundle is 3-ring neighborhood size here. Afterward, the

Hausdorff metrics were color coded and mapped onto the

corresponding neighboring vertices. By visual inspection, a rough

Gaussian-like distribution centered at the original ROI location

(white arrows) can be found, which suggests that the shape

pattern of fiber bundle is a distinctive feature and the Hausdorff

metric DistH is an effective measurement for fiber bundle

similarity. In other words, a ROI’s fiber bundle can distinguish

itself from other neighbors. This characteristic of uniqueness is

much desired in ROI search and prediction.

Figure 9. Fiber bundle illustration for ROI #1, #4, and #7 (sub-fig 1, sub-fig 2, and sub-fig 3). (a) Fiber bundles emanating from predicted ROI and benchmark ROI are
overlapped; (b) Fiber bundles emanating from predicted ROI; (c) Fiber bundles emanating from benchmark ROI; (d--f) Template fiber bundles of ROI in the training data set. Yellow
bubbles: benchmark ROI locations; Green bubble: predicted ROI locations.

Figure 8. The impact of k on the prediction result. Values of k are labeled by the
horizontal axis, while the prediction errors are represented by the vertical axis with
the unit mm.
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ROI Prediction

We used the leave-one-out strategy to evaluate the ROI

prediction framework on the 2 data sets individually. In all the

experiments, k was assigned as 0.3 in the global search. In this

paper, we did not consider the impact of ROI size. Therefore, the

local region Ri
j centered at location of ROI i on subject j’s surface

and from which fiber bundle emanating was extracted, was

uniformly assigned to be the size of 3-ring neighborhood.

As the subject to be predicted has task-based fMRI data, the

fMRI-derived ROIs are used as the benchmark data to evaluate

the ROI prediction results. Table 3 and Table 4 show the

Euclidian distances between the predicted ROIs and the

benchmark data for ROIs, that is, the prediction errors for all

the leave-one-out experiments. Most of the prediction errors are

approximately 2--4 mm, which is 1--2 voxels in DTI volumes. On

average, the average prediction errors for ROIs are 3.9 ± 2.18 mm

and 3.99 ± 2.22 mm in data set 1 and data set 2, respectively. It is

interesting that there are ROIs (#2, #3, #6, #8 in data set 1 and

#2, #4, #6, #9 in data set 2) that have average prediction errors

below 3 mm, which is considered as very accurate.

To visualize the consistency of fiber bundles of the predicted

ROIs, we showed the fibers emanating from predicted ROIs and

fibers emanating from benchmark ROIs for one randomly

selected subject from each data set in Figure 6 and Figure 7,

respectively. Corresponding fiber bundles of 3 subjects randomly

selected from the training subjects are also shown for comparison.

It is evident that the fiber bundles of the predicted ROIs (column

5) are quite similar to those of the benchmark ROIs derived from

task-based fMRI (column 4), indicating the effectiveness and

accuracy of our ROI prediction framework. It is also evident that

the fiber bundles of the predicted ROIs and benchmark ROIs are

quite similar to those of the corresponding ROIs of the training

subjects (column 1--3). These results reveal that there are

consistent fiber connection patterns for corresponding functional

ROIs in different brains, which provides the neuroscience

foundation and technical feasibility for the work in this paper.

As an important parameter, the influence of k in the energy

function equation (6) is explored. We tested it on one

randomly selected subject in data set 1 by ranging k from 0.0

to 1.0, and the corresponding mean prediction errors of the 8

ROIs were computed and illustrated in Figure 8. We can

observe that the prediction error is the smallest when k is

around 0.3. Therefore, in this paper, k was assigned as 0.3 for all

the experiments.

Notably, some ROIs (e.g., #1, #4, #7 in data set 1 and #1, #5,

#8, #10 in data set 2) have relatively large prediction errors,

and as an example, the corresponding fiber bundles of those in

data set 1 (#1, #4, #7 in data set 1) are shown and examined in

Figure 9. We can see that although the distance between the

predicted ROI and the benchmark one is relatively large (7.29,

3.96, and 5.91 mm), their fiber bundle similarity is still high,

either by the overlapping views (Fig. 9, 1a--3a) or separated

views (Fig. 9, 1b--3b and Fig. 9, 1c--3c). This visualization

suggests that our energy minimization procedure in ROI

Prediction Framework might be trapped in a local minimum,

thus resulting in those predicted ROIs converged to a wrong

location with similar emanating fiber bundle. In the future,

other constraint terms will be considered to further reduce the

chance of being trapped in local minima during the energy

minimization procedure.

Finally, the functional connectivity matrices between ROIs of

one randomly selected subject from each data set were shown

in Figure 10. The connectivity matrix was computed as follows:

we mapped the ROIs into the fMRI data space, and for each

ROI, functional signals from the 27-neighborhood voxels were

extracted and averaged. The Pearson correlation was com-

puted between any pair of ROIs. We computed the connectiv-

ity matrix for both the benchmark ROIs and the predicted

ROIs. In Figure 10, only minor difference between a and b, or c

and d, can be observed, demonstrating that the functional

connectivity measured by our predicted ROIs is very close to

the real connectivity. Importantly, the columns of the ROIs

with relatively large prediction errors are highlighted, from

which we can find that there is no direct relationship between

the prediction error and functional connectivity changes.

Comparison Studies

For the purpose of comparison, we conducted ROI prediction

by linear (via FSL FLIRT), nonlinear registration (via the

HAMMER software package [Shen and Davatzikos 2002]), and

DTI registration approaches (denoted as DTI Reg) (Yang et al.

2008). The prediction procedure is as follows. Taking the linear

registration method for instance, we randomly chose a subject

as a template from the training data set and registered its fMRI

Figure 10. Functional connectivities between ROIs. The color bar is at the bottom.
(a) Functional connectivity matrix of the benchmark ROIs of one subject from data set
1. (b) Functional connectivity matrix of the predicted ROIs of one subject from data
set 1. (c) Functional connectivity matrix of the benchmark ROIs of one subject from
data set 2. (d) Functional connectivity matrix of the predicted ROIs of one subject
from data set 2. The columns with relatively large prediction errors (#1, #4, #7 in
data set 1 and #1, #5, #8, #10 in data set 2) are highlighted by black frames.

Table 5
Prediction errors by the FSL FLIRT, HAMMER, and DTI-based registration algorithm (mm)

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6 ROI 7 ROI 8 Mean

FLIRT 7.48 4.95 6.24 6.18 5.41 4.51 6.46 4.54 5.72
HAMMER 6.18 4.92 6.40 7.50 5.15 3.06 6.08 4.95 5.53
DTI Reg 6.40 4.97 4.84 7.50 2.70 5.15 3.06 4.86 4.94

Note: Means across ROIs and subjects are in bold fonts.
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image and the corresponding ROI location into its DTI space.

Then, we registered its fractural anisotropy image obtain from

DTI data onto that of a subject from the testing data set via FSL

FLIRT. Finally, the predicted ROIs were obtained by applying

the registration transform on the ROI location of the template,

and the distances between the predicted ROIs and benchmark

ones from the testing subject were computed.

The mean prediction errors for the 3 methods are shown in

Table 5. On average, the prediction errors by FSL FLIRT, HAMMER,

and DTI Reg are 5.72, 5.53, and 4.94 mm, respectively. As can be

seen, our method (3.94 mm) significantly outperforms them. The

fiber bundles emanating from predicted ROIs using the 3 methods

of one subject were shown in Figure 11. The differences in

comparison with the benchmark ones can be easily inspected.

Conclusions

We presented a novel framework for functional brain ROI

prediction using the working memory and vision networks as

test beds. From the training subjects which include both DTI and

fMRI data, we trained the model of ROI location distribution and

the model of fiber bundles emanating from functionally cortical

ROIs. Predicting ROIs on testing subjects was performed by

matching the trained models onto the DTI data of individual

subjects. This problem was formulated as an energy minimization

one, in which fiber bundle shape and ROI location pattern were,

respectively, considered as external and internal terms. Experi-

mental results demonstrated that the ROI prediction framework

has promising performance, in comparison to other methods

based on linear and nonlinear image registration algorithms.

It should be noted that our ROI prediction framework might

be trapped into local minima for some ROIs (as illustrated in Fig.

9), although global search is conducted. This may be caused by

the fiber bundle similarity measurement (Hausdorff metric) used

in this paper, which should be further investigated. Moreover,

variability across subjects in terms of ROI’s structural and

anatomical locations and ROI size may be other reasons.

Figure 11. Visualization of fiber bundles emanating from predicted ROIs using FSL FLIRT (purple column), HAMMER (light blue column), and DTI Reg (dark blue column) methods.
Our prediction (green column) and the benchmark bundles (yellow column), which are the same as columns 4 and 5 in Figure 6, are also shown in the left most columns for
comparison. Yellow bubbles: benchmark ROIs; Green bubbles: predicted ROIs via our method; Light blue bubbles: predicted ROIs by HAMMER; purple bubbles: predicted ROIs by
FLIRT; dark blue bubbles: predicted ROIs by DTI Reg.
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Therefore, in the near future, we plan to investigate improved

metrics for fiber bundle similarity and model the variability of the

ROI’s structural and functional profiles with ROI size problem

considered. For instance, the group replicator dynamics

approach (Ng et al. 2009) could possibly be used to model the

variability of the structural and functional connectivities among

the ROIs. Notably, our methods focus on the most consistent

ROIs at current stage. In the future, we will consider adding

other less consistent ROIs into the prediction framework and

evaluate the performance of ROI prediction.

Currently, the computational pipeline takes around a few

minutes in the training stage and, approximately, 4 h in the

prediction stage on a typical PC computing environment. It is

worth noting that in the future, optimization strategies like

developing robust fiber shape features that require less

computation load and automatically pruning the search space

could significantly reduce the computation load.

Our work has demonstrated that fiber bundle shape models of

functional brain ROIs have remarkable prediction capability,

providing direct support to the connectional fingerprint concept

(Passingham et al. 2002). In the future, we plan to apply and

evaluate this ROI prediction framework in other brain networks,

such as executive function, attention, and semantics memory

systems and apply and validate this framework on clinical data

sets such as the DTI data sets of Alzheimer’s disease and Autism.
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